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Protein folding stress in neurodegenerative diseases: a glimpse
into the ER
Soledad Matus1,2, Laurie H Glimcher3,4 and Claudio Hetz1,2,3
Several neurodegenerative diseases share common

neuropathology, primarily featuring the presence in the brain of

abnormal protein inclusions containing specific misfolded

proteins. Recent evidence indicates that alteration in organelle

function is a common pathological feature of protein misfolding

disorders, highlighting perturbations in the homeostasis of the

endoplasmic reticulum (ER). Signs of ER stress have been

detected in most experimental models of neurological

disorders and more recently in brain samples from human

patients with neurodegenerative disease. To cope with ER

stress, cells activate an integrated signaling response termed

the unfolded protein response (UPR), which aims to reestablish

homeostasis in part through regulation of genes involved in

protein folding, quality control and degradation pathways. Here

we discuss the particular mechanisms currently proposed to be

involved in the generation of protein folding stress in different

neurodegenerative conditions and speculate about possible

therapeutic interventions.
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Introduction
Most neurodegenerative disorders share a common neu-

ropathology associated with the accumulation of abnor-

mal protein aggregates or inclusions in the brain

containing specific misfolded proteins. These diseases

include Parkinson’s disease (PD), amyotrophic lateral

sclerosis (ALS), Alzheimer’s disease (AD), Huntington’s

disease (HD), prion-related disorders (PrDs), and many

others [1–4]. Abnormal protein aggregation in these dis-

eases alters essential cellular functions, leading to neuro-
www.sciencedirect.com
logical impairment and, in many cases neuronal loss.

General perturbations to neuronal function could be

related to synapse abnormalities, alteration in axonal

transport, oxidative stress, proteasome inhibition, among

other effects. Accumulating evidence in different neuro-

degenerative diseases indicates that subcellular organelle

stress is a salient pathological event. Much attention has

been given in the last ten years to the alterations of a

particular subcellular organelle, the endoplasmic reticu-

lum (ER), in the disease process. The ER is an essential

compartment for the maturation and processing of

proteins folded through the secretory pathway. In many

neurodegenerative diseases the appearance of signs of ER

stress is observed in the symptomatic and late disease

stage. This article centers on recent findings illustrating

the impact of protein folding stress at the ER in neuro-

degenerative conditions with distinct etiologies.

Cellular adaptation to protein folding stress:
the UPR, ERAD and autophagy
One of the main functions of the ER is to initiate protein

folding in the secretory pathway. A complex and dynamic

network of protein chaperones, foldases, and co-factors

are expressed at the ER lumen that catalyzes the folding

and maturation of proteins, preventing their abnormal

aggregation or misfolding. The ER also operates as a

major calcium intracellular store and plays a vital role

in the synthesis of lipids. Different alterations in ER

homeostasis trigger the accumulation of abnormally

folded proteins in the ER lumen, leading to a condition

referred to as ER stress. ER stress engages the unfolded

protein response (UPR), an adaptive signaling reaction

that augments the cell’s capacity to produce properly

folded proteins and decreases the unfolded protein load

[5]. Activation of the UPR affects the expression of

different proteins with functions in almost every aspect

of the secretory pathway, including folding, quality con-

trol, protein entry into the ER, ER-associated degradation

(ERAD), autophagy-mediated degradation, and many

other effects (Figure 1). The ERAD pathway is consti-

tuted by different components including chaperones,

protein transporters, and ubiquitin-related enzymes that

sense, deliver, and retrotranslocate misfolded proteins to

the cytoplasm for proteasome mediated degradation [6].

There are three main types of ER resident transmem-

brane signaling proteins that operate as stress sensors that

activate UPR signaling responses, These sensors include

double-stranded RNA-activated protein kinase-like

endoplasmic reticulum kinase (PERK), activating tran-

scription factor 6 (ATF6), and inositol requiring kinase 1
Current Opinion in Cell Biology 2011, 23:239–252
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The unfolded protein response (UPR). Accumulation of misfolded proteins at the ER lumen triggers an adaptive stress response known as the UPR

mediated by three types of ER stress sensors: IRE1 a, PERK, and ATF6. In cells undergoing ER stress, IRE1a dimerizes and autophosphorylates,

leading to the activation of its endoribonuclease activity at the cytosolic domain. Active IRE1a processes the mRNA encoding XBP1, which is a

transcription factor that upregulates many essential UPR genes involved in folding, ERAD, organelle biogenesis, and protein quality control. In addition,

active IRE1a activates alarm responses mediated by the JNK. Additionally, activation of PERK decreases the general protein synthesis rate through

phosphorylation of the initiation factor eIF2a. eIF2a phosphorylation increases the translation of the ATF4 mRNA, which encodes a transcription factor

that induces the expression of genes involved in amino acid metabolism, antioxidant responses, apoptosis, and autophagy. ATF6 is a type II ER

transmembrane protein encoding a bZIP transcriptional factor on its cytosolic domain and localized at the ER in unstressed cells. Upon ER stress

induction, ATF6 is processed at the golgi apparatus (GA) releasing its cytosolic domain, which then translocates to the nucleus where it increases the

expression of some ER chaperones, ERAD-related genes, and proteins involved in ER and GA biogenesis.
(IRE1) (Figure 1). All these proteins transduce infor-

mation about the protein folding status at the ER lumen

to the nucleus and cytosol by controlling expression of

specific transcription factors and other rapid effects on

protein synthesis. IRE1a is a Serine/Threonine protein

kinase and endoribonuclease that directly regulates

through its ribonuclease domain the unconventional spli-

cing of the mRNA encoding the transcription factor X-

Box Binding protein-1 (XBP1). This mRNA processing

event leads to the translation of a more stable protein,

XBP1s [7–9]. XBP1s translocates to the nucleus and

controls the induction of a subset of UPR-related genes

that function in protein quality control, folding, the

ERAD system, and ER and GA biogenesis [5]

(Figure 1). The intensity and kinetics of IRE1a signaling

are tightly regulated by the formation of a protein com-

plex with many regulators, a scaffold termed the UPRo-
some [10,11] (reviewed in [12,13]). IRE1a has other

functions in cell signaling, initiating the activation of
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alarm pathways mediated by Apoptosis Signal-regulating

Kinase 1 (ASK1) and c-Jun-N terminal kinase (JNK)

pathway [14–16], in addition to modulating macroauto-

phagy levels, here referred to as autophagy [17]. Macro-

autophagy is a survival pathway classically linked to

adaptation and survival against nutrient starvation. Con-

versely, in cells undergoing ER stress, autophagy may

serve as a mechanism to eliminate abnormally aggregated

proteins and damaged organelles [18].

Activated PERK phosphorylates the eukaryotic trans-

lation initiation factor 2a (eIF2a), inhibiting translation

into the ER [19,20]. eIF2a phosphorylation augments the

specific translation of the mRNA encoding activation of

transcription-4 (ATF4), a transcription factor that controls

the upregulation of a subset of UPR-target genes that

function in redox homeostasis, amino acid metabolism,

apoptosis, and autophagy [21–24,25�,26] (Figure 1).

Finally, activation of ATF6 leads to its translocation from
www.sciencedirect.com



Protein folding stress in neurodegenerative diseases Matus, Glimcher and Hetz 241
the ER membrane to the Golgi apparatus where it is

proteolytically processed, releasing the cytosolic domain

which expresses a transcription factor that translocates to

the nucleus and upregulates several ER chaperones,

ERAD-related genes and XBP1 mRNA [27,28].

Prolonged ER stress leads to apoptosis where different

regulators have been identified (reviewed in [5,29,30]),

including members of the BCL-2 family of proteins

[10,29,31–33]. Activation of ASK1 and JNK also regulates

apoptosis under ER stress conditions [15,16]. Sustained

PERK signaling is proposed as a pro-apoptotic effector

[34] possibly through the induction of CHOP/GADD153

and the BCL-2 family member BIM and PUMA [19,35–
37]. Many additional components of the ER stress apop-

tosis pathway have been identified (see specialized

reviews in [31,33]).

A function of the UPR in the physiology of the
nervous system?
ER stress is observed in many physiological processes in

secretory cells such as plasma B lymphocytes, salivary

glands and pancreatic beta cells. In all these tissues the

UPR plays an essential role in maintaining survival and

functionality of secretory cells (reviewed in [13,38,39]).

The high demand for efficient protein folding and

secretion in those cells constitutes an endogenous and

physiological source of stress associated with the presence

of large amounts of abnormally folded proteins that are

generated during the normal protein synthesis and matu-

ration process [6].

Although the impact of the UPR in maintaining the

integrity of several secretory organs is known, its actual

role to the physiology of the nervous system remains

highly speculative. A possible role of XBP1 in the nervous

system was proposed from genetic studies of human

patients affected with bipolar disorders [40,41]. A poly-

morphism in the XBP1 promoter was identified as a risk

factor for bipolar disorder and schizophrenia (see

examples in [42–44]). Studies in Xenopus embryos demon-

strated that XBP1 is a negative regulator of neuronal

tissue differentiation during early brain morphogenesis

[45]. Interestingly XBP1 expression is induced during

neuronal development in Caenorhabditis elegans and its

function regulates the assembly and transport of the

glutamate receptor to the plasma membrane [46], an

essential event for synaptic activity.

A role for XBP1 as a downstream signaling component of

brain-derived neurotrophic factor (BDNF) was linked to

neurite outgrowth [47]. Another report described acti-

vated UPR components in neurites [48]. Gene expression

profile analysis from xbp1 deficient primary neurons

revealed that XBP1s controls the induction of GABAergic

markers by BDNF signaling [49] perhaps explaining the

neurite extension defects described in XBP1 knockout
www.sciencedirect.com
neurons. Translational control is essential for synaptic

plasticity and learning and memory [50]. Interestingly,

genetic evidence suggests that targeting ATF4 or eIF2a

phosphorylation enhances memory acquisition, an effect

mediated by GCN2 [51–53], an eIF2a kinase regulated

by nutrient fluctuations (but not ER stress). Finally, a

recent report indicated that chronic ER stress augments

spontaneous excitatory neurotransmission in hippo-

campus cultured neurons [54]. It remains to be deter-

mined whether or not the UPR participates in cognitive

functions of the nervous system.

ER stress in neurodegenerative conditions
Although signs of ER stress are observed in a variety of

neurodegenerative diseases, the in vivo contribution of

the pathway to the disease process has been established

only in a few cases, and existing data are either correlative

or arise from in vitro evidence. The functional signifi-

cance of ER stress to neurodegeneration is complex and

lends itself to three distinct but paradoxical interpret-

ations. Activation of the UPR could promote neuronal

protection by increasing the efficiency of protein folding

and quality control, or it may represent a degenerative

signal triggered by chronic disturbance of ER homeosta-

sis. UPR activation may also represent a late and down-

stream event associated with extensive neuronal damage

and cellular collapse not essential for the disease process

(epiphenomena). In the following sections we discuss

specific evidence linking ER stress to major neurodegen-

erative diseases.

Amyotrophic lateral sclerosis

ALS is the most common motoneuron neurodegenerative

disease affecting adults, characterized by atrophy, muscle

weakness and paralysis. ALS is associated with the se-

lective degeneration of brain and spinal cord motoneurons

[55,56]. Most ALS cases are referred to as sporadic (sALS),

lacking a clear genetic component, whereas ten percent of

the cases are familial (fALS). The primary mechanisms

contributing to motoneuron degeneration observed in ALS

remain controversial, and multiple alterations have been

uncovered (see examples in [57–59]).

Accumulating evidence suggests that ER stress contributes

to both sALS pathogenesis and fALS pathogenesis [60].

Increased levels of a variety of ER stress markers have been

reported in spinal cord tissue of sALS patients [61,62��,63–
65]. Approximately 20% of fALS cases are linked to more

than 110 dominant mutations in the gene encoding super-

oxide dismutase-1 (SOD1). These mutations induce the

misfolding and abnormal intracellular aggregation of

SOD1, which is thought to contribute to the occurrence

of neuronal dysfunction and death. Recent studies also

suggest that Wild-type SOD1 aggregates and accumulates

in sALS spinal cord [66]. Activation of the three major UPR

signaling branches is observed in different mutant SOD1

transgenic mice [64,67–70,71�,72��,73,74]. A recent study
Current Opinion in Cell Biology 2011, 23:239–252
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showed that only affected motoneurons of fALS mouse

models are selectively prone to undergo ER stress, a

pathological process observed from birth with activation

before the detection of the earliest denervation [72��]. A

proteomic analysis of spinal cord tissue from symptomatic

SOD1G93A transgenic mice identified ERp57 and PDI as

the most highly induced proteins present. These two

studies point to the occurrence of ER stress as a major

cellular response activated in ALS models [67,72��].

A fraction of insoluble-high molecular weight species of

mutant SOD1 accumulates inside the ER in vivo as

demonstrated by many studies [67,69,75,76]. SOD1

possibly interacts with PDI or with BiP/GRP78 in ER

enriched lysates [67,69] (Figure 2). The therapeutic

effects of targeting the UPR were demonstrated after

treatment of mutant SOD1 transgenic mice with salu-

brinal, a small molecule that induces eIF2a phosphoryl-

ation [77]. Salubrinal led to significant protection against

disease progression, improved motoneuron survival, and

extended life span [72��]. Similarly, another molecule

that decreases ER stress levels, termed SUN N8075, also

protects against experimental ALS [78]. We also recently

investigated the possible contribution of ER stress to ALS

using a genetic strategy [62��]. We knocked down com-

ponents of the three UPR branches in a cellular model of

fALS. As predicted reduced levels of ATF4 and ATF6
Figure 2
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increased the rate of mutant SOD1 aggregation [62��]. In

contrast, knocking down XBP1 unexpectedly reduced the

generation of mutant SOD1 aggregates in cultured moto-

neurons. We also generated mutant SOD1 mice with a

specific deficiency of xbp1 in the nervous system [62��].
These mice exhibited delayed ALS disease onset and

increased life span, uncovering an unexpected beneficial

effect of targeting the IRE1a branch of the UPR [62��].
Both cellular and in vivo approaches in the context of

XBP1 deficiency revealed an enhancement of mutant

SOD1 degradation due to autophagy in motoneurons

(Figure 2).

Several reports have uncovered possible causes of ER

stress in ALS. For example, the cytosolic subpopulation

of mutant SOD1 inhibits ERAD activity via decreased

retro-translocation of ERAD substrates to the cytosol,

inducing ER stress [71�] (Figure 3). Mutant VAPB causes

fALS [79], through interacting with and inhibiting ATF6

and XBP1 [80–82] (Figure 3), increasing the vulnerability

of motoneuron cells to ER stress-induced death [83].

Oxidative modifications of PDI, a key ER foldase, are

also observed in sALS spinal cord tissue and in fALS

mouse models [73]. PDI inactivation likely triggers a

general perturbation of ER folding networks, possibly

leading to chronic ER stress (Figure 2). Other factors may

also contribute to the occurrence of ER stress in ALS,
Current Opinion in Cell Biology
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Alterations in ER-associated degradation (ERAD) and ER/Golgi trafficking triggers ER stress in some neurodegenerative diseases. Under normal

conditions, newly synthesized proteins at the ER enter into the calnexin cycle for proper folding and quality control. If a protein becomes misfolded, it is

targeted to the ERAD machinery for translocation to the cytosol and then degraded by the proteasome. Mutant Htt (mHtt) or mutant SOD1 (mSOD1)

associated with fALS interacts with ERAD components, precluding the translocation of ERAD substrates from the ER to the cytosol, leading to the

accumulation of abnormally folded proteins at the ER, generating ER stress. Properly folded proteins traffic from the ER to the Golgi for further

maturation steps. Expression of mutant VAPB (mVAPB) associated with fALS and mHtt alter the trafficking between ER and Golgi. Similarly, mutant

aSynuclein (maSyn) blocks the exit of vesicles from the ER. Inhibition of vesicle transport between the ER-Golgi leads to the accumulation of cargo

vesicles, triggering the accumulation of immature proteins at the ER, causing ER stress.
including alterations to axonal and dendritic trafficking of

vesicles. For a detailed review see [60].

Accumulating evidence indicates that alterations in two

proteins related to mRNA metabolism have an important

role in ALS pathogenesis, including altered expression of

TAR DNA-binding protein 43 (TDP-43) and Fused in

sarcoma protein (FUS) (see review in [84]). For example,

abnormal subcellular distribution and cytoplasmic aggre-

gation of TDP-43 are widely reported in sALS and fALS

cases, in addition to frontotemporal lobar degeneration

[85]. Mice transgenic for a disease-linked mutant form

of human TDP-43 develop progressive neurodegeneration

associated with motoneuron loss, motor impairment, and

accumulation of ubiquitin-positive aggregates [86].

Mutations in FUS are also genetically linked to fALS
www.sciencedirect.com
[87] and accumulation of FUS into protein inclusions is

also observed in sALS cases [88]. Although protein mis-

folding and aggregation is associated with FUS and TDP-

43-related neurodegeneration, it remains to be determined

if ER stress is a relevant factor in their pathological effects.

Parkinson’s disease

PD is the second most common neurodegenerative dis-

ease, and affects around 2% of individuals over 65 years of

age [89]. PD is a slowly progressing neurodegenerative

disorder affecting dopaminergic neuron viability in the

Substancia Nigra pars compacta (SNpc). Most PD cases are

sporadic but familial PD accounts for 2–3% of PD cases.

One of the most studied PD-related genes is a-synuclein

(aSyn) [90], which is observed in intracellular inclusions

termed Lewy bodies.
Current Opinion in Cell Biology 2011, 23:239–252
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Increasing evidence suggests that ER stress is a common

pathological feature associated with several PD-linked

genes and sporadic PD models. ER stress markers were

reported in the SNpc of post-mortem tissue from sporadic

PD human cases [91–93], and in another synucleinopathy

(Multiple system atrophy) [94]. PDI inactivation occurs in

PD brain through oxidative modification [95] (Figure 2).

Cellular studies indicate that overexpression of mutant

[96] and wild type [78] aSyn triggers chronic ER stress,

inducing cell death. Reports in complementary model

organisms demonstrated that the earliest defect following

aSyn expression is a block in ER to Golgi vesicular

trafficking [97,98]. Remarkably, the inhibition of ER-

Golgi trafficking by aSyn expression triggers ER stress

[97,98] possibly due to the accumulation of cargo vesicles,

triggering the accumulation of immature proteins at the

ER [12,99] (Figure 3). aSyn phosphorylation activates the

UPR even before any detectable mitochondrial dysfunc-

tion is observed [100]. In addition, Parkin/PARK2 expres-

sion has a pro-survival activity against ER stress due to

modulation of ERAD/proteasome pathway [101–103].

Expression of the Parkin substrate Pael-R triggers ER

stress in vivo and in vitro [104–106], and manipulation of

ER chaperone expression reverts the pathological effects

of Pael-R [106]. Furthermore, loss of DJ-1/PARK7 trig-

gers ER stress and proteasome inhibition [107]. Mutation

in ATP13A2/PARK9 leads to its ER retention where it

may exert neurotoxicity [108]. Finally, LRRK2/PARK8

deficiency in C. elegans triggers hypersensitivity to ER

stress [109].

Remarkably, two gene expression profile analyses indi-

cated that ER stress is a major cellular response in

toxicological models resembling sporadic PD [110,111],

and chop deficiency [112] or XBP1s overexpression [113]

attenuated neurotoxin-mediated PD. Similarly, ATF6

deficient mice are more susceptible to neurotoxin-

induced neurodegeneration at the SNpc [114]. At the

mechanistic level, it was proposed that the generation

of radical oxygen species by PD-triggering neurotoxins

leads to the oxidation of proteins at the ER, possibly

inducing protein misfolding and ER stress [115]. Taken

together, these findings suggest that a common feature in

sporadic and different genetic forms of PD is the occur-

rence of chronic ER stress.

Huntington’s disease

Huntington’s disease (HD) is a late-onset autosomal

dominant neurodegenerative disease associated with pro-

gressive cognitive defects and motor abnormalities

[116,117]. The disease results in a widespread neuronal

dysfunction and selective neurodegeneration in the cen-

tral nervous system, mostly affecting the striatum [116].

The expansion of a glutamine stretch within the N-

terminal region of huntingtin (Htt) gene over �40 repeats

generates severe dominant neurotoxic properties [116–
120].
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UPR activation was noted in post-mortem HD brain

samples [121]. Similarly, several studies in cellular

models of HD suggest that ER stress may contribute

to neurodegeneration [15,16,24,122�,123] (reviewed in

[124]). Expression of SCAMP5 is markedly increased

in human HD striatum and SCAMP5 down-regulation

alleviates ER stress-induced by mutant Htt expression in

cell culture [125]. At this time, only three studies are

available describing the occurrence of ER stress in vivo in

HD animal models [121,125,126]. The 18 amino-acid

amino-terminus region of Htt generates an amphipathic

alpha helical that can reversibly target to the ER and

autophagosomes [127]. In addition, the association of Htt

and membranes is dynamic because this interaction is

modulated by ER stress [127], which may be a relevant

factor for Htt aggregation [127].

Expression of mutant Htt leads to a pronounced defect in

ERAD in yeast cells and mammalian models of HD,

associated with an recruitment of essential ERAD

proteins, triggering ER stress [122�,128] (Figure 3).

Further, a recent report suggested that ATF6a processing

is altered in animal models of HD and in patient HD

samples [129]. However, most of these studies are corre-

lative and no data on the function of ER stress/UPR

signaling in the disease process in vivo are available.

Genetic or pharmacological manipulation of the pathway

is required to resolve this issue.

Prion-related disorders

PrDs are lethal neurodegenerative disorders whose hall-

mark is spongiform degeneration and accumulation in the

brain of a protease-resistant and misfolded form of the

cellular prion protein termed PrPRES [130]. PrDs can be

classified as sporadic, infectious, or autosomal dominant

inherited forms, observed in both humans and other

mammals. The most common PrD in humans is Creutz-

feldt–Jacob disease (CJD) [130]. Upon synthesis, the

normal cellular prion protein (PrPC) is subjected to sev-

eral post-translational processing events in the ER and

Golgi before localizing to the plasma membrane in cho-

lesterol-rich lipid rafts [131]. Most familial mutant PrP

variants are retained and aggregated at the ER and Golgi

[132]. In contrast, the generation of infectious PrPRES is

proposed to occur at the plasma membrane and during its

cycling through the endocytic and lysosomal pathway

[132]. The ‘protein-only’ hypothesis postulates that the

pathogenesis of infectious PrD forms results from a

conformational change of PrPC to generate PrPRES,

possibly set off by a direct interaction between the two

PrP forms [133].

Several groups have shown activated ER stress responses

in PrD mouse models [134–139]. Similarly, cows affected

with Bovine Spongiform Encephalopathy develop signs

of ER stress in the brain [78]. Upregulation of Grp78/BiP,

Grp94, and Grp58/ERp57 is observed In CJD brain
www.sciencedirect.com
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samples [136,140] and proteomic analysis of such brain

samples demonstrated high expression of Grp58/ERp57

in cerebellum of human patients with sporadic CJD [140].

Grp58/ERp57 interacts with PrP and has neuroprotective

effects in vitro against prion neurotoxicity [137]

(Figure 2). In addition, scrapie infected neuroblastoma

cells are more susceptible to cell death induced by the

pharmacological activation of ER stress [136]. Further,

expression of a familial PrP mutant triggers ER stress in
vitro [141].

ER stress can trigger PrPC misfolding and aggregation

[142–144], and facilitates the conversion of PrPC into

PrPRES in a cell free system [143]. Similarly, proteasome

inhibition leads to the accumulation of a protease resist-

ant form of PrPC derived from the ERAD [145,146].

These observations may be relevant for understanding

the occurrence of sporadic forms of CJD, the most com-

mon PrD in humans, where alteration in the folding/

quality control process or the ER environment may be

a key event in initiating PrP misfolding. To evaluate the

possible involvement of the UPR in PrDs we tested the

susceptibility of a brain specific XBP1 conditional knock-

out mice to scrapie prion pathogenesis [135]. To our

surprise, no effects were observed on the activation of

ER stress responses, PrPRES levels, neuronal loss or

animal survival. Since the UPR in mammals is not limited

to the IRE1/XBP1 pathway, activation of these alterna-

tive UPR pathways may well compensate for XBP1

deficiency in the prion model employed.

Alzheimer’s disease

AD is the most common form of dementia of the elderly.

AD is characterized by extracellular accumulation of

fibrillar deposits of the amyloid-b peptide (Ab) in senile

plaques, intraneuronal neurofibrillary tangles consisting

of abnormally hyperphosphorylated tau protein, in

addition to oxidative stress, synaptic loss and neuronal

degeneration [147]. A 4.5 kDa Ab peptide is generated by

successive proteolysis of the amyloid precursor protein

(APP) by two proteases, beta-secretases and gamma-

secretases. Mutations in the genes encoding APP or

presenilin are associated with hereditary cases of AD

and increased Ab generation. Soluble oligomers of Ab

are highly neurotoxic, causing important deleterious

effects on synaptic function and memory [148].

The exact mechanism involved in neuronal dysfunction

in AD remains speculative. Recent studies from different

laboratories implicate the participation of ER stress in the

disease process. ER stress is observed in post-mortem

brain samples from AD patients [149–155], in addition to

PDI inactivation by oxidative inactivation [95]. Signs of

ER stress have been observed in many cellular models of

AD by independent groups [156–165]. Some AD-related

proteins also alter ER stress signaling, including IRE1a

and calcium homeostasis [148,166,167]. Some but not all
www.sciencedirect.com
in vivo studies have detected signs of ER stress in animal

models of AD [166,168–170].

Other pathologies

Although little data are available about the impact of the

UPR in other pathologies, emerging evidence indicates

that ER stress may have a broader impact on disease

conditions affecting the nervous system.

Lysosomal storage diseases

Lysosomal storage diseases are fatal neurodegenerative

disorders that belong to a family of inborn metabolism

errors. ER stress is observed in several models of lysoso-

mal storage diseases including GM1-gangliosidosis

[171,172] and Infantile Neuronal Ceroid Lipofuscinoses

[173,174]. In contrast, no evidence of UPR activation was

reported in models of other lysosomal storage disorders

including Gaucher disease [175] and Niemann Pick type

C [176].

Spinal cord injury

Spinal cord injury (SCI), a major cause of partial or

complete loss of mobility can occur from mechanical

trauma, ischemia, tumor invasion or developmental

abnormalities. ER stress markers are observed in several

models of SCI due to trauma (contusion and hemisection)

and ischemia as an early event [177–180]. Treatment with

a chemical chaperone decreases tissue damage in a SCI

mouse model, associated with a reduction in the levels of

ER stress [181]. However, all of the studies performed to

date are correlative and the contribution of ER stress to

SCI has never been addressed directly.

Myelin-related disorders

Myelinating cells including oligodendrocytes in the cen-

tral nervous system and Schwann cells in the peripheral

nervous system produce large amounts of plasma mem-

brane and proteins during the myelination process, that

may render them particularly susceptible to secretory

pathway function disruption (reviewed in [182]). ER

stress markers are observed in models of various

myelin-related disorders, including multiple sclerosis

[183–188], Charcot-Marie-Tooth disease [189�], Peli-

zaeus-Merzbacher’s disease [190], and Vanishing White

Matter Disease [191,192].

Retinitis pigmentosa

Mutations within the rhodopsin gene lead to retinitis

pigmentosa, an inherited form of retinal degeneration.

Several rhodopsin mutants trigger ER stress in vitro and in

animal models [193,194�,195,196]. Targeting xbp1 in a

Drosophila melanogaster model accelerates retinal degener-

ation [197]. Remarkably, subretinal delivery of a BiP

expressing viral vector in a mutant rhodopsin transgenic

rat led to reduction in ER stress levels, and improved

neuronal survival and eye function [193]. Similarly,

mutations in carbonic anhydrase IV, which is also linked
Current Opinion in Cell Biology 2011, 23:239–252
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to retinitis pigmentosa, trigger chronic ER stress and

apoptosis [198–200].

Concluding remarks
The exact role of the UPR in the central nervous system

is not well defined. In this review we have summarized

and discussed the available evidence supporting a strong

association between accumulation of misfolded proteins

and ER stress induction in several key neurodegenera-

tive diseases. Although strong correlations exist between

the misfolding and aggregation of an underlying protein

and the presence of ER stress in neurodegenerative

conditions, direct evidence to causally link the UPR

and ER stress to neurological disorders in vivo is mostly

lacking. Predicting whether and how ER stress affects is

difficult because activation of the UPR may decrease

neurodegeneration by increasing folding, protein quality

control and autophagy, or extensive or chronic ER stress

may result in irreversible neuronal damage and apoptosis.

The mechanisms underlying modifications of ER

homeostasis may differ in different disease contexts

and include inhibition of ERAD function, perturbed

vesicular trafficking, oxidative modifications of crucial

ER foldases, and abnormal physical interactions with ER

chaperones or UPR components (Figures 2 and 3). In

addition, alterations in lipid, cholesterol or calcium

metabolism may also affect ER function in many neuro-

logical disorders, contributing to the occurrence of ER

stress.

Promising results have been obtained with pharmaco-

logical strategies to target ER stress in a disease con-

text. Genetic manipulation of UPR components in vivo
has been employed only in a few diseases to test the

actual contribution of the pathway to neurodegenera-

tion, and further efforts are needed to validate the role

of ER stress in important diseases such as AD, PD and

HD in vivo. Further we know little about the cell types

in the brain that are primarily affected by ER stress nor

have the endogenous stimuli that evoke the UPR been

firmly identified. Neuronal populations with higher

secretory requirements might display increased sensi-

tivity to factors, genetic and environmental, that disrupt

ER function. In this context, understanding the

possible role of ER stress in cells such as oligodendro-

cytes, Schwann cells, or neuropeptide-secretory

neurons is of particular relevance for future therapeutic

intervention.
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