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Oxidative stress in tumor microenvironment
——Its role in angiogenesis
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　　【Abstract】 The tumor angiogenesis process is believed to be dependent on an "angiogenic switch" formed 

by a cascade of biologic events as a consequence of the "cross-talk" between tumor cells and several components of 

local microenvironment including endothelial cells, macrophages, mast cells and stromal components. Oxidative stress 

represents an important stimulus that widely contributes to this angiogenic switch, which is particularly relevant in lungs, 

where oxidative stress is originated from different sources including the incomplete reduction of oxygen during respiration, 

exposure to hypoxia/reoxygenation, stimulated resident or chemoattracted immune cells to lung tissues, as well as by a 

variety of chemicals compounds. In the present review we highlight the role of oxidative stress in tumor angiogenesis as a 

key signal linked to other relevant actors in this complex process.
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Advanced glycation

Reactive Oxygen Species (ROS) in vasculature

Vascular cells produce energy by reducing molecular oxygen 

to water during aerobic respiration. During this process, reactive 

species such as superoxide anion (O2¯·) hydrogen peroxide 

(H2O2), peroxynitrite (OONO¯), hypochlorous acid (HOCl) and 

the hydroxyl radical (OH·), among others are generated[1,2]. 

Under homeostatic conditions, these molecules play regulatory 

roles in cellular function, and antioxidant defences are critical 

to modulate their steady state balance, which is now recognized 

as a key mechanism for the maintenance of vascular health[3]. 

   An important consequence of vascular oxidant stress, with 

dramatic results on vascular homeostasis, is the impaired 

nitric oxide (NO) bioavailability produced by its inactivation 

by superoxide anion. The latter rapidly reacts with NO and 

eliminates its biological activity[4].

Main ROS sources   

 In the vascular wall, several enzymatic systems produce 

O2¯and its derivatives in the vasculature, including NAD(P)H 

oxidases (NOXs), xanthine oxidase (XO),  NO  synthases (NOS) 

and myeloperoxidase (MPO).

NAD(P)H oxidase

    Compelling evidence suggests that NAD(P)H oxidases, 

also known as NOX enzymes, constitute the main enzymatic 

source of endothelial and vascular O2·. Nox proteins represent 

the catalytic subunits of these enzymes and vary in terms of 

their mode of activation and need for cofactor activation[5].  

Nox1 protein levels are quite low in vascular cells, but can 

be induced by stimuli such as platelet-derived growth factor 

(PDGF) and angiotensin II[5].  Nox2, previously known as 

gp91phox, is expressed in endothelial and adventitial cells 

of large vessels and in the vascular smooth muscle cells of 

smaller vessels[6-8]. Nox4 is constitutively expressed and active 

in vascular smooth muscle (VSMC) and endothelial cells 

(EC)[9,10]. All Nox enzymes require p22phox, which serves as 

a docking protein for other subunits and stabilizes the Nox 

proteins[10].

    Although endothelial and vascular oxidases appear to be 

constantly active, generating low levels of ROS, they are 

regulated by humoral factors, as demonstrated for cytokines, 
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growth factors, and vasoactive agents as well as by physical 

factors, including stretch, pulsatile strain and shear stress[11]. 

Interestingly, hydrogen peroxide and lipid peroxides can 

stimulate the activity of the NADPH oxidases in vascular 

smooth muscle cells, leading to a feed-forward increase in 

ROS production in the vascular wall[11,13]. 

    The protagonic role of this enzymatic system in vascular 

disease has been evidenced by several reports showing that 

increased levels of p22phox, p47phox, p67phox and Nox 

subunits are present in both human atherosclerotic coronary 

arteries[14] and diabetic vessels[15], in association with increased 

superoxide production. This suggests that upregulated gene 

expression and/or post-transcriptional increases in protein 

levels are important in mediating increased NAD(P)H oxidase 

activity in human vascular disease. For example, angiotensin 

II increases NAD(P)H oxidase activity by transcriptional 

upregulation of subunits expression[16]. However, it is clear that 

the cytosolic regulatory proteins p47phox, p67phox and the 

small g protein Rac-1 also play an important part in regulating 

NAD(P)H oxidase activity in vascular diseases by acute 

activation of the enzyme complex, i.e. by phosphorylation and 

translocation of p47phox[17] .

COX

    Cyclooxygenase is another source O2¯· of production, 

particularly in the cerebral circulation[18]. PGH synthase 

and lipooxygenase are able to co-oxidize substances such as 

NAD(P)H[19]. 

X/XO

    Another  source o f  vascular  ROS is  the  xanthine 

oxidoreductase enzyme system. The xanthine dehydrogenase 

(XDH) activity present in vascular endothelium is readily 

converted into XO by processes including thiol oxidation 

and/or proteolysis[20] and the ratio of XO to XDH in the cell is 

therefore critical to determine the amount of ROS produced by 

these enzymes. Xanthine oxidase metabolizes hypoxanthine, 

xanthine, and NADH to form O2¯ and H2O2, and appears 

to be an important source of ROS production in ischemia/

reperfusion[21] hypercholesterolemia[22]. Thus, xanthine oxidase 

has the potential to be an important source of ROS production 

under certain pathophysiological conditions. 

    However, the presence of XDH in endothelium is still 

matter of controversy because other studies based on 

immunohisto-chemical techniques studies have failed to 

demonstrate immunoreactivity to XDH in endothelial cells or 

other cardiovascular tissues[23].  It has been suggested that XO 

in endothelial cells originates from other organs and that the 

enzyme is probably taken-up via heparin binding sites[24, 25].

Mitochondria

    The contribution of mitochondria to the production of 

ROS  in vascular wall is less understood, although significant 

contributions have been made in the last five years[26]. 

    Recent evidence suggests that increased mitochondrial 

O2¯· generation in endothelial cells is particularly prominent 

in some pathological settings. Hyperglycemia induces 

mitochondrial O2¯· production, which is involved in the 

pathogenesis of diabetic complications[27]. Similarly, the 

adipokine leptin also induces mitochondrial O2¯· production 

by increasing fatty acid oxidation[28]. In hypoxia-reoxygenation 

and ischemia-reperfusion, mitochondrial-derived O2¯· 
radicals are increased, where the enhanced O2¯· is at least 

partially responsible for a rise in endothelial permeability[29].

Dysfunctional or uncoupled endothelial nitric oxide 

synthase (NOS III)

    NOS III is a complex homodimeric oxidoreductase that 

shuttle electrons from the reductase domain to the oxidase 

domain that contains the heme active site. Under some 

conditions, NOS generates superoxide rather than NO[30], a 

phenomenon that is known as NOS uncoupling which means 

that electrons flowing from the NOS III reductase domain to 

the oxygenase domain are diverted to molecular oxygen rather 

than to L-arginine. One of NOS cofactors, tetrahydrobiopterin 

(BH4) appears to have a key role in regulating NOS function 

by "coupling" the reduction of molecular O2 to L-arginine 

oxidation. Exogenous BH4 partially restores NOS III-

dependent NO production and reduces NOS uncoupling in 

hypertension[31], hypercholesterolemia[32], and smokers[33].   

Thus, BH4 availability is a crucial factor in the balance 

between NO and O2¯·  generation by NOS III.

Tumor angiogenesis
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    Angiogenesis, the formation of new blood vessels from 

the pre-existing vasculature, is one main mechanism of 

vascularisation during the embryonic development, growth, 

regeneration, wound healing and some physiological processes 

such as formation of the corpus luteum and endometrium. 

On the other hand, angiogenesis is also involved in a number 

of pathological processes including tumor growth, invasion, 

metastasis, diabetic retinopathy and arthritis[34,35].

    For more than 100 years, tumors had been observed to 

be more vascularized than normal tissues[36]. Understanding 

this condition has been a major task in biomedical research. 

In 1939, it was hypothesized for the first time that tumor 

hyperemia could be related to new blood vessel growth instead 

of vasodilatation[37]. Thirty-two years later, Judah Folkman[38] 

proposed that tumor growth is angiogenesis dependent. In 

1974, Gimbrone et al, suggested that tumors are able to release 

diffusible stimulators, as demonstrated by the sprouting of 

new capillaries when angiogenic tumors were implanted in 

avascular region such as the cornea[39].  Furthermore, Weidner 

and colleagues in 1991[40] found that the microvascular density 

of the primary tumor was a highly significant prognostic marker 

for human breast cancer.

    Today it is widely accepted that tumor growth is heavily 

conditioned by the availability of an adequate vasculature. 

Angiogenesis is thus becoming essential when tumor diameter 

reaches (1-2) mm in diameter, in order to supply adequate 

oxygenation and nutrition to tissues and to eliminate toxic 

molecules[41]. 

    Tumor angiogenesis is a very complex process which is 

regulated by a delicate balance between several proangiogenic 

and antiangiogenic molecules released by tumor and host 

cells, including endothelial cells, macrophages, mast cells and 

stromal components.

    A cascade of biologic events is switched on following the 

"cross-talk" between tumor cells and several components 

of local microenvironment. For example, homeostatic 

modifications under hypoxic oxidative or mechanical 

stresses may act as potent stimulators of tumor angiogenesis 

and induce the expression of multiple pro-angiogenic 

factors. Tumors promote angiogenesis by the secretion of 

growth factors that stimulate endothelial cell migration and 

proliferation, proteolytic activity, and capillary morphogenesis. 

Furthermore, angiogenesis-promoting factors andgrowth 

factors (GF) released by tumor associated inflammatory 

cells are now considered important elements in local tumor 

microenviroment. Mast cells (MCs) are known to accumulate 

at the sites of angiogenesis and produce many angiogenesis 

promotors such as histamine, basic fibroblast growth factor 

(bFGF), vascular endothelial growth factor (VEGF), heparin 

and tryptase[42-44]. Likewise, tumor associated macrophage 

(TAMs) are thought to induce angiogenesis through secretion 

of several factors, including tumor necrosis factor-alfa (TNF-

alfa), VEGF, angiogenin and urokinase[45]. Additionally, 

eosinophils, are also able to produce some angiogenic factors, 

which has been correlated with angiogenesis in inflammatory 

conditions characterized by increased tissue eosinophilia, 

such as asthmatic airways and nasal polyps[46,47]. A growing 

body of evidences clearly support a relevant role of plateles 

by releasing proagngiogenic substances in the tumor 

microenvironment as demonstrated for VEGF[48], platelet 

derived growth factor (PDGF) [49], basic fibroblast growth 

factor (bFGF)[50], endothelial cell growth factor (ECGF)[51], 

transforming growth factor (TGF)[52], insulin-like growth factor 

(ILGF)[53], angiopoietin 1[54],  sphingosine-1-phosphate[55], and 

matrix metalloproteinases (MMPs)[56]. However, platelets also 

secrete inhibitors of angiogenesis such as thrombospondin I[57], 

platelet factor 4[58],  and plasminogen activator inhibitor I[59], 

and angiostatin[60]. Thus, increased activation of platelets is 

though to support tumor angiogenesis by releasing of growth 

factors within the prothrombotic tumor microcirculation. 

Furthermore, many tumors also secrete factors like GM-

CSF, G-CSF, IL-1 and IL-6, which have been discussed to 

increase platelet counts[61, 62].

Oxidative stress as a key signal in angiogenesis switch

    The tumor angiogesis process is believed to be dependent on 

an "angiogenic switch" which initiates a series of events starting 

with the release of tumor-related proangiogenic factors, leading 

to the activation of endothelial cells, the release of proteolytic 

enzymes, degradation of the basement membrane, followed 

by endothelial cell migration, proliferation, and capillary 

tube formation[63]. The new capillaries formed in tumors lack 

the same supporting architecture as their parent vessels and 

are thin-walled and highly permeable. Consequently, the 
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leakiness of the new tumor vasculature provides access to the 

circulation for tumor cells to metastasise.

    Oxidative stress represents an important stimulus that widely 

contributes to tumor angiogenesis mediating the angiogenic 

switch[64, 65]. 

    In lungs, oxidative stress is originated from different 

sources including the incomplete reduction of oxygen during 

respiration, exposure to hypoxia/reoxygenation, stimulated 

resident or chemoattracted immune cells to lung tissues, as 

well as by a variety of chemicals compounds. 

    ROS are also produced by cancer cells at higher 

concentrations and thus contribute to neoplastic transformation 

and angiogenesis. Contrarily, tumor cell proliferation and 

endothelial cell differentiation are promoted by lower 

concentrations[66-68]. 

    The NOX family of NAD(P)H oxidases is a key cellular 

source of ROS, which are well-represented in lung tissues, 

which has been associated with the angiogenic switch in non 

tumor tissue[69,70]. NAD(P)H oxidases also influence tumor 

cell proliferation via the redox regulated transcription factor 

NF-kB which in turn regulates numerous genes involved in 

apoptosis, cell proliferation, metastasis and angiogenesis[71], 

as well as to induce IL-8 expression in endothelial cells, 

favouring the expression of an angiogenic phenotype[72]. 

    The effects of ROS on angiogenesis may be in part 

mediated by the up-regulation of VEGF expression at both 

the protein and mRNA levels[73,74]. VEGF and its receptors 

(VEGFR) are among the most intensively studied angiogenic 

regulators in basic and clinical cancer research[75], which 

regulates endothelial proliferation, permeability, and survival. 

VEGF is secreted by many cell types, and its expression is 

regulated by a myriad of growth factors and cytokines and 

there is considerable evidence that VEGF is a major tumor 

angiogenesis factor and its mRNA is up regulated in a large 

number of tumor types[76,77]. There is an extensive body of 

data documenting that inhibition of VEGF activity results in 

suppression of growth of a wide variety of tumor cell lines in 

murine models[78,79]. 

    It is now known that in several cancer types, including lung 

cancer, there is an excess production of oxidative stress[80,81].  

Furthermore, a significant correlation between oxidative stress 

and VEGF levels in bronchoalveolar lavage fluid of lung cancer 

patients after chemotherapy or radiotherapy and chemotherapy 

has been reported[82], suggesting a possible induction of VEGF 

production by oxidative stress. Similar correlation has been 

also reported between serum VEGF levels and oxidative stress 

in most malignancies, including lung cancer[83-85]. 

    One important aspect of the biology of VEGF is the 

regulation of VEGF-gene transcription mediated by HIF- 

1 (hypoxia inducible factor-1). In hypoxic conditions, the 

heterodimer HIF1α/HIFβ may translocate to the cell nucleus 

and, after binding to specific promoters, may lead to increased 

transcription of some genes (hypoxia-induced genes) encoding 

for proteins involved in the angiogenesis process, such as 

VEGF, PDGF-beta, TGF-alpha, and even erythropoietin[86]. 

    Another redox protein, thioredoxin, activates HIF-

dependent pathways by similar mechanisms[87]. Overexpression 

of thioredoxin is observed in several human tumors, which may 

contribute to the HIF-induced transcriptional up-regulation of 

VEGF and tumor angiogenesis[88,89]. 

    Nitric oxide (NO) has been shown to mediate angiogenesis 

by direct and indirect mechanisms[90]. Contrarily, anti-

angiogenic effects of NO have been also reported. This 

apparent discrepancy might be explained by differences 

in concentration, cellular compartment as well duration of 

exposure. Many angiogenic factors are known to increase 

nitric oxide production by activation endothelial nitric 

oxide synthase, as demonstrated for VEGF, sphingosine-1-

phosphate, angiopoietins, estrogens[91,92]. 

    Additionally, NO induces the synthesis and activation of 

hypoxia-inducible factor 1α (HIF1α) the transcription factor, 

which in turn upregulates VEGF[93]. 

    There is increasing evidence that Angiotensin II (Ang 

II), a major regulator of blood pressure and cardiovascular 

homeostasis, is also involved in tumor progression, tumor 

vascularisation and metastasis, mainly through AT1 receptor, 

as demonstrated with specific receptor blockers[94]. It has 

been demonstrated that Ang II, a potent stimulus for ROS 

generation, promotes in vitro angiogenesis by enhancing VEGF 

expression, through both p38- and p44/42 MAPKs-dependent 

mechanism[95].

    Vascular endothelial (VE) cadherin has emerged as a key 

molecule in angiogenesis processes. The first evidences of 

VE-cadherin implication in angiogenesis emerged from in 
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vitro and in vivo angiogenesis models using anti-VE cadherin 

antibodies[96-99]. 

    VE-cadherin, initially considered as a constitutive protein 

with unregulated expression, has been demonstrated to be 

under a very complex expression control[100,101]. 

    VE-cadherin phosphorylation is a key step to the angiogenic 

phenotype induced by VEGF which, in turn,  triggers cell-cell 

disruption, possibly through modification of adherens junction 

composition[102]. 

    Oxidative stress is a key element in VE cadherin regulation 

because of VE disappearance from adherent junctions as well 

as VE cadherin phosphorylation induced by angiogenic signals 

is markedly reverted by  antioxidant treatments[101,103]. 

    Type 2 diabetes and even moderately elevated glucose 

levels have been associated with several cancer types[104-106].

    Advanced glycation end-products (AGEs) and its receptor 

(RAGE) is now emerging as an important element in tumor 

biology and angiogenesis[107].

    The formation of AGEs, by the so called Maillard reaction, 

is a complex cascade of condensations, rearrangements, 

fragmentations, and oxidative modifications that leads to poorly 

characterized heterogeneous products. Glucose possesses 

a reactive aldehyde moiety that reacts non enzymatically 

with the amino groups of proteins, forming slowly reversible 

Amadori products. Rearrangement reactions then occur to 

produce a chemically related group of moieties, termed AGEs, 

which remain irreversibly bound to proteins[108]. RAGE ligands, 

which include the S100/calgranulins and high-mobility 

group box 1 (HMGB1) ligands, are expressed and secreted by 

cancer cells and are associated with increased metastasis and 

poorer outcomes in a wide variety of tumors. These ligands 

can interact in an autocrine manner to directly activate cancer 

cells and stimulate proliferation, invasion, and metastasis[107]. 

On the other hand, RAGE ligands can also influence a variety 

of important cell types within the tumor microenvironment, 

including fibroblasts, leukocytes, and vascular cells, leading to 

increased fibrosis, inflammation, and angiogenesis[107]. 

    RAGE expression is closely associated with gastric[109], 

colorectal[110], prostate[111] and lung cancer[112]. Blockade of the 

RAGE signal suppresses tumor growth and metastasis in these 

cancers[113]. 

    Endogenous secretory RAGE (esRAGE), has been identified 

in some cancer types including lung cancer[114]. esRAGE is 

similar to, but more stable than, a previously described form of 

secretory RAGE (sRAGE). By functioning as a decoy receptor, 

esRAGE is able to protect vascular cells from injury[115]. This 

suggests that esRAGE is a mediator that controls RAGE-

associated cell responses. Loss of esRAGE expression was 

associated with an increased risk of mortality after complete 

surgical resection, and was an independent predictor of 

the clinical outcome in patients with non-small cell lung 

carcinoma.

    Endothelial cell migration, a key early event during 

new vessel formation, is also induced by AGEs in human 

endothelial cells markedly affecting VE-cadherin distribution 

by a redox-sentivive mechanism[116]. 

    At present, there are compelling evidences that oxidative 

stress is relevant in neoplasic diseases and particularly in 

lung cancer[117]. Oxidative stress at tumor microenvironment 

represents an important element favouring both tumor growth 

and angiogenesis, as demonstrated by the antiangiogenic 

affects of many classical antioxidants such as, ascorbic 

acid[118], vitamin E[119], green tea catechins[120], resveratrol[121],  

and beta-caroten[122], as well as new compounds derived from  

plants used in traditional Chinese medicine[123,124], therefore 

might be considered as a potential target to pharmacological 

manipulation. 
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