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S. J. Thorpe, D. Fize, and C. Marlot (1996) showed how rapidly observers can detect animals in images of natural scenes,
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predicted. We tested whether human observers make use of power spectral differences between image categories when
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experiment are consistent with this hypothesis. Together, our results make it exceedingly unlikely that human observers
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Introduction

The classification of objects in complex, natural scenes
is considered a difficult taskVcertainly from a computa-
tional point of view as no computer vision algorithm as
yet exists that is able to reliably signal the presence or
absence of arbitrary object classes in images of natural
scenes. Work by Thorpe, Fize, and Marlot (1996) demon-
strated, however, that humans are capable of detecting
animals within novel natural scenes with remarkable
speed and accuracy: In a go/no-go animal categorization
task images were only briefly presented (20 msec) and
already 150 msec after stimulus onset the no-go trials
showed a distinct frontal negativity in the event related
potentials (ERPs). Median reaction times (RTs) showed a
speed-accuracy trade-off but for RTs as short as 390 msec
observers were already approx. 92% correct (increasing to
97% correct for 570 msec).

This basic resultVultra rapid and accurate animal
detection in natural scenesVhas been replicated reliably
many times: in non-human primates (Fabre-Thorpe,
Richard, & Thorpe, 1998; Vogels, 1999a, 1999b), using
gray-scale instead of color images (Delorme, Richard, &
Fabre-Thorpe, 2000), using different response paradigms
and modalities (yes-no or go-no-go versus forced-choice;
eye movements versus button presses; e.g. Kirchner &
Thorpe, 2006), and while measuring neurophysiological
correlates (ERPs; Rousselet, Fabre-Thorpe, & Thorpe,
2002; Thorpe et al., 1996; MEG, Rieger, Braun, Bülthoff,
& Gegenfurtner, 2005). Ultra rapid animal detection is
even robust to inversion (180 deg rotation) and nearly
orientation invariant (Kirchner & Thorpe, 2006; Rieger,
Köchy, Schalk, Grüschow, & Heinze, 2008; Rousselet,
Macé, & Fabre-Thorpe; 2003; but note that Rieger
et al., 2008 found a slight performance decrement for inter-
mediate rotation angles but none for 180 deg inversions).
Finally, there are suggestions that rapid animal detection
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may not require focused attention (Fei<Fei, VanRullen,
Koch, & Perona, 2002; Rousselet et al., 2002), although
this is not uncontroversial (c.f. Evans & Treisman, 2005)
and some performance limitations in the complete absence
of attention have emerged (Evans & Treisman, 2005;
Rousselet, Thorpe, & Fabre-Thorpe, 2004; VanRullen,
Reddy, & Li, 2005). Recently Kirchner and Thorpe (2006)
showed that, in a spatial two-alternative forced-choice
paradigm, human observers could initiate saccades to the
image containing the animal even as short as 120 msec
after stimulus onset, while Rieger et al. (2005) measured
the magnetoencephalogram (MEG) while studying natural
scene perception and concluded that only 90 msec of
undistorted processingV processing without a backward
maskVenabled their human observers to recognize natural
scenes in a match-to-sample task.
Human observers are remarkably fast given the, seem-

ingly, very difficult nature of the task. Thorpe and
colleagues argued that the results from ultra-rapid-animal
detection experiments pose serious constraints on the class
of algorithms that may underlie this capability (Thorpe
et al., 1996; Thorpe, Delorme, & VanRullen, 2001; VanRullen
& Thorpe, 2002). They argue that the rapid animal
detection results suggest a coding scheme in the primate
visual cortices where few, initial spikes play a crucial role
in a code in which spike timing, rather than rate, is critical
(but c.f. Gerstner, 2005). Furthermore, so they argue, their
results strongly suggest that information processing
sufficient to allow rapid animal detection is purely feed-
forward. However, most models of contour integration
and object segmentation, thought to precede object, and
hence animal recognition, rely on re-current interaction
provided by feedbackVand/or lateral connections (for a
recent paper and overview see, e.g., Hansen & Neumann,
2008).

Simple proxies for complex perceptual
decisions

Motoyoshi, Nishida, Sharan, and Adelson (2007) pre-
sented a compelling and elegant solution to the problem of
inferring material properties of objects from images
projected onto the retina. While surface appearance is a
complex function of illumination, surface geometry and
reflectance, Motoyoshi et al. (2007) showed how surface
gloss and lightness can be inferred from a simple image
statistic: the skewness of the luminance histogram. Thus
they argued that there is no need for the visual system to
attempt to do inverse optics: skewness of the luminance
histogram is a very good proxy to the exceedingly com-
plicated, and typically ill-posed, problem of how to
disentangle illumination, surface geometry and reflectance
(surface material).
Perhaps images of natural scenes can be classified into

animal and no-animal categories based on a simple proxy,

too: The relevant information for animal classification
may be contained in a simple image statistic that can be
extracted quickly and at comparatively limited computa-
tional cost without the need for image segmentation and,
thus, re-current processing (c.f. Bar, 2004). This is exactly
what Oliva and Torralba suggested (Oliva & Torralba,
2001; Torralba & Oliva, 2003). They argued that the
relative amount of high spatial-frequency energy in the
vertical and horizontal orientation could be used to predict
seemingly complex decisions about the absence and/or
presence of objects in natural scenes. They showed that
the information contained in a small number (N = 16) of
spectral principal components (SPC)Vprincipal compo-
nent analysis (PCA) applied to the normalized power
spectra of the imagesVis sufficient to achieve approx-
imately 80% correct animal detection in natural scenes,
and they argue: “We show how simple image statistics can
be used to predict the presence and absence of objects in
the scene before exploring the image (p. 391).” and
“(t)hese results corroborate studies by Thorpe I showing
that a cognitive task such as animal versus non-animal
categorization could be performed in a feedforward way
and without the need of sequential focus of attention or
segmentation stages (p. 409).” This notion is so attractive
because it implies that ultra-rapid-animal detection is
based on a simple image statistic which can be
calculated prior to segmentation: predominantly the
relative amount of high spatial-frequency energy in the
vertical and horizontal directionsVa simple proxy like
that of Motoyoshi et al.
Because of its elegance this hypothesis was quickly

adopted as an explanation for the rapid detection of
animals in natural scenes: “Scenes can be identified and
their gist apprehended very rapidly, well within the
duration of a single fixation I. This rapid apprehension
I can be based on global image statistics that are
predictive of the scene’s identity and semantic gist (Oliva
& Torralba, 2001; Torralba & Oliva, 2003)” taken from
Henderson (2003), p. 501, or “I it has been shown that
natural images can be classified into animal and non-
animal categories at a success rate of 80% using nothing
but measures of global image statistics such as the power
spectrum (Torralba & Oliva, 2003), I. Thus, the visual
system might be able to build a good template of the
features associated with a category and use this template
to make preemptive categorizations with reasonable
accuracy” from Johnson and Olshausen (2003), p. 509.
Unlike Motoyoshi et al. (2007), however, Torralba &

Oliva did not present any empirical, psychophysical
evidence for their suggested proxy. Even if the spectral
differences between the image categories were real,
however, this does not necessarily imply that the human
visual system is able to exploit them. Wichmann and
Henning (1998) showed, e.g., that the amount of high
spatial-frequency content could be a cue for motion
segmentation but it is, alas, not used by the visual system.
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The aim of the series of experiments reported in this article
was thus to assess psychophysically whether human
observers make use of the power spectral differences
between animal and no-animal images when rapidly
classifying natural scenes.

Experiment 1

In the first experiment we measured our observers’
ability to detect animals in natural scenes as a function
of presentation time (13 to 167 msec); a noise mask
immediately followed all images. In one condition we
used the original images, in the other images whose power
spectra were equalized (each power spectrum was set
to the mean power spectrum over our ensemble of
1,476 images). Were the high-spatial frequency content
in the vertical and horizontal orientation critical for rapid
animal detection, then subjects should perform worse
for the spectrum-equalized images, particularly at the very
shortest presentation times, where, according to Torralba
& Oliva’s spatial-frequency based scene gist hypothesis,
differential amounts of high-spatial frequency energy in
the vertical and horizontal orientations facilitates the
animal/no-animal discrimination prior to a detailed feature
analysis.

Methods

All 1,476 imagesV738 animal- and 738 no-animal or
distractor imagesVwere taken from the Corel Stock Photo
Library (Corel, 1996) and we used mostly the same
images used in earlier experiments on rapid animal
detection by Thorpe and colleagues as well as Torralba
& Oliva. Figure 1 shows examples of the type of animal
images (bottom row) and distractor images used; all
images were converted from RGB color to gray using
MATLABs (TheMathWorks, Inc., 2010) standard rgb2gray
routine, which is a simple linear combination of
0.2989*R + 0.5870*G + 0.1140*B. Individual images
had rather different mean luminances and RMS-contrast
(variance) but the animal and distractor images, as groups,
had a different variance, too (approximately 10% higher
RMS contrast for distractor images)Vdespite using nearly
1,500 images, these difference did not average out,
suggesting that they are systematic. To avoid this potential
cue all images were processed to have the same mean
luminance and the average RMS-contrast of the categories
was equalized (not each individual image as this would
have made many images either almost invisible or look
grotesque due to artificially high contrast). Figure 2 shows
examples of the processed images.
To generate the set of images with equal power

spectrum (and hence equal RMS contrast) we first Fourier

Figure 1. Five animal and five distractor images of the Corel database; the color images of the Corel database were converted to black-
and-white.
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transformed each image and then converted the even
(real) and uneven (imaginary) components into amplitude
and phase. Then we averaged the amplitude across all
1,476 images, essentially resulting in a 1/f spectrum
typical for natural scenes (e.g. Field, 1987). Finally, we
combined the original phase spectrum of each image with
the mean amplitude spectrum and applied the inverse
Fourier transform to obtain the equalized images. As the
power spectrum is simply the square of the amplitude
spectrum all images thus had the same power spectrum
and thus the same RMS contrast. Exemplars from the
spectrum-equalized condition are shown in Figure 3. Any
algorithm categorizing images into animal and no-animal
categoriesVor any category for that matterVbased solely
on the power spectrum would thus be at chance with the
set of images shown in Figure 3. If humans’ ability to
rapidly detect animals in images were based on the power
spectrum the stimulus presentation time required for
correct discrimination should markedly increase.
The experiment was a standard, spatial 2-AFC discrim-

ination task: did the left or the right of the presented images
contain an animal? The probability that an animal was pre-
sented on the left was 0.5 during the course of the exper-
iment. Stimulus presentation times (SOAs) were 13, 20, 40,
67, 100 and 167 msec immediately followed by a noise

mask. The noise masks had the same power spectrum as the
spectrum-equalized images but a random phase spectrum.
Stimuli were presented using a Cambridge Research
Systems VSG 2/5 graphics controller and a carefully
luminance calibrated Clinton Monoray monochrome
screen at a frame rate of 150 Hz non-interlaced with a
spatial resolution of 848� 636 pixels. Stimuli were viewed
from a viewing distance of 150 cm at which individ-
ual images subtended 4.62- � 6.15- of visual angle (384 �
512 pixels). The left and right images were separated by a
38 pixel-wide strip of mean gray implying that the total
spatial 2-AFC display subtended 9.67- � 6.15- of visual
angle. Observers were instructed to fixate the center of the
display. Presentation of the stimuli did not change the mean
luminance of the display which was set to 70 cd/m2. During
the experiment 114 pairs of images for each SOA were
shown, totaling 684 trials per psychometric function, for
two conditions (original vs. spectrum-equalized) and five
observer (two of the authors (PR, FAW) and three naı̈ve to
the purpose of the experiment). Conclusions are thus based
on 6,840 2-AFC trials. Experiment 1 and all supplementary
experiments to Experiment 1 were conducted at the Max
Planck Institute for biological Cybernetics, Department of
Empirical Inference in Tübingen while one of us (FAW)
was a research scientist there.

Figure 2. Same as Figure 1 except that the animal and distractor images were processed to have the same mean luminance and, per
category, the same RMS contrast (variance; see text for details). In Experiment 1 we used these images to compare performance and
refer to them as the original images.
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Results

Figure 4 shows proportion correct animal detection as a
function of presentation time on semi-logarithmic coor-
dinates for one of the observers (UP). The filled circles
show data for the original images, open circles for the
spectrum-equalized images. Weibull psychometric func-
tions were fitted to the data using the psignifit toolbox for
MATLAB (http://bootstrap-software.org/psignifit) which
implements the maximum-likelihood and Monte Carlo
resampling methods described by Wichmann and Hill
(2001a, 2001b). Inspection of Figure 4 shows, first, that
rapid animal detection is indeed very rapid: subject UP
only required around 30 msec presentation time (immedi-
ately followed by a noise mask) for 75% correct animal
detection. Second, there is virtually no discernible differ-
ence between the original image and the spectrum-
equalized condition, certainly not for the very shortest
presentation times. There may be a slight difference in the
asymptotic performance level attained by UP, i.e. at the
very longest presentation times of 100 and 167 msec.
Figure 5 shows a summary of the results obtained for all

five observers. The top panel shows the stimulus pre-
sentation times required for 60% correct (downward
pointing triangles), the middle panel for 75% correct
(circles) and the bottom panel for 90% correct detection

Figure 4. Shows proportion correct animal detection as a function
of stimulus presentation time on semi-logarithmic axes; raw data
and fitted psychometric functions are shown for one observer, UP.
Performance for spectrum equalized images is shown with open
symbols and light gray line, for the original images with filled
symbols and black line. Boxes and error bars denote the 68% and
95% confidence intervals obtained using a parametric bootstrap
procedure (see text for details).

Figure 3. Same as Figure 1 except that all imagesVanimals and distractorsVwere processed to have exactly the same power spectrum
equal to the mean power spectrum of all 1,476 images used (see text for details).
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(upward pointing triangles). As in Figure 4 filled symbols
denote thresholds for the original images, open symbols
thresholds for the spectrum-equalized images. The sym-
bols on the right, with the thick red line around them,
indicate the means across observers, as do the thick red
lines (dashed for the original images, solid for the
spectrum-equalized images). Error bars correspond to the
68% confidence intervals obtained from a parametric
bootstrap (Wichmann & Hill, 2001b). Image presentation
times are remarkably short, on average around 15 msec
for 60% correct, below 25 msec for 75% correct and
between 30 and 40 msec for 90% correct animal detection.
As for subject UP in Figure 4, the data clearly speak
against the Torralba & Oliva hypothesis that the difference
in high-spatial frequency content between animal and no-
animal images found in the Corel database allows rapid
animal detection in human observers. There may be an
ever so slight difference for 90% correct (32 msec versus
36 msec) which may have been statistically significant had
we conducted many many more trialsVit is certainly not
statistically significant for the data shown in Figure 5. For
the hypothesis under scrutiny this does not matter,
however, because, first, the benefit of differential high
spatial-frequency content should be largest for the shortest
presentation times, not for the longest. Second and more
importantly, 36 msec presentation time for 90% correct
animal detection is still very rapid indeed, and rapid
animal detection in this condition is, by experimental
design, definitely not due to the differential high-spatial
frequency content in the vertical and horizontal orienta-
tions between animal and no-animal images.

Supplementary experiments

In addition, we conducted three supplementary experi-
ments to exclude the possibility that we missed a significant
influence of differential high spatial-frequency content on
rapid animal detection due to an unfortunate choice of
image or experimental design parameters. (By significant
we do not only mean statistically significant but in terms of
effect size, i.e. much more than a few milliseconds).

Contrast reduction

Figures 4 and 5 suggest that our observers performed
remarkably well under the conditions of Experiment 1. A
possibility may have been that the differential high-spatial
frequency content only boosts performance for the orig-
inal images if task difficulty is higher. Thus we re-ran
Experiment 1 but lowered the RMS contrast of each indi-
vidual image by 50% (re. the per category RMS contrast
equalized images shown in Figure 2, which already have
lower contrast than those in the Corel database and shown
in Figure 1). Figure 6 shows the same exemplar images as
in Figures 1, 2 and 3 but with the same mean luminance,

average RMS contrast per category, spectrum-equalized
and reduced to 50% contrast. All other experimental
parameters and settings as in Experiment 1; the same five
observers participated in this supplementary experiment.
Figure 7 shows the summary of the results obtained for
all five observers. Downward pointing triangles show the
stimulus presentation times required for 60% correct,
circles those for 75% correct and downward pointing
triangles those for 90% correct animal detection. As in
Figures 4 and 5 filled symbols denote thresholds for the

Figure 5. Stimulus presentation time required for 60% (top;
downward pointing triangles), 75% (middle; circles) and 90%
(bottom; upward pointing triangles) correct animal detection for
the five observers who participated in Experiment 1. Open
symbols are used for the spectrum equalized images, filled ones
for the original images. Error bars correspond to 68% confidence
intervals. The symbols on the right, with the thick red edge colors,
correspond to the means across observers.
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original images, open symbols thresholds for the spectrum-
equalized images. The symbols on the right, with the thick
red line around them, indicate the means across observers,
as do the thick red lines (dashed for the original images,
solid for the spectrum-equalized images). Error bars
correspond to the 68% confidence intervals obtained from
a parametric bootstrap (Wichmann & Hill, 2001b). Again
there are no statistically significant differences between
the conditions for at any threshold-level except for
observer SKD at 90% correct due to an unusually steep
psychometric function in the original image condition.
The pattern of results mirrors that for the high contrast
condition of Experiment 1 exactly: if there were an effect
then perhaps for the highest performance level of 90%
(28 msec vs. 34 msec). Not only did the results qualita-
tively not differ from those of Experiment 1 but in absolute
terms the results are virtually identical, too, give or take a
few milliseconds (90% correct at 34 msec presentation
time immediately followed by a strong visual mask still
qualifies to be termed ultra-rapid detection).
Lowering the contrast even further resulted in drastically

reduced performance for any SOA, even for 167 msec-
informal exploration yielded 50% as the lowest possible
contrast at which the task could be performed with at least
90% correct animal detection; at this level the conclusions
of Experiment 1 still hold. A similar observation with
respect to contrast in natural images was previously

Figure 6. Same as Figure 3 except that the RMS contrast of each image was reduced by 50%.

Figure 7. Results for the contrast reduced supplementary experi-
ment. Stimulus presentation time required for 60% (downward
pointing triangles), 75% (circles) and 90% (upward pointing
triangles) correct animal detection. Open symbols are used for
the spectrum equalized condition, filled ones for the condition
using the original images. Error bars correspond to 68%
confidence intervals. The symbols on the right, with the thick red
edge colors, correspond to the means across observers.
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reported by Wichmann, Sharpe, and Gegenfurtner (2002)
in a visual memory paradigm: once there was sufficient RMS
contrast such that stimuli were supra-threshold, memory
performance was unaffected by the level of contrast present
between “just visible” to original image contrast. Macé,
Thorpe, and Fabre-Thorpe (2005) explored the role of
contrast in a go/no-go animal/nonanimal categorization
task without noise mask much more systematically: Macé
et al.’s data agree with our informal assessment that around
50% of the original image contrast is needed for the very
highest performance (90% correct) and the shortest RTs
(see their Figure 3, p. 2011). They were able to show,
however, that even at dramatically low contrasts of only
6.25% observers were still performing above chance (57%,
see their Table 1, p. 2011).

Experimental paradigm

For a task whose appeal in part stems from its so-called
“ecological validity” spatial 2-AFC may be regarded as an
unnatural paradigm: if evolutionary pressures had led to
extremely efficient animal detection routines in the human
brain then a yes-no design may be regarded as more
natural. So we re-ran both Experiment 1 as well as the
supplementary experiment at reduced contrast as a yes-no
experiment (1,368 yes-no trials per image category and
observer, i.e. psychometric function; 228 trials per SOA,
50% targets (animals) and 50% distractors). However, results
were again virtually identical to those of Experiment 1.
Whether spatial 2-AFC or yes-no, whether images at high
or low contrast: there is no influence of differential high-
spatial frequency content on the stimulus presentation time
required for rapid animal detection.

Visual mask

The vast majority of previous animal detection studies
did not use a noise masks after showing the images (but
see Bacon-Macé, Kirchner, Fabre-Thorpe, & Thorpe,
2007; Bacon-Macé, Macé, Fabre-Thorpe, & Thorpe,
2005). It is perhaps not inconceivable that some backward
masking may have interfered with the feedforward high-
spatial frequency mechanism postulated by Torralba &
Oliva. Thus we repeated Experiment 1 but without a mask
following the presentation of each image. Five new
observers, all naı̈ve to the purpose of the experiment
participated in this supplementary experiment. To reduce
the presentation times even further this experiment was
conducted using a Sony F-520 display driven at 170 Hz
frame rate non-interlaced (800 � 600 pixels spatial
resolution); viewing distance was changed to 170 cm in
order to keep the subtended angles constant; the mean
luminance was slightly lower at 55 cd/m2. Even at the
very shortest possible presentation time of 5.88 msecV
a single frameVthe average correct animal detection
performance was 82 T 6% in the original condition versus

78 T 11% in the spectrum-equalized condition: no signif-
icant difference. Three of the five observers were slightly
better for the original images, but two observers were
slightly better for the spectrum-equalized images.

Discussion

Experiment 1 and the three supplementary experiments
showed our observers’ ability to rapidly detect animals in
the Corel database images to be essentially independent of
the power spectrum of the images: this result makes it
very unlikely that human observers make use of the global
power spectrum. Taken together with the results of
Wichmann, Braun, and Gegenfurtner (2006), who showed
the robustness of animal detection to global phase noise,
we are led to conclude that humans use local features, like
edges and contours, in rapid animal detection.

Experiment 2

Experiment 2 was conducted to resolve the apparent
contradiction that simple, linear pattern classification
algorithms can sort images from the Corel database with
reasonable accuracy into animal and no-animal images
based on the images’ Fourier spectrum alone, whereas
Experiment 1 and its variants all failed to show any
significant influence of the Fourier spectrum on human
performanceVexcept perhaps at the asymptotic perfor-
mance level above 90% correct for presentation times above
100 msec. To investigate this issue we selected a sub-set
of images that, according to the spatial-frequency-based
classification algorithm, are “special” images: those the
classifier classifies easily and correctly (easy images), and
those the classifier gets completely wrong, i.e. mis-classifies
with confidence (difficult images). We then proceeded to
test whether the thus selected images were in any way
“special” for our human observers, too.

Methods
Pattern classification and stimulus selection

First we selected a much larger set of 11,000 animal and
no-animal images from the Corel database. After gray-scale
conversion and square format crops to 480 � 480 pixels,
we Fourier transformed each image and binned their am-
plitude spectra into 8 orientation- and 6 frequency bands,
regularly spaced on logarithmic coordinates. Figure 8 shows
the average power spectra of animal and no-animal images
in the Corel database, before binning. Visual inspection is
sufficient to see a systematic difference in the power along
the horizontal and vertical directionsVexactly replicating the
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findings of Torralba and Oliva (2003; data on pp. 394–395).
We then proceeded to use a linear discriminant analysis to
classify the 11,000 images into “animal” and “non-
animal” images based on their individual bin values only,
achieving slightly better than 74% correct classification.
Using principal component analysis (PCA) instead of
simple binning as a pre-processing step, we achieved 77%
correct classification (similar to Oliva and Torralba, 2001
and Torralba and Oliva, 2003).
After classification we proceeded to sort the images

based on the “confidence” (score) which linear discrim-
inant analysis attaches to each classified stimulus. From
the 11,000 images we retained only 800: 200 “best
animals” (those which the classifier classified correctly
as animals with high confidence), 200 “best distractors”
(correctly and with confidence classified as distractors),
200 “worst animals” (misclassified with confidence as
distractors by our classifer) and 200 “worst distractors”
(misclassified with confidence as animals by our classi-
fier). In the following we will refer to the “best animals”
and “best distractors” as the easy images (for the classifier)
and the “worst animals” and “worst distractors” as the diffi-
cult images. In a final step we again equalized the amplitude

spectra of the 800 images as described previously, which,
by design, reduced algorithmic performance of our classifier
to chance.

Experimental setup

The experiment used a Go/No-Go gap paradigm, similar
to that originally used by Thorpe et al. (1996) to elicit
very fast responses: Observers were instructed to push and
hold a trigger button prior to each trial. When the button
was pushed, a fixation dot appeared on the screen and
remained uniform at mean luminance for a random period
between 500 and 700 msec, followed by a 200 msec gap,
in which the fixation dot disappeared. A single target
(animal) or distractor (non-animal) image was then shown
for 30 ms. We fixed the presentation time at 30 msec
without a mask to achieve approximately 90% correct
performance in order to be in the ceiling region of
Experiment 1, where there may have been a difference
between the original and spectrum-equalized images.
Thereafter, a small fixation cross re-appeared for 1,000 msec
during which the observers were to make their
decision by either holding the button pressed steadily

Figure 8. Average animal and distractor power spectra of 11,000 pictures of the Corel Database. The increase in horizontal and vertical
high spatial frequencies for the non-animal images is easily visible.
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(“No-Go”-response, indicating they had believed the image
to be a distractor) or releasing the button as quickly as
possible (“Go”-response, indicating they had believed the
image to contain an animal). After a “Go”-response, the
next trial would not start again until the observer pressed
the trigger button to signal her readiness. Each of our
800 selected images was shown in random order exactly
once to each observer, resulting in a total of 800 trials per
conditionVi. original images and ii. spectrum-equalized-
per subject, taking between 40 and 60 minutes of time
depending on the subject’s individual pace. Images were
presented on a carefully luminance calibrated Iiyama
VisonMaster 513 (MA203DT) 21W CRT screen at a frame
rate of 100 Hz non-interlaced with a spatial resolution of
1280 � 960 pixels. Stimuli were viewed from a viewing
distance of 45 cm at which the screen subtended 48,2- �
36,9- of visual angle; individual images subtended 19,1- �
19,1- (480 � 480 pixels). A chin rest was used to stabilize
head position; ambient lighting was not calibrated to a
particular level, but great care was taken to ensure that the
same lighting conditions were in effect for all observers. A
warm-up period of at least one hour allowed the CRT to
stabilize its mean luminance. Twenty-two subjects partici-
pated in this experiment; 10 observers did the original
images condition and another set of 12 observers did
amplitude equalized condition. Overall 9,600 trials were
collected for the amplitude equalized condition, and 8.000
for the original-image condition, totaling 17,600 trials. Of
those, 58 were discarded because their response time was
faster than 200 msec. The remaining trials were considered
valid. All observers were students of the Justus-Liebig-
University Giessen and were paid for their participation.
Observers were between 20 and 31 years of age and had
normal or corrected to normal vision.

Results

The mean percent correct and RTs are shown in Table 1.
For all ANOVAs reported in this article we corrected the
proportions using the variance stabilizing Arcsine-transform
(Fleiss, 1981; Hogg & Craig, 1995). Some form of vari-
ance stabilization is required when applying ANOVA to

binomial data; the Arcsine-transform is reliable unless
many entries are either 0 or 1, which they were not for our
experiments. In the “original-image” condition, we find
the difference between “easy” and “difficult” images to be
highly significant both in terms of percent correct (repeated
measures one-way ANOVA, F(1,9) = 30.621, p G 0.001
and response time (F(1,9) = 8.569, p = 0.014). Overall,
observers performed 0.93 T 0.01 (SE) correct for the orig-
inal images, but 0.95 T 0.01 (SE) for the “easy” images
and only 0.90 T 0.01 (SE) for the “difficult” images.
At first sight the significant difference between “easy”

and “difficult” imagesVi.e. a correlation between human
observers and the machine classifierVmay seem to
support the high spatial-frequency hypothesis. However,
this is emphatically not the case: When performing the
same analysis on the amplitude-normalized image data,
we still find a highly significant effect for both percent
correct (F(1,9) = 119.301, p G 0.0001) and response time
(F(1,9) = 27.584, p G 0.001). Overall observers performed
0.86 T 0.01 (SE) for spectrum-equalized images, but
0.90 T 0.01 (SE) for the “easy” images and only 0.81 T
0.02 (SE) for the “difficult” images. Exactly the same
pattern holds for the reaction times, where the easy/difficult
image difference is 21 msec for original images and 36 msec
for equalized images (RT range 471 to 540 msec). This
pattern of results suggests that high-spatial frequencies in
the vertical and horizontal directions are correlated with
whatever (local) cue allows rapid animal detection without
being causal.
We also find a very strong effect for the amplitude-

normalization in both percent correct (F(1,9) = 131.8567,
p G 0.001) and response time (F(1,9) = 21.2665, p G 0.001);
see above: overall 0.93 T 0.01 (SE) correct for the
original images but only 0.86 T 0.01 (SE) for spectrum-
equalized images. Thus at high performance levels there is
a statistically significant difference between the conditions,
as hinted at in Experiment 1 for the longest presentation
times. In absolute terms one should not forget that
performance for the spectrum-equalized images at only
30 msec presentation time was still 86% correctVfar from
being “low”, or near threshold and still better than our
best classifier at just below 80% correct on the original
images.1

Discussion

Images “easy” or “difficult” to classify as animal or
non-animal image based on their spatial-frequency content
are “easy” and “difficult” for human observers, too.
However, the “easy” images remain “easy” even if the
spatial-frequency difference is removed: the same images
as before were still classified better and faster by our human
observers after spectrum-equalization, strongly suggesting
that even in the original condition features other than
specifics of the amplitude spectrum made particular images
“easy”.High-spatial frequency differences between animal

Amplitude spectrum
Image
type

Percent
Correct

Response
Time

All All 89.3% 450.6 ms
Original images Easy 95.2% 437.7 ms

Difficult 90.5% 451.1 ms
All 92.7% 443.5 ms

Spectrum-equalized Easy 90.1% 449.3 ms
Difficult 81.6% 464.4 ms
All 86.0% 457.7 ms

Table 1. Percent correct and RTs obtained in Experiment 2 for the
different image categories (all, original images and spectrum<

equalized).
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and no-animal images are correlated with, but are not
causally related to, rapid animal detection for images of
the Corel Database. This finding is clearly at odds with
the Torralba & Oliva hypothesis that high-spatial fre-
quency differences play a dominant causal role in rapid
animal detection.

Supplementary experiment
Experimental paradigm

As for Experiment 1 we wanted to ensure that we did
not miss a causal role for high spatial-frequency content
differences due to idiosyncrasies of the experimental pro-
cedure employed. Thus we repeated the above experiment
but this time using standard, spatial 2-AFC instead of a
Go/No-Go paradigm. Furthermore, instead of relying on
responses being typed into a keyboard as in Experiments 1
and 2 above, here we use saccades as indicator: observers
had to perform a saccade to the image containing the
animal, i.e. to the left or to the right. Finally, unlike for
the main Experiment 2 reported above, where different
groups of observers completed the different experimental
conditionsVoriginal images versus spectrum-equalized
imagesVhere the same set of observers completed both
experimental conditions.
All eye-movement measurements were performed using

SR Research’s EyeLink II eyetracking system. Images
were presented on the same Iiyama VisonMaster 513
(MA203DT) 21W CRT screen using the same settings as
described above. Ten observers participated in this experi-
ment, completing 800 2-AFC trials each. All observers
were students of the Justus-Liebig-University Giessen and
were paid for their participation. Observers were between
20 and 31 years of age and had normal or corrected to
normal vision. All observers were naı̈ve to the purpose
of the experiment. All 10 observers were able to perform
eye movements well enough to earn the best calibration
accuracy rating from the EyeLink II system. For data
analysis we defined three criteria eye-movement traces
had to fulfill. First, goodness of fixation: Fixation between
trial start and stimulus onset was not allowed to diverge
from the screen center by more than 70 pixels; this made
certain that the observers were not biased in favor of the L
or R location. We had to eliminate 129 trials of our 8,000,
leaving 7,871 trials for further analysis. Second, goodness
of saccade direction and destination: Decision saccades
were required to end in one of the two smallest possible
squares covering the area that was occupied by the target
and distractor images. This ensured that the saccades
actually were directed into the general area of either of the
shown images and eliminated random saccades, e. g. from
lack of concentration. Only 7 trials needed to be eliminated
to fulfill the requirements, leaving 7,864 trials for further
analysis. Third, goodness of response time: Observers
needed to make their decision no later than 700 msec after
stimulus onset to ensure that all responses were reasonably

fast. Responses also had to be slower than 80 msec to
eliminate random and too early eye movements (reaction
times faster than 80 msec can safely be assumed not to be
based on stimulus content). 26 trials were removed mainly
because they were too fast, leaving a total of 7,838 valid
trials for the statistical analysis presented below.

Results and discussion

As perhaps expected from the results of Experiment 2
above, the effect of image difficulty on the hit ratios was
significant; additionally, the effect of image difficulty is
significant both for the target images (animals, “easy-
difficult” in Table 2, F(1,9) = 82.757, p G 0.001) and the
distractor images (non-animals, “difficult-easy” in Table 2,
F(1,9) = 78.161, p G 0.001). The overall performance
degradation for of the amplitude equalized images was
also significant (F(1,9) = 87.188, p G 0.001).
As for the main experiment, there is a significant

difference between “easy” and “difficult” images, i.e. a
correlation between human observers and the machine
classifier: if in the 2-AFC both animal and distractor
image were taken from the “easy” set, performance was
95.3% correct (SE of the means only around T1–2% for
all conditions). Performance dropped dramatically to 76.3%
if both images were taken from the “difficult” set.
However, for the spectrum-equalized images the drop
was, if anything, even more severe, from 89.2% to near
chance performance of 60.5% despite that the “easy-easy”
and “difficult-difficult” image pairs had identical power
spectra. Thus the spectral differences in the original
images cannot be the cause for the very marked perfor-
mance differenceVthey are only correlated with whatever
feature(s) cause the behaviorally relevant difference.
Finally it may be instructive to note that for the 2-AFC

task the influence of amplitude equalization on RTs is not
significant (F(1,9) = 0.018, p = 0.896), unlike for the
Go/No-Go paradigm. Thus it may be that the longer RTs for
the amplitude equalized condition reported in Experiment 2

Type of
image pairing

Percent
Correct

Response
Time

All All 81.0% 277.5 ms
Original images All 85.8% 278.4 ms

Easy-Easy 95.3% 269.9 ms
Easy-Difficult 81.9% 281.9 ms
Difficult-Easy 89.7% 269.5 ms
Difficult-Difficult 76.3% 288.8 ms

Spectrum-equalized All 76.3% 276.8 ms
Easy-Easy 89.2% 269.3 ms
Easy-Difficult 74.9% 279.4 ms
Difficult-Easy 80.6% 276.9 ms
Difficult-Difficult 60.5% 282.0 ms

Table 2. Percent correct and RTs obtained in the Supplementary
Experiment 2 for the different image categories.
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are the result of a response criterion shiftVin the Signal
Detection Theory senseVfor the less “clean” looking
spectrum-equalized images. Whether this speculation is
true or not, our findingVthat classification accuracy shows
the same pattern of results for 2-AFC and Go/No-Go, while
RTs do notVemphasizes the importance of conducting
experiments using different experimental paradigms when
evaluating complex visual tasks such as animal detection.

Decidedly non-natural “natural” images

The results of Experiments 1 and 2 and their associated
supplementary experiments refute the Torralba & Oliva
hypothesis that differential amounts of high-spatial fre-
quency power in the vertical and horizontal orientation
helps, let alone underlies, rapid animal detection. What
these experiments did show, however, is that there is a
non-causal correlation between the amount of high
spatial-frequency power in the Corel database images
and the ease with which human observers can classify the
images into animal and no-animal categories.
One possible explanation is the following: The images

in the Corel databaseVand any other, professional stock
photograph database for that matterVwere taken by
professional photographers. When professional photogra-
phers take pictures, particularly of the non-radical or non-
arty style found in stock databases, they usually adhere
to a small number of rules-of-thumb, listed in every
beginners book on photography: Landscapes are photo-
graphed with wide-angle lenses at small apertures focused
at the hyper-focal distance of the lens; together all of these
factors maximize depth-of-field, i.e. everything in the
image is sharp (in focus). Portraits, on the other hand, are
taken using tele lenses (medium tele for human portraits,
long tele lenses for animals, particularly for those of the
dangerous type) set to the largest possible aperture with
the focus point exactly on the animal (human) to minimize
depth-of-field. Minimal depth-of-field is considered desir-
able for portraits because it pre-segments the (focal) target
object (animal, man) from the background.2 This pre-
segmentation is commonly perceived as aesthetically
pleasing due to the lack of high spatial frequencies in
the background, which is perceived as visually “quiet”,
and therefore not distracting. If we are correct, then the
difference in high spatial-frequency content between
animal and no-animal pictures has nothing to do with
animals or non-animals per se: it is an artifact of the type
of photos customers expectVand pay forVin stock photo
databases. Photographers produce this difference because
they attempt to pre-segment the portrait photograph for
the viewer, and the only way the photographer can do this
is by selective depth of field, i.e. high spatial-frequency
reduction (low-pass filtering) of the background, typically
mainly behind and above the person or animal.
The effect of the very narrow depth-of-field can be

clearly seen in the images in Figure 10. All of them

belong to the “easy” category of the spatial-frequency
based classifier, i.e. our implementation of the Torralba &
Oliva algorithm described above classified them correctly
and with confidence. Figure 11 shows examples of the
misclassified “difficult” animal pictures. All of them were
taken with a much smaller aperture and thus more depth-
of-field. Figures 11 and 12 show the equivalent selection
of distractor images: “Easy” distractors in Figure 11, con-
taining large depth-of-field street or nature pictures, and
images at a single depth-plane, i.e. where all information
is contained in a single focal plane and is thus completely
in-focus. Figure 12, finally, contains the misclassified
distractor pictures, and they are strikingly instructive: they
are “portraits” of objects, taken at large apertures or
stillVlives against a uniform backgroundVi.e. devoid of
high spatial-frequencies. All the 800 images are available
as Supplementary Information.
If we are correct, i.e. that the different orientation

content at high spatial-frequencies between animal and
no-animal categories are not only non-causal, but actually
at least in part a photographic artifact of the Corel Stock
database, then we can make the following strong
prediction: The algorithm bases its decision about the
absence or presence of the animal on the background
onlyVhence removing the animal from the picture
altogether should affect algorithmic performance very
little, whereas it should, of course, lead to chance
performance for human observers. If correct, we should
thus be able to create a “double-dissociation” between the
algorithm and human observers: In Experiments 1 and 2
such an algorithm performs at chance level but human
observers are essentially unaffected by the spectral
equalization. The animal removal in Experiment 3 should
reduce human observers to chance but leave algorithmic
performance essentially unaffected.

Experiment 3

In the preceding section we hypothesized that profes-
sional photographers cause the spectral differences
between animal and no-animal categories and that this
pre-segmentation, rather than the amount of high spatial-
frequency energy, may be helping rapid animal detection.
Inspection of Figures 9, 10, 11, and 12 may lend credibil-
ity to our claims but cannot, of course, replace a proper
psychophysical experiment.

Methods
Stimuli

From the 11,000 Corel database 768 � 512 pixel images
we selected a random subset of 800 images, 400 animal and
400 non-animal images; we then manually selected a 480�
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480 pixel square region from each imageVcentered on the
animal for the animal imagesVand then down-sampled all
images to 256 � 256 pixels. To cut away the animals, we
simply created a circular mask with 204 pixels diameter,
always centered on the image. Thus the inner mask had an
area of 32,904 pixels or 50.2% of the image area, the outer
region consisted of 32,632 pixels or 49.8% of the image

area. (A perfect 50–50 distribution of pixels would have
required a slightly non-circular mask because within the
given pixel grid no perfect circle can account for precisely
50.0% of the image surface.) To reduce the possible
interference that a sharp border between masked image
and background may exert we smoothed the sharp edge into
a Gaussian transition with a total width of 32 pixels

Figure 9. Representative examples (15 of 200) of animal pictures “confidently” classified as animals by a simple algorithm only taking the
Fourier spectrum into accountVall show animals well pre-segmented with blurred background. See text for details. (All 200 images are
available as Supplementary Information.)
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between minimum and maximum. The resulting mask (and
its inverted form) was then used to cut images into “inner
region only” and “outer region only”, blending the masked
part into neutral gray. As a result of this procedure, most
(but not quite all) of the animals were invisible in the “outer
region” images. (On some images a few pixels of the
animal(s) extended into the outer region and we chose not
to try and eliminate them, c.f. the animal examples in

Figures 9 and 10. This very likely accounts for a per-
formance slightly better than chance (53.7%, see Table 3
and Figure 17) in the “outer region” condition, see
Results section of Experiment 3.) Figure 13 shows
examples of two animal and two non-animal images in
our three conditions, “Entire Image” in the top row, “Inner
Region” in the middle row and “Outer Region” in the
bottom row.

Figure 10. Representative examples (15 of 200) of animal pictures “confidently” misclassified as non-animals by the same
algorithmVnote the lack of pre-segmentation via blurred backgrounds; see text for details. (All 200 images are available as
Supplementary Information.)
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Look at Figure 13Vbottom row, 2nd column: wolf? no
wolf? Similarly for all the other images. There could be
birds in front of the building on the left, there may be a
jeep rather than a zebra in the field on the right. In real
life, waiting for a short period of time may lead to birds in

front of the building on the left, or against the sky in third
row images, and the disappearance of the wolf and zebra
in the other scenes, i.e. to the exactly same images but
now with and without animals, respectively. Thus the scenes
per se do not contain information allowing reasonable

Figure 11. Representative examples (15 of 200) of distractor images very well classified as distractors by a simple algorithm only taking
the Fourier spectrum into account. Note how all have either got extended depth-of-field or are in a single image-plane and thus contain
spatial detail in all parts of the image. (All 200 images are available as Supplementary Information.)
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guesses about the presence or absence of animals, at least
not in the real world.
Given that the scenes themselves do not provide any

information about the presence or absence of an animalVa
non-informative animalVprior if one prefers Bayesian

terminologyVit would be surprisingVand sub-optimal
from statistical point of viewVif human observers were
better than chance deciding whether or not there was an
animal in any of the “Outer Region” images. (Unless, of
course, one instructed and trained them to look at the

Figure 12. Representative examples (15 of 200) of distractor images misclassified as animals “with confidence” by the same algorithm.
Note how these are pre-segmented, “portrait-like” with blurred or blank backgrounds. (All 200 images are available as Supplementary
Information.)
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background and say “animal” if the background is blurry,
as for the wolf and zebra images and “non-animal” if in
focus, as for the image of the building.)

Algorithmic classification

As pre-processor we chose a representation of the image
database in terms of spectral content, but one that also
retains information about spatial distribution of spectral
content. This can be achieved using a sub-band (“wavelet”)
transform and we chose Simoncelli’s steerable pyramid
(second derivative filters) (Simoncelli & Farid, 1996;

Simoncelli & Freeman, 1995; Simoncelli, Freeman,
Adelson, & Heeger, 1992) because of its nice properties
and because elegant MATLAB code is publicly available.
To optimally match the requirements of the filtering
routines we up-sampled our images to 576 � 576 pixels
before filtering; we chose 6 frequency- and 4 orientation
bands, i.e. 24 band-pass images as well as the remain-
ing high-pass and one low-pass images. Figure 14 shows
the 26 filtered images resulting from the application of the
steerable pyramid to an image of the zebra shown in the
rightmost column of Figure 13.
Sub-band transforms are over-complete and the steerable

pyramid is no exception, although pyramid transforms are
already much less over-complete than “standard” sub-band
transforms as they allow sub-sampling at each filter stage
(5 � 5762 + 4 � 2882 + 4 � 1442 + 4 � 722 + 4 � 362 +
4 � 182 + 92 = 2 100 897 or 6.33-times over-complete
instead of being 26-times over-complete). To further reduce
dimensionality, we down-sampled the resulting individual
band-pass images along with the high-pass image to 18 �
18 pixels each, matching the size of the lowest frequency
band, resulting in 25 � 182 + 92 = 8,181 dimensions per

Image area shown
Percent
Correct

Response
Time

Entire images 84.4% 294.6 ms
Inner region 78.4% 294.9 ms
Outer region 53.7% 324.8 ms

Table 3. Percent correct and RTs obtained in Experiment 3 for the
different image conditions (entire image, inner region only and
outer region only).

Figure 13. Example stimuli for Experiment 3. The top row images are referred to as “Entire Images”, the middle row ones as “Inner
Region” and the bottom row ones as “Outer Region.”
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image. In a final dimensionality reduction step we sub-
sampled each of the twenty-four 18 � 18 pixel sub-band
images as well as the high-pass image to a square image
with 8 “pixels” only, resulting in a 25 � 8 = 200
dimensional representation per image. (We discarded the
low-pass image (9 � 9 pixels) because it was not clear
how to assign the 81 pixels to our non-standard 8 pixel
representation; furthermore, it did not contain very much
useful information for the animal versus non-animal
classification, c.f. Figure 16.) Note that the 8 pixels or
cells did not form a regular 2 � 4 or 4 � 2 grid; the
assignment of the 18 � 18 pixels to the final 8 cells is
shown in Figure 15. This non-standard assignment was
necessary to allow a circular center of 4 pixels to be
compared to the 4-pixel surround for the algorithmic
classifier (c.f. Figure 13).

Then we used linear discriminant analysis again to repeat
the classification of the 11,000 images into “animal” and
“non-animal” images as done for Experiment 2. Using the
pre-processing routine described above we were able to
achieve a classification accuracy of 78.4% (200 dimen-
sional representation), up from 77% using PCA as
dimensionality reduction method. Classifying the “inner
region” only (100 dimensional representation), we still
achieved 74.3% correct classification. On the “outer
region” our classifier still reached a classification accuracy
of 73.4% into animal-no-animal categories in the near-
complete absence of animals. This is in line with our
suggestion that the relative amount high-spatial frequen-
cies has nothing to do with animals versus no-animals but
everything with an open versus closed aperture while
taking the photographs.
To further explore this issue we analyzed the distribution

of information relevant for the algorithmic classification in
space and spatial frequency. Again we classified all the
images from our database, but this time using a single
dimension only during each run: our downscaled Simon-
celli pyramid had 8,181 dimensions, and we re-classified
all images 8,181-times, using a single “pixel” only: from
the top left “pixel” in the Highpass image through
8,179 “pixels” to the bottom right one in the Lowpass

Figure 14. Shows the highpass and lowpass images as well as
the 24 filtered subband images resulting from the application of
the steerable pyramid to the zebra image of Figure 13, rightmost
column, with 6 frequency- and 4 orientation-bands. See text for
details.

Figure 15. Final pixel assignment of our dimensionality reduction
routine. The 18 � 18 pixel sub-band images as well as the high-
pass images were simply averaged to the 8 final pixels as shown
above (color coded). Thus in our final representation there were
4 “pixels” for the Outer Region (light, de-saturated yellow and
orange) and 4 “pixels” for the Inner Region (dark, saturated blue
and green). See also Figure 13 and text for details.
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image (c.f. Figure 14). This resulted in a classification
accuracy per dimension, i.e. per location in space and
spatial frequency and orientation. The resulting “informa-
tion distribution map” is shown in Figure 16, where we
color coded the entries according to their importance for
the animal-no-animal classification performance: black
indicates uninformative pixels, red, pixels of intermediate
informativeness, yellow, pixels most informative (up to
63% correct based on a single pixel, i.e. a very small
region of the original image within a narrow range of
spatial frequency and orientation).
Visual inspection of Figure 16 shows that the informa-

tion relevant for the classification is located mostly in the
highest frequency bands Highpass and BP1: 576pxVthis
in itself is not surprising and simply a confirms the
original high-frequency content suggestion using a pyr-
amid rather than the Fourier transform. However, the
information is by and large confined to a upper, semi-
circular region of the image: not where an animal would be
located, but in the region surrounding the central object,
where in an animal image the blurring effect induced by a
typical photographic pre-segmentation is expected to show
its maximal effect. This shows that the information most
important to the algorithmic classifier is not located within
the image area covered by the animal, but around it,

supporting our hypothesis that the Corel image library is
affected by an artifact, introduced by the photographers at
the time of image capture.

Experimental setup

We employed the 2AFC paradigm exactly as in the
supplementary experiment to Experiment 2: Images were
presented on a carefully luminance calibrated Iiyama
VisonMaster 513 (MA203DT) 21W CRT screen at a frame
rate of 100 Hz non-interlaced with a spatial resolution of
1280 � 960 pixels. Stimuli were viewed from a viewing
distance of 45 cm, and a chin rest was used to stabilize
head position. The temporal sequence after fixation was
200 msec gap time, 30 msec stimulus presentation time,
1000 msec maximum response time. Saccades were used
as response indicators: observers had to perform a saccade
to the image containing the animal, i.e. to the left or to the
right. All eye-movement measurements were performed
using SR Research’s EyeLink II eyetracking system. Our
800 selected images resulted in 400 image pairs (2AFC
trials). Each subject was shown every image pair in only
one of the three conditions (“Entire image”, “Inner region”,
“Outer region”), with the conditions rotated across sub-
jects, ensuring that every image pair was shown in all three
conditions, but only once per subject. Of these 400 trials per
subject, the first six trials were discarded as training trials.
In total we thus had 12 � 394 or 4,728 trials. All observers
were students of the Justus-Liebig-University Giessen and
were paid for their participation. Observers were between
19 and 31 years of age and had normal or corrected to
normal vision. All observers were naı̈ve to the purpose of
the experiment. For data analysis we used the same three
criteria for eye-movement traces as described above in
order to ensure data integrity. First, goodness of fixation:
We had to eliminate 150 trials of our 4,728, leaving 4,578
for further analysis. Second, goodness of saccade direc-
tion and destination: 9 trials needed to be eliminated to
fulfill the requirements, leaving 4,569 trials for further
analysis. Third, goodness of response time: 278 trials were
removed exclusively because they were too fast, leaving a
total of 4,291 valid trials for the statistical analyses pre-
sented below.

Results

Classification performance on the subset of entire
images averaged 84.4%, with a mean response time of
294.6 ms. When showing only the center region of the
images, classification performance averaged 78.4%, a rather
modest decline. The mean response time remained un-
changed (294.9 ms). As expected, classification accuracy
drops to nearly chance performance (53.7%) when showing
only the outer regions of the images, with the mean
response time increasing to 324.8 ms. A statistical analysis

Figure 16. “Information distribution map” of the 8181 “pixel”
pyramid representation of the images. Yellow pixels mark the
combinations of spatial position, spatial frequency and orientation
most useful for classification of Corel database images into animal
versus no-animal. See text for details.
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on hit ratio data shows a highly significant effect overall
(repeated measures ANOVA, F(2,22) = 183.713, p G
0.001). Individual, Bonferroni corrected, t-tests on the hit
ratios between the three conditions show a significant
difference between each of them.
For the mean response times the tiny difference (0.3 ms)

between the Entire Image and Inner Region was, unsur-
prisingly, not significant. The difference for both of them
to the Outer Region (mean $ 9 30 ms) is significant
(Bonferroni corrected multiple t-tests; overall effect sig-
nificant; repeated measures ANOVA, F(2,22) = 17.806,
p = 0.001).
Figure 17 summarizes the results of Experiment 3.

Algorithmic classification based on the high-spatial
frequency content differences is, by and large, unaffected
by any of the image manipulations: classification accuracy
is around 75% correct for the Inner and Outer Region
image, i.e. with or without animals included. There is
enough “background” even in the Inner Region images to
allow algorithmic classification; remember, we only
selected a central circular region for all images and
animals are rarely perfectly circular and exactly centered!
(See the wolf and zebra images in the middle row of
Figure 13 for representative examples and Figures 10
and 11 for further examples.) Human observers, on the
other hand, are nearly at chance for the Outer Region
imagesVas we argued they should be given that the
scenes per se do not provide sufficient context (prior
information) allowing an animal/no-animal classification.

Thus successful algorithmic classification using relative
high spatial-frequency differences in the horizontal and
vertical orientations may be based on an artifact in the
image capturing process.

General discussion

Unfortunately, not all elegant ideas turn out to cor-
respond to the ways of nature: the simple relative high
spatial-frequency content-proxy is not employed by
human observers when rapidly classifying natural images
because the spectral cue may be, we hypothesize, limited
to photographs of animals, and not or only weakly present
when images of animals in the real world are projected
onto the retinas of observers. Hints that human observers
do not use the specifics of the amplitude spectrum for scene
classification can already be found in previous studies:
Thorpe, Gegenfurtner, Fabre-Thorpe, and Bülthoff (2001)
studied rapid animal detection in peripheral vision and
found that accuracy dropped considerably (in an almost
linear fashion): from 93.3% in the fovea, to 60.5% at
70.5 degrees eccentricity. However, this is still clearly
above chance for, effectively, extremely low-pass filtered
and coarsely sampled images (Geisler & Perry, 1998;
Geisler, Perry, & Najemnik, 2006). For images around
60 degrees eccentricity performance was better than 70%

Figure 17. Results of Experiment 3; shown is the average performance of human observers on the left (open symbols; N = 12 observers;
4,291 trials, see text for details) and algorithmic classification based on the relative amount of high spatial frequencies on the right (filled
symbols). Different symbols refer to the different experimental conditions: squares to performance on the entire image, circles to
performance on the circular inner region only, stars to the performance on the outer region only.
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correctVvery unlikely due to the relative amount of high
spatial-frequencies. Wichmann et al. (2006) explored the
influence of phase randomization on animal detection in
natural scenes. Classification performance was a mono-
tonically decreasing function of phase randomization,
leading to (very nearly) chance performance for fully
phase-randomized images (e.g. their Figure 5, p. 1525).
Phase randomization does not change the power spectrum,
however, and if thatVby itself as a proxyVallowed rapid
scene categorization, observers in the Wichmann et al.
study should have performed significantly better. Recently
Loschky and Larsen (2008) specifically explored “animal”
detection in fully phase scrambled images and they, too,
concluded that differences in the Fourier amplitude
spectra by themselves are insufficient to explain rapid
animal detection. The results reported in this article go
further, however, as we show that the relative amounts of
high spatial-frequency energy are not causal even if the
images themselves are clearly visible and not only visual
noise as in Loschky and Larsen (2008) and Wichmann
et al. (2006).

How natural are “natural” images?

The Corel and similar databases begin to be heavily
used in the vision community to provide stimuli for
experiments with so-called “natural” images (c.f. Rust &
Movshon, 2005, versus Felsen & Dan, 2005). We have
shown that at least a noticeable subset of these images are
likely not entirely “natural”: the amount of background
blurVmost likely through the photographer’s choice of
aperture and focal lengthVappears to covary with image
content, creating spurious statistical regularities. This
should not be surprising as most images in image data-
bases were taken using professional cameras and tripods
and, most importantly, by photographers trained to create
professional photographs. Photographs are not simply a
little window onto reality. One of the most well known
landscape photographer of all time, Ansel Adams, sum-
marizes this fact aptly in the following quote taken from
his book The Camera:

The term “image management” refers to those
controls we employ to alter the image formed by the
lens and projected on the film. I. To do so, we must
understand the differences between the image seen by
the human eye and the one seen by the camera. I.
Whether we realize it or not, we observe the world
from many points of view, not just one I through
continuous movements of the eyes, head, and body.
The brain synthesizes this continuous exploration into
a unified experience. The novice photographer usu-
ally learns about the differences between camera and
human vision through a series of disappointments I.
Examining a developed photograph I the result is

not what the photographer believes he saw when
he made the exposure, and the effect he recalls is
absent or spoiled by intrusions. (Ansel Adams, 1980,
ch. 7; pp. 95–96)

That there may be problems with commercial image
databases was recently suspected by Pinto, Cox, and
DiCarlo (2008)Vindependently of us and for a different
image database, the Caltech101 image set. They compared
state-of-the-art computer vision algorithms for object
detection to a very simple feedforward V1-like model on
a “natural image” object recognition task and found the
V1-like “null” model to be superior on the Caltech101
images. However, on a seemingly simpler set of isolated,
segmented stimuli the V1-like model fails completely,
suggesting that it picks up artifacts of the “natural”
Caltech101 image database when performing well. Pinto
et al. conclude:

Taken together, these results demonstrate that tests
based on uncontrolled natural images can be seri-
ously misleading, potentially guiding progress in the
wrong direction. Instead, we reexamine what it means
for images to be natural and argue for a renewed
focus on the core problem of object recognition-real-
world image variation (Pinto et al., 2008, p. 0151).

Predator and prey-camouflage, photographic
pre-segmentation, and ultra-rapid animal
detection

Anecdotally, animal detection in the real-world is
sometimes ultra-slow rather than ultra-rapid, at least for
the authors and their families. Certainly in most non-urban
outdoor settings one knows that there must be literally
thousands of smallish animals like birds or squirrels
aroundVlet alone insects and spiders. Unless an animal
moves, however, they frequently go unnoticed. (This is
even true for many animals in the zoo in spite of the
explicit knowledge about the animal and the typically
confined space.) The vast majority of animals serve as
breakfast, lunch or dinner for other animals and thus
camouflage is the norm, not the exception in the animal
kingdom. Predators typically do not rapidly detect their
prey but either have to be very patient and wait for the
prey to move (motion segmentation), or they move
themselves for prey-background segmentation through
motion-parallax.
The wild-life photographer Art Wolfe published a book

entitled Die Kunst der Tarnung [The Art of Camouflage],
specifically trying not to help pre-segment the animals
using the typical tricks of the photographerVFigure 18
shows eight examples from the book (Wolfe, 2005), and
in Figure 19 we highlight the highly camouflaged animals
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Figure 18. Ultra-slow animal detection in “natural” natural scenes? Top left: Antelope (Impala); top right: Wolf; second row left: Seal;
second row right: giraffe; third row left: Macaque (Red face macaque); third row right: Yellow-bellied marmot; bottom row left: Bengal tiger;
bottom row right: Polar bear.
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Figure 19. Same as Figure 18 but with animals marked to speed-up ultra-slow detection.
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for sake of clarity. Clearly, the images presented in
Figures 18 and 19 are extreme examples, and we
specifically selected them precisely because animal
detection in them is extremely difficult. Data from our
own Experiment 2 indicates that even for the difficult-
difficult pairings of the Corel database our observers
performed well above chance (76.3%), and their detection
was very rapid indeed (mean RT of 288 msec). However,
observers performed significantly worse than for the easy-
easy pairings (95.3% correct; SEM G 2% for all
conditions; see Table 2). Thus the photographers’ image
manipulations via aperture and focus point contribute to,
but are not the only determinants of rapid animal detection.
This is in line with results from Rousselet et al. (2003): in
their Experiment 2 observers had to discriminate close-up
animal faces versus human faces, and they were able to do
so very rapidly, even though both animal as well as human
faces were photographed in a similar, large-aperture
“portrait-style” with blurry backgrounds. New, Cosmides,
and Tooby (2007), finally, reported a number of change-
detection experiments where observers had to monitor
natural scenes for changes. Either animals or non-animate
objects could change in the scenes, but human observers
detected the changes in animals more easily than in non-
animate objects even when they were, according to New
et al., equated for low-level features and intrinsic saliency.
Thus New et al.’s results may be taken to support the
notion that human observers have developed special
hardware to detect animals in natural scenes.
Fletcher-Watson, Findlay, Leekam, and Benson (2008)

recently conducted an interesting study where they were
interested in rapid person detection. To control for the
overall difficulty and scene content, they took photographs
of the very same scene twice, once with and once without
a person present. This is, we believe, an important first
step towards more controlled “natural” image sets.

Summary

1. In a series of psychophysical experiments we have
shown that rapid animal detection is independent of
the relative amount of high spatial-frequency con-
tent differences in the horizontal and vertical
orientations between animal and no-animal images
shown by images of the Corel database.

2. We conjecture that the spectral differences between
the image categories may result at least in part from
the photographic process and aesthetic conventions,
and many “natural” images may thus be less natural
than commonly presumed: The statistics of (profes-
sional) photographs are likely different from the
statistics of random samples from the natural
environment. Because the differences are system-
atic, they do not disappear by increasing the sample
size.

3. We thus point to a potentially important confound in
popular image databases perhaps not yet fully
appreciated (but c.f. Pinto et al., 2008). This natural
image database problem may have implications not
only for rapid animal detection research but for all
approaches trying to explain scene recognition
(“scene gist”) on the basis of simple spectral
properties (e.g. Bar, 2004; Oliva & Torralba, 2007;
c.f. Loschky et al., 2007) or comparatively simple
(“null”) models of the visual system achieving
“good” object recognition performance using Corel
database (or similar) images (Serre, Oliva, &
Poggio, 2007).

4. Real-world visual object recognition remains a hard
problem.
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Footnotes

1
Segmentation proper is a computational processes

whereby one representation is separated into parts. Photo-
graphic means, such as opening the aperture, cannot, of
course, segment images but they can very much ease the
process of segmentation. This is what we mean by our term
pre-segmentation.

2
Indeed, one may even expect a certain amount of per-

formance degradation from the random-like noise added
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by the spectral equalization procedure. The absence of an
effect in Experiment 1 for very short presentation times
and the persistence of the “easy” versus “difficult” dif-
ference in Experiment 2 are evidence against the Torralba
& Oliva hypothesis. Conclusions based on a slight drop of
asymptotic performance with spectral-equalization, how-
ever, cannot be drawn as firmly due to the confound of the
random-like noise addition always accompanying the
spectral equalization.
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