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Review
Glossary

COPII: coat protein complex II, required for the formation of ER-to-Golgi

transport vesicles.

dERES: ER exit sites in dendrites.

ERES: ER exit sites.

ER fragmentation: loss of ER continuity in response to signaling cascades, yet

to be fully characterized.

ERGIC: ER–Golgi apparatus intermediate compartment.

Golgi outposts: dendritic satellite organelles equivalent to the Golgi apparatus.

Rapid tubule extension: the formation of ER tubules along microtubules driven

by molecular motors, also referred to as ER sliding.

RER: rough ER, rich in ribosomes.

SER: smooth ER, bearing few ribosomes.

Spine apparatus: ER specialization in dendritic spines.
Neurons are highly polarized cells whose dendrites and
axons extend long distances from the cell body to form
synapses that mediate neuronal communication. The
trafficking of membrane lipids and proteins throughout
the neuron is essential for the establishment and main-
tenance of cell morphology and synaptic function. How-
ever, the dynamic shape and spatial organization of
secretory organelles, and their role in defining neuronal
polarity and the composition of synapses, are not well
delineated. In particular, the structure and function of
the continuous and intricate network of the endoplasmic
reticulum (ER) in neurons remain largely unknown. Here
we review our current understanding of the ER in den-
drites and axons, its contribution to local trafficking of
neurotransmitter receptors, and the implications for
synaptic plasticity and pathology.

Introduction
Polarized protein trafficking is a crucial determinant of
neuronal morphogenesis and synaptic function which in
turn govern connectivity and information processing. The
marked cellular asymmetry that is established during neu-
ronal differentiation is maintained throughout the lifespan
of an organism. At the level of the individual neurons, this
asymmetry begins with one neurite growing at a faster rate.
This neurite generates the axon, whereas the remaining
neurites develop into a complex and diverse dendritic arbor
[1]. The establishment andmaintenance of neuronal polari-
ty is critically dependent on the integrity and spatial orga-
nization of the secretory pathway [2]. For example, altering
the orientation of the Golgi apparatus in hippocampal
neurons, which is constituted by a perinuclear organelle
oriented towards theapical dendrite andadditional satellite
structures distributed throughout the dendritic arbor
(Golgi outposts), differentially limits dendritic growth [3].

Synapses are specialized and dynamic structures
formed at the junction of two communicating neurons.
Intracellular trafficking of synaptic proteins and neuro-
transmitter receptors plays a key role in synapse formation
and in the regulation of synaptic strength [4]. For instance,
rapid insertion or removal of AMPA-type glutamate recep-
tors (AMPARs) modifies synaptic strength during experi-
ence-dependent plasticity, providing a molecular correlate
for cognitive functions [5].

The endomembrane trafficking system in eukaryotic
cells includes a forward biosynthetic route constituted
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by the ER, the ER–Golgi intermediate compartment
(ERGIC, Glossary), the Golgi apparatus and post-Golgi
vesicles, and a recycling-degradative route constituted
by endosomes and lysosomes. In neurons, little is known
of how the membrane trafficking mechanisms found in
simpler cells have adapted spatially to accommodate the
unparalleled morphological requirements of the neuron.
Recent studies have begun to elucidate the function of
satellite Golgi outposts and endosomes in polarized neu-
ronal trafficking [4,6–9]. By contrast, the dynamic struc-
ture of the ER in dendrites and axons remains for the most
part unexplored [10,11]. Importantly, the relevance of axo-
dendritic ER trafficking and its contribution to neuronal
morphogenesis and synaptic function are still major unan-
swered questions.

In this review we examine the structural and dynamic
features of the neuronal ER and consider its function in the
control of local axo-dendritic trafficking and the assembly
and export of neurotransmitter receptors. We also discuss
the contribution of the ER to synaptic plasticity and pa-
thology.

The structure of the ER in dendrites and axons
The ER is a single and continuous membrane-bound organ-
elle responsible for lipid and sterol synthesis, the synthesis
and post-translational modification of most secretory and
membrane proteins, and the regulation of Ca2+ levels and
arachidonic acid release. The shape of the ER is heteroge-
neous, and varies between cell types and cell stages, but can
be divided into three domains: the nuclear envelope, the
ribosome-bound rough ER (RER) and the ribosome-free
smooth ER (SER) [12]. Structurally the ER is a network
that is present throughout the cytoplasm, and consists of
TAC-mediated extension: extension of ER tubules driven by association to the

growing plus-end of microtubules via tip-attachment complexes (TACs).
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cisternae, flattened sheets, and 60–100 nm diameter
tubules that formirregularpolygonswithacommon luminal
space connected via three-way junctions [13]. The RER is
constituted primarily by sheets or cisternae, whereas the
SER is predominantly composed of tubules [14].

Several recently identified proteins are known to regu-
late the structure and stability of the ER and to contribute
to its heterogeneous morphology (reviewed in [11,15,16]).
Reticulons and DP1 are two families of ubiquitous and
structurally related eukaryotic proteins associated with
ER membranes, and these are responsible for maintaining
the tubular shape of the ER [17]. Atlastin-1, a dynamin-
like GTPase, interacts with reticulon proteins to promote
fusion and the formation of the tubular network [18].
CLIMP-63 is a microtubule-binding protein that regulates
the abundance of interaction sites between the ER and the
microtubule cytoskeleton, effectively stabilizing the net-
work [19]. Fusion of membrane tubules also requires NSF/
a, g-SNAP, the p97/p47/VCIP135 complex, syntaxin 18,
and BNIP1/sec20 [11]. Other candidates for the mainte-
nance of ER structure include huntingtin, the EF-hand
Ca2+-binding protein p22, spastin, and kinectin [20,21].
Mitochondria and microtubules are also necessary for the
maintenance of its dynamic shape, but in vitro an ER
network can be generated by the fusion of membrane
vesicles without additional cytoskeletal components [22].

The neuronal ER shares many essential features with
other eukaryotic cells and connects the soma with the
entire dendritic arbor and axon. The ER present in the
soma and proximal dendritic compartment is rich in
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ribosomes, corresponding to the RER, whereas the ER
distributed in distal dendrites and axons corresponds
mostly to SER and bears only few sparse ribosomes
[23,24]. The dendritic ER consists of a continuous irregu-
lar network of thin tubules and flat widened regions of
variable diameter [25] (Figure 1). The continuity of the
SER is important for the propagation of Ca2+ signals over
long distances and for the transport of lipids and proteins
[9,26]. Topologically, the dendritic ER is located in the
cortex of the cytoplasm with thin branches traversing the
opposite side [27,28]. Similarly, yeast and non-neuronal
mammalian cells contain a thin cortical ER adjacent to
the plasmamembrane [29]. Within the dendritic shaft the
area occupied by the ER correlates with the local density
and maturation stage of excitatory synapses in the re-
spective segment [25]. The ER appears to anchor at
perisynaptic sites via cytoskeletal elements or by tether-
ing ER components to the postsynaptic density. These
attachment mechanisms are exemplified by the physical
interaction between inositol 1,4,5-trisphosphate recep-
tors (IP3Rs) in the ER membrane and the postsynaptic
density proteins Homer and Shank [30]. The dendritic
SER is present in the head or neck of 20% of dendritic
spines, and is associated with a prominent specialization
termed the spine apparatus, which is characterized by the
presence of synaptopodin, an actin-binding protein [25]. It
is still debated whether the spine apparatus is directly
derived from the SER, constituting a bona fide ER, or if it
represents a complex secretory organelle combining ER,
Golgi and endosomal functions.
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As in other eukaryotic cells, the dendritic ER is not
uniform but is instead an irregular network containing a
variety of microdomains. Dendritic ER exit sites (dERES)
concentrate correctly folded proteins and regulate ER
export, a rate-limiting step in membrane trafficking [31].
dERES resemble cytoplasmic ER exit sites in non-neuronal
cells and accumulate characteristic components of the coat
protein complex II (COPII), such as the soluble GTPase
Sar1, Sec23/24 and Sec13/31 [31]. In spite of its continuity,
the ER has a heterogeneous distribution of IP3Rs, ryano-
dine receptors and other major ER-resident proteins such
as calsequestrin and calreticulin [32–34]. In addition, a
highly mobile vesicular ER component could participate in
local Ca2+ dynamics, but these isolated compartments
were observed with fluorescent reporters that often trigger
protein aggregation [32]. Thus, although local ER hetero-
geneities probably impact upon Ca2+ release and buffering,
how the minute morphology of the dendritic ER affects
local Ca2+ signaling and trafficking has not been thorough-
ly investigated [26].

The structure of the dendritic ER is regulated by extra-
cellular signals. A dramatic rearrangement of the tubular
ER into lamellar bodies in Purkinje cell dendrites occurs in
response to activation of type I metabotropic glutamate
receptors (mGluRs) [35]. Similarly, activation of NMDA-
type glutamate receptors (NMDARs) reversibly disrupts
the continuity of the dendritic ER in hippocampal neurons
[36]. Although mGluR- and NMDA-dependent dendritic
ER rearrangement awaits further validation with a
broader cast of ER probes, these data suggest acute regu-
lation of local ER morphology by synaptic signaling. The
potential consequences are fascinating. For example, tran-
sient dendritic ER discontinuity could favor local protein
processing and export from the ER, ensuring a local and
accurate supply of synaptic proteins. In addition, discrete
ER rearrangement during synaptic activity could specify
local patterns of intracellular Ca2+ signaling. Further-
more, discontinuity of the network might protect the neu-
ron against the propagation of excessive Ca2+ release
under threatening conditions such as ischemia.

Although current evidence firmly establishes that
COPII components and Golgi outposts are required for
dendritic growth and maintenance, local secretory orga-
nelles are not equally necessary for rapid axonal outgrowth
[3,8,9]. Nevertheless, secretory organelles are an integral
part of the axon. Earlier studies unveiled a continuous 3D
ER network of irregular tubules and cisternae in central
and peripheral axons. In the sciatic or phrenic nerves the
network runs parallel to the axon, is predominantly adja-
cent to the plasmamembrane, and contains occasional free
elements [24] (Figure 1). The ER at the nodes of Ranvier
contains more cisternae-like structures and displays a
beaded appearance [24]. SRP54 (a component of the signal
recognition particle), TRAPa (a translocon-associated pro-
tein), and the lumenal ER chaperones calreticulin, grp78/
BiP, ERp29, and protein disulfide isomerase, all localize to
growing dorsal root ganglion (DRG) axons and can be
contained in vesicular structures [37,38]. Calnexin, a resi-
dent ER protein, also localizes to axons in DRG neurons
[39] and the enzymatic activity of glucose-6-phosphatase is
detected within the axonal ER, demonstrating the func-
tional resemblance of the axonal ER to its somatic and
dendritic counterparts [40]. The ER in CNS axons contains
tubules 20–40 nm in diameter and dilated cisternae proxi-
mal to the plasma membrane with a membrane thickness
comparable to that of the somatic RER (60–100 Å) [40]. In
developing hippocampal neurons, components of the pro-
tein folding and export machineries, such as calnexin,
Sar1, Sec23, Sec12 and Yip1a, all localize to the axon.
Similarly, exogenously expressed fluorescently tagged
ER proteins are axonally targeted [41]. More importantly,
COPII components are required for axon outgrowth during
the early stages of development, suggesting that neurons
respond to developmental biosynthetic demands by regu-
lating ER function spatially and temporally [41].

It remains unclear how recently identified proteins that
shape the ER, such as reticulons, DP1, atlastin-1 and
CLIMP-63, define the structure and function of the den-
dritic and axonal organelle [42]. Interestingly, CLIMP63
interacts with MAP2, a dendrite-specific microtubule-as-
sociated protein, indicating that cytosolic linker proteins
participate in maintaining the ER structure in dendrites,
and suggesting that binding to microtubules takes place
through different mechanisms in dendrites and axons
[43].

Knowledge of the components that defineERstructure in
eukaryotic cellswill aid in understanding themorphological
properties of the ER in the neuronal soma, dendrites and
axons. In addition, advances in parameterization and
computational models to represent accurately the complex
geometry of the ER will provide the tools necessary for the
investigation of neuronal ER structure/function relation-
ships under physiological and pathological conditions [44].

ER dynamics in neurons
The ER network is constantly remodeling (reviewed in
[13,45]) and three major components contribute to its
mobility. First, mobility is achieved by rapid ER tubule
extension along microtubules, also referred to as microtu-
bule sliding. In VERO cells, a kidney epithelial cell lineage,
tubules extend toward the cell periphery driven by kinesin-
1, and towards the cell center powered by cytoplasmic
dynein [46]. The adaptor protein kinectin probably med-
iates kinesin-1 binding to ER membranes [20]. ER tubules
also extend to the growing plus-end of microtubules where
their association is mediated by tip-attachment complexes
(TACs). In newt lung epithelial cells TACs are responsible
for 31.4% of ER tubule motility, whereas rapid ER tubule
extension contributes the remaining 68.6% [47]. Finally,
the ER attached to microtubules moves by actomyosin-
based retrograde flow [47]. This constant flux of ER mem-
branes allows dramatic alterations of overall ER morphol-
ogy. For example, elevated Ca2+ in oocytes during egg
maturation and fertilization [48], and signaling cascades
during mitosis, produce major and reversible transforma-
tions in the architecture of the ER network [49–51].

The relative contributions of these processes to the
dynamics of the ER in dendrites and axons are still largely
unexplored. However, in peripheral axons a dynamic com-
ponent related to rapid tubule formation has been associ-
ated with fast axonal transport [52,53]. ER dynamics has
also been explored in the axons of DRG neurons using
221
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fluorescently tagged ER-resident proteins. The axonal ER
in these neurons appears very dense, and two resident
proteins, sarcoplasmic/endoplasmic reticulum Ca2+-
ATPase and IP3R, move bidirectionally at 0.1 mm/s. Their
mobility is predominantly non-vesicular and microtubule-
dependent [54]. In dendrites, ER motility is also microtu-
bule- and kinesin-dependent and contributes to the trans-
port of ER-resident proteins from the soma [32]. Although
still mechanistically unclear, ER dynamics is undoubtedly
coupled to protein trafficking in neurons, and most proba-
bly contributes to the modulation of morphogenesis and
synaptic function.

Protein trafficking within the neuronal ER
Major issues presently under study include the role of local
secretory organelles in the rapid entry and exit of neuro-
transmitter receptors from synaptic sites, and the contri-
bution of ER dynamics to this process. Current evidence
indicates that there are two protein-trafficking modalities
in dendrites (Figure 2). In the canonical secretory route,
membrane proteins are synthesized and exported from the
somatic ER to a centralized Golgi compartment. Proteins
are then sorted by means of long-range post-Golgi vesicles,
and insert specifically at their functional sites or in their
vicinity before lateral diffusion at the plasma membrane
[4]. Although the actual itineraries of endogenous
AMPARs and glycine receptors (GlyRs) still need to be
fully delineated, their trafficking mechanisms exemplify
this pathway. The transport of AMPARs is mediated by
conventional kinesin and glutamate-receptor-interacting
protein 1/AMPAR-binding protein. This motor complex
mediates the dendritic mobility of AMPARs in post-Golgi
vesicles before plasma membrane delivery [55]. Similarly,
newly synthesized exogenous GlyRa1 subunits assemble
in the soma, and possibly use perinuclear organelles to
insert in the somatic and proximal dendritic plasma mem-
brane before diffusing for synaptic targeting [56].
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A more complex topological organization of secretory
organelles has provided evidence to support an alternative
trafficking route [3,6,8,9,57–60]. This modality utilizes the
dendritic ER, functional dERES, and Golgi outposts for
plasmamembrane delivery [61] (Figure 2). In the next few
paragraphs we examine the contribution of neuronal ER in
protein trafficking via this non-canonical modality.

At least two distinct ER functions contribute to non-
canonical trafficking. First, mRNAs for membrane and
secreted proteins traffic and translate locally in the den-
dritic ER. Substantial evidence supports this claim
(reviewed comprehensively in [62]). A second alternative
involves somatic synthesis and the transport of protein
cargo along the dendritic and axonal ER for local delivery.

The tubular structure and motile components of the ER
define its capacity to function as an intracellular transport
system. Luminal proteins diffuse throughout the continu-
ous and aqueous lumen three- to sixfold slower than in the
cytoplasm, and membrane proteins diffuse laterally along
the ER membrane even under conditions of tightly packed
cisternae [63,64]. Mobility of the ER network, export of
cargo from the ER, and transport to the Golgi apparatus all
involve dynein and kinesin-1 motors [65]. In neurons,
diffusion alone might not be sufficient to drive proteins
outwards along the dendritic ER, but transport could
require the activity of molecular motors. Thus, one can
speculate that the components which specify directional
ER motility (e.g., rapid tubule extension) will also control
protein trafficking in polarized structures such as den-
drites and axons.

Although the relative contribution that mobility along
the dendritic ER makes to distal trafficking of nascent
NMDARs is still not clear, recent studies support a non-
canonical modality. The KIF17/mLin-10 complex mediates
the vesicular transport of NMDARs in vitro and of large
NMDAR-containing packets in hippocampal neurons
[66,67], but NR1 subunits concentrate in dERES enriched
SER dERES 
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in Sar1-positive puncta that assemble>350 mmaway from
the cell body [31]. In agreement with these findings, CASK
and SAP97 regulate the ER-export of NMDARs which are
later trafficked via unconventional Golgi outposts [68].
Given that NMDARs move along microtubules assisted
by molecular motors, and probably unload in the vicinity of
synapses in a Ca2+-dependent manner [66], accumulated
evidence indicates that dendritic ER transport and dERES
contribute to the regulation of local trafficking and synap-
tic availability of NMDARs.

Metabotropic type B GABA receptors (GABABRs) pro-
vide an additional example of non-canonical dendritic ER
trafficking. Although GABABR heteromers are efficiently
detected at the plasma membrane, abundant levels of
monomeric subunits have been reported in dendritic in-
tracellular compartments [69,70]. In addition, GABABR1
colocalizes with the ER in dendrites of hippocampal neu-
rons [71] and a dominant negative kinesin-1 alters the
dendritic localization of ER-retained GABABR1 but not of a
mutant that escapes the ER [72]. Upon blockade of ER exit,
assembled GABABR heteromers accumulate in the
somato-dendritic ER, suggesting that newly assembled
receptors rapidly exit via dERES en route to the plasma
membrane [70]. It remains to be determined whether
GABABRs traffic via local Golgi outposts to insert locally
in the vicinity of functional sites in dendrites, or whether
somato-dendritic export increases the cargo load of a cen-
tralized Golgi apparatus.

The study of serotonin receptors has revealed an in-
triguing connection between ER trafficking and dendritic
transport. Distal dendritic localization of the serotonin 5-
HT1A receptor requires its short C terminus and Yif1B.
Yif1B is an ERGIC-associated protein and its absence
causes the redistribution of 5-HT1A receptors to the so-
matic and proximal dentritic compartment [73]. Thus, ER-
to-Golgi transport is necessary for their long distance
mobility.

Other channels and receptors are also trafficked via the
non-canonical route.When the potassium channel KV4.2 is
associated with the auxiliary subunit KChip1, the channel
is trafficked from the ER via a COPII-independent path-
way and KChip1 accumulates in Golgi outposts in neurons
[74]. Interestingly, KV4.2 is trafficked by KIF17, the same
molecular motor that trafficks NMDARs through the ER in
dendrites [68,75]. Finally, the a7 nicotinic acetylcholine
receptor (nAChR) is also transported along the dendritic
ER [76].

AMPARs illustrate the canonical secretory pathway,
but recent evidence raises challenging questions about
the effect of subunit composition on intracellular traffick-
ing. The GluR2 subunit colocalizes extensively with the ER
in dendrites of hippocampal neurons and exhibits long ER
residency times that affect plasma-membrane availability
[77,78]. These observations are in agreement with a non-
canonical dendritic ER-trafficking mode for GluR2. Never-
theless, another AMPAR subunit, GluR1, does not coloca-
lize with the dendritic ER and accumulates preferentially
in the somatic Golgi upon transport blockade, despite
evidence of dendritic synthesis [79–81], suggesting that
it is trafficked via the canonical modality [68,78]. These
observations suggest that defined AMPAR subunit combi-
nations prefer specific secretory pathways, a hypothesis
that needs to be investigated further.

Combined, these results suggest that the ER contrib-
utes to a non-canonical pathway of protein trafficking in
dendrites and indicate that multiple mechanisms coexist
to accommodate the specialized morphological demands of
the neuron. Importantly, the ER could function as a stor-
age compartment before membrane insertion because sig-
nificant pools of AMPARs, GABABRs, nAChRs and
mGluRs are present in the dendritic ER [70,77,82–84].
Further, rapid changes in the cell-surface abundance of
AMPARs are controlled by entry and exit of recycling
endosomes into the spine in a myosin Vb-dependent man-
ner [7]. These findings indicate that protein synthesis is
not a major factor regulating short-term changes in recep-
tor availability, and suggest that regulated ER export of
reserve pools could constitute a replenishment mechanism
for recycling endosomes that contributes to local trafficking
in polarized cells.

Formation of ERES also takes place in developing axons
[41], and support for axonal ER trafficking has emerged
from the study of GABABRs. Axonal localization of
GABABRs is controlled by a robust targeting signal in
the Sushi domains of the GABABR1a subunit [71]. Unex-
pectedly, this signal still operates in the absence of hetero-
dimerization with GABABR2, a requisite for ER export and
plasma membrane localization. Although the transport
and sorting mechanisms require detailed characterization,
these observations raise the unexpected possibility that
GABABR1a is targeted to the axon within the ER.

Trafficking signals for ER retention and export
ER retention and export control the assembly and plasma-
membrane delivery of multi-subunit neurotransmitter
receptors and ion channels. They prevent unassembled or
misfolded proteins from reaching the plasma membrane,
thereby avoiding deleterious effects on neuronal function
and survival. It has been firmly established that sequences
different from KDEL and di-lysine, the best-described ER
retrieval/recycling and retention signals forER luminal and
membrane proteins, control the trafficking of many neuro-
transmitter receptors and ion channels [85]. Although it is
still unclear how these signals operate as dendritic check-
points and how they contribute to non-canonical trafficking,
their molecular determinants are analyzed below.

The masking of arginine-based ER retention motifs,
normally through heteromerization, is a requisite for ER
export and plasma membrane delivery [86]. The LRSRR
sequence in the C-terminal intracellular domain of
GABABR1 functions as an ER-retention motif that is
masked upon assembly with GABABR2, resulting in export
and subsequent delivery of the functional heteromeric re-
ceptor to the plasma membrane [87,88]. The NR1-1 and
NR2B subunits of NMDARs contain several signals that
mediate ER retention, including a conventional RRR motif
in the C-terminus ofNR1-1 and other sequences in the third
transmembrane segments of NR1-1 and NR2B subunits
[89–91]. Similarly, the Kir6.1/2 and SUR1 subunits of the
ATP-sensitive potassium channel, kainate receptors, and
metabotropic glutamate receptors, all contain arginine-
based retention sequences that are masked before ER exit
223
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[92–94]. Correct subunit assembly of nAChRs promotes ER
exit and delivery of functional receptors to the plasma
membrane by masking a PL(Y/F)(F/Y)XXN motif [82]. Fur-
ther examples of ER retention–retrieval are provided by an
aspartate residue at the boundary of the M3–M4 loop and
M4 domain of ionotropic GABAA receptors [95], and by ER
retention signals in the first cytoplasmic loop of the 5-HT3B
serotonin receptor subunit [96].

ER trafficking is not only regulated by retention but also
by positive trafficking signals that improve the efficiency of
ER export. For example, an ER export mechanism is
present in inwardly rectifying potassium channels. Here,
different subunits display distinct efficiencies of plasma
membrane delivery. Sequences present in the C-termini of
Kir1.1 (VLS and EXD) and Kir2.1 (FCYENE) differentially
allow potassium channels to exit the ER [97]. In addition,
EAAC1, an excitatory amino acid transporter that regu-
lates extracellular glutamate concentration, is also regu-
lated at the ER stage. EAAC1 is trapped in the ER by its
binding partner GTRAP3-18, but the interaction with the
reticulon family member RTN2B facilitates EAAC1 ER
exit, revealing novel roles for ER structural components
in the regulation of ER export [98]. RNA editing of a single
amino acid (Q/R) and the gating motions of the GluR2
subunit, or changes in the ligand-binding interface, control
the export kinetics of AMPARs from the ER and their
expression at synapses [77,99–101]. Similar RNA-editing
and ER-export mechanisms operate for kainate receptors
[102]. Precisely how the dendritic distribution of mem-
brane proteins is affected or specified by their ER dwell
times remains to be investigated. However, the conserva-
tion and widespread use of ER retention/export mechan-
isms suggest that tight dendritic checkpoints can control
the local delivery of neurotransmitter receptors.

Protein trafficking to post-ER compartments
Post-ER secretory compartments located distally support a
functional role for dendritic and axonal ER trafficking.
Cargo exits the ER to enter the ERGIC in dendrites [9],
and specific markers for ERGIC (Rab1 and ERGIC-53) and
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Golgi (Giantin) have been reported in distal dendrites and
dendritic spines [6,28,57]. A trihydrophobic motif (VMI
569–571) of the GABA transporter 1 (GAT1) is required
for export from the ERGIC, and substitution of these
residues results in accumulation of GAT1 in pre-Golgi
punctate structures in the soma and neurites of hippocam-
pal neurons [103]. In addition, three proteins inDrosophila
that mediate ER-to-Golgi trafficking, namely Rab1, Sar1
and Sec23, specifically control dendrite growth [8]. Finally,
compelling evidence supports the existence of functional
Golgi outposts in dendrites [58,61]. Similarly, the presence
in axons of post-ER markers, such as Giantin, GM130,
TGN38, clathrin and AP1, confirms that the axonal ER is
functionally competent for protein trafficking and suggests
that mobilization of cargo along the ER supports axonal
function, elongation or maintenance [38,41].

The role of the ER in synaptic plasticity and pathology
The close proximity of the ER to inhibitory postsynaptic
sites and the presence of the spine apparatus in a subset of
excitatory dendritic spines implicate the ER in the modu-
lation of synaptic transmission [25]. Interestingly, ER
export of NMDARs near synaptic sites is regulated by
neuronal activity, supporting this hypothesis [31]. In ad-
dition, a subset of spines in hippocampal CA1 pyramidal
cells contain ER structures that are continuous with the
dendritic ER [104]. These spines have characteristic large
heads and frequently associate with high-strength or po-
tentiated synapses (Figure 3). The spine ER is not a major
regulator of fast, NMDAR-mediated Ca2+ transients, but is
implicated in mGluR- and IP3R-dependent Ca

2+ signaling,
playing a role in mGluR-dependent depression, and con-
tributing to compartmentalized synaptic plasticity [104].
The ER in spines can be stable or highly dynamic, and can
enter or exit dendritic spines over the time course of hours;
this could underlie the spine-to-spine variation in Ca2+

spike magnitude or localized protein synthesis and traf-
ficking [105]. Interestingly, the ER content of a spine could
depend on physical interactions between transmembrane
proteins of the ER and the plasma membrane [30,106].
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EB3, a growing plus-end microtubule-binding protein,
enters spines and modulates spine morphology, and thus
provides a potential cytoskeletal link for rapid ER entry
and exit [107]. The spine apparatus also contributes to
synaptic plasticity because mice deficient in synaptopodin
lack a spine apparatus and show deficits in long-term
potentiation and spatial learning [27,108,109]. Intriguing-
ly, synaptopodin is also found in a stacked ER formation in
the axon initial segment, but no functional abnormalities
have been detected in synaptopodin-deficient axons [110].

Not surprisingly, alterations of ER structure and func-
tion in dendrites and axons have been implicated in nu-
merous pathological conditions [111]. ER stress could alter
dendritic ER morphology and thus locally affect protein
quality control [112]. Sixty percent of individuals with
hereditary spastic paraplegia, a condition characterized
by axonopathy of cortico-spinalmotor neurons, carrymuta-
tions affecting spastin, atlastin-1, or REEP1, all of which
interact with each other through their hydrophobic hairpin
domains to form complexes responsible for new tubule
connections and interactions with the cytoskeleton, thus
indicating that loss of proper ER structure is a neuropatho-
genic threat [21]. Similarly, swelling and disorganization
of the ER in dendrites and spines is characteristic of
Purkinje cells after chronic ethanol abuse, and could con-
tribute to the dendritic degeneration seen in injured hu-
man brain tissue [113–115]. Purkinje cell spines of the
dilute–opisthotonus ataxic mutant rat, which corresponds
to mutations in myosin Va, are devoid of ER [116,117].
Cerebellar-specific Atg5-null mice accumulate stacked and
lamellar membranous structures that resemble ER in
axons and exhibit mild and slow-onset ataxic gait, abnor-
mal limb-clasping reflex, and motor dyscoordination [118].
Expansion of axonal varicosities and accumulation of vesic-
ular membranes of an as yet undefined nature are observed
in the APPSwe transgenic mouse model of Alzheimer’s dis-
ease – a phenotype that is enhanced in mice expressing
reduced kinesin-1 levels and in the early stages of Alzhei-
mer’s disease in humans [119]. One interpretation is that
the axonal varicosities represent altered secretory sites,
suggesting that local axonal biosynthetic trafficking occurs
physiologically. Despite these recent advances our under-
standingof the relationshipbetweenaxo-dendriticERstruc-
ture and behavioral abnormalities is still incomplete.

Concluding remarks
The actively shaped ER network supports high connectivi-
ty and segregated functions, but central questions concern-
ing the structure, dynamics and function of the ER in
dendrites and axons remain open. Increased understand-
ing of the ER in non-neuronal cells will certainly provide a
basis for structural and dynamic analyses in neurons.
Pioneering studies have already demonstrated that reti-
culon proteins RTN2B and RTN3 are localized to develop-
ing neurites, and that overexpression of RTN3 causes
aggregation and neuritic dystrophy [98,120]. In addition,
atlastin-1 depletion results in fragmentation of the neuro-
nal ER in Drosophila [121]. The local control of the ER
during neuronal activity, and the local compartmentalized
responses of the ER that contribute to the modulation of
neuronal function, will no doubt remain active topics of
research in the future. Thus, this emerging field is gener-
ating challenging results that demand a reconsideration of
the intricate relationship between axo-dendritic ER mor-
phology, dynamics and trafficking, and the degree to which
they contribute to neuronal function and dysfunction.
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