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ABSTRACT  

In this short article we review muscle satellite cell characteristics and our studies in adult 
rodent muscle satellite cells in situ. Using confocal laser scanning microscopy and 
immunocytochemistry, a high level of IP3 receptor (IP3R) immunostaining was detected in 
satellite cells. These cells were identified by their peripheral position, their size, the shape of 
their nucleus, the paucity of the apparent cytoplasm, and the immunostaining with specific 
molecular markers such as α-actinin, the neural cell adhesion molecule (N-CAM) and desmin. 
High extracellular K+ (60 mM) induced long-lasting Ca2+ signals in satellite cells in situ. We 
suggest that electrical activity stimulates IP3-associated Ca2+ signals that could act in concert 
with signaling pathways triggered by growth factors and/or hormones.  
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INTRODUCTION  

In adult skeletal muscles, there is a population of small fusiform mononucleated cells, usually 
oriented parallel to the axis of the fibers, which may protrude above its surface as seen by 
electron microscopy. These cells, which are closely associated with myofibers, were first 
identified under the electron microscope and were called satellite cells (Katz, 1961; Mauro, 
1961). A characteristic property of these cells is that they lie between the plasma membrane 
of the muscle fiber and the basal lamina (Muir, 1970). Muscle satellite cells have been 
identified in amphibian (Mauro, 1961; Katz, 1961; Popiela, 1976), reptilian (Kahn and 
Simpson, 1974), avian (Hartley et al, 1992) and mammalian skeletal muscles including muscle
spindles (Gamble et al., 1978; Campion et al, 1981). The number of satellite cells in 
mammalian skeletal muscles depends on the muscle fiber type. Thus, in the adult extensor 
digitorum longus, which primarily contains glycolytic fibers, the percentage of satellite cells is 
lower than in the soleus muscle that contains slow oxidative fibers (Gibson and Schultz, 1982; 
Snow, 1983; Schultz and McCormick, 1994). Age-related differences in absolute numbers of 
skeletal muscle satellite cells have been reported in various animal species (Gibson and 
Schultz, 1983; Nnodim, 2000). In general, the overall number of satellite cells appears higher 
at birth (Bischoff, 1994; Hawke and Garry, 2001), and decreases during aging (Renault et al., 
2002). This reduction in satellite cell number contributes to a diminution of the regenerative 
capacity of skeletal muscle (Grounds, 1998; Jejurikar and Kuzon, 2003). However, the 
impaired regenerative response observed with aging appears to be much more complex than 
just satellite cell senescence (see Bortoli et al., 2003; Conboy et al., 2003).  

Morphological characteristics of satellite cells in mature muscles include a high nuclear-to-
cytoplasmic ratio, a small organelle content, a smaller nuclear size compared with neighboring 
myonuclei, and an abundant heterochromatin in their nuclei (Muir et al., 1965; Muir, 1970; 
Cull-Candy et al., 1980) reflecting their mitotic quiescence (Schultz et al., 1978).  

For many years the laborious identification of satellite cells in situ by light microscopy limited 
their study. However, the use of immunohistochemical techniques with antibodies directed to 
proteins expressed either in the basal lamina, such as laminin, or in the sarcolemma, like 
dystrophin, greatly facilitated their identification in fixed muscles. Muscle satellite cells are 
also usually difficult to identify in vivo under the light microscope, due to their close apposition 
to the muscle fiber sarcolemma (cleft width about 20 nm), and because they are usually 
covered by connective tissue overlying the muscle. However, the use of mild enzymatic 
digestion with collagenase (Cull-Candy et al, 1980), to remove the connective tissue, together 
with improved Normarski's or Hoffman's optic-additions to the light microscope, and the 
current use of confocal laser scanning microscopy greatly refined their visualization in single 
living muscle fibers, or bundles consisting of a few fibers of skeletal muscle.  

The adult skeletal muscle demonstrates a remarkable capacity to adapt to strenuous activity 
and/or tissue damage, and satellite cells have been implicated as the major source of 
myogenic cells involved in growth, and repair of myofibers. The processes by which these 
physiologic adaptations occur are attributed to the activation, multiplication and fusion of 
satellite cells with myofibers (for a review see Hawke and Garry, 2001). Activation of satellite 
cells also plays a role in muscle growth following minimal activity (Kadi and Thornell, 2000) 
probably without muscle damage. The reaction of satellite cells to such muscle activity would 
probably not involve factors triggered by damage (e.g. growth factors), which are the major 
substances regulating the activation, proliferation, and differentiation of satellite cells 
(McFarland, 1999; Hawke and Garry, 2001), but could relate to muscle depolarization. Little is 
known concerning signal transduction pathways involved in muscle growth in response to 
activity (however, see Dunn et al., 2000; Pallafacchina et al., 2002). Understanding the 
signaling systems involved in directing satellite cells between proliferation and differentiation 
is of great importance. Many factors, including fibroblast growth factors, insulin-like growth 
factors, and interleukin-6 cytokines, have already been implicated in the control of satellite cell
activity (for reviews see Hawke and Garry, 2001; Charge and Rudnicki, 2004). In the present 
article we review the evidence that inositol 1,4,5-trisphosphate receptors (IP3Rs) are localized 
in satellite cells of mature muscle, and that depolarization triggers a long-lasting calcium 
signaling in those cells (Powell et al., 2003). 

Página 2 de 7



ADULT SATELLITE CELLS IN SITU EXPRESS IP3 RECEPTORS 

In adult mouse skeletal muscle, satellite cells can be identified in situ by their location on the 
periphery of myofibers, by their morphology and characteristic nucleus, and because they are 
covered by laminin of the basal lamina. A positive immunostaining for IP3Rs was obtained in 
the cytoplasm of satellite cells in situ. In the projected confocal image shown in Figure 1A, a 
high concentration of IP3Rs is suggested by the intensity of the immunostaining in specialized 
regions of the satellite cell cytoplasm. These cells express the neural cell adhesion molecule 
(N-CAM) that is found in quiescent, activated and proliferating satellite cells (Hawke and 
Garry, 2001), and at the neuromuscular junction of adult fibers (Covault and Sanes, 1986), 
but not in fibroblasts or vascular tissue. Some of the satellite cells contain desmin, an 
intermediate cytoskeletal filament protein, which is considered a molecular marker of 
activated cells (Bockhold et al., 1998). Furthermore, satellite cells also contain α-actinin 
(Powell et al., 2003). Proliferating satellite cells in culture have been also shown to express a-
actinin, as well as vimentin and desmin (Van der Ven et al, 1992). In double-immunolabeled 
muscle fibers, IP3Rs were also found in cells identified as satellite cells by the presence of N-
CAM, or desmin (Powell et al., 2003).  

  

  

Figure 1. Confocal images of satellite cell immunostained with various protein 
markers in adult mouse skeletal muscles. A, projected image (12 sections, spaced by 
0.12 µm) showing a duet of satellite cells in situ at the periphery of a myofiber 
(Levator auris longus muscle) immunostained for IP3Rs (green), and stained for 
nuclei with propidium red (orange). Note the distinct intensity of the IP3R-
immunostaining in the cell's cytoplasm, and the IP3R cross-striation pattern in the 
myofiber. B, C and D, single optical sections (0.12 µm thickness) of a cryostat 
section (10 µm) from an Extensor digitorum longus muscle revealing the presence of 
laminin in the basal lamina surrounding a duet of satellite cells (B), nuclei, stained 
with TOTO-3, (C) and α-actinin in the cytoplasm of the satellite cells, and in a cross-
striated pattern in the myofiber (D). N-CAM immunostaining is shown in another 
satellite cell (E); this marker is found in quiescent, activated and proliferating cells, 
but not in fibroblasts. 
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MUSCLE SATELLITE CELLS RESPOND TO K+-INDUCED MEMBRANE DEPOLARIZATION 

In myofibers loaded with fluo3- AM and stimulated by a high K+ (60 mM) isotonic medium, an 
increase in cytoplasmic Ca2+ in satellite cells was observed (Powell et al., 2003). This calcium 
does not appear to come from the myofiber, but to be confined to each satellite cell. The Ca2+ 
transients in these cells were long lasting (200-300 sec) with respect to the transients 
observed in the myofiber. These data, and the fact that IP3Rs are expressed in satellite cells 

suggest an IP3-associated Ca2+ signaling in those cells.  

Although the results with K+-induced depolarization do not reveal how satellite cells can be 
depolarized in situ, it is conceivable that the K+ concentration around the satellite cells could 
increase during trains of action potentials in the muscle fiber. This elevated level of K+ could 
then depolarize the satellite cells. The dihydropyridine receptor (α1-subunit) voltage sensor 
has been shown to trigger a depolarization induced IP3 cascade in cultured muscle (Araya et 

al., 2003). It is likely that satellite cells may contain low levels of dihydropyridine receptors, 
since mRNA encoding skeletal muscle isoforms of the dihydropyridine receptor-α1-subunit 
have been reported in human myoblasts (Tanaka et al., 2000). If the signal transduction 
model for muscle in culture (Powell et al., 2001; Araya et al., 2003) holds true for satellite 
cells, then an IP3 cascade would end in Ca2+-dependent satellite cell's nuclear activation. The 
more the particular muscle fiber contracts, the stronger the signal to the satellite cell, and the 
more likely it would be recruited for proliferation and fusion with the muscle fiber. This 
mechanism of recruitment might be important in mild exercise (Kadi and Thornell, 2000), in 
muscle growth after atrophy (Mitchell and Pavlath, 2001) and in muscle regeneration. 
Alternatively, the depolarization-induced Ca2+ signal could act in concert with signaling 

 
Figure 2. Calcium signals induced in satellite cells in situ by a 
high K+ isotonic solution. A bundle of the hemidiaphragm was 
carefully dissected and loaded with fluo-3 for 30 min at room 
temperature and maintained in oxygenated Krebs-Ringer 
solution. Intact muscle fiber bundles were placed in a special 
chamber designed to fit on an upright confocal microscope. The 
fluorescence image was obtained 180 s (A), 190 s (B), 200 s (C) 
and 210 s (D) after substitution of the incubation saline by one 
containing 60 mM K+ (replacing Na+). High fluorescence can be 
seen in both the cytosol and nuclei of satellite cells (arrows), 
while the putative myonuclei (arrowheads) exhibit basal 
fluorescence. The thickness of the optical section was 1.0 µm.  
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pathways triggered by growth factors and/or hormones (see Jaimovich and Espinosa, this 
issue).  

We hope that the data presented here will stimulate further investigation on IP3 signaling in 
satellite cells, which may be important for understanding the mechanisms involved in muscle 
growth and repair.  
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