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Abstract

The analgesic effects of the intrathecal coadministration of morphine with nimesulide, meloxicam and parecoxib, preferential

cyclooxygenase-2 (COX-2) inhibitors, were studied in mice using a chemical model of visceral pain, the acetic acid writhing test.

Isobolographic analysis was used to characterize the interactions between mixtures of morphine with each non-steroidal anti-inflammatory

drug. Antinociception dose–response curves were analyzed to obtain the ED50’s of each drug. A dose response curve for fixed ratio mixtures

of morphine with COX-2 inhibitors was then performed and the observed ED50’s were plotted on a two-dimensional isobologram. All the

combinations tested showed synergistic interactions and the strength of the interaction was ranked as: morphine/parecoxib>morphine/

meloxicam>morphine nimesulide. The results demonstrate that the intrathecal coadministration of COX-2 inhibitors significantly enhance

morphine-induced antinociception and could result in an opioid sparing action which may be useful in the clinical treatment of severe pain. A

sparing action means that less opioids have to be administered to obtain a given analgesic effect. Since intrathecal morphine is often used in

clinical pain situations, the opioid sparing effect resulting from the synergy observed with the coadministration of COX-2 inhibitors may be

clinically relevant. One of the most significant advantages should be the reduction of opioid toxicity which often acts as a major obstacle in

pain treatment.
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1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are

mainstays in acute and chronic pain management and their

beneficial actions have been linked to their ability to inhibit

cyclooxygenases: constitutive COX-1 and inducible COX-2

(Gajraj, 2003; Warner and Mitchell, 2004). However, in the

spinal cord, COX-2 immunoreactivity is present in neurons

of all lamina, particularly in the superficial layers and COX-

2 can be considered a constitutive enzyme (Warner and

Mitchell, 2004). In addition, there is increasing evidence

that NSAIDs exert their analgesic effects through a variety

of other mechanisms. In the dorsal horn of the spinal cord
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several peptides (substance P, endorphins); aminoacids

(glutamate, GABA), neurotransmitters (serotonin, norepi-

nephrine, acetylcholine), nitric oxide and arachidonic acid

metabolites are implicated in the transmission and regu-

lation of pain information (Kroin et al., 2002; Miranda et al.,

2002; Miranda and Pinardi, 2004; Pinardi et al., 2002;

Sandrini et al., 2002).

Opioids are the most effective and widely used drugs for

the treatment of severe pain. However, unwanted side

effects may seriously limit its clinical use. Opioids can be

used also intrathecally for postoperative pain control in

major surgery (Fournier et al., 2000). Some combinations of

opioids with COX-2 inhibitors have shown synergistic

interactions and are in clinical use for postoperative pain

(Raffa, 2001; Kroin et al., 2002; Malan et al., 2003). Our

group has published a study in which different combinations

of morphine and several NSAIDs, including acetaminophen,
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were found to be synergistic after systemic administration

(Miranda et al., 2004) and Hernandez-Delgadillo et al.

(2002) reported that metamizol potentiates morphine effect

in visceral pain. Nevertheless, there are few reports studying

synergy using isobolographic analysis in animal algesio-

metric models (Deciga-Campos et al., 2003).

The present work was undertaken to characterize the type

of interactions between the intrathecal coadministration of

morphine and the preferential or selective inhibitors of

COX-2 nimesulide, meloxicam and parecoxib (Engelhardt,

1996; Famaey, 1997; Simmons et al., 2004; Padi et al.,

2004; Warner and Mitchell, 2004). The interactions were

evaluated by two-dimensional isobolographic analysis,

using a visceral pain mice model.
2. Materials and methods

2.1. Animals

Male CF-1 mice (28–30 g), housed on a 12 h light–dark

cycle at 22T2 -C and with access to food and water ad

libitum were used. Experiments were performed in accord-

ance with current guidelines for the care of laboratory

animals and ethical guidelines for investigation of exper-

imental pain approved by the Animal Care and Use

Committee of the Faculty of Medicine, University of Chile.

Animals were acclimated to the laboratory for at least 2 h

before testing, were used only once during the protocol and

were killed by cervical dislocation immediately after the

algesiometric test.

2.2. Intrathecal injections

As previously described (Miranda et al., 1993), for

intrathecal (i.t.) injections the animals were restrained

manually and a 50 AL Hamilton syringe with a 26-gauge

needle was inserted into the subdural space between L5 and

L6. The doses were administered in a constant volume of 5

AL, dissolved in a slightly hyperbaric solution of glucose

(6%) to limit rapid diffusion of the drugs to higher levels of

the spinal cord. A flick of the tail during insertion of the

needle is indicative of a successful spinal administration

(Hylden and Wilcox, 1980). Control animals (6% glucose)

were run interspersed concurrently with the drug treatments.

2.3. Measurement of analgesic activity

Analgesic activity was assessed by the writhing test, a

chemical visceral pain model. Observations were performed

in a blinded manner. Mice were injected intraperitoneally

with 10 mL/kg of 0.6% acetic acid solution 15 min after the

intrathecal (i.t.) administration of the drugs, a time at which

preliminary experiments showed occurrence of the max-

imun effect. A writhe is characterized by a wave of

contraction of the abdominal musculature followed by the
extension of the hind limbs. The number of writhes

occurring in a 5 min period was counted, starting 5 min

after the acetic acid administration. Antinociceptive activity

was expressed as percent inhibition of the usual number of

writhes observed in saline control animals (19.8T0.30,
n =70).

2.4. Experimental protocol

Dose–response curves for morphine (MOR), nimesulide

(NIME), meloxicam (MELO) and parecoxib (PARE), were

obtained using at least six animals at each of at least four

doses. A least-squares linear regression analysis of the log

dose–response curve of each drug allowed the calculation

of the dose that induced 50% antinociception (ED50). Then,

a dose–response curve was also obtained by the coadmi-

nistration of MOR with each NSAID (ED50 MIX) in fixed

ratio combinations based on fractions of their respective

ED50 values: 1 /2, 1 /4, 1 /8, 1 /16 (ratio values given in

Table 2). The drugs of the combinations were dissolved and

injected together in the same solution. Isobolographic

analysis was used to determine drug interactions. The

method has been described previously in detail (Miranda

et al., 2002). Supra-additivity or synergistic effect is defined

as the effect of a drug combination that is higher and

statistically different (ED50 MIX significantly lower) from

the theoretical calculated additive equieffect (ED50 ADD) of a

drug combination with the same proportions. If the ED50’s

are not statistically different, the effect of the combination is

additive and additivity means that each constituent contrib-

utes with its own potency to the total effect. The interaction

index is an indication of the strength of the interaction and

was calculated as follows: experimental ED50 MIX / theoret-

ical ED50 ADD. If the value is close to 1, the interaction is

additive, corresponding with the additivity line of the

isobologram. Values lower than 1 are an indication of the

magnitude of supra-additive or synergistic interactions and

values higher than 1 correspond to sub-additive or

antagonistic interactions (Tallarida, 2001).

2.5. Drugs

The following NSAIDs were freshly dissolved in a

slightly hyperbaric solution of glucose (6%) to limit

diffusion and were provided by local pharmaceutical

companies: nimesulide by Grunenthal Chilena Limited,

meloxicam by Laboratorios Saval S.A. and parecoxib by

Pfizer Chile. Morphine hydrochloride was purchased from

Sigma Chemical Co, St. Louis, MO, USA. Doses were

expressed on the basis of the salts.

2.6. Statistical analysis

Results are presented as ED50 values with 95% con-

fidence limits (CL). The statistical difference between

theoretical and experimental values was assessed by



Table 1

ED50 values and 95% confidence limits (CL) for the antinociceptive effect

of morphine and NSAIDs administered i.t. in the writhing test of mice

Drug ED50 mg/kg i.t. (CL)

Morphine 0.00018 (0.00009–0.00034)

Meloxicam 0.22 (0.19–0.25)

Nimesulide 0.29 (0.21–0.39)

Parecoxib 0.62 (0.42–0.93)

Table 2

Theoretical and experimental ED50 values with 95% confidence limits (CL)

and fixed ratios for combinations of NSAIDs/morphine administered i.t. in

the writhing test of mice

Combination ED50 (95% CL) (mg/kg) Mixture

ratio
NSAID/morphine

Theoretical Experimental

Meloxicam/morphine 0.11 0.06* 1216

(0.10–0.12) (0.04–0.07)

Nimesulide/morphine 0.15 0.07* 1611

(0.11–0.18) (0.05–0.11)
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Student’s t-test for independent means and P values <0.05

were considered significant.

Parecoxib/morphine 0.31 0.10* 3476

(0.24–0.40) (0.08–0.14)

* P <0.05.
3. Results

3.1. Antinociception induced by NSAIDs and morphine

The i.t. administration of NIME, MELO, PARE and

MOR induced a dose-dependent antinociceptive activity

with different potencies in the writhing test of mice. The
Fig. 1. Isobolograms for the intrathecal administration of the combinations

morphine/nimesulide (A), morphine/meloxicam (B) and morphine/pare-

coxib (C). Filled circles correspond to the theoretical additive ED50 with

95% confidence limits and open circles correspond to the experimental

ED50 of the mixture with 95% confidence limits. Ordinates are in Ag/kg and
abscissae in mg/kg.
ED50 values and 95% confidence limits for the antinoci-

ceptive effects of morphine and NSAIDs are shown in Table

1. As can be seen, i.t. MOR is more than 1200 times as

potent as MELO, 1600 times as potent as NIME and 3400

times as potent as PARE.

3.2. Interactions between NSAIDs and morphine

The antinociceptive activity of fixed ratio mixtures of

ED50 fractions of each NSAID with ED50 fractions of MOR

was assessed by the analysis of the dose–response curves

obtained after i.t. coadministration of the mixtures. The

isobolographic analysis of the combinations MOR/MELO,

MOR/NIME and MOR/PARE resulted in synergistic inter-

actions, as can be seen in Fig. 1. Table 2 shows the

experimental and the theoretical additive ED50 values for

the combinations with their 95% confidence limits and the

mixture fixed ratios. Furthermore, the interaction index

values of the combinations demonstrated the following rank

of strength for the combinations: MOR/NIME<MOR/

MELO<MOR/PARE (Table 3).
4. Discussion

The results of the present work demonstrate that the

preferential COX-2 inhibitors nimesulide, meloxicam and

parecoxib possess antinociceptive activity in the writhing

test of the mice, corresponding with the selectivity reported

by Warner and Mitchell (2004). The combination MOR/

PARE seems to be a little better than the other tested, and the

comparison of the interaction index values (Table 3)
Table 3

Interaction index (I.I.) of the combinations of NSAIDs and morphine

administered i.t. in the writhing test of mice

Combination Interaction index (I.I.)

Parecoxib/morphine 0.348

Meloxicam/morphine 0.501

Nimesulide/morphine 0.512

Interaction index values are listed in ascending order. Lower values indicate

higher potency of the combinations.
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indicates that the strength of the combinations may depend

mainly on COX-2 selectivity (Warner and Mitchell, 2004).

However, in previous reports PARE has been shown to be

ineffective by the i.v. route in visceral pain models (Padi et

al., 2004). In addition, the study of Wong et al. (2000), using

the tail-flick test in rats, found that the intrathecal admin-

istration of COX-2 inhibitors attenuated the development of

tolerance to morphine without directly enhancing its anti-

nociceptive effect; however, it is well recognized that tail-

flick and writhing tests measure different types of pain. Even

if COX-2 is expressed constitutively in the spinal cord, in

rats with neuropathic pain or with an incisional model of

postoperative pain, the intrathecal administration of the

COX-2 selective inhibitor NS-398 had no effect on spinal

cord pain processing (Lashbrook et al., 1999; Zhu et al.,

2003). These differences could be due to different animal

species and routes of administration (mice vs rats, i.v. vs i.t.),

different algesiometric test (tail-flick vs writhing test) or

variations in the test methodologies (1% vs 0.6% acetic acid

solution, 20 min vs 5 min). Nevertheless, using behavioral

studies in preclinal models of nociception, it has been

reported that the intrathecal administration of COX-2

inhibitors has significant analgesic activity in hyperalgesic

states not associated with inflammation and it is argued that

the main antinociceptive mechanism of COX-2 inhibitors

lies in the modulation of the constitutive COX-2 present at

spinal level (Svensson and Yaksh, 2002). This correlates

with the strength of the interactions found in the present

work, which agree with the reported selectivity of each

NSAID (Warner and Mitchell, 2004). However, since the

drugs were injected in the same solution, the possibility of a

pharmacokinetic or chemical interaction cannot be excluded.

The presence of constitutive COX-2 in neurons of all

lamina of the spinal cord, particularly in the superficial

layers (Warner and Mitchell, 2004), gives a rationale for

the acute antinociception effect of intrathecal COX-2

inhibitors (Yaksh et al., 2001). The findings of the present

work contribute to support the conclusion drawn from

other studies, that prostanoids generated by COX-2 at

spinal level contribute to the maintenance of hyperalgesia

(Samad et al., 2001; Seybold et al., 2003). Furthermore,

the distribution and anatomical localization of opioid

receptors have demonstrated that the A-opioid receptor,

which is activated by morphine, is highly concentrated in

the outer laminae of the dorsal horn of the spinal cord

(Ossipov et al., 2004). The present results reinforce the

previous suggestion that, in acute pain, a single agent may

be less effective than a combination of analgesics with

different mechanisms of action (Phillips and Currier,

2004). However, they are not in agreement with the report

that parecoxib, an active metabolite of valdecoxib which is

a COX-2 selective and specific inhibitor, is not involved in

significant interactions with analgesic drugs (Langford,

2002).

The findings of the spinal synergism between morphine

and NSAIDs that are preferential or selective inhibitors of
COX-2 are concordant with the results obtained previously

in several preclinical and clinical studies that emphasize

the morphine-sparing effect of NSAIDs, which means that

less opioids have to be administered to obtain a given

analgesic effect (Reuben and Connelly, 2000; Kroin et al.,

2002; Malan et al., 2003).

It has been suggested that in the abdominal constriction

pain model of mice, the components of the l-arginine/

nitric oxide/cGMP cascade may participate in nociceptive

processes both peripherally and centrally by a direct effect

on nociceptors or by the involvement of other related

pathways of nociceptive processes induced by NO

(Abacioglu et al., 2000). NO is involved in the

antinociceptive activity of MOR (Przewlocki and Przew-

locka, 2001) and the i.t. administration of morphine

modulates spinal antinociception by interaction with the

NO-glutamate cascade (Watanabe et al., 2003). On the

other hand, the activity of COX-2 may be stimulated by

NO (Dudhgaonkar et al., 2004), which in turn seems to

be modulated by the i.t. administration of MOR. In

addition, COX-2 and inducible NO synthase are fre-

quently co-regulated (Simmons et al., 2004). In the

present work, the influence of the nitridergic system

was not studied, but it could partly explain the synergistic

activity of the combination of MOR and COX-2 selective

inhibitors.

The control of visceral pain observed in mice by these

intrathecal drug combinations may be of clinical relevance

in several types of situations. The analgesic effects of MOR

in the control of visceral pain are limited and a large amount

is generally required. The results demonstrate that the

coadministration of COX-2 inhibitors significantly increases

MOR-induced antinociception and results in an opioid

sparing action which may be useful in the clinical treatment

of severe pain. One of the most significant advantages

should be the reduction of opioid toxicity which often acts

as a major obstacle in pain treatment.
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