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Abstract Lung cancer (LCa) is the leading cause of death

by cancer in men. Genetic and environmental factors play a

synergistic role in its etiology. We explore in 111 lung

cancer cases and 133 unrelated noncancer controls the

gene-environment interaction (G 9 E) between p53cd72

polymorphism variants and smoking and the effect on LCa

risk in two kinds of case-control designs. We assessed the

interaction odds ratio (IOR) using an adjusted uncondi-

tional logistic model. We found a significant and positive

interaction association between Pro* allele carriers and

smoking habits in both case-control and case-only designs:

IOR = 3.90 (95% confidence interval [CI] = 1.10–13.81)

and 3.05 (95% CI = 1.63–5.72), respectively. These

exploratory results suggest a synergistic effect of the

smoking habit and the susceptibility of the Pro allele on

lung cancer risk compared with each risk factor alone.
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Introduction

After skin cancer, lung cancer (LCa) is the most frequent

malignant neoplasm in humans and the most common

cause of cancer mortality worldwide [1]. Given the mul-

ticausal etiology of this cancer, synergistic interactions

among risk factors may have significant effects on LCa

risk, especially gene–environment interactions (G 9 E)

[2]. Within the causal network of carcinogenesis, there are

multiple points at which genetically determined host

characteristics or environmental factors might influence an

individual’s susceptibility via effects on metabolic activa-

tion, DNA-repair capacity, and other cellular processes.

Polymorphic low-penetrance genes implicated in cancer

etiology can have profound effects on increasing or

reducing the differential susceptibility to environmental

cancer [3, 4]. The p53 gene is one of the most mutated

genes in human tumors and has been referred to as the

‘‘emergency brake’’ because of its tumor-preventing

apoptotic and cell-cycle-checkpoint functions in physio-

logically stressful situations [5, 6]. This gene is an

important component in the response to DNA damage,

participating in the DNA-repair process and preventing

mutations and aneuploidy that result from cellular repli-

cation. Therefore, the wild-type p53 gene suppresses

cellular transformation by activated oncogenes, thus

inhibiting the growth of malignant cells [7, 8]. On the other
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hand, polymorphic variants of the p53 tumor-suppressor

gene produce a guanine–cytosine change (G [ C) at codon

72 resulting in arginine–proline (Arg [ Pro) amino acid

substitution. The functional impact of this p53 polymor-

phism has been reported and the Arg/Arg genotype seems

to induce apoptosis with faster kinetics and to suppress

transformation more efficiently than the Pro/Pro genotype

[9]. Several studies have reported that the p53cd72 poly-

morphism of the tumor-suppressor gene is associated with

LCa risk [10–13]. However, other studies have reported

nonsignificant differences between LCa and healthy con-

trols in relation to genotypic polymorphic frequencies [11,

14–17].

It is well known that tobacco smoke has thousands of

compounds, some of which are considered carcinogenic,

the most important ones being the polycyclic aromatic

hydrocarbons (PAH) and the nicotine-derived nitrosa-

mines. Recent studies have indicated that there is a strong

coincidence of G-to-T transversion hotspots in lung cancers

and sites of preferential formation of PAH adducts along

the p53 gene. Xiao and Singh report that p53 plays a sig-

nificant role in the regulation of cellular response to

benzo[a]pyrene, one of the most important carcinogenic

compounds of tobacco smoke [18]. The available data

suggest that p53 mutations in lung cancer can be attributed

to direct DNA damage from cigarette smoke carcinogens

rather than to selection of pre-existing endogenous muta-

tions [19, 20]. Experimental studies carried out in yeast

assay have shown that smoking may cause mutations in

p53 by formation of PAH o-quinones, which produce

reactive oxygen species [21].

In the present study we propose that smokers with the

polymorphic variant of p53 would have a differentiated

risk of lung cancer. To test this hypothesis, we explored in

our study population the interaction between p53cd72

genetic variants and tobacco use as a modifying factor for

the risk of lung cancer. In addition, to evaluate lung cancer

risk in the Chilean population, this study might help to

understand interethnic differences in the distribution of

polymorphic proteins as well as the function of single rare

alleles and smoking with respect to lung cancer

susceptibility.

Material and Methods

Sample Subjects

A hospital-based case–control study was carried out using

111 lung cancer patients histologically determined and 133

controls, with hospital admission between 1998 and 2001

[22]. Cases and controls were recruited from the ‘‘Hospital

del Tórax’’ of Chile (referral hospital for respiratory

diseases). Controls were people who were admitted for

pulmonary diseases not related to lung cancer. All study

subjects provided informed consent for participation in this

research which was done under a protocol approved by the

Ethics Committee for Studies on Human Beings of the

Faculty of Medicine at the University of Chile.

Laboratory Assays

Genotyping Methods and PCR Amplification Detection

After extraction, DNA samples were analyzed for p53

genetic polymorphisms. PCR-based restriction fragment

length polymorphism (RFLP) was used to examine the

polymorphisms of interest [22]. p53cd72 genetic poly-

morphism was determined using the primers described by

De la Calle-Martin et al. [23].

Analytic Methodology

Allele frequencies for p53cod72 Pro and Arg were cal-

culated as the number of alleles divided by the number of

chromosomes, and tests for Hardy–Weinberg equilibrium

were conducted by comparing observed and expected

genotype frequencies using a v2 test [24]. The extent of

tobacco smoke exposure was assessed by the smoking

index (SI) (cigarettes/day 9 365). A smoker was defined as

a person with a SI of 800. Both present and former smokers

at the time of the analysis were considered smokers [25].

To explore the possible risk effect modification between

p53cd72 polymorphism and smoking habit on LCa risk, we

computed the odds ratios (OR) of the effect measures using

an extended 2-by-2 table design [26], considering as a

reference group a priori low-risk susceptibility combina-

tion (Arg/Arg p53cd72 genotype and nonsmoker). In this

analysis we presented the genetic polymorphisms in three

genotypes (Arg/Arg, Arg/Pro, and Pro/Pro) and in a col-

lapsed way [Pro* (Pro/Pro ? Arg/Pro)], respectively.

Later, these ORs were combined to assess departures from

a multiplicative interactions model in a case-control and a

case-only design. We used the following formulas to

compute the interaction odds ratio (IOR):

To case-control design: IORcc ¼ ½ORge=ORg � ORe�

To case-only design: IORco ¼ ½ORge=ORg � ORe� � Z

where ORge is the joint OR for disease among smokers

with the susceptibility genotypes, ORg is the OR for dis-

ease among nonsmokers with the susceptibility genotypes,

ORe is the OR for disease among smokers without the

susceptibility genotypes, and Z is the OR between exposure

and genotype in the controls (assumed to be 1 based on the

assumption of independence in the case-only design;
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therefore, IORcc = IORco). The IORco provides an esti-

mate of the ratio of the joint effect divided by the product

of the individual effects of the gene and environmental

factors [27]. The 95% CI estimates for IORs were com-

puted as described by Hosmer and Lemeshow [28]. The

precision of these ORs was evaluated by computing the

confidence limits ratio (CLR) [29]. In order to test the

assumption of independence of factors in the study popu-

lation, we performed a control-only analysis [26]. Finally,

the ORs and IORs are presented unadjusted and adjusted

by gender and age using an unconditional logistics model.

All statistical analyses were performed using STATA 7.0

software (StataCorp. LP, College Station, TX) [30]. All

statistical tests were two-sided.

Results

Participants’ characteristics, genotype, allelic frequencies,

and distribution of cell types of LCa and ORs for these

polymorphisms are given in Table 1. Both groups had a

similar gender distribution. Smoking frequency was higher

in cases compared with controls; however, they had a

nonsignificant risk of LCa compared with controls

(OR = 1.45, 95% CI = 0.84–2.53). Allele frequencies for

the Pro allele were similar in cases compared with con-

trols. We did not observe significant departures from

Hardy–Weinberg equilibrium for p53cd72 genotypes

among cases and controls (p = 0.1873). Similar frequen-

cies for Pro/Pro, Arg/Pro, and Arg/Arg genotypes in cases

and controls were observed. There were nonsignificant

differences for LCa risk between cases and control carriers

of susceptibility genotypes.

Joint ORs and IORs between p53cd72 genotypes and

smoking with respect to LCa are presented in Table 2.

We describe the adjusted results because they were sim-

ilar to the unadjusted findings. Compared with unexposed

people without the susceptibility genotype (low-risk sus-

ceptibility combination), a modest, nonsignificant increase

in LCa risk was observed for smokers who were carriers

of two copies of the susceptibility allele Pro/Pro:

ORge = 1.27 (95% CI = 0.47–3.42), and a lesser, also

nonsignificant association was observed for carriers of

one copy of Arg/Pro: ORge = 0.98 (95% CI = 0.43–

2.22). There also was a nonsignificant relationship

between and LCa risk and nonsmokers with two copies of

the susceptibility allele Pro/Pro: ORg = 0.74 (95%

CI = 0.22–2.54). In contrast, when only one allele was

present in nonsmokers, a protecting significant effect was

observed: Arg/Pro: ORg = 0.26 (95% CI = 0.10–0.68).

In the collapsed model, there was a nonsignificant asso-

ciation with LCa risk among smoker carriers of the risk

allele compared with nonsmokers without the suscepti-

bility genotype. In contrast, nonsmoker carriers of the risk

allele had a significant inverse association with LCa

compared with the low-risk reference group (Pro*:

OR = 0.35, 95% CI = 0.15–0.83).

G 9 E interactions odds ratios (IOR) for p53cd72

genotypes and smoking for LCa patients calculated using

case-only and control-only designs are presented in

Table 1 Age, gender, allele,

genotypic frequencies, and

distribution cell types of lung

cancer and odds ratios for

polymorphisms in p53cd72 of

the subjects studied

SD = standard deviation;

OR = odds ratio;

CI = confidence interval;

Pro* = Pro/Pro ? Arg/Pro

Cases (111) Controls (133) OR (95% CI) p value

Age, mean (SD) 61.79 (12.83) 56.75 (11.80) 0.0017

Gender, n (%) 76 (68) 87 (65) 0.6138

Smoking, n (%)

Smokers 71 (64) 73 (55) 1.45 (0.84–2.53) 0.1511

Nonsmokers 40 (36) 60 (45)

Allele p53cd72

Pro 128 167 0.81 (0.55–1.18) 0.2490

Arg 94 99

Genotypic variant

Arg/Arg 42 (38) 54 (41) Reference

Arg/Pro 44 (40) 59 (44) 0.96 (0.52–1.74) 0.8833

Pro/Pro 25 (22) 20 (15) 1.61 (0.74–3.49) 0.1907

Pro* 69 (66) 79 (59) 0.19 (0.64–1.94) 0.6599

Cell types

Squamous 40 (36) – – –

Adenocarcinoma 22 (20) – – –

Large-cell carcinoma 14 (13) – – –

Others 7 (6) – – –

Not determined 28 (25) – – –
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Tables 2 and 3, respectively. When we assessed IOR effects

for cigarette smoking and p53cd72 polymorphism on LCa

risk in a case-control design, a significant departure from

the multiplicative effect was detected between the Pro/Pro

and Arg/Pro genotypes and smoking (Pro/Pro: IORcc =

3.90, 95% CI = 1.10–13.81; Arg/Pro: IORcc = 8.57, 95%

CI = 4.58–16.04). Similar results were observed in a case-

only design (Pro/Pro: IORco = 3.05, 95% CI = 1.63–5.72;

Arg/Pro: IORco = 3.26, 95% CI = 1.74–6.12). In contrast,

no association was observed between smoking and p53cd72

polymorphism when assessed by a control–only design

(Pro/Pro: IORco = 1.03, 95% CI = 0.55–1.93; Arg/Pro:

IORco = 0.53, 95% CI = 0.40–1.41).

Discussion

Gene polymorphisms that are important to apoptosis will

increasingly be recognized as clues to individual suscep-

tibility to cancer, explaining why individuals with shared

environmental exposures do not always have equivalent

cancer morbidity and mortality.

Table 2 Joint odds ratios (ORs) and interaction odds ratios (IOR) for G 9 E interactions of simple combinations of p53cd72 genotypes and

smoking for LCa risk in a case-control design

Genotype Smoking Cases Controls ORs Unadjusted model Adjusted model

OR 95% CI CLR OR 95% CI CLR

p53 Codon 72

Pro/Pro ? 18 12 ORge 1.36 0.53–3.52 6.64 1.27 0.47–3.42 7.30

Pro/Pro - 7 8 ORg 0.80 0.24–2.59 10.80 0.74 0.22–2.54 11.55

Arg/Pro ? 33 27 ORge 1.11 0.50–2.45 4.90 0.98 0.43–2.22 5.20

Arg/Pro - 11 32 ORg 0.31 0.13–0.80 6.20 0.26 0.10–0.68 6.80

Arg/Arg ? 20 34 ORe 0.53 0.24–1.21 5.04 0.44 0.19–1.07 5.63

Arg/Arg - 22 20 Ref 1 1

Total 111 133

Collapsed model

Pro (PP/AP) ? 51 39 ORge 1.19 0.53–2.65 5.00 1.07 0.50–2.30 4.60

Pro (PP/AP) - 18 40 ORg 0.41 0.16–1.01 6.31 0.35 0.15–0.83 5.53

Multiplicative scale expected (IOR) Unadjusted interaction odds ratios Adjusted interaction odds ratios

(ORg 9 ORe) (ORg 9 ORe)
a IORcc 95% CI CLR IORcc 95% CI CLR

Pro/Pro 0.42 0.33 3.20 0.86–11.93 13.90 3.90 1.10–13.81 12.55

Arg/Pro 0.16 0.11 6.76 3.39–13.50 3.50 8.57 4.58–16.04 3.50

Collapsed model 0.21 0.15 5.67 3.00–10.73 3.58 5.48 2.78–10.80 3.90

OR = odds ratio; ORge = odds ratio gene-environment; ORg = odds ratio gene-only; ORe = odds ratio environment-only; IORcc = interaction

odds ratio case-control
a Adjusted by gender and age; (?) = yes; (-) = No; CLR = confidence limits ratio

Table 3 G 9 E interactions

odds ratios (IOR) for p53cd72
genotypes and smoking for lung

cancer patients using case-only

and control-only designs

IORco = interaction odds ratio

case-only; CLR = confidence

limits ratio
a Adjusted by age and gender

Genotype Smoking No

smoking

Unadjusted model Adjusted modela

IORco 95% CI CLR IORco 95% CI CLR

Case-only

Pro/Pro 18 7 2.83 1.54–5.42 3.52 3.05 1.63–5.72 3.51

Arg/Pro 33 11 3.30 1.76–6.20 3.52 3.26 1.74–6.12 3.52

Arg/Arg 20 22 1.0 1.0

Collapsed model 51 18 3.12 1.29–7.61 5.90 2.98 1.29–6.88 5.33

Control-only

Pro/Pro 12 8 0.88 0.50–1.65 3.30 1.03 0.55–1.93 3.51

Arg/Pro 27 32 0.50 0.40–1.39 3.50 0.53 0.40–1.41 3.52

Arg/Arg 34 20 1.0 1.0

Collapsed model 39 40 0.57 0.27–1.23 4.56 0.67 0.32-1.41 4.41

Lung (2009) 187:110–115 113

123



In the present study, we explored G 9 E interactions as

a risk effect modification between the p53cd72 Pro allele

and smoking on LCa risk using two different case–control

designs. When these factors were evaluated in a joint way

in a stratified and in a collapsed analysis using a case–

control design, we did not find a clear relationship between

the Pro allele and the smoking habit. Smoker carriers of

two copies of the risk allele presented an increased but

nonsignificant LCa risk compared with nonsmokers. In

contrast, a protective effect on LCa risk in nonsmokers

carrying one copy of Pro was observed: Arg/Pro

(ORg = 0.26, 95% CI = 0.10–0.68). On the other hand,

when the subjects were smokers, the effect was null.

Several studies have found an association between the

p53cd72 Pro/Pro genotype and LCa susceptibility among

smokers [10–12, 31–33]. Fan et al. [32] reported that the

combination of susceptibility genotypes homozygous Pro/

Pro and heterozygous Arg/Pro (OR = 1.45, 95%

CI = 1.01–2.06) was associated with an higher risk of

adenocarcinoma compared with Arg/Arg genotype after

adjustment for relevant variables. Lung adenocarcinoma

risk increased with the presence of one or both variant

alleles across smoking strata. In this study we observed a

similar trend, but the risk was moderately low and non-

significant (Pro* = 1.07, 95% CI = 0.50–2.30), probably

because of the small sample size or the different histologic

type. For example, Liu et al. reported a different risk level

when they stratified by histologic subtype. They report that

the Pro* allele carrier patients had an increased risk of LCa

(OR = 1.36, 95% CI = 1.1–1.7), especially the adeno-

carcinoma cell type compared with wild-type patients (Arg/

Arg). On the other hand, no relationship was observed in

patients with squamous cell carcinoma (OR = 1.04, 95%

CI = 0.8–1.4) [34]. Szymanowska et al. reported that the

p53 codon 72 Pro allele may increase the risk of non-

small-cell lung cancer (NSCLC) (OR = 1.28, 95%

CI = 0.91–1.80) [35]. Similarly, Hu et al. reported that p53

Pro allele is associated with an increased frequency of p53

mutations in NSCLC [36].

When we evaluated the G 9 E interaction effect

between the p53 polymorphism and smoking on LCa risk,

both approaches (case-control and case-only) revealed a

significant synergistic effect between these factors com-

pared with each risk factor alone, suggesting that there is a

significantly increased LCa risk when the susceptibility

genotype and smoking are present simultaneously. Po-

panda et al. reported that the p53cd72 Pro polymorphism

increases the risk for squamous cell carcinoma mainly in

heavy smokers (OR = 3.84, 95% CI = 1.46–10.1). They

suggested that the observed interaction with smoking is

biologically plausible as, similar for the p53cd72 Pro

variant, decreased apoptosis and extended G1 cell cycle

arrest are reported after carcinogen exposure [37]. Zhang

et al. reported a significant interaction between MDM2 GG

and p53 Pro/Pro genotypic polymorphisms and smoking

(OR = 10.41, 95% CI = 5.26–20.58) [38]. On the other

hand, Metakidou et al. [39], in a systematic review and

meta-analysis performed on p53 polymorphisms and lung

cancer risk, reported a nonclear relationship between these

factors; however, they could not assess the relationship

with tobacco exposure. Also, they concluded that most of

studies that they reviewed had insufficient power to detect

an association between p53 polymorphisms and LCa risk.

Recently, Schabath et al. reported on the multigenetic

effects of variant alleles from p53 exon 4 (p53cd72) and

introns 3 and 6, and from p73, and on their interaction with

smoking, resulting in a significantly increased risk for lung

cancer in a Caucasian population [40]. Xiao and Singh [18]

concluded that interaction of benzo[a]pyrene and p53 is an

important regulating factor in human lung cancer cells.

Others kinds of cancer have been evaluated in relation to

p53cd72 and tobacco use. Hong et al. reported that a sig-

nificant interaction between the p53 Pro/Pro genetic

polymorphism and smoking was related to the risk of

esophageal squamous cell carcinoma (OR = 5.29, 95%

CI = 2.91–9.61) [41]. Kuroda et al. found a significant

urothelial cancer risk in smoker carriers of the Pro/Pro

genotype compared with subjects who never smoked

(OR = 2.28, 95% CI = 1.12–4.66) [42].

In conclusion, our results suggest that a combination of

the p53cd72 rare allele (Pro*) and a smoking habit plays a

significant role in LCa risk in the studied population

compared with each factor alone.
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