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SUMMARY

The distribution of three putative adhesin genes in 123 Shiga toxin-producing (STEC) strains was

determined by PCR. The STEC strains were isolated from human patients (n=90) and food

(n=33) and were characterized by serogroup, virulence markers (eae, stx1, stx2) and adherence

factors (efa1, lpfAO157, saa) genes. Serogroups O157 (64.4%) and O26 (28.8%) were the most

frequent among human strains and the majority (60.6%) of food strains were serologically non-

typable. The adhesin genes efa1 (90%) and lpfAO157 (73.3%) were the most common in humans

strains and saa (45.5%) in food strains. The presence of these genes in addition to eae in STEC

from different sources may suggest a relevant role in their pathogenesis.

INTRODUCTION

Shiga toxin-producingEscherichia coli (STEC) are rec-

ognized as emergent pathogens that have been im-

plicated in numerous foodborne outbreaks and enteric

infections around the world [1]. These microorgan-

isms colonize the gut and can cause watery diarrhoea,

haemorrhagic colitis (HC) and haemolytic–uraemic

syndrome (HUS). The most prevalent serotype as-

sociated with severe infections and HUS is E. coli

O157:H7 [2]. Although the virulence factor best

characterized in this serotype is the production of

Shiga toxin (STX), adherence of strains to the gas-

trointestinal epithelium also plays a key role during

infection [3]. The more virulent serotypes of STEC

harbour a pathogenicity island termed locus of en-

terocyte effacement (LEE), which is associated with

intimate adherence to epithelial cells, the initiation

of host signal transduction pathways and with the

formation of the typical attaching and effacing lesions

(A/E) [4, 5]. The protein intimin is encoded by the

eae gene which is located in the LEE locus, and this

protein is the only adherence factor so far proven to

be associated with intestinal colonization in vivo [6, 7].

The eae gene is present in the most virulent strains,

but the isolation of disease-associated strains lacking

this gene suggests the existence of other adherence

factors, a number of which have been described by

several investigators: Iha (IrgA homologue adhesin),

associated with adherence to HeLa cells in a non-

fimbriated strain [8] ; Efa1 (EHEC factor for adher-

ence), required for bacterial adherence to Chinese

hamster ovary (CHO) cultured cells [9] ; ToxB, re-

quired for total adherence in E. coli O157:H7 Sakai

strain [10] ; Saa (STEC autoagglutinating adhesin), de-

scribed in STEC O113 LEE negative strains [11] ; Sfp

(sorbitol-fermenting plasmid-encoded fimbriae), fim-

briae present in sorbitol-fermenting STEC O157:Hx

[12] and Lpf (long polar fimbriae), fimbriae of E. coli

O157:H7 [13]. Other reports have implicated STEC

proteins (Iha, Cah and OmpA), in addition to Efa1,

Saa and Lpf, as mediators of adherence but their
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role in pathogenesis has yet to be defined [14]. We

describe here the detection and distribution of these

three putative adherence factors, among a collection

of human and food strains of STEC.

MATERIALS AND METHODS

Bacterial strains

The STEC strains studied were isolated from 2000 to

2003 from human patients with different clinical syn-

dromes [acute diarrhoea (57), HC (7) and HUS (26)]

and from food samples [hamburger (20), bovine meat

(10), chicken (1), sausage (2)]. The strains were col-

lected by public health services from different regions

of Chile, mainly from Santiago, and food strains were

recovered from different meat products. Eighty-three

human strains were from unique patients and seven

were isolated from two patients in two separate out-

breaks.

Stool samples were plated on McConkey agar and

incubated at 37 xC for 24 h. For food samples, 12.5 g

was mixed with 125 ml trypticase soy broth, blended

in a stomacher, and 100 ml were plated on McConkey

agar and incubated at 37 xC for 24 h. E. coli strains

were identified by standard biochemical tests and sero-

typed by agglutination using commercial available

antisera (O26, O55, O86, O111, O119, O114, O125,

O126, O127, O128, O142, O157, O158) (PROBAC,

Sao Paulo, Brazil) ; three strains of serogroups O91

and O174, were kindly serotyped at the Laboratory

for Foodborne Zoonoses, Canada.

Detection of virulence genes

The presence of eae, stx1 and stx2 genes was de-

termined by the multiplex PCR of Vidal et al. [15].

Strains were grown on McConkey agar overnight

and five lactose-positive colonies were suspended in

150 ml of 1% Triton X-100, boiled for 10 min, and

Table 1. Oligonucleotides sequence of primers for PCR of STEC and adhesin gene

Gene Primer sequence 5k-3k Size of product (bp) Reference

eae tcaatgcagttccgttatcagtt 482 [15]
gtaaagtccgttaccccaacctg

stx1 cagttaatgtggtggcgaagc 348 [21]
caccagacaatgtaaccgctg

stx2 atcctattcccgggagtttacg 584 [21]

gcgtcatcgtatacacaggagc
efa1 aactatcctgccgcctcaga 456 This study

gcctgcgataacagcatcaa
lpfAO157 ccttgcgtactgtccgttga 273 This study

agcgaccagggtattgctgt
saa cgtgatgaacaggctattgc 119 [22]

atggacatgcctgtggcaac

ERIC1 gtgaatccccaggagcttacat [16]

Table 2. STEC strains isolated from human and

food samples

Sample

Clinical
manifestations

or food source

No. of

strains Serogroup

Human
samples

(n=90)

Acute diarrhoea 57 O157 (25/57)

O26 (26/57)
O174 (2/57)
O91 (1/57)

O125 (1/57)
ONT* (2/57)

HC 7 O157 (7/7)

HUS 26 O157 (26/26)

Food
samples
(n=33)

Hamburger 20 ONT* (12/20)

O113 (7/20)
O2 (1/20)

Bovine meat 10 ONT* (4/10)

O125 (2/10)
O114 (2/10)
O113 (1/10)
O158 (1/10)

Chicken 1 ONT* (1/1)
Sausage 2 ONT* (2/2)

HC, Haemorrhagic colitis ; HUS, haemolytic–uraemic syn-
drome.

* ONT, Non-typable with available E. coli antisera.
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centrifuged for 5 min at 8000 rpm; 3 ml of the super-

natant was used as template for the PCR reaction.

STEC strains EDL 933 (eae, lpfAO157 and efa1) and

472-1 (saa) were used as positive controls in the PCR.

Amplification of eae, stx1, stx2, efa1, lpfAO157 and

saa genes was performed with the oligonucleotides

described in Table 1. The primers for efa1 and

lpfAO157 were designed from sequences available in

the GenBank database using OMIGA 2.0 software

(Oxford Molecular Ltd, Madison, WI, USA) for

alignment and the Primer 3 program (Whithead

Institute for Biomedical Research, Cambridge, MA,

USA) for primer design. Each PCR reaction (efa1,

lpfAO157 and saa) was carried out independently and

performed in 50 ml reaction mixture containing 1r
reaction buffer (10 mMTris–HCl, 50 mMKCl), 1.5 mM

MgCl2, 1 mM dNTPs, 10 pmol each primer, 0.25 U

Taq DNA polymerase (Biotools, Madrid, Spain) and

3 ml template DNA. Samples were amplified for

35 cycles, with each cycle consisting of 1.5 min at

94 xC for denaturing, 1.5 min at 60 xC for primer

annealing and 1.5 min at 72 xC for strand elongation.

PCR products were visualized following electroph-

oresis in 1.5% agarose gels and staining with ethidium

bromide; amplicons were identified by reference to

molecular size markers.

Table 3. stx genotype and distribution of eae, efa1, lpfAO157 and saa genes in serotypes of STEC from humans

and food samples

Serotype

No. of strains

Source
Positive by PCR
adherence factor genes stx genotype

H F eae efa1 lpfAO157 saa stx1 stx2 stx1–stx2

O157 (58/123)
50 — 50 50 50 0 0 50 0

2 — 2 0 2 0 0 2 0
2 — 2 2 0 0 0 2 0
1 — 0 0 0 0 0 1 0

1 — 1 1 0 0 0 1 0
1 — 0 1 1 0 0 1 0
1 — 1 0 0 0 0 1 0

Non-O157(65/123)
O26

13 — 13 13 0 0 13 0 0
11 — 11 11 11 0 10 1 0
2 — 2 0 0 0 0 2 0

O174 2 — 0 0 0 2 0 0 2
O91 1 — 0 0 0 1 0 1 0
O125 1 — 0 1 0 1 0 1 0

— 1 1 0 0 1 0 1 0
— 1 0 0 0 1 0 0 1

O2 — 1 0 0 0 1 0 1 0
O113 — 6 0 0 0 0 0 6 0

— 1 0 0 0 1 0 1 0
O158 — 1 0 0 0 1 0 0 1
O114 — 1 0 0 0 0 0 1 0

— 1 0 0 0 1 0 1 0
ONT* 2 2 2 2 0 0 2 0

10 0 0 0 0 2 8 0

1 0 1 0 0 0 1 0
7 0 0 0 7 0 2 5
1 1 1 0 0 1 0 0

1 0 1 0 1 0 1 0

H, human; F, food.
* ONT, Non-typable with available E. coli antisera.
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DNA fingerprinting of strains

Strains were typed by indexing variation in the con-

served Enterobacterial Repetitive Intergenic Consen-

sus (ERIC) sequences of the genome. DNA was

extracted from overnight growth of pure subcultures

and cells were lysed by boiling for 10 min. Genotyping

was performed using the ERIC1 fingerprinting assay

[16]. PCR amplifications were performed in 25 ml

volumes containing 2.5 mM MgCl2, 2 U Taq DNA

polymerase (Promega, Madison, WI, USA), 1 mM

dNTPs, 1.5 ml template DNA and 100 pmol ERIC1

primer. ERIC-PCR products were visualized follow-

ing electrophoresis in 3% agarose gels and stained as

above. Electrophoretic patterns were entered into

Treecon for Windows v. 1.3b matrix analysis software

(University of Konstanz, Germany).

Statistical test

Statistical analyses were performed with the SPSS

11.0.1. package for Windows (SPSS Inc., Chicago,

IL, USA). The x2 test was used for calculations and

P values of <0.05 indicated a significant difference in

the distribution of genes in different serogroups.

RESULTS

For human samples, 58 (64.4%) strains belonged to

the O157 serogroup and 26 (28.8%) were of the O26

serogroup. These two serogroups accounted for 25

and 26 of the 57 cases of acute diarrhoea and all of the

HC and HUS cases were caused by serogroup O157.

The remainder of the human strains fell into sero-

groups O174, O91, O125 and two strains were sero-

logically non-typable (ONT). In contrast, 19 of the 33

food strains were ONT and, with the exception

of O125, none of the serogroups identified in food

strains was found in human strains (Table 2).

Table 3 shows that all E. coli serogroup O157

strains harboured only the stx2 gene. The majority

(23/26) serogroup O26 isolates were positive for the

stx1 gene while both genes were present in the two

strains of serogroup O174 tested and in two other

serogroups (O125 and O158) and five ONT strains.

Gene stx1 was not detected in any of the other sero-

typable isolates but was present in three ONT strains.

On the other hand the stx2 gene occurred in varying

numbers of five other serogroups and in 14 ONT

strains.

The amplification of saa, lpfAO157 and efa1 genes

produced PCR products of 129, 273 and 456 bp re-

spectively (Fig. 1). The eae gene was detected in 84

(93.3%) human strains compared with 2/33 of food

strains. The most prevalent putative adhesin genes

in human samples were efa1 (90%), and lpfAO157

(74.4%), while the saa gene was present in only six

(6.6%) of these strains; efa1 gene in 79 of the eae-

positive strains and lpfAO157 in 65 strains. The most

prevalent gene among food strains was saa (45.5%),

while efa1 was present in only three strains (9%). The

lpfAO157 gene was not detected.

By ERIC-PCR profiles the 122 STEC strains were

grouped into two main clusters, which could be fur-

ther subdivided into two minor clusters each (Fig. 2).

Cluster Ia comprised the great majority of serogroup

O157 strains while Ib mainly contained food strains

of serogroup O113. A small number of food strains

fell in cluster IIa but IIb consisted mainly of disease-

associated serogroup O26 strains and 10 strains of

other serogroups including six representatives of

serogroup O157 from HC and HUS cases. These

groupings did not correlate with the adhesin genes

profile.

DISCUSSION

We determined by specific PCR assays the distri-

bution of three putative adhesin genes in STEC

strains isolated from human and food sources, be-

longing to different serogroups and isolated over a

period of 4 years. We found that eae was the most

1000

500

100

1 2 3 4 5 6 7 8 9 10

efa1
lpfAO157saa

Fig. 1. PCR analysis of saa, lpfAO157 and efa1 genes in con-
trols and samples strains. Lane 1, ladder 100 bp; lane 2,
STEC E026-00; lane 3, STEC 472-1 ; lane 4; negative con-

trol for saa gene; lane 5, EHEC E030-00; lane 6, EHEC
EDL 933; lane 7, negative control for lpfAO157 gene ; lane 8,
EHEC E030-00; lane 9, EHEC EDL 933; lane 10, negative

control for efa1 gene.
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prevalent gene in human STEC strains (93%) and

there was a close association between the eae-positive

strains and the presence of efa1 (P=0.0006) and

lpfAO157 (P=0.005) genes, a situation similar to that

described by Toma et al. [17]. The majority of human

strains corresponded to O157 and O26 serogroups,

which have not been previously associated with the

presence of the saa gene [11] ; we only detected this

0·7 0·6
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Fig. 2.Dendrogram comparing ERIC-CR profiles of STEC strains isolated from human and food sources. Human strains are
encircled.
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gene in four (6%) human isolates belonging to O125,

O174 and O91 serogroups.

The eae gene was very rare in food strains while the

saa gene was the most common marker identified in

these strains confirming the negative correlation of

the presence the two genes previously observed by

Paton et al. [11]. Other studies on the frequency of the

saa gene indicate that it is more frequently found in

bovine STEC [18, 19]. Overall, these results suggest

that the Saa protein may have a more important role

in attachment of STEC organisms to the bovine gut

than the human intestine [18].

Our data indicate that Chilean STEC strains of

human origin belong to different serogroups than

those common in food with the exception of

serogroup O125 which was found in both groups of

samples. It is noteworthy that some strains isolated

only from food, e.g. serogroups O2 and O113 have

been associated with human disease previously [20].

Other serogroups in food such as O114 and O158

could represent normal intestinal microbiota of ani-

mals or are serogroups not yet described as human

pathogens. The most prevalent serogroups of human

strains were O157 and O26 which were entirely absent

from foodstuffs. In conclusion, the distribution of the

adherence genes of STEC was related to the source of

isolation. In human strains the eae gene predominated

along with the putative adherence factors efa1 and

lpfAO157 and, therefore, these gene products may be

potential candidates for vaccines directed to inhibit

the colonization of the human intestine.
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