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1. Introduction

This paper is devoted to study the existence of mild solutions to the problems described by the non-autonomous abstract
semi-linear second order differential equation with nonlocal conditions

u′′(t) = A(t)u(t) + f
(
t, N(t)(u)

)
, t ∈ J ,

u(0) = g(u),

u′(0) = h(u).

⎫⎪⎬⎪⎭ (1.1)

In this text, X is a Banach space endowed with a norm ‖ · ‖ and J = [0,a] with a > 0. In problem (1.1) we assume that
A(t) : D(A(t)) ⊆ X → X for t ∈ J are closed linear operators with domain D(A(t)) = D for all t ∈ J . Moreover, we denote
by C( J , X) the space consisting of continuous functions from J into X provided with the norm of uniform convergence.
As general conditions, we always assume that g,h, N(·) : C( J ; X) → X are continuous maps, the function t �→ N(t)(u) is
continuous for each u ∈ C( J ; X), and f : J × X → X is a function that satisfies Carathéodory type conditions, which will be
defined later.

The concept of nonlocal initial condition was introduced to extend the classical theory of initial value problems. This notion
is more appropriate than the classical to describe natural phenomena because it allows us to consider additional information.
For the importance of nonlocal conditions in different fields of applied sciences see [12,15,49,50] and the references cited
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therein. For example, in [15] the author describes the diffusion phenomenon of a small amount of gas in a transparent tube
by using the formula g(u) = ∑p

i=0 ciu(ti), where ci , i = 0,1, . . . , p, are given constants and 0 < t0 < t1 < · · · < tp < 1.
Early work in this area was made by Byszewski in [6–9]. Thenceforth, the study of differential equations with nonlocal

initial conditions has been an active topic of research. The interested reader can consult [1,2,10,11,14,16,21–23,26–28,31,
32,36–38,43–46,51–53,55] and the references therein for recent developments on issues similar to those addressed on this
paper.

On the other hand, there exists an extensive literature concerning abstract second order problems. In the autonomous
case, the existence of solutions to the second order abstract Cauchy problem is strongly related with the concept of cosine
functions. We refer the reader to [17,39–42] for basic concepts about the theory of cosine functions. Similarly to what
happens in the autonomous case, the existence of solutions to the non-autonomous second order abstract Cauchy problem
corresponding to the family {A(t): t ∈ J } is directly related to the concept of evolution operator generated by the family
{A(t): t ∈ J }. Various techniques to establish the existence of an evolution operator {S(t, s): t, s ∈ J } generated by the
family {A(t): t ∈ J } can be found in the literature. Our aim in this paper is to establish the existence of mild solutions of
problem (1.1). The results are based on the properties of evolution operators and measure of non-compactness.

This paper is organized as follows. In Section 2, we collect the properties of evolution operators and measure of non-
compactness that are needed to establish our results. In Section 3, we show existence of mild solutions of problem (1.1),
and finally in Section 4, we include some applications.

The terminology and notations are those generally used in works about evolution equations. In particular, if (Z ,‖ · ‖Z )

and (Y ,‖ · ‖Y ) are Banach spaces, we indicate by L(Z , Y ) the Banach space of bounded linear operators from Z into Y
endowed with the uniform operator topology, and we abbreviate this notation to L(Z) whenever Z = Y . By Br[x, Z ] we
denote the closed ball with center x and radius r in Z . When the space Z is clearly determined from the context, we
abbreviate this notation to Br[x].

2. Preliminaries

The non-autonomous second order abstract Cauchy problem has received some attention in recent years due to its
applications in various fields. Specially, several authors have studied the abstract Cauchy problem

u′′(t) = A(t)u(t) + f (t), t ∈ J ,

u(s) = x,

u′(s) = y.

⎫⎪⎬⎪⎭ (2.1)

We refer the reader to [4,20,29,34,47] for information about this topic. In particular, as we have already mentioned, the exis-
tence of solutions of problem (2.1) is related with the existence of the evolution operator {S(t, s)}t,s∈ J for the homogeneous
equation

u′′(t) = A(t)u(t), t ∈ J ,

u(s) = x,

u′(s) = y.

⎫⎪⎬⎪⎭ (2.2)

In this paper, we will use the concept of evolution operator {S(t, s)}t,s∈ J associated with problem (2.2) introduced by Kozak
in [25]. With this purpose, we assume that the domain of A(t) is a subspace D dense in X and independent of t ∈ J , and
for each x ∈ D the function t �→ A(t)x is continuous.

Definition 2.1. Let S : J × J → L(X). The family {S(t, s)}t,s∈ J is said to be an evolution operator generated by the family
{A(t): t ∈ J } if the following conditions are fulfilled:

(D1) For each x ∈ X the map (t, s) �→ S(t, s)x is continuously differentiable, and
(a) For each t ∈ J , S(t, t) = 0;
(b) For all t, s ∈ J and each x ∈ X , ∂

∂t S(t, s)x|t=s = x and ∂
∂s S(t, s)x|t=s = −x.

(D2) For all t, s ∈ J , if x ∈ D , then S(t, s)x ∈ D , the map (t, s) �→ S(t, s)x is of class C2, and
(a) ∂2

∂t2 S(t, s)x = A(t)S(t, s)x;

(b) ∂2

∂s2 S(t, s)x = S(t, s)A(s)x;

(c) ∂2

∂s∂t S(t, s)x|t=s = 0.

(D3) For all s, t ∈ J , if x ∈ D , then ∂
∂t S(t, s)x ∈ D . Further, there exist ∂3

∂t2∂s
S(t, s)x and ∂3

∂s2∂t
S(t, s)x, and

(a) ∂3

∂t2∂s
S(t, s)x = A(t) ∂

∂s S(t, s)x;

(b) ∂3

∂s2∂t
S(t, s)x = A(t) ∂

∂t S(t, s)x;

and the mapping (t, s) �→ A(t) ∂
∂s S(t, s)x is continuous.
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Assuming that f : J → X is an integrable function, Kozak [25] has proved that the function u : J → X given by

u(t) = − ∂

∂s
S(t, s)x + S(t, s)y +

t∫
s

S(t, ξ) f (ξ)dξ,

is the mild solution of problem (2.2). Motivated by this result, we establish the following notion.

Definition 2.2. A continuous function u : J → X is said to be a mild solution of problem (1.1) if the equation

u(t) = − ∂

∂s
S(t,0)g(u) + S(t,0)h(u) +

t∫
0

S(t, ξ) f
(
ξ, N(ξ)(u)

)
dξ, t ∈ J ,

is satisfied.

Henceforth, we assume that there exists an evolution operator {S(t, s)}t,s∈ J associated with the family {A(t): t ∈ J }. To
abbreviate the text, we introduce the operator C(t, s) = − ∂ S

∂s (t, s). With this notation, a mild solution of problem (1.1) is
a continuous function that satisfies the equation

u(t) = C(t,0)g(u) + S(t,0)h(u) +
t∫

0

S(t, ξ) f
(
ξ, N(ξ)(u)

)
dξ, t ∈ J .

In addition, we set K , K1 > 0 for constants such that∥∥C(t, s)
∥∥� K ,

∥∥∥∥ ∂

∂t
S(t, s)

∥∥∥∥� K1, (2.3)

for all s, t ∈ J . Since the operator-valued map C(t, ·) is strongly continuous, for x ∈ X , we have

S(t, s)x = −
t∫

s

∂

∂ξ
S(t, ξ)x dξ =

t∫
s

C(t, ξ)x dξ,

which implies that∥∥S(t, s)
∥∥ � K |t − s|, s, t ∈ J .

Moreover, it is clear that∥∥S(t2, s) − S(t1, s)
∥∥ � K1|t2 − t1|, for all t1, t2, s ∈ J . (2.4)

Most of our results are based on the concept of measure of non-compactness. For this reason, we next recall a few
properties of this concept.

For general information the reader can see [3]. In this paper, we use the notion of Hausdorff measure of non-
compactness.

Definition 2.3. Let B be a bounded subset of a metric space Y . The Hausdorff measure of non-compactness of B is defined by

η(B) = inf{ε > 0: B has a finite cover by closed balls of radius ε}.

For a bounded set B ⊆ X , we next denote by co(B) the closed convex hull of the set B .

Remark 2.4. Let B1, B2 ⊆ X be bounded sets. The Hausdorff measure of non-compactness has the following properties. For
more details and the proof of the properties that follow, the reader can see [3].

(a) If B1 ⊆ B2, then η(B1)� η(B2).
(b) η(B) = η(B).
(c) η(B) = 0 if and only if B is totally bounded.
(d) For λ ∈R, η(λB) = |λ|η(B).
(e) η(B1 ∪ B2) = max{η(B1), η(B2)}.
(f) η(B1 + B2) � η(B1) + η(B2), where B1 + B2 = {b1 + b2: b1 ∈ B1, b2 ∈ B2}.
(g) η(B) = η(co(B)).
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We next collect some specific properties of the Hausdorff measure of non-compactness which are needed to establish
our results. Let X be a Banach space. In what follows, when we need to compare the measures of non-compactness in X and
C( J ; X), we will use ζ to denote the Hausdorff measure of non-compactness defined in X , and γ to denote the Hausdorff
measure of non-compactness on C( J ; X).

Lemma 2.5. (See [3].) Let W ⊆ C( J ; X). If W is bounded and equicontinuous, then the set co(W ) is also bounded and equicontinuous.

For W ⊆ C( J ; X) and t ∈ J fixed, we denote W (t) = {w(t): w ∈ W }.

Lemma 2.6. (See [3].) Let W ⊆ C( J ; X) be a bounded set. Then ζ(W (t)) � γ (W ) for all t ∈ J . Furthermore, if W is equicontinuous
on J , then ζ(W (t)) is continuous on J , and

γ (W ) = sup
{
ζ
(
W (t)

)
: t ∈ J

}
.

Definition 2.7. A set W ⊆ L1( J ; X) is said to be uniformly integrable over J if there exists a positive function k ∈ L1( J ;R+)

such that ‖w(t)‖� k(t) a.e. for all w ∈ W .

Let W ⊆ L1( J ; X) be a uniformly integrable set. In the following statements we denote by F : L1( J ; X) → X the map
given by

F (u) =
a∫

0

u(s)ds.

The next lemma was established in [19, Theorem 3.1].

Lemma 2.8. Assume that X is a separable Banach space. If W ⊆ L1( J ; X) is uniformly integrable, then t �→ ζ(W (t)) is a measurable
function and

ζ
(

F (W )
)
�

a∫
0

ζ
(
W (s)

)
ds,

where F (W ) = {F (w): w ∈ W }.

The next property has been studied by several authors under different hypotheses, see [5,54] among others. We establish
it here both for reference purposes and to unify the presentation and avoid some unnecessary hypotheses.

Lemma 2.9. Let Y be a metric space and let D ⊆ Y be a bounded set. Then there exists a countable set D0 ⊆ D such that η(D) � η(D0).

Proof. We can assume that η(D) > 0. We fix 0 < ε < 1 and r = (1−ε)η(D) > 0. Let x1 ∈ D . Then there exists x2 ∈ D�Br[x1].
Applying repeatedly this argument, we can construct inductively a sequence (xn)n in D so that xk+1 ∈ D �

⋃k
i=1 Br[xi]. Set

Dε = {xn: n ∈ N}. It is clear that η(Dε) � η(D). On the other hand, since d(xi, x j) � r for all i 	= j, then η(Dε) > r. We define
D0 = ⋃∞

n=1 D1/n . It is clear that D0 is a countable set. Moreover,

η(D0) � η(D1/n) �
(

1 − 1

n

)
η(D),

and taking limit as n → ∞, we infer that η(D0)� η(D). �
Corollary 2.10. Let X be a Banach space, and W ⊆ L1( J ; X) be a uniformly integrable set. Then there exists a countable set W0 ⊆ W
such that

ζ
(

F (W )
) = ζ

(
F (W0)

)
� 2

a∫
0

ζ
(
W0(s)

)
ds. (2.5)

Definition 2.11. Let Y be a metric space. A continuous map G : Y → Y is said to be η-condensing if η(G(B)) < η(B) for every
bounded subset B of Y with η(B) > 0.
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The following result was established by Darbo [13] in 1955 for η–k-set contractions, and for Sadovskiı̆ [33] in 1967 for
η-condensing maps.

Theorem 2.12. Assume that B is a nonempty bounded closed and convex subset of a Banach space Y . Let G : B → B be an η-condensing
map. Then G has a fixed point in B.

The following result is a recent extension of Theorem 2.12 established in [30].

Theorem 2.13. Let B be a closed and convex subset of a Banach space Y , let G : B → B be a continuous map such that G(B) is bounded.
For each bounded subset D ⊆ B, denote

G1(D) = G(D) and Gn(D) = G
(
co

(
Gn−1(D)

))
, n = 2,3, . . . .

If there exist 0 � r < 1 and n0 ∈N such that

η
(
Gn0(D)

)
� rη(D)

for every bounded set D ⊆ B, then G has a fixed point in B.

3. Existence results

In this section we will present our main results. As was explained in the introduction, in this paper we always assume
that g,h, N(·) : C( J ; X) → X are continuous maps and the function t �→ N(t)(u) is continuous for each u ∈ C( J ; X). Next we
introduce some conditions related to function f .

(Cf1) The map f : J × X → X satisfies the Carathéodory conditions, that is, f (·, x) is measurable for all x ∈ X and f (t, ·) is
continuous for almost all t ∈ J .

(Cf2) There exist a function m ∈ L1( J ;R+) and a non-decreasing continuous function Φ :R+ →R+ such that∥∥ f (t, x)
∥∥ � m(t)Φ

(‖x‖)
for all x ∈ X and almost all t ∈ J .

(Cf3) There exists a function H ∈ L1( J ;R+) such that

ζ
(

f (t, B)
)
� H(t)ζ(B)

for almost all t ∈ J and every bounded set B ⊆ X .

Before continuing our development, it is important to note that in the context of infinite dimensional spaces conditions
(Cf2) and (Cf3) are different. We will justify our claim exhibiting a few elementary examples.

Example 3.1. Let f : C([0,1];R) → C([0,1];R) given by

f (x)(ξ) =
√∣∣x(ξ)

∣∣, ξ ∈ [0,1].
It is easy to see that f is continuous. In fact, if the sequence (xn)n converges to x for the norm of uniform convergence,
then

⋃∞
n=1 xn([0,1]) ∪ x([0,1]) is a compact set. Since the function α(t) = √|t| is uniformly continuous on compact sets,

then f (xn) = α ◦ xn → α ◦ x as n → ∞ uniformly on [0,1]. Moreover, ‖ f (x)‖ � Φ(‖x‖), where Φ(t) = √
t for t � 0. Hence,

the function f verifies condition (Cf2).
On the other hand, assume that

ζ
(

f (W )
)
� Hζ(W ), (3.1)

for every bounded set W ⊆ C([0,1];R) and certain constant H > 0. For each n ∈ N, we take the constant function xn(t) =
1/n and the closed ball W = B1/n2 [xn, C([0,1];R)]. We know that η(W ) = 1/n2. Furthermore, it follows from (3.1) that

there exist ϕ,ψ ∈ B1/n2 [0, C([0,1];R)] and s ∈ [0,1] such that |ϕ(s) − ψ(s)| = 1/n2 and∥∥ f (xn + ϕ) − f (xn + ψ)
∥∥� 2Hζ(W ) = 2H

n2
.

Hence ∣∣∣∣
√

1

n
+ ϕ(s) −

√
1

n
+ ψ(s)

∣∣∣∣ = |ϕ(s) − ψ(s)|√
1
n + ϕ(s) +

√
1
n + ψ(s)

�
∥∥ f (xn + ϕ) − f (xn + ψ)

∥∥� 2H
2

.

n



H.R. Henríquez et al. / J. Math. Anal. Appl. 412 (2014) 1064–1083 1069
This implies that

1 � 2H

(√
1

n
+ ϕ(s) +

√
1

n
+ ψ(s)

)
→ 0, n → ∞,

which is a contradiction.

Example 3.2. If a function f : X → X satisfies (Cf3), then f also satisfies (Cf2). In fact, it follows from (Cf3) that f takes
bounded sets into bounded sets. We define Ψ : [0,∞) → [0,∞) by Ψ (ξ) = sup‖x‖�ξ ‖ f (x)‖.

It is clear that Ψ is an increasing function and ‖ f (x)‖ � Ψ (‖x‖). It is also easy to see that Ψ is left continuous. Now, we
define Φ : [0,∞) → [0,∞) by

Φ(t) =
{

Ψ (t + 1) if t ∈ N∪ {0},
Ψ (n + 1) + [Ψ (n + 2) − Ψ (n + 1)](t − n) if t ∈ [n,n + 1], n ∈N.

Clearly Φ is a continuous and non-decreasing map, and ‖ f (x)‖� Ψ (‖x‖)� Φ(‖x‖). Hence f satisfies (Cf2).
However, for a function f : J × X → X the assertion does not hold. In fact, let f (t, x) = α(t) f0(x), where f0 : X → X is

a completely continuous function and α : J → R is a measurable function such that α /∈ L1( J ;R+). In this case, clearly f
verifies condition (Cf3) but not (Cf2).

Next, we consider the following condition for the family {N(t): t ∈ J }.

(CN1) There exists a constant ν > 0 such that

ζ
({

N(t)(u): u ∈ W
})

� νγ (W ),

for all t ∈ J and every bounded set W ⊆ C( J ; X).

We point out that condition (CN1) implies that, for all t ∈ J , N(t) takes bounded sets into bounded sets. Thus, in this
case, for R � 0 we denote

NR = sup
{∥∥N(t)(u)

∥∥: t ∈ J , u ∈ C( J ; X), ‖u‖∞ � R
}
.

Note that, if f satisfies conditions (Cf1) and (Cf2), and u ∈ C( J ; X), then the function t �→ f (t, N(t)(u)) is integrable on J .
We are in a position to establish the following essential property.

Theorem 3.3. Assume that f : J × X → X satisfies (Cf1), (Cf2), (Cf3), and that N satisfies (CN1). Let F : C( J ; X) → C( J ; X) be the
map given by

F u(t) =
t∫

0

f
(
s, N(s)(u)

)
ds.

Let W ⊆ C( J ; X) be a bounded set. Then

γ
(

F (W )
)
� 2νγ (W )

a∫
0

H(s)ds.

Proof. It is clear that the set of functions { f (·, N(·)(u)): u ∈ W } is uniformly integrable. Therefore, according to Corol-
lary 2.10, there exists a countable set W0 ⊆ W such that

ζ
(

F (W )(t)
)
� 2

t∫
0

ζ
(

f
(
s, N(s)

(
W0(t)

)))
ds

� 2ν

t∫
0

H(s)ds ζ
(
W0(t)

)

� 2ν

t∫
H(s)ds γ (W ). (3.2)
0
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On the other hand, it follows from (Cf2) that F (W ) is equicontinuous. Consequently, using Lemma 2.6, we have that

γ
(

F (W )
)
� sup

t∈ J
ζ
(

F (W )(t)
)
� 2ν

a∫
0

H(s)ds γ (W ),

which establishes the assertion. �
In what follows, we need a slightly extension of this result.

Corollary 3.4. Assume that p : J × J × X → X is a function that satisfies the following conditions:

(Cp1) For each t ∈ J , the function p(t, ·, ·) satisfies the Carathéodory conditions.
(Cp2) Let B ⊆ X be a bounded set. The set {p(t, ·, x): t ∈ J , x ∈ B} is uniformly integrable.
(Cp3) Let B ⊆ X be a bounded set. The set {p(·, s, x): s ∈ J , x ∈ B} is equicontinuous.
(Cp4) There exists a positive function H̃ : J × J →R such that H̃(t, ·) is integrable for all t ∈ J , and

ζ
({

p(t, s, x): x ∈ B
})

� H̃(t, s)ζ(B),

for each bounded set B ⊆ X.

Assume further that N satisfies condition (CN1). Let F : C( J ; X) → C( J ; X) be the map given by

F u(t) =
t∫

0

p
(
t, s, N(s)(u)

)
ds.

Let W ⊆ C( J ; X) be a bounded set. Then

γ
(

F (W )
)
� 2ν sup

t∈ J

t∫
0

H̃(t, s)ds γ (W ).

Furthermore, if the function t �→ ζ(N(t)(W )) is measurable, then

ζ
(

F (W )(t)
)
� 2

t∫
0

H̃(t, s)ζ
(
N(s)(W )

)
ds, (3.3)

for t ∈ J .

Proof. For fixed t ∈ J and u ∈ W , we define v(s) = p(t, s, N(s)(u)) and V = {v: u ∈ W }. It follows from (Cp1) and (Cp2)
that V ⊆ L1( J ; X) is a uniformly integrable set. Applying Corollary 2.10, there exist countable sets V 0 = {vn: n ∈ N} and
W0 = {un: n ∈ N} ⊆ W such that vn(·) = p(t, ·, N(·)(un)), and

ζ
(

F (W )(t)
) = 2ζ

(
F (W0)(t)

)
= 2ζ

({ t∫
0

p
(
t, s, N(s)(un)

)
ds: n ∈N

})

� 2

t∫
0

ζ
({

p
(
t, s, N(s)(un)

)
: n ∈N

})
ds

� 2

t∫
0

H̃(t, s)ζ
(
N(s)(W )

)
ds,

which shows that the inequality (3.3) holds. Now, by using condition (CN1), we have

ζ
(

F (W )(t)
)
� 2ν

t∫
H̃(t, s)ds γ (W ),
0
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for t ∈ J . In addition, combining conditions (Cp2), (Cp3) and (CN1) with the equality

t+s∫
0

p
(
t + s, ξ, N(ξ)(u)

)
dξ −

t∫
0

p
(
t, ξ, N(ξ)(u)

)
dξ

=
t∫

0

[
p
(
t + s, ξ, N(ξ)(u)

) − p
(
t, ξ, N(ξ)(u)

)]
dξ +

t+s∫
t

p
(
t + s, ξ, N(ξ)(u)

)
dξ,

we deduce that F (W ) is an equicontinuous subset of C( J ; X). The assertion is now a consequence of Lemma 2.6. �
In order to show the generality of our presentation, we exhibit below a pair of simple examples of maps that verify the

condition (CN1).

Example 3.5. Let Q : J →L(X) be a strongly continuous operator-valued map. Then

N(t)(u) = Q (t)u(t), t ∈ J ,

satisfies the condition (CN1). In particular, this occurs for Q (t) = I . In this case, the differential equation (1.1) is reduced to
the usual second order equation

u′′(t) = A(t)u(t) + f
(
t, u(t)

)
.

Example 3.6. Let k : J × J × X → X be a continuous function. Assume that k takes bounded sets into bounded sets, and that
there exists a positive function μ ∈ L1( J ;R+) such that

ζ
({

k(s, t, x): x ∈ B
})

�μ(s)ζ(B),

for every bounded set B ⊆ X . Then

N(t)(u) =
a∫

0

k
(
s, t, u(s)

)
ds, t ∈ J ,

satisfies condition (CN1). In fact, it is clear that N(·)(u) is continuous for each u ∈ C( J ; X). Moreover, applying again (3.2),
we have

ζ
(
N(t)(W )

)
�

a∫
0

μ(s)ds γ (W ),

for every bounded set W ⊆ C( J ; X). In this case, the differential equation (1.1) is reduced to the integro-differential equation

u′′(t) = A(t)u(t) + f

(
t,

a∫
0

k
(
s, t, u(s)

)
ds

)
.

In the statements that follow, the functions g and h take bounded sets into bounded sets. To represent this property, we
will use the notation

gR = sup
{∥∥g(u)

∥∥: ‖u‖� R
}

< ∞,

hR = sup
{∥∥h(u)

∥∥: ‖u‖� R
}

< ∞,

for R � 0.

Lemma 3.7. Assume that (Cf1), (Cf2), (CN1) are satisfied, and let K be the constant involved in (2.3). Assume further that there exists
a constant M � 0 such that

K

[
gM + ahM + Φ(NM)

a∫
0

(a − s)m(s)ds

]
� M. (3.4)

Then the function F : C( J ; X) → C( J ; X) given by
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(F u)(t) = C(t,0)g(u) + S(t,0)h(u) +
t∫

0

S(t, s) f
(
s, N(s)(u)

)
ds, t ∈ J , (3.5)

is continuous and maps B M [0] to B M [0].

Proof. Since the function s �→ f (s, N(s)(u)) is integrable on J , we infer that F is well defined. We next show that F is
a continuous map. Let (un)n∈N be a sequence in C( J ; X) such that un → u, n → ∞, for the norm of uniform convergence.
Since g and h are continuous maps,

C(t,0)g(un) + S(t,0)h(un) → C(t,0)g(u) + S(t,0)h(u), n → ∞,

uniformly for t ∈ J . Similarly, since N(s)(un) → N(s)(u), n → ∞, for each s ∈ J , it follows from (Cf1) that f (s, N(s)(un)) →
f (s, N(s)(u)), n → ∞. Moreover, in view of∥∥ f

(
s, N(s)(un)

)∥∥� m(s)Φ
(∥∥N(s)(un)

∥∥)
� m(s)Φ(NR),

where R � 0 is a constant such that ‖un‖∞ � R , applying the Lebesgue dominated convergence theorem we obtain that
F (un) → F (u) as n → ∞.

On the other hand, if ‖u‖∞ � M , it follows from (2.3) and (3.4) that

∥∥(F u)(t)
∥∥ �

∥∥C(t,0)g(u)
∥∥ + ∥∥S(t,0)h(u)

∥∥ +
∥∥∥∥∥

t∫
0

S(t, s) f
(
s, N(s)(u)

)
ds

∥∥∥∥∥
� K (gM + ahM) + KΦ(NM)

t∫
0

(t − s)m(s)ds

� K (gM + ahM) + KΦ(NM)

a∫
0

(a − s)m(s)ds

� M,

which implies that F (B M [0]) ⊆ B M [0]. �
We next consider the following condition for functions g , h.

(Cgh) There exists β > 0 such that

ζ
(

g(W )
) + aζ

(
h(W )

)
� βγ (W ),

for every bounded set W ⊆ C( J ; X).

We point out that if condition (Cgh) is fulfilled, then g and h take bounded sets into bounded sets.

Theorem 3.8. Assume that (Cf1), (Cf2), (Cf3), (CN1) and (Cgh) are fulfilled. If

K

[
β + ν

a∫
0

(a − s)H(s)ds

]
< 1, (3.6)

and there exists a constant M � 0 such that (3.4) holds, then problem (1.1) has at least one mild solution.

Proof. It follows from Lemma 3.7 that F : B M [0] → B M [0] is continuous. Let now W be a bounded subset of C( J ; X) with
γ (W ) > 0. It follows directly from Definition 2.3 that

γ
({

C(·,0)g(u): u ∈ W
})

� Kζ
(

g(W )
)
,

γ
({

S(·,0)h(u): u ∈ W
})

� Kaζ
(
h(W )

)
.

We define the map F1 : C( J ; X) → C( J ; X) given by

F1(u)(t) =
t∫

S(t, s) f
(
s, N(s)(u)

)
ds. (3.7)
0
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Let p(t, s, x) = S(t, s) f (s, x). It is easy to see that p satisfies the hypotheses of Corollary 3.4. Furthermore, the function H̃
involved in the statement of Corollary 3.4 can be chosen as H̃(t, s) = K (t − s)H(s). Therefore, we get

γ
({

F1(u): u ∈ W
})

� 2K sup
t∈ J

t∫
0

(t − s)H(s)ds γ (W )

= 2νK

a∫
0

(a − s)H(s)ds γ (W ),

and combining these estimates, we have

γ
(

F (W )
)
� K

(
ζ
(

g(W )
) + aζ

(
h(W )

) + 2ν

a∫
0

(a − s)H(s)ds γ (W )

)
< γ (W ),

which implies that F is a condensing map. The assertion is a consequence of Theorem 2.12. �
Corollary 3.9. Assume that (Cf1), (Cf2), (Cf3) and (CN1) are fulfilled and that S(t, s) is compact for all s, t ∈ J . Assume further that
the following conditions are satisfied:

(a) The map g : C( J ; X) → X is continuous and satisfies

ζ
(

g(W )
)
<

1

K
γ (W ),

for every bounded set W ⊆ C( J ; X) such that γ (W ) 	= 0.
(b) The map h : C( J ; X) → X is continuous and takes bounded sets into bounded sets.

If there exists a constant M � 0 such that (3.4) holds, then problem (1.1) has at least one mild solution.

Proof. We define F by (3.5). It follows from Lemma 3.7 that F is continuous and F : B M [0] → B M [0].
Let W ⊆ B M [0] with γ (W ) > 0. It follows from (a) that

γ
({

C(·,0)g(u): u ∈ W
})

� Kζ
({

g(u): u ∈ W
})

< γ (W ).

Moreover, since each operator S(t,0) is compact and the operator-valued map S(·,0) is continuously differentiable,
and h takes bounded sets into bounded sets, a direct application of the Arzelà–Ascoli theorem allows us to conclude that
{S(·,0)h(u): u ∈ W } is relatively compact in C( J ; X). This shows that condition (Cgh) holds with β = 1/K .

Let p(t, s, x) = S(t, s) f (s, x). As was mentioned in the proof of Theorem 3.8 the function p satisfies the hypotheses of
Corollary 3.4. In this case, the function H̃ involved in the statement of Corollary 3.4 can be chosen as H̃(t, s) = 0. Therefore,
if F1 is the map defined by (3.7), we have

γ
(

F1(W )
) = 0,

and

γ
(

F (W )
)
� γ

({
C(·,0)g(u) + S(·,0)h(u): u ∈ W

}) + γ
(

F1(W )
)
< γ (W ).

This implies that (3.6) holds. The assertion is a consequence of Theorem 3.8. �
The condition (a) used in Corollary 3.9 is difficult to verify in concrete situations. For this reason, we modify slightly the

statement of Corollary 3.9 to get the following property.

Corollary 3.10. Assume that (Cf1), (Cf2), (Cf3) and (CN1) are fulfilled and that S(t, s) is compact for all s, t ∈ J . Assume further that
the following conditions are satisfied:

(a) The map g : C( J ; X) → X satisfies the Lipschitz condition∥∥g(u2) − g(u1)
∥∥ � Lg‖u2 − u1‖,

for all u1, u2 ∈ C( J ; X).
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(b) The map h : C( J ; X) → X is continuous and takes bounded sets into bounded sets.

If K Lg < 1 and there is a constant M � 0 such that

K

[
Lg M + ∥∥g(0)

∥∥ + ahM + Φ(NM)

a∫
0

(a − s)m(s)ds

]
� M, (3.8)

then problem (1.1) has at least one mild solution.

Proof. It follows from the definition of the Hausdorff measure of non-compactness that

ζ
(

g(W )
)
� Lgγ (W ),

for every bounded set W ⊆ C( J ; X). Moreover, since∥∥g(u)
∥∥ �

∥∥g(u) − g(0)
∥∥ + ∥∥g(0)

∥∥ � Lg‖u‖ + ∥∥g(0)
∥∥,

we obtain that gM � Lg M +‖g(0)‖. From Lemma 3.7 we have F : B M [0] → B M [0]. The assertion is now a direct consequence
of Corollary 3.9. �
Corollary 3.11. Assume that (Cf1), (Cf2), (CN1) and (Cgh) are fulfilled, and that { f (s, N(s)(u)): u ∈ W } is relatively compact for each
bounded set W ⊆ C( J ; X). If Kβ < 1 and there exists a constant M � 0 such that (3.4) holds, then the problem (1.1) has at least one
mild solution.

Proof. Initially we argue as in the proof of Theorem 3.8 to obtain

γ
(

F (W )
)
� Kβγ (W ) + γ

(
F1(W )

)
.

Now, arguing as in the proof of Corollary 3.9, we define p(t, s, x) = S(t, s) f (s, x). Since the set {S(t, s) f (s, N(s)(u)): u ∈ W }
is relatively compact, we can take H̃(t, s) = 0 in the statement of Corollary 3.9 to conclude that γ (F1(W )) = 0. Hence, we
get

γ
(

F (W )
)
� Kβγ (W ) < γ (W ),

and we complete the proof as in Theorem 3.8. �
For our next results we need to strengthen the condition (CN1) for the family of functions {N(t): t ∈ J }. For a bounded

set W ⊆ C( J ; X) and t ∈ J , we denote

γ
(
W , [0, t]) = γ

({w|[0,t]: w ∈ W }).
(CN2) There exists a constant ν > 0 such that

ζ
(
N(t)(W )

)
� νγ

(
W , [0, t])

for each bounded set W ⊆ C( J ; X).

Example 3.12. Let N(t)(u) = u(t) be the map considered in Example 3.5. It is clear that the family {N(t): t ∈ J } satisfies
condition (CN2).

Example 3.13. Let

N(t)(u) =
t∫

0

k
(
t, s, u(s)

)
ds, t ∈ J ,

where k : {(t, s): t ∈ J , 0 � s � t} × X → X is a continuous function. Assume that k takes bounded sets into bounded sets,
and there exists a positive function μ ∈ L1( J ;R+) such that

ζ
({

k(t, s, x): x ∈ B
})

�μ(s)ζ(B),

for every bounded set B ⊆ X . Then N satisfies condition (CN2). In fact, it is clear that N(·)(u) is continuous for each
u ∈ C( J ; X). Moreover, proceeding as in Example 3.6,
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ζ
(
N(t)(W )

)
�

t∫
0

μ(s)ds γ
(
W , [0, t]),

for every bounded set W ⊆ C( J ; X).

Definition 3.14. (See [18].) Let X , Y be Banach spaces. We will say the map h : X → Y is completely continuous if h is
continuous and h(B) is relatively compact in Y for any bounded subset B of X .

Theorem 3.15. Assume that (Cf1), (Cf2), (Cf3) and (CN2) are fulfilled, and that g, h are completely continuous maps. If the inequal-
ity (3.4) holds, then problem (1.1) has at least one mild solution.

Proof. We define the map F by (3.5). It follows from Lemma 3.7 that F is continuous and F (B M [0]) ⊆ B M [0]. Moreover,
F (B M [0]) is an equicontinuous set of functions. In fact, since g(B M [0]) is relatively compact and C(·,0) is strongly contin-
uous, applying the Arzelà–Ascoli theorem, we infer that the set {C(·,0)g(u): u ∈ B M [0]} is relatively compact in C( J ; X).
Using the same argument we can establish that the set {S(·,0)h(u): u ∈ B M [0]} is relatively compact in C( J ; X).

Let F1 be the map given by (3.7). Proceeding as in the proof of Corollary 3.4 with p(t, s, x) = S(t, s) f (s, x) we infer that
the set F1(B M [0]) is equicontinuous.

We define B = co(F (B M [0])). Since B ⊆ B M [0], then F : B → B, and it follows from the previous assertions and
Lemma 2.5 that the set B is equicontinuous.

Let D ⊆ B. Since D is an equicontinuous set, it follows from Lemma 2.6 that

γ
(

D, [0, t]) = sup
0�s�t

ζ
(

D(s)
)

is a continuous function. Using the general properties of the Hausdorff measure of non-compactness and Corollary 3.4, we
have that

ζ
(

F (D)(t)
)
� ζ

(
C(t,0)g(D)

) + ζ
(

S(t,0)h(D)
) + ζ

( t∫
0

S(t, s) f
(
s, N(s)(D)

)
ds

)

= ζ

( t∫
0

S(t, s) f
(
s, N(s)(D)

)
ds

)

� 2 νaK

t∫
0

H(s)γ
(

D, [0, s])ds

� 2 νaK

t∫
0

H(s)ds γ
(

D, [0, t])
and

ζ
(

F
(
co(D)

)
(t)

)
� 2νaK

t∫
0

H(s)γ
(
co(D), [0, s])ds = 2νaK

t∫
0

H(s)γ
(

D, [0, s])ds.

Proceeding inductively, and arguing as above, we can show that

ζ
(

F n(D)(t)
) = ζ

(
F
(

F n−1(co(D)
))

(t)
)

� (2νaK )n

t∫
0

s1∫
0

· · ·
sn−1∫
0

H(sn) · · · H(s2)H(s1)dsn · · ·ds1 γ
(

D, [0, t])

= (2νaK )n

n!

( t∫
H(s)ds

)n

γ
(

D, [0, t]).

0
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Therefore,

γ
(

F n(D)
) = sup

t∈ J
ζ
(

F n(D)(t)
)
� (2νaK )n

n!

( t∫
0

H(s)ds

)n

γ (D).

Since (2νaK )n

n! (
∫ t

0 H(s)ds)n → 0 as n → ∞, there exists n0 ∈N such that

(2νaK )n0

n0!

( t∫
0

H(s)ds

)n0

= r < 1,

and applying Theorem 2.13 it follows that F has a fixed point in B. This fixed point is a mild solution of problem (1.1). �
The inequality (3.4) is somewhat difficult to verify. We next state a case where the verification of this hypothesis is

immediate.

Corollary 3.16. Assume that (Cf1), (Cf2), (Cf3) and (CN2) are fulfilled, and that g, h are bounded and completely continuous maps. If

a∫
0

m(t) sup
{
Φ

(∥∥N(t)(u)
∥∥)

: u ∈ C( J ; X)
}

dt < ∞,

then problem (1.1) has at least one mild solution.

Proof. In this case the condition (3.4) is verified for any constant M > 0 such that

K

[
sup

u∈C( J ;X)

∥∥g(u)
∥∥ + a sup

u∈C( J ;X)

∥∥h(u)
∥∥ + a

a∫
0

m(t) sup
u∈C( J ;X)

Φ
(∥∥N(t)(u)

∥∥)
dt

]
� M.

The assertion is an immediate consequence of Theorem 3.15. �
We turn to consider the case where the evolution operator {S(t, s)}t,s∈ J is compact. We can use this property to avoid

the condition (3.4).

Theorem 3.17. Assume that (Cf1), (Cf2) and (Cf3) are fulfilled, and that S(t, s) is a compact operator for all 0 � s � t � a. Suppose
also that the following conditions are satisfied:

(a) The map g : C( J ; X) → X is bounded and completely continuous.
(b) The map h : C( J ; X) → X is bounded.
(c) There exists a constant ν > 0 such that ‖N(t)(u)‖ � ν sup0�s�t ‖u(s)‖, for all t ∈ J and u ∈ C( J ; X).

If, in further,
∫ ∞

c
1

Φ(ξ)
dξ = ∞ for all c > 0, then problem (1.1) has at least one mild solution.

Proof. We define F by (3.5). From Lemma 3.7 we have that F is continuous. Moreover, arguing as in the proof of Corol-
lary 3.9, we can show that for all R > 0 the set F (B R) is relatively compact in C( J ; X). Combining these assertions, we
conclude that F is completely continuous. Let u ∈ C( J ; X) be a function such that u = λF (u), for some 0 < λ < 1. Us-
ing (3.5), we can estimate

∥∥u(t)
∥∥ � K

∥∥g(u)
∥∥ + aK

∥∥h(u)
∥∥ + aK

t∫
0

m(s)Φ
(∥∥N(s)(u)

∥∥)
ds

� c + aK

t∫
0

m(s)Φ
(∥∥N(s)(u)

∥∥)
ds,

where c > 0 is a constant such that K‖g(u)‖ + aK‖h(u)‖� c for all u ∈ C( J ; X).
Let α(t) = c + aK

∫ t
0 m(s)Φ(‖N(s)(u)‖)ds. Then

α′(t) = aKm(t)Φ
(∥∥N(t)(u)

∥∥)
� aKm(t)Φ

(
να(t)

)
,

which implies that
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α′(t)
Φ(να(t))

� aKm(t)

and, after integration on [0, t], we obtain

να(t)∫
νc

dξ

Φ(ξ)
� aνK

t∫
0

m(s)ds < ∞.

It follows from this inequality that α(·) is a bounded function, which implies the set {u ∈ C( J ; X): u = λF (u), 0 < λ < 1} is
bounded. Applying the Leray–Schauder alternative theorem [18, Theorem II.5.4], we deduce that F has a fixed point. �
4. Applications

In this section we apply the theory developed in Section 3 to the study of the wave equation. Initially we will present
a review of the basic properties of the second order abstract Cauchy problem.

Let A0 : D(A0) ⊆ X → X be the infinitesimal generator of a strongly continuous cosine family {C0(t)}t∈R of bounded
linear operators on X , and let {S0(t)}t∈R be the sine family associated with {C0(t)}t∈R , which is defined by

S0(t)x =
t∫

0

C0(s)x ds,

for x ∈ X and t ∈ R. For the general properties of cosine families we refer the reader to [17,41,42]. It follows from this
definition that

C0(t)x − x = A

t∫
0

S0(s)x ds

for all x ∈ X and t � 0.
The notation E stands for the space consisting of vectors x ∈ X such that the function C0(·)x is of class C1. Kisyński

in [24] has proved that E endowed with the norm

‖x‖1 = ‖x‖ + sup
0�t�1

∥∥A0 S0(t)x
∥∥, x ∈ E,

is a Banach space. Moreover, the operator-valued function G(t) = [ C0(t) S0(t)
A0 S0(t) C0(t)

]
is a strongly continuous group of bounded

linear operators on the space E × X , generated by the operator A = [ 0 I
A0 0

]
defined on D(A0) × E . It follows from this

property that S0(t) : X → E is a bounded linear operator such that the operator-valued map S0(·) is strongly continuous and
A0 S0(t) : E → X is a bounded linear operator such that A0 S0(t)x → 0 as t → 0 for all x ∈ E . Furthermore, if f : [0,∞) → X
is a locally integrable function, then

v(t) =
t∫

0

S0(t − s) f (s)ds

defines an E-valued continuous function.
Finally, we mention that the function u(·) given by

u(t) = C0(t − s)x + S0(t − s)y +
t∫

s

S0(t − ξ) f (ξ)dξ, t ∈ J , (4.1)

is called mild solution of the problem

u′′(t) = A0u(t) + f (t), t � 0,

u(s) = x,

u′(s) = y.

⎫⎪⎬⎪⎭ (4.2)

When x ∈ E , the function u(·) given by (4.1) is continuously differentiable, and

u′(t) = A0 S0(t − s)x + C0(t − s)y +
t∫

C0(t − ξ) f (ξ)dξ, t ∈ J .
s
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Moreover, if x ∈ D(A), y ∈ E and f is a continuously differentiable function, then the function u(·) is a classical solution of
problem (4.2).

It is well known that, except in the case dim(X) < ∞, a cosine function C0(t) cannot be compact for all t ∈ [t1, t2], with
t2 − t1 > 0 (see [39]). On the contrary, for the cosine functions that arise in specific applications, the sine function S0(t)
is very often a compact operator for all t ∈ R. A similar situation occurs for the evolution operator S(t, s) generated by
a family {A(t): t ∈ J }. We next consider a particular situation.

Assume that A0 is the infinitesimal generator of a cosine function C0(t). Let A(t) = A0 + P (t) for all t ∈ J , where
P (·) : J → L(E; X) is a map such that the function t �→ P (t)x is continuously differentiable in X for each x ∈ E . It has been
established by Serizawa and Watanabe [35] that for each (y, z) ∈ D(A0) × E the non-autonomous abstract Cauchy problem

u′′(t) = (
A0 + P (t)

)
u(t), t ∈ J ,

u(0) = y,

u′(0) = z

⎫⎪⎬⎪⎭
has a unique solution u(·) such that the function t �→ u(t) is continuously differentiable in E . It is clear that the same
argument allows us to conclude that equation

u′′(t) = (
A0 + P (t)

)
u(t), t ∈ J ,

u(s) = y,

u′(s) = z,

⎫⎪⎬⎪⎭
has a unique solution u(·, s) such that the function t �→ u(t, s) is continuously differentiable in E . It follows from (4.1) that

u(t, s) = C0(t − s)y + S0(t − s)z +
t∫

s

S0(t − ξ)P (ξ)u(ξ, s)dξ.

In particular, for y = 0, we have

u(t, s) = S0(t − s)z +
t∫

s

S0(t − ξ)P (ξ)u(ξ, s)dξ. (4.3)

Consequently,

∥∥u(t, s)
∥∥

1 �
∥∥S0(t − s)

∥∥
L(X,E)

‖z‖ +
t∫

s

∥∥S0(t − ξ)
∥∥
L(X,E)

∥∥P (ξ)
∥∥
L(E,X)

∥∥u(ξ, s)
∥∥

1 dξ.

Applying the Gronwall–Bellman lemma, there exists M̃ � 0 such that ‖u(t, s)‖1 � M̃‖z‖, for s, t ∈ J .
We define the operator S(t, s)z = u(t, s). It follows from the previous estimate that S(t, s) is a bounded linear map on E

for the norm in X . Since E is dense in X , we can extend S(t, s) to X . We keep the notation S(t, s) for this extension.
This motivates the following result established by Henríquez in [20].

Lemma 4.1. Under the preceding conditions, {S(t, s)}t,s∈ J is the evolution operator generated by the family {A(t): t ∈ J }. Moreover, if
S0(t) is compact for all t ∈R, then S(t, s) is also compact for all s, t ∈ J .

The one-dimensional wave equation modeled as an abstract Cauchy problem has been studied extensively. See for exam-
ple [48]. In this section, we apply the results established in the preceding section to study the existence of solutions of the
non-autonomous wave equation with nonlocal initial conditions. Initially, we will study the following problem

∂2 w(t, ξ)

∂t2
= ∂2 w(t, ξ)

∂ξ2
+ b(t)

∂ w(t, ξ)

∂ξ
+ f̃

(
t, w(t, ξ)

)
, t ∈ J ,

w(t,0) = w(t,2π),
∂ w

∂ξ
(t,0) = ∂ w

∂ξ
(t,2π), t ∈ J ,

w(0, ξ) =
m∑

i=0

gi w(ti, ξ),

∂ w(0, ξ)

∂t
=

m∑
hi w(ti, ξ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)
i=0
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for 0 � ξ � 2π . Here b : J → R is a continuous function, f̃ : J × R → R satisfies appropriate conditions which will be
specified later, 0 < t0 < · · · < tm � a, and gi , hi ∈ R, for i = 0,1, . . . ,m.

We model this problem in the space X = L2(T,C), where the group T is defined as the quotient R/2πZ. We will
use the identification between functions on T and 2π -periodic functions on R. Specifically, in what follows we denote by
L2(T,C) the space of 2π -periodic 2-integrable functions from R into C. Similarly, H2(T,C) denotes the Sobolev space of
2π -periodic functions u : R→ R such that u′′ ∈ L2(T,C).

We consider the operator A0 defined by

A0z = d2z(ξ)

dξ2
with domain D(A0) = H2(T,C).

It is well known that A0 is the infinitesimal generator of a strongly continuous cosine function C0(t) in X . Moreover, A0 has
discrete spectrum, the spectrum of A0 consists of eigenvalues −n2 for n ∈ Z with associated eigenvectors

zn(ξ) = 1√
2π

einξ , n ∈ Z.

Furthermore, the set {zn: n ∈ Z} is an orthonormal basis of X . In particular,

A0z =
∑
n∈Z

−n2〈z, zn〉zn,

for z ∈ D(A0). The cosine function C0(t) is given by

C0(t)z =
∑
n∈Z

cos(nt)〈z, zn〉zn, t ∈R,

with associated sine function

S0(t)z = t〈z, z0〉z0 +
∑

n∈Z�{0}

sin(nt)

n
〈z, zn〉zn, t ∈R.

It is clear that ‖C0(t)‖ � 1 for all t ∈R. Thus, C0(·) is uniformly bounded on R. Hence, ‖S0(t)‖ � |t|, for all t ∈ R. Moreover,
S0(t) is a compact operator.

For t ∈ J the operators P (t) are defined by

P (t)z = b(t)
dz(ξ)

dξ
with domain D

(
P (t)

) = H1(T,C).

Let A(t) = A0 + P (t), t ∈ J . It has been proved by Henríquez in [20] that the family {A(t): t ∈ J } generates an evolution op-
erator {S(t, s)}t,s∈ J . From Lemma 4.1 we have that the operators S(t, s) are compact. We now estimate the constant K
involved in our statements. For z ∈ E , we abbreviate x(t, s) = S(t, s)z. We decompose x(t, s) = ∑

n∈Z xn(t, s)zn , where
xn(t, s) = 〈x(t, s), zn〉. It follows from (4.3) that

∑
n∈Z

xn(t, s)zn = S0(t − s)z +
t∫

s

S0(t − τ )P (τ )
∑
n∈Z

xn(τ , s)zn dτ

= (t − s)〈z, z0〉z0 +
∑

n∈Z�{0}

sin n(t − s)

n
〈z, zn〉zn +

t∫
s

S0(t − τ )b(τ )
∑
n∈Z

xn(τ , s)z′
n dτ

= (t − s)〈z, z0〉z0 +
∑

n∈Z�{0}

sin n(t − s)

n
〈z, zn〉zn + i

∑
n∈Z

n

t∫
s

b(τ )xn(τ , s)S0(t − τ )zn dτ

= (t − s)〈z, z0〉z0 +
∑

n∈Z�{0}

sin n(t − s)

n
〈z, zn〉zn + i

∑
n∈Z

t∫
s

b(τ )xn(τ , s) sin n(t − τ )zn dτ ,

which implies that

x0(t, s) = (t − s)〈z, z0〉,

xn(t, s) = sin n(t − s)

n
〈z, zn〉 + i

t∫
b(τ ) sin n(t − τ )xn(τ , s)dτ ,
s
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for n ∈ Z, n 	= 0. We introduce the functions vn(t, s) = − ∂xn(t,s)
∂s for n ∈ Z. It follows from the above expressions that

v0(t, s) = 〈z, z0〉,

vn(t, s) = cosn(t − s)〈z, zn〉 + i

t∫
s

b(τ ) sin n(t − τ )vn(τ , s)dτ , n 	= 0.

Hence we obtain that

∣∣vn(t, s)
∣∣ � ∣∣〈z, zn〉∣∣ +

t∫
s

∣∣b(τ )
∣∣∣∣vn(τ , s)

∣∣dτ , 0 � s � t, n 	= 0.

Applying the Gronwall–Bellman lemma, we obtain∣∣vn(t, s)
∣∣ � e

∫ t
s |b(τ )| dτ

∣∣〈z, zn〉
∣∣.

Since C(t, s)z = − ∂ S(t,s)z
∂s , it follows that∥∥C(t, s)z

∥∥� e
∫ t

s |b(τ )| dτ ‖z‖.
Therefore, since t ∈ J , we can take K = e

∫ a
0 |b(τ )| dτ .

We assume that f̃ : J ×R →R is continuous and∣∣ f̃ (t, r)
∣∣ � m(t)|r|, t ∈ J , r ∈R,

where m ∈ L1( J :R+).
To complete our construction we define the functions f , N , g and h by

f (t, w)(ξ) = f̃
(
t, w(t, ξ)

)
,

N(t)(w)(ξ) = w(t, ξ),

g(w)(ξ) =
m∑

i=0

gi w(ti, ξ),

h(w)(ξ) =
m∑

i=0

hi w(ti, ξ).

Using this construction, and defining u(t) = w(t, ·) ∈ X , the problem (4.4) is modeled in the abstract form of problem (1.1).
It is clear that f satisfies conditions (Cf1) and (Cf2), with Φ(r) = r; N satisfies the condition (CN1), with ν = 1 and NR = R ,
and g , h are bounded linear maps with ‖g‖ = ∑m

i=0 |gi | and ‖h‖ = ∑m
i=0 |hi |. Therefore, the following result is an easy

consequence of Corollary 3.9.

Corollary 4.2. Under the above conditions, assume further that

K

[
m∑

i=0

(|gi | + a|hi|
) +

a∫
0

(a − s)m(s)ds

]
< 1, (4.5)

then problem (4.4) has at least one mild solution.

Proof. It follows from our preceding considerations and Lemma 4.1 that S(t, s) is compact. Moreover, condition (3.4) is
an immediate consequence of (4.5). Since g is a bounded linear map,

ζ
(

g(W )
)
� ‖g‖γ (W ) �

m∑
i=0

|gi |γ (W ) <
1

K
γ (W ),

for every bounded set W ⊆ C( J ; X). Therefore, the hypotheses of Corollary 3.9 are fulfilled. �
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We now are concerned with the problem

∂2 w(t, ξ)

∂t2
= ∂2 w(t, ξ)

∂ξ2
+ b(t)

∂ w(t, ξ)

∂ξ
+ f̃

(
t,

t∫
0

p(s)w(s, ξ)ds

)
, t ∈ J ,

w(t,0) = w(t,2π),
∂ w

∂ξ
(t,0) = ∂ w

∂ξ
(t,2π), t ∈ J ,

w(0, ξ) =
a∫

0

ξ∫
0

q0(s, ξ)w(s, r)dr ds,

∂ w(0, ξ)

∂t
=

a∫
0

q1(s)w(s, ξ)ds,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

for 0 � ξ � 2π . To study this problem we keep notation as introduced in the analysis of problem (4.4). Additionally, we
assume that p,q1 : J →R and q0 : J × [0,2π ] → R are continuous functions, and that q0(t,2π) = 0 for all t ∈ J .

On the other hand, in this case, we define

N(t)(w)(ξ) =
t∫

0

p(s)w(s, ξ)ds,

g(w)(ξ) =
ξ∫

0

a∫
0

q0(s, ξ)w(s, r)ds dr,

h(w)(ξ) =
a∫

0

q1(s)w(s, ξ)ds.

It is clear that N(t), g , h are bounded linear maps with

∥∥N(t)
∥∥ =

t∫
0

∣∣p(s)
∣∣ds,

‖g‖ � (2πa)1/2

( 2π∫
0

a∫
0

q0(s, ξ)2 ds dξ

)1/2

,

‖h‖ =
a∫

0

∣∣q1(s)
∣∣ds.

Moreover, the map g is completely continuous. Therefore, using again Corollary 3.9, and arguing as above, we can state the
following result.

Corollary 4.3. Under the above conditions, assume further that

K

(
‖g‖ + a‖h‖ + ν

a∫
0

(a − s)m(s)ds

)
� 1,

where ν = ∫ a
0 |p(s)|ds. Then problem (4.6) has at least one mild solution.
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