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Calreticulin, a calcium-binding protein that is highly

conserved in its multiple functions, is present in a wide

spectrum of subcellular compartments in virtually every

cell of higher organisms. In this article, we propose a

dual role for parasite calreticulin, with emphasis on the

Trypanosoma cruzi model. By modulating the ver-

tebrate complement system, calreticulin might provide

the parasite with an effective immune-escape mechan-

ism. Alternatively, by inhibiting angiogenesis, the

parasite molecule might protect the host from ongoing

neoplasic aggressions. Many questions are still unan-

swered, particularly those regarding the consequences

that these interactions could have in vivo for both the

parasite and the host.

Introduction

Because parasites must react swiftly to the defensive
strategies of their hosts, highly specific molecular inter-
actions occur at the host–parasite interface that normally
lead to an equilibrium in the relationship. An important
array of host- and parasite-derived molecules participates
in these interactions.

Considering the remarkable conservation of both the
genomic organization and the amino acid sequence of
calreticulin (CRT) throughout evolution, several func-
tional aspects of this molecule are operative in a variety of
vertebrate and invertebrate species. Thus, recent studies
indicate that, in some parasites at least, CRT participates
in modulation of the complement system of the host [1,2].
Moreover, the pleiotropic properties of CRT are reinforced
by recent studies involving this parasite molecule in
antiangiogenic mechanisms in the host.

CRT, a calcium-binding protein present in virtually
every cell of higher organisms, is located primarily in the
endoplasmic reticulum (ER) [3,4] and regulates key
cellular functions [5,6]. Prominent among these functions,
described mainly in vertebrates, are CRT lectin-like
chaperone capacity, modulation of gene expression, induc-
tion of phagocytosis of apoptotic cells, mediating
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autoimmunity, antiangiogenesis, inhibition of tumoral
growth, and participation in the lytic activity of perforins
from T cells and natural killer cells [7].

The consensus features of all CRT proteins are an acidic
C-terminal domain, a proline-rich P domain and a
globular N-terminal domain [5,8,9]. Importantly: (i) an S
domain, which is included in the N and P domains, is
involved in the binding of complement components
[10,11]; and (ii) the N domain includes 60 C-terminal
amino acids that concentrate the antiangiogenic proper-
ties, by virtue of their capacity to inhibit endothelial cell
proliferation [12].

The primary sequences of CRT, frommost of the species
studied, initiate with a signal peptide and terminate with
KDEL or related ER-retention sequences [7]. Interest-
ingly, CRT has non-ER locations and can also be released
from the cell by either active secretory processes or cell
death to mediate various functions [13].

CRT from parasites such as Onchocerca volvulus,
Schistosoma mansoni, Leishmania donovani and Trypa-
nosoma cruzi is w50% identical to its human counterpart
(HuCRT). Interestingly, the tick Amblyomma ameri-
canum, while feeding on its host, secretes CRT [14],
presumably as a mechanism to divert host defensive
responses. The presence of CRT in penetration gland
cells of schistosome cercariae suggests a regulatory
influence on calcium-dependent proteases in skin
penetration and parasite migration [2]. Also, seroposi-
tive humans produce antibodies against T. cruzi calre-
ticulin (TcCRT) [15–17], which strongly suggests that
the molecule is available not only to immunocompetent
B cells but also to complement components such as
C1q, with possible implications for the classical
complement pathway, as discussed later.

Thus, by modulating the vertebrate complement sys-
tem, CRT might provide the parasite with an effective
immune-escape mechanism. Concomitantly, by inhibiting
angiogenesis, the parasite molecule might protect the host
from ongoing neoplasic aggressions. These two emerging
features of parasite CRT, with emphasis on the T. cruzi
model, are reviewed.
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Trypanosoma cruzi calreticulin: a functional homolog of

its human counterpart?

Native, Tulahuen strain TcCRT was isolated [16–19] and
its gene was cloned, sequenced and expressed [15]. TcCRT
from another T. cruzi strain was also characterized
[20,21]. TcCRT is a 45-kDa immunodominant molecule
[18] that has multiple gene copies located in a variable
number of chromosomes [15,16]. Because a TcCRT region
(TcS: amino acids 159–281) is 50–80% identical to certain
functional regions of the HuCRT S domain, it was
determined that fluid-phase or trypomastigote-bound
TcCRT interacts with host C1q and inhibits the classical
pathway of complement activation [1].

The sharing of several functional domains by ver-
tebrate and parasite CRT encourages further investi-
gation of the contributions made by this molecule to the
biology of parasites and the interactions with their hosts.
Parasite CRT and the complement system

HuCRT binds to the collagenous region of C1q [22]. A cell-
membrane-associated form of CRT might function as a
receptor for C1q and collectins [10,11,22–24]. The binding
site on HuCRT for C1q and collectins was defined by its
12-kDa S-domain–N-terminal portion [10,11], with func-
tional consequences such as inhibition of the classical
complement pathway [10] and of C1q-mediated immune-
complex processing [25].

The classical and lectin pathways of complement
activation are initiated by related but distinct recognition
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molecules, with C1q being the only recognition component
of the classical pathway. The collagen-like portions of
these recognition molecules interact with serine proteases
[26,27], which are responsible for the cleavage of C4 and
C2 [26,28,29], thus initiating the activation of these
pathways.

One important aspect of the host–parasite interaction
that has been reviewed recently [30] involves the
complement system of the host. Information about a
possible role for CRT, from protozoan parasites, in the
modulation of human complement is beginning to emerge
in the literature [1]. Recombinant hookworm (Necator
americanus) CRT also binds to and inhibits the biological
function of human C1q [2].

Complement-mediated lysis of trypomastigotes in vitro
requires an intact alternative pathway because serum
depletion of factors B and P completely abrogates the lysis
of trypomastigotes precoated with immunoglobulin (Ig)G
[31,32]. The classical pathway, although unable to lyse
trypomastigotes efficiently on its own, provides an
enhancing effect on the amplifying properties of the
alternative pathway [33]. This impairment of the
classical pathway suggests the importance of exploring
the existence of other parasite complement-regulatory
proteins. A role for TcCRT in these functions has been
proposed [1]. In Figure 1, an overview of the classical
pathway is shown. Because TcCRT, by virtue of its
capacity to bind to the collagenous tails of C1q,
inhibits the generation of C4b, impairment of the
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generation of C3 convertase (C4b2b), C5 convertase
(C4b2b3b) and the membrane attack complex (C5b–9)
is easily predicted.

Because native TcCRT, in the context of T. cruzi trypo-
mastigote infection, is immunogenic in humans [16,17] and
mice [18], TcCRT should be available for interaction with
complement component C1q, with possible functional
consequences. Specific in vitro binding of TcCRT to human
C1q collagenous tails and a consequent strong inhibition of
the classical pathway were demonstrated [1]. Because
TcCRT is expressed on the surface of infective trypomasti-
gotes and colocalizeswithhumanC1q, its in vivo interaction
with C1q might mediate complement inhibition in the
microenvironment surrounding the parasite.

In T. cruzi, complement-regulatory proteins such as
CRP, which is a decay-accelerating factor (DAF)-like
protein, participate directly in the stage-specific inhibition
of the alternative pathway [33–35]. Thus, F(ab’)2 and Fab
fragments directed against these proteins make the
parasite susceptible to the action of the alternative
pathway [36,37]. Apparently, the classical pathway of
complement activation would have an amplifying role but
it would not be able to elicit an efficient antiparasite lytic
response on its own.

Because certain regions within the TcS domain of
TcCRT are up to 80% identical to regions within the
HuCRT S domain, C1q binds to recombinant TcS in a dose-
dependent, specific and saturable manner. Moreover,
because C4 activation is impaired, this binding inhibits
C1q-dependent complement-mediated hemolysis of
Ig-sensitized erythrocytes in vitro [1]. Unlike other
T. cruzi complement regulators described, by strongly
inhibiting C4 activation, TcCRT impairs complement
activation at its earliest stage. Thus, by virtue of its
capacity to bind to and inhibit the function of C1q, TcCRT
might contribute to the well-known [33] inability of the
classical pathway to have a preponderant role in the
defense against T. cruzi (Figure 2).

The possibility that TcCRT interacts in vivo with the
complement system of the host supports our findings that
TcCRT is found on the surface of infective trypomastigotes
and that it colocalizes with C1q, which is a strong
indication that both molecules interact on the infective
parasite surface. This correlates with in vitro results
showing that TcCRT strongly inhibits activation of the
classical human complement pathway [1].

The mechanism by which TcCRT inhibits C4 activation
remains to be determined. Perhaps TcCRT, by binding to
sites occupied by C1s and C1r on the collagenous tails of
C1q, mediates C1s and C1r displacement from the
C1(q,r,s) module, as hypothesized for HuCRT [38]. Alter-
natively or concomitantly, TcCRT, through its calcium-
binding properties (A. Ferreira et al., unpublished), could
mediate the removal of calcium from C1, resulting in the
release of both serine proteases.

Perspectives and unanswered questions about

complement and TcCRT

A role for TcCRT in parasite cell invasion could be proposed
becauseof the interactionof theparasitemolecule, locatedat
the parasite surface, with C1q of the host.
By inhibiting complement activation, extracellular
human or parasitic CRT might inhibit immune-complex
solubilization, with consequences for the pathogenesis of
diseases such as systemic lupus erythematosus and
Chagas’ disease [39,40]. Also, if complement function is
impaired, immune complexes could escape clearance by
the mononuclear phagocytic system and end up in tissues
in which they would trigger an inflammatory response,
including the release of autoantigens [39].

C1q binds to apoptotic cells [23] and stimulates their
ingestion by ligating CRT on the phagocyte surface (on
which CRT is known as cC1qR) [41]. cC1qR is bound to the
endocytic receptor protein CD91. Ingestion of apoptotic
cells through CRT–CD91 involves macropinocytosis,
which is a primitive and relatively nonselective uptake
mechanism for C1q-enhanced engulfment of intact apop-
totic cells, cell debris and foreign organisms [23,27,42,43].
Both noninfective T. cruzi epimastigotes and vertebrate-
stage tissue-culture infective trypomastigotes (TCTs) bind
to C1q in a saturable fashion, and internalization by
mononuclear phagocytes and fibroblasts of C1q-coated
TCT is enhanced compared with untreated parasites.
Purified C1q alone potentiates the internalization of TCT,
without an additional requirement for C3 fragments or
IgG on the target particle [44]. A role for TcCRT in this
interaction could be envisaged.

Parasite calreticulin: a role in angiogenesis?

Angiogenesis is a complex multistep process that leads
to neovascularization generated from pre-existing
blood vessels. It is associated with inflammation,
wound healing, tumor growth and metastasis. The
generation of new blood vessels is regulated by
proangiogenic and antiangiogenic molecules, some of
which are currently under clinical and preclinical
trials for cancer treatment [45–48].

During the past six years, the role of vertebrate CRT in
angiogenesis and tumor growth has been studied exten-
sively. A CRT peptide (amino acids 120–180), a larger
molecule (amino acids 1–180) named vasostatin and the
whole CRT molecule are potent angiogenesis inhibitors,
both in vitro and in vivo [12,49,50]. Vasostatin inhibits
angiogenesis and the in vivo proliferation of vascular
endothelial growth factor (VEGF)-stimulated endothelial
cells by acting directly on these cells; this does not affect
the vascularization of established tumors [12,49,51]. The
binding of endothelial cells to extracellular-matrix com-
ponents is impaired by vasostatin [52].

For five decades, there has been speculation about
possible mechanisms involved in the in vivo experimental
growth-inhibitory effect that several T. cruzi strains have
on a variety of transplanted and spontaneous tumors in
animals and humans [53–55]. The induction of a specific
antitumoral immune response [56] and the secretion of a
‘toxic substance’ [54] by the parasite have been proposed to
explain the antineoplasic effect of T. cruzi infection, but
they have not been demonstrated experimentally. (Both
explanations are compatible with an evolutionary specu-
lation that this antineoplasic effect would protect the host
from prevalent neoplasic aggressions, with evident ben-
efits for the parasite.)
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Figure 2. Trypanosoma cruzi calreticulin mediates anticomplement and antiangiogenic effects in vertebrate hosts. A trypomastigote produces calreticulin (TcCRT), which is

found in the ER (i) and on the parasite surface (ii). Released TcCRT (iii), shown here with only three domains (N, light blue; P, red; and C, pink), is immunogenic and generates

specific antibodies (iv). TcCRT, bound to the parasite surface by an unknown receptor (green), interacts with the collagenous tails of C1q (v) and prevents further activation of

the classical pathway of human complement (vi). Released TcCRT also interacts with endothelial cells, mediating antiangiogenic effects (vii), presumably by interfering with

the extracellular-matrix binding of these cells.
Neoplasic growth andmetastasis are intimately related
to neoangiogenesis [45,47,48], and HuCRT has important
antiangiogenic properties [12,49,50,52]. Because there is a
segment in TcCRTwith 46% identity and 60% positivity to
a functional antiangiogenic fragment fromHuCRT (amino
acids 120–180), the issue of whether the parasite molecule
shares this property has been addressed recently. Studies
performed with recombinant and native TcCRT [57] show
a highly significant (p!6!10K7) and specific inhibition of
angiogenesis in the chorioallantoic membrane (CAM) of
chick embryos (CAM assay) [58]. These results are further
substantiated by results obtained with TcCRTsynthesized
in situ by the genetic pSecTag2B–TcCRTconstruct, versus
the empty vector, in the same assay [57]. In summary,
similar to HuCRT [12,49,50,52,59,60], both native and
recombinant TcCRT have antiangiogenic effects in the
in vivo CAM assay, even at low concentrations. It remains
to be determined whether TcCRT shares with its
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vertebrate counterpart the property of binding to laminin,
thus interfering with endothelial growth [52]. It could be
speculated that these properties, together with the
accessibility of this molecule on the trypomastigote
surface, explain, at least in part, the reported [55,56]
antineoplasic effect of experimental T. cruzi infection.

Finally, Figure 2 illustrates the integration of the roles
that TcCRT might have in complement and angiogenesis
modulation. These are probably just two of the many
complex functions of a potentially pleiotropic parasite
calreticulin. These functions, exemplified mainly in
T. cruzi, probably participate in the equilibrium that is
frequently reached in the host–parasite relationship.
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