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Symmetry breaking of nematic umbilical defects through an amplitude equation
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The existence, stability properties, and bifurcation diagram of the nematic umbilical defects is studied. Close to
the Fréedericksz transition of nematic liquid crystals with negative anisotropic dielectric constant and homeotropic
anchoring, an anisotropic Ginzburg-Landau equation for the amplitude of the tilt of the director away from the
vertical axis is derived by taking the three-dimensional (3D) to 2D limit of the Frank-Oseen model. The anisotropic
Ginzburg-Landau equation allows us to reveal the mechanism of symmetry breaking of nematic umbilical defects.
The positive defect is fully characterized as a function of the anisotropy, while the negative defect is characterized
perturbatively. Numerical simulations show quite good agreement with the analytical results.
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I. INTRODUCTION

Macroscopic systems with injection and dissipation of en-
ergy and momenta exhibit instabilities leading to spontaneous
symmetry breaking and pattern formation [1]. Due to the
inherent fluctuations of these macroscopic systems, different
organizations may emerge in distinct regions of the same
sample; hence, spatial structures are usually characterized by
domains, separated by interfaces, as grain boundaries, defects,
or dislocations [2,3]. Among others, defects in rotationally
invariant two-dimensional (2D) systems, i.e., vortices, attract
a great deal of attention because of their universal character, as
they are solutions of the complex Ginzburg-Landau equation
(CGLE) that describes such different systems as fluids, super-
fluids, superconductors, liquid crystals, fluidized anisotropic
granular matter, magnetic media, and optical dielectrics, to
mention a few [4]. Vortices occur in complex fields and can be
identified as topological defects, that is, pointlike singularities,
which locally break the symmetry. They exhibit a zero intensity
at the singular point with a phase spiraling around it. The
topological charge is assigned by counting the number of spiral
arms in the phase distribution, while the sign is given by the
sense of the spiral rotation.

Nematic liquid crystals with negative anisotropic dielectric
constant and homeotropic anchoring are a natural physical
context where dissipative vortices are observed [5,6]. Figure 1
shows the typically observed vortices and schematic represen-
tations in two and three dimensions of these defects. Umbilical
defects in nematic liquid crystals have long been reported in
the literature (see textbooks [5–7] and references therein). Two
types of stable vortices with opposite charges are observed
[see Fig. 1(c)], which are characterized by being attracted
(repulsed) to the opposite (identical) topological charge. The
nematic liquid crystal phase is characterized by rod-shaped
molecules that have no positional order but tend to point in
the same direction. Then, the description of the nematic liquid
crystal is given by a vector—the director �n—which accounts

*marcel@dfi.uchile.cl

for the molecular order. Note that the defects observed
in this context are strongly dissipative, compared to those
observed in magnetic systems, superfluids, superconductors,
and Bose-Einstein condensates. Even so, the vortexlike defects
have accompanied liquid crystals since their discovery in
1889 by Lemman [8], who called these structures kernels.
Later, they were observed in a similar experimental setup
by Freidel, who called these defects noyaux [9]. Moreover,
he also resolved their detailed topological structure. From
the theory of elasticity of nematics liquid crystals Frank
calculated the detailed structure of these defects [10]. Due
to the fact that these defects break the orientational order and
by analogy with dislocations in crystals of condensed matter,
Frank called these defects disclinations. Despite the different
names given to the observed vortices in this context, none
of them were adopted by the community of liquid crystals.
There the most widely used name for these defects is nematic
umbilical defects. The term umbilics was coined by Rapini [11]
and refers to the topological structure of the defect, which
corresponds to a stringlike object in three dimensions [see
Fig. 1(b)]. Because of the complex elasticity theory associated
with nematic liquid crystals, characterized by three types of
deformation (blend, twist, and splay), the dynamic study of
defects is a thorny task [5–7]. A simple and universal strategy
to study and characterize these defects and their dynamics is
to analyze their behavior near the orientational instability of
the molecules, which is called Fréedericksz transition [5,6].
Close to this transition the dynamics of the director can be
reduced at main order to the Ginzburg-Landau equation with
real coefficients [12,13]. This amplitude equation allows us to
understand the emergence of different orientational domains,
two types of stable vortices, and their respective dynamics.
Since the vortices have a ±2π phase jump (winding number),
usually they are referred to as vortex + and −, respectively.
In this approach, however, both defects are indistinguishable
in their amplitude and, as a result of the phase invariance of
the Ginzburg-Landau equation, they account for a continuous
family of solutions, characterized by a phase parameter.
Notwithstanding, as a result of the inherent anisotropy of liquid
crystals these defects can be distinguished experimentally.
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FIG. 1. (Color online) Nematic umbilical defects. (a) Schematic
representation of the system under study, the rods describe the
orientation of the director and the gray rods (green rods) stand for the
vortex position. (b) Three-dimensional representation of the nematic
umbilical defect, where arrows stand for the position of the defect.
(c) Experimental image of umbilical defects. (d) Bifurcation diagram
of a degenerate pitchfork bifurcation with O(2) symmetry.

Figure 1(c) shows an image obtained using two crossed
polarizers where one can distinguish between different defects,
in which one exhibits a variety of different colors.

The aim of this manuscript is to investigate the existence,
stability properties, and bifurcation diagram of the nematic
umbilical defects through amplitude equations. Several studies
have been performed using variational methods in the free
energy of Frank [11,14], however there is no complete
characterization of the nematic umbilical defects. Close to
the Fréedericksz transition of nematic liquid crystals with
negative anisotropic dielectric constant and homeotropic an-
choring, an anisotropic Ginzburg-Landau equation for the
transversal critical mode is derived by taking the 3D to 2D
limit of the Frank-Oseen model. This model allows us to reveal
the mechanism of symmetry breaking of nematic umbilical
defects. The defect with positive charge is fully characterized
as a function of the anisotropy, while the negative defect
is characterized perturbatively. In particular, only a discrete
number of solutions of the continuous family of defect persists
when anisotropy is taken into account.

II. AMPLITUDE EQUATION CLOSE TO THE
FRÉEDERICKSZ TRANSITION

Let us consider a nematic liquid crystal layer with negative
anisotropic dielectric constant and homeotropic anchoring
under the influence of high-frequency electrical tension (kHz).
Figure 1(a) shows schematically the liquid crystal layer, where
the rods account for the orientation of the director �n(r,t) and
{r,t} describe the space and time, respectively. To understand
the dynamical behavior of umbilical defects, we derive a
model in the vicinity of the Fréedericksz transition, a limit
where analytical results are accessible as nematic liquid crystal

molecules are weakly tilted from the longitudinal axis ẑ

and backflow effects can safely be neglected. The dynamical
equation for the molecular director �n reads (the Frank-Oseen
model) [6]

γ ∂t �n = K3[∇2�n − �n(�n · ∇2�n)]

+ (K3 − K1)[�n(�n · �∇)( �∇ · �n) − �∇( �∇ · �n)]

+ (K2 − K3)[2(�n · �∇ × �n)(�n(�n · �∇ × �n) − �∇ × �n)

+ �n × �∇(�n · �∇ × �n)] + εa(�n · �E)[ �E − �n(�n · �E)], (1)

where γ is the relaxation time, εa is the anisotropic dielectric
constant that accounts for nonlinear response of the dielectric
constant, {K1,K2,K3} are the nematic liquid crystal elastic
constants, which account for the elastic deformation of splay,
twist, and bend type, respectively. The electric field is given
by �E = (V/d)ẑ ≡ Ezẑ, where Ez is the root mean square
amplitude of the electric field, V is the applied voltage and
d is the width of the liquid crystal layer.

A. Amplitude equation close to Fréedericksz transition

A trivial equilibrium of the liquid crystal layer is the
homeotropic state, �n = ẑ. This state undergoes a degenerate
stationary instability when the anisotropic dielectric con-
stant is negative (εa < 0) for critical values of the voltage,
which match the Fréedericksz transition threshold VFT =√

−K3π2/εa . Then, the director undergoes orientational insta-
bility, i.e., the molecules do not want to align with the electric
field. As a result of elastic coupling between the molecules,
the director has a cone of possible equilibria. From the point
of view of bifurcation theory, this instability corresponds to
a degenerate pitchfork bifurcation with O(2) symmetry [3].
Figure 1(d) outlines the bifurcation diagram for this instability.

Close to the transition point, we introduce the ansatz

�n =

⎛
⎜⎝

nx(�r,πz/d,t)
ny(�r,πz/d,t)√
1 − (

n2
x + n2

y

)
⎞
⎟⎠ ,

with �r = (x,y) ∈ � ⊂ R2 the transverse coordinates, z ∈
(−1/2,1/2) and the parameter d � 1 measures the thickness
of the liquid crystal sample (which is conveniently taken to
be equal to πd). Now the idea is to take the 3D to 2D limit
of Eq. (1) near the Fréedericksz point, or in other words take
the limit d → 0. To do this we assume that the voltage has the
following expansion

V = VFT + d2V1 + · · · , V1 > 0.

We introduce the new variable ζ = z/d and write the ansatz
in a more explicit form

nx(�r,ζ,t) = d2u0(�r,t) cos(πζ ) + d4u1(�r,t)ϑ(πζ ) + · · · ,

ny(�r,ζ,t) = d2v0(�r,t) cos(πζ ) + d4v1(�r,t)ϑ(πζ ) + · · · ,

nz(�r,ζ,t) =
√

1 − (
n2

x + n2
y

)
,

where ϑ(πζ ) is a function to be determined. Next, we
substitute these expressions in Eq. (1) and compare terms
with equal powers of d. This allows us to have a hierarchy
of equations. It turns out that the O(1) term in the direction of
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the vector x̂ = (1,0,0) satisfies

K3d
−2∂2

ζ ζ nx + εaV
2
FT d−2nx = u0

(−K3π
2 − εaV

2
FT

) = 0,

because of the choice of VFT . Hence, this condition cor-
responds to impose that the voltage is in the Fréedericksz
transition. A similar equation holds in the ŷ = (0,1,0) di-
rection. Note that this does not allow us to determine the
functions u0 and v0. As is the case in the standard formal
asymptotic expansion of a homogenization problem, these
functions are determined as solvability conditions for the
equations corresponding to O(d2) order. Indeed, at this order
we have to solve, say in the direction of x̂, a linear problem
for the function ϑ , which is of the form

u1
[
K3∂

2
ζ ζ − εaV

2
FT

]
ϑ = gx(�r,πζ,t),

and this last equation can be solved uniquely if∫ 1/2

−1/2
gx(�r,πζ,t) cos(πζ ) dζ = 0.

We show in the Appendix that this, and a similar condition
in the ŷ direction lead to the following equation for the order
parameter w0 ≡ u0 + iv0:

γ ∂tw0 = 1
2 (K1 + K2)∇2

⊥w0 + 1
2 (K1 − K2)∂2

ηηw̄0

−K3π
2w0|w0|2 − εaVFT V1w0, (2)

where w̄0 stands for the complex conjugate of w0, ∂η ≡ ∂x +
i∂y and ∇2

⊥ ≡ ∂xx + ∂yy = ∂η∂η̄.
We change variables

w0(�r,t) 
−→ 1

π

√
K1 + K2

K3
A[ �ρ,(K1 + K2)t/2γ ],

and let δ = (K1 − K2)/(K1 + K2). Denoting the new time
variable by t again we obtain an anisotropic complex
Ginzburg-Landau equation:

∂tA = μ0A − |A|2A + ∇2
⊥A + δ∂2

ηηĀ, (3)

where

μ0 = 2|εa|VFT V1

K1 + K2

is the bifurcation parameter and δ ∈ [−1,1] accounts for the
elastic anisotropy.

Similar equations were derived before: using the method
of amplitude equations for nematic liquid crystals near the
Fréedericksz transition [13] (see also [12]), and for modeling
self-organization in an array of microtubules interacting via
molecular motors in Ref. [15].

Note that Eq. (3) can be rewritten in the form

∂tA = − δE
δĀ

, (4)

where the free energy is

E(A,δ) ≡
∫

�

dS

[
|∇A|2 + 1

2
(μ0 − |A|2)2 + δRe{(∂ηA)2}

]
,

(5)

where � ⊂ R2 is a bounded domain. In other words the time-
dependent anisotropic Ginzburg-Landau Eq. (3) is simply a

gradient flow of the free energy. Obviously E is a Lyapunov
functional, i.e.,

dE
dt

=
∫

�

ds

(
δE
δA

∂tA + δE
δĀ

∂t Ā

)
,

= −2
∫

�

ds
δE
δA

δE
δĀ

≤ 0. (6)

The trivial equilibria that minimize the free energy are |A|2 =
μ0. However, as we will see this equation has nontrivial
inhomogeneous equilibria.

B. Isotropic limit: Ginzburg-Landau equation

Considering the isotropic limit (K1 = K2 = K3), δ = 0, the
above model reduces to the well-known complex Ginzburg-
Landau equation with real coefficients

∂tA = μ0A − |A|2A + ∇2
⊥A. (7)

This model has gathered a great interest by describing several
physical systems such as fluids, superfluids, superconduc-
tors, liquid crystals, magnetic media, and optical cavity, to
mention a few [4]. The main properties of the complex
Ginzburg-Landau equation are reported in the review [16].
This equation admits stable dissipative vortex solutions with
topological charge ±1 [2,4]. Figure 2 illustrates the vortex
solution with negative topological charge. If one considers
polar representation A = Rv(r)ei(mϕ+ϕ0), where m = ±1 is
the topological charge, (r,ϕ) are the polar coordinates in
the plane and ϕ0 is a continuous parameter that accounts
for the phase invariance of the above amplitude Eq. (7). The
magnitude Rv(r) satisfies

μ0Rv − R3
v − m2

r2
Rv + 1

r

dRv

dr
+ d2Rv

d2r
= 0. (8)

There are no analytical expressions for the defect solutions of
this model, which were first observed numerically in Ref. [17].
However, one has the asymptotic behavior

Rv(r) ≈
{

αmr |m| + · · · , r −→ 0,
√

μ0 − m2

2 r−2 + · · · , r −→ ∞,

where αm > 0 is a constant that depends on μ0 as well.
By using Padé approximants, one can obtain suitable

approximations for the vortices [2]. There is a long history of
literature devoted to the rigorous study of vortices in complex
Ginzburg-Landau equation (see Ref. [18] and references
therein). Note that the equation for the modulus of the
amplitude does not depend on the sign of the topological
charge. Hence, both vortices are indistinguishable from the
point of view of their magnitude.

In order to characterize the arms of the vortex and to allow
a comparison with the experimental observations obtained
by using cross polarizers, let us introduce the nullcline field
ψ(r,θ ) ≡ Re(A)Im(A). This auxiliary field becomes zero
when the real or imaginary part of A vanishes. Then, the
arms and position of the vortex are represented, respectively,
by the zero and the intersection of the zero nullcline curves.
Figure 2(c) shows the nullcline field obtained by using the
above Ginzburg-Landau equation (7). Note that both defects
are still indistinguishable (see Fig. 2), however these defects
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FIG. 2. (Color online) Vortex solution of Ginzburg-Landau equa-
tion (7) with μ0 = 1 (from numerical simulations). Structure of the
magnitude (a) and phase of the positive vortex (b). Structure of the
magnitude (c) and phase of the negative vortex (d). (e) Nullcline field,
ψ(x,y,t) = Re(A)Im(A) at given time. This field is equivalent to the
light intensity observed when one considers crossed polarizers on an
experimental setup. (f) Modulus of the amplitude A at given time.

are experimentally distinguishable [see Fig. 1(c)] [11,14,21].
The different colors observed experimentally are due to the
different optical paths produced by the different orientations
of the molecules. Moreover, from the Ginzburg-Landau
equation, one deduces that the interaction between vortices is
symmetric [4,22], however it has been reported that the speed
of umbilic defects in the process of collision is different [23].
Numerical simulations considering the dynamic of the nematic
liquid crystal show the same result, where the speed asymmetry
arises from backflow effects and anisotropy in the elastic
constants [23].

The Ginzburg-Landau equation is invariant under the
following symmetries: �r −→ �r + �r0 (spatial translation in-
variance), ϕ −→ ϕ + ϕ0 (coordinates rotation), ϕ −→ −ϕ

(coordinates reflection), A −→ Aeiϕ0 (phase invariance), and
A −→ Ā (reflection invariance).

III. ANISOTROPY INDUCES SYMMETRY BREAKING

A. Fourfold symmetry of the energy and its consequences

For the purpose of the following discussion we assume
that μ0 = 1. Let us now consider the effect of the anisotropy

of the elastic constants (δ �= 0). From the point of view of
symmetries, equation (7) as well as the free energy E are still
invariant under spatial translation, but phase invariance and
coordinates rotation are no longer valid symmetries. They are
replaced by a joint symmetry A(z,t) −→ A(ze−iϕ0 ,t)eiϕ0 (z
is the complex variable that represents the Cartesian plane).
Using the notation Rϕ0 for the rotation by the angle ϕ0 of R2

about the origin, a short calculation shows however that we
still have:

E(A,δ) = E(A ◦ Rϕ0 , − δ) = E(Rϕ0A,−δ),

when ϕ0 = π/2. This is best seen if we notice that with A =
u + iv we have

E(A,δ) =
∫

�

dS[(1 + δ)(ux + vy)2 + (1 − δ)(uy − vx)2]

+ 1

4

∫
�

dS[1 − (u2 + v2)]2.

We say that E has a fourfold symmetry in the sense that

E(A,δ) = E[Rmπ/2A ◦ Rkπ/2,(−1)m+kδ]. (9)

This formula relates different equations and energies when
m + k is odd, and at the same time it shows that energy and
bifurcation diagrams have to be even symmetric with respect
to δ = 0. Functionals with fourfold symmetries appear for
instance in the so-called d-wave Ginzburg-Landau equation,
see for instance Refs. [19,20] and the references therein.

The presence of anisotropy also breaks the symmetry
between the vortices with positive and negative charge. To
give a first insight into this issue let us suppose that � = BL

is a ball of radius L centered at the origin. Consider a function
f defined in � with Fourier series expansion

f (z) =
∞∑

n=−∞
fn(r)e inθ ,

with z = re iθ . Now, if f (z) has the form

f (z) =
∞∑

n=−∞
f4n±1(r)e i(4n±1)θ ,

that is, only modes indexed by 4n ± 1 are present, it can be
checked that

�u + δ∂ηηū + u(1 − |u|2)

has an expansion where again only modes 4n ± 1 appear. With
this in mind we can define A to be a vortex solution with unit
positive charge if its Fourier series has the terms indexed by
4n + 1 and f ′

1(0) �= 0, and unit negative charge if its series has
the terms 4n − 1 and f ′

−1(0) �= 0.
Figure 3 illustrates the vortices with positive and negative

topological charge found in the asymmetric Giznburg-Landau
equation (3). Note that from the nullcline field ψ(r,t) it is
not possible to differentiate these vortices, compared to the
magnitude field |A(r,t)| where they are distinguishable (cf.
Fig. 3). For the vortex with charge +1, the modulus remains
rotationally invariant, while for the −1 vortex the rotational
invariance around the core is broken by the fourfold symmetry.
Indeed, in a single color map representation of |A|, one can
identify the positive and negative charges on their circular and
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FIG. 3. (Color online) Vortex solution of the anisotropic
Ginzburg-Landau equation (3) with μ0 = 1 and δ = 0.7 (from
numerical simulations). Structure of the magnitude (a) and phase
of the positive vortex (b). Structure of the magnitude (c) and
phase of the negative vortex (d). (e) Colormap of nullcline field
ψ(x,y,t) = Re(A)Im(A) and (f) modulus of the amplitude A at given
time.

cross structure, respectively [cf. Fig. 3(d)]. Note that when one
increases the anisotropy, the size of the cross structure grows.
Below, we study the properties of each of the vortices.

B. Vortex with positive charge

By introducing the ansatz A(r,θ,{ϕ0}) = R(r)ei(θ+ϕ0) in
the anisotropic Ginzburg-Landau equation (3), for the vortex
solution with positive topological charge, we obtain the
following set of scalar equations

0 = μ0R − R3 + (1 + δe−2iϕ0 )

(
d2R

d2r
+ 1

r

dR

dr
− R

r2

)
(10)

0 = δ sin 2ϕ0

(
d2R

d2r
+ 1

r

dR

dr
− R

r2

)
. (11)

From Eq. (11), the only possibility to obtain a nontriv-
ial solution is to consider the phase parameter satisfying
sin 2ϕ0 = 0, which gives the discrete solutions ϕ0 =
{0,π/2,π,3π/2}, and which is of course consistent with
the fourfold symmetry mentioned above. Therefore, from
the continuous family of possible phase jumps only four
possibilities survive. On the other hand, the equation for the
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FIG. 4. (Color online) Vortex solution with positive topological
charge of the anisotropic Ginzburg-Landau equation (3) with μ0 = 1
and δ = 0.1. Magnitude of the vortex with positive (a) and negative (b)
anisotropy, respectively. The dashed curve stands for the magnitude
of the vortex for isotropic systems (δ = 0). (c) and (d) schematic
representation of the orientation field A(r,θ,{ϕ0}) for different values
of ϕ0: R−

v (ϕ0 = π/2) and R+
v (ϕ0 = 0). (e) Schematic representation

of the orientation amplitude field for the negative topological charge.

magnitude of the amplitude reads

0 = μ0R − R3 + (1 + δ cos 2ϕ0)

(
d2R

d2r
+ 1

r

dR

dr
− R

r2

)
.

(12)

Since ϕ0 = {0,π/2,π,3π/2}, we must have cos 2ϕ0 = ±1.
Rescaling the space by the factor

√
1 ± δ, the above equation

becomes Eq. (8). Therefore, the isotropic positive vortex has
the form

A = R±
v

(
r√

1 ± δ

)
ei(θ+ π

4 ∓ π
4 +nπ), (13)

with Rv the magnitude of the vortex solution of the Ginzburg-
Landau equation and n = 0,±1,±2, . . . . Consequently, the
anisotropic vortex solution with positive charge corresponds
to a simple scaling of the isotropic vortex solution, notwith-
standing, with a finite number of possible phase jumps (ϕ0 =
{0,π/2,π,3π/2}), in opposition, to the isotropic system, which
has an infinite number of solutions parameterized by the
continuous parameter ϕ0. Figure 4 illustrates the magnitude
of a vortex with positive topological charge solution for the
asymmetric Ginzburg-Landau equation (3), for positive and
negative anisotropy. Note that the difference between the
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vortices R+
v and R−

v in the amplitude are their different sizes of
the vortex core. For positive (negative) anisotropy the largest
core is for vortex R+

v (R−
v ). Also, due to the different ϕ0,

both vortices represent different configurations for the director
orientation [cf. Figs. 4(c) and 4(d)].

It is worth noting that it is known, from the variational
approach to the Frank free energy, that the elastic anisotropy
allows a discrete number of four possible phase jumps for
umbilical defects with positive topological charge [11,14].
These features are recovered by the analytical expression (13).
In the context of self-organization of an array of microtubules
interacting via molecular motors similar configurations have
been numerically found for the orientational field with ϕ0 = 0
and ϕ0 = π/2, which have been denominated, respectively,
aster and ideal vortex [15]. Notice that these configurations and
their continuous deformation are vortex solutions like Frank
remarked at the dawn of the theory of liquid crystals [10].

C. Free-energy analysis

In order to study the existence, stability properties and
bifurcation diagram of the vortex solution with positive
topological charge, one can analyze the properties of the
free energy E , expression (5). Using the vortex solution
A = R±

v (r/
√

1 ± δ)ei(θ+ϕ0), where the ± sign stands for + for
ϕ0 = {0,π} and − for ϕ0 = {π/2,3π/2}, and taking � = BL

we obtain

E = π

∫ L

0

{
(∂rRv)2 + R2

v

r2
+ 1

2

(
1 − R2

v

)2

+ δ cos (2ϕ0)

(
∂rRv + Rv

r

)2}
rdr, (14)

changing variables ρ = r/
√

1 ± δ, we obtain

E = π

∫ L/
√

1±δ

0

{
(∂ρRv(ρ))2 + R2

v(ρ)

ρ2

+ (1 ± δ)
(
1 − R2

v(ρ)
)2

2
± δ

(
∂ρRv(ρ) + Rv(ρ)

ρ

)2}
ρdρ,

(15)

after straightforward calculations and following the same
strategy presented in Ref. [4], we derive the energy of the
vortex with positive topological charge

E = π ln

(
L

a0
√

1 ± δ

)
+ π (1 ± δ)

2

±πδ

(
ln

(
L

a0
√

1 ± δ

) + 1

)
. (16)

Figure 5 shows the energy for the two different vortices with
positive topological charge (two respective signs). The lines
and geometrical symbols represent, respectively, the energy
obtained using formula (16) and obtained from numerical
simulations of Eq. (3). The numerical results show quite good
agreement with the analytical expressions. Note that this figure
shows that the scaling

√
1 ± δ that makes the core smaller is the

one with less energy and, therefore, preferred by the system.
Therefore, if δ < 0 (δ > 0) the solution with minimal energy
is the one with ϕ0 = {0,π} (ϕ0 = {π/2,3π/2}). Numerical

-0.6 -0.4 -0.2 0.2 0.4 0.6δ

10

15

20

E

δ<0 δ>0

Rv- Rv+

FIG. 5. (Color online) Energy of the positive vortex solutions for
different jump phase ϕ0 as function of δ. Numerical results obtained
from vortex solutions of Eq. (3) are shown by the geometrical
symbols (circles and diamonds) and the theoretical result obtained
from expression (16) by a continuous and dashed line. The continuous
and dashed line indicate, respectively, the stable and unstable
vortex solution with positive topological charge. The bottom panel
schematically illustrates the bifurcation diagram for the phase jump
ϕ0, which correspond to a degenerate transcritical bifurcation. The
dark and white circles account for stable and unstable vortices
solutions.

simulations of the anisotropic Ginzburg-Landau equation (3)
show that the vortices with positive topological charge and
large core are unstable. Thus, the stable vortices are those
with small core. The respective stability of these solutions is
represented by continuous (stable) and dashed (unstable) lines
in Fig. 5. One expects that vortices with small core are the
more stable, because the energy privileges the uniform state
|A|2 = μ0.

D. Bifurcation diagram

The above analysis shows that there are two positive vortex
solutions that exist for every value of δ. These phase singularity
solutions exchange stability in the isotropic limit (δ = 0),
where ϕ0 = {0,π} goes from stable to unstable solution, and
vice versa for ϕ0 = {π/2,3π/2}. The mechanism through
which these solutions exchange stability is not by the usual
collision of solutions of the transcritical bifurcation [24,25],
but rather by passing through a very degenerate point at δ = 0,
where an infinite number of solutions exist and ϕ0 can take any
continuous value between 0 and 2π . Hence, this bifurcation is
a degenerate transcritical bifurcation and it is schematically
shown in the bottom panel in Fig. 5, where the dark and
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white circles account for stable and unstable vortex solutions,
respectively.

In brief, we have shown that the anisotropic elasticity is
responsible for the dissimilarity of the defects with different
topological charges. One possible experimental protocol for
characterizing several properties of these nematic umbilical
defects is through the use of crossed circular polarizers [21]
and modification of the elastic constants by changing the
temperature. Temperature allows to handle the values of elastic
anisotropy constants. In particular, the elastic constants are
quite sensitive to temperature near to the nematic-smectic
transition [5].

IV. NEGATIVE VORTEX SOLUTION

The above analysis yields a complete description of vortices
with topological charge +1. As we have mentioned, in vortices
with negative topological charge, their rotational invariance
around the core is broken by a fourfold symmetry (see Fig. 3).
We will consider the strategy of perturbative analysis of
these phase singularity solutions for small anisotropy (δ � 1).
Hence, we consider the following ansatz

A(r,θ ) ≈ [Rv(r) + δg(r,θ ) + O(δ2)]e−i[θ−δ�(r,θ)], (17)

where g(r,θ ) and �(r,θ ) are dominate correction functions to
the isotropic negative vortex, and with the condition that �

has no topological charge, i.e.,∮
�

∇� · d�l = 0, (18)

where the path � encircles the core of the vortex. Using
the above ansatz (17) in the anisotropic Ginzburg-Landau
equation (3) and taking the leading order in δ, we obtain

0 = e−iθ

[
μ0g − 3R2

vg + ∂2g

∂r2
+ 2i

∂�

∂r

∂Rv

∂r

+ iRv

∂2�

∂r2
+ 1

r

∂g

∂r
+ iRv

r

∂�

∂r
+ 1

r2

∂2g

∂θ2

− 2i

r2

∂g

∂θ
+ iRv

r2

∂2�

∂θ2
+ 2Rv

r2

∂�

∂θ
− g

r2

]

+ e3iθ

[
∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r

]
, (19)

separating the real and imaginary parts

0 = μ0g − 3R2
vg + ∂2g

∂r2
+ 1

r

∂g

∂r
+ 1

r2

∂2g

∂θ2
+ 2Rv

r2

∂�

∂θ

− g

r2
+ cos(4θ )

[
∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r

]
, (20)

0 = 2
∂�

∂r

∂Rv

∂r
+ Rv

∂2�

∂r2
+ Rv

r

∂�

∂r
+ Rv

r2

∂2�

∂θ2

− 2

r2

∂g

∂θ
+ sin(4θ )

[
∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r

]
. (21)

The θ dependence is easily addressed doing variable sep-
aration, by setting g(r,θ ) = g4(r) cos(4θ ) and �(r,θ ) =
θ4(r) sin(4θ ). Thus we obtain the following set of equations

1.2
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FIG. 6. (Color online) Vortex solution with negative topological
charge of anisotropic Ginzburg-Landau equation (3) with μ0 = 1
and δ = 0.7. (a) left panel magnitude of amplitude |A| and right
panels different radial profiles. (b) Numerical coefficients of the
modal expansion (25).

for the radial dependency

0 = μ0g4 − 3R2
vg4 + ∂2g4

∂r2
+ 1

r

∂g4

∂r
− 16g4

r2

+ 8Rvθ4

r2
− g4

r2
+ ∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r
, (22)

0 = 2
∂θ4

∂r

∂Rv

∂r
+ Rv

∂2θ4

∂r2
+ Rv

r

∂θ4

∂r
+ 8g4

r2

− 16Rvθ4

r2
+ ∂2Rv

∂r2
+ 3Rv

r2
− 3

r

∂Rv

∂r
. (23)

As r → ∞, the solution of this set of equations behaves as
follows

g4(r) → 9

4r2
, θ4(r) → 3

16
. (24)

Then, the phase correction converges to a constant value. Using
a variational approach to the Frank free energy far from the
core of the vortex, neglecting the spatial dependence, and
considering a modal angular expansion, one can recover the
value of θ4 = 3/16 and g4 = 0 [14]. However, this ansatz does
not allow us to characterize the spatial structure of the negative
vortex solution.

Asymptotically, the correction of the magnitude of the
amplitude, g4(r), decreases as the inverse of the square of
the distance. A numerical solution for g4(r) is shown in
Fig. 6, which has quite good agreement with the above
asymptotic expression. The magnitude of the amplitude of
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the phase singularity with negative topological charge as a
function of the radial distance is not monotonous. However,
this nonmonotonous feature is weak even for large δ [cf.
Fig. 6(a)]. In order to investigate the spatial structure of the
magnitude of the amplitude, we have considered the following
modal angular expansion

|A(r,θ )| =
∑
n=2

gn(r) cos(nθ ), (25)

where gn(r) are the coefficients of the expansion. Numeri-
cally, we have computed the coefficients for the expansion.
Figure 6(b) shows some of these coefficients. One expects the
mode g4(r) to be the dominant one even for larger δ as can be
seen in Fig. 6(b). Hence, this mode is responsible for the four-
fold symmetry of the vortex solutions with negative charge.

Note that in the perturbative analysis the phase jump, ϕ0,
is not predetermined, because if we consider a more general
ansatz

A(r,θ,ϕ0) ≈ [Rv(r) + δg(r,θ )]e−i[θ+ϕ0−δ�(r,θ)], (26)

the previous analysis remains the same by setting g(r,θ ) =
g4(r) cos(4θ + 4ϕ0) and �(r,θ ) = θ4(r) sin(4θ + 4ϕ0). There-
fore, the vortex solution with negative topological charge
is parametrized continuously by ϕ0. Furthermore, when the
anisotropy parameter δ is modified numerically, the vortex
does not exhibit any bifurcation. Using the vortex solution
with negative topological charge obtained numerically from
the anisotropic Ginzburg-Landau equation (3) and evaluating
the free energy E , formula (5), we can reveal the dependence
of the free energy as a function of the anisotropy, E(δ). Figure 7
shows this function for various critical points of E . The first
observation we make is that the graph of the set [δ,E(δ)] is
even. This is a general fact that follows immediately from the
relation (9) with m = 1 and k = 0.

Second, the energy of the vortex with negative charge is
exactly alike with the positive one only at δ = 0. The vortex
with positive topological charge is always more stable for

-0.6 -0.4 -0.2 0.2 0.4 0.6 δ

10

15

Rv+Rv- E

FIG. 7. (Color online) Energy of the vortex solutions as function
of δ. The star symbols account for the free energy E obtained
numerically using a vortex with negative topological charge and
formula (5). The solid and dashed lines, drawn to guide the
eye, show the evolution of the free energy of the vortices with
topological negative and positive charge, respectively, as function
of the anisotropy.

anisotropic nematic liquid crystals. It is worthy to note that the
vortices are always created by pairs to conserve the topological
charge, even though one vortex has more energy than the other
one. Furthermore, the scenario of the collision of opposite vor-
tices described by isotropic Ginzburg-Landau (see Refs. [4,22]
and references therein) does not account for the whole picture
of the collision of opposite nematic umbilical defects as is
shown in Ref. [23]. The characterization of vortex interaction
in the anisotropic Ginzburg-Landau equation is in progress.

V. CONCLUSIONS AND REMARKS

The dissipative vortexlike defects, nematic umbilical, have
accompanied liquid crystals since their discovery. In spite of
the large amount of experimental and theoretical studies, an
entire understanding of this phase singularity solutions has
not been overtaken. The existence, stability properties, and
bifurcation diagram of the nematic umbilical defects through
amplitude equations was presented. Close to the Fréedericksz
transition of a nematic liquid crystal with negative anisotropic
dielectric constant and homeotropic anchoring, an anisotropic
Ginzburg-Landau equation for the transversal critical mode,
which is derived by taking the 3D to 2D limit of the
Frank-Oseen model, is considered. This model is a variational
generalization of the Ginzburg-Landau equation with real
coefficients. This model allows us to reveal the mechanism of
symmetry breaking of nematic umbilical defects. The defect
with positive charge is fully characterized as a function of
the anisotropy, while the negative defect is characterized per-
turbatively. In particular, only a discrete number of solutions
of the continuous family of defect persist when anisotropy is
considered. Numerical simulations show quite good agreement
with the analytical results.

Recently, by sending circularly polarized light beams onto
a homeotropic nematic liquid crystal cell with a photosensitive
wall matter vortices were spontaneously induced that remain,
each stable and trapped at the chosen location [26,27]. These
optical lattices and others, like the ones created using magnets
by Pieranski et al. [28] can be understood by this amplitude
equation method. In particular we expect the positive vortex
to rotate when the boundary or initial conditions do not agree
with the phase jump imposed by the anisotropy, as is seen in
Refs. [27,28].

The anisotropic Ginzburg-Landau equation opens new
avenues to the study of nematic umbilical defects such as
dynamical evolution and interaction.
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APPENDIX: 3D TO 2D ASYMPTOTICS FOR THE FULL
FRANK-OSEEN MODEL NEAR THE FRÉEDERICKSZ

TRANSITION

In this Appendix we provide some details of the calculation
that leads from Eq. (1) to Eq. (2) in the limit d → 0. As
we pointed out it suffices to identify terms of order O(1)
and those of order O(d2). Taking into account that a priori
nx = O(d2) and ny = O(d2) it is rather easy to identify these
orders. For brevity in the following we will only consider the x̂

component, calculations involving ŷ component being similar.
In the notation of Sec. II A we have the following terms at order
O(1) and O(d2):

−[
K3

(∇2
⊥nx + d−2∂2

ζ ζ nx − nxnzd
−2∂2

ζ ζ nz

)
+(K3 − K1)

(
nxnzd

−2∂2
ζ ζ nz − ∂2

xxnx − ∂2
xyny

)
−(K2 − K3)

(
∂2
xyny − ∂2

yynx

)]
−εaV

2
FT d−2nx − 2εaVFT V1nx + γ ∂tnx.

Taking into account the definition of VFT we see that O(1)
terms above cancel and we are left with

gx = −[(
K1∂

2
xxu0 + K2∂

2
yyu0 + (K1 − K2)∂2

xyv0
)

cos(πζ )

+K1u0
1
2

(
u2

0 + v2
0

)
cos(πζ )∂2

ζ ζ cos2(πζ )

−2εaVFT V1u0 cos(πζ )
] + γ cos(πζ )∂tu0.

Condition
∫ 1/2
−1/2 gx cos(πζ ) dζ = 0 leads to

γ ∂tu0 = K1 + K2

2
∇2

⊥u0

+ K1 − K2

2

[(
∂2
xx − ∂2

yy

)
u0 + 2∂2

xyv0
]

− K1

2
π2u0

(
u2

0 + v2
0

) − εaVFT V1u0.

From this, taking into account a similar equation in the
direction ŷ we get Eq. (2).
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