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Molecular epidemiological data concerning the
hepatitis B virus (HBV) in Chile are not known
completely. Since the HBV genotype F is the
most prevalent in the country, the goal of this
study was to obtain full HBV genome sequen-
ces from patients infected chronically in order
to determine their subgenotypes and the occur-
rence of resistance-associated mutations.
Twenty-one serum samples from antiviral drug-
naive patients with chronic hepatitis B were
subjected to full-length PCR amplification, and
both strands of the whole genomes were fully
sequenced. Phylogenetic analyses were per-
formed along with reference sequences avail-
able from GenBank (n = 290). The sequences
were aligned using Clustal X and edited in the
SE-AL software. Bayesian phylogenetic analy-
ses were conducted by Markov Chain Monte
Carlo simulations (MCMC) for 10 million gener-
ations in order to obtain the substitution tree
using BEAST. The sequences were also ana-
lyzed for the presence of primary drug resis-
tance mutations using CodonCode Aligner
Software. The phylogenetic analyses indicated
that all sequences were found to be the HBV
subgenotype F1b, clustered into four different
groups, suggesting that diverse lineages of this
subgenotype may be circulating within this
population of Chilean patients. J. Med. Virol.
83:1530-1536, 2011. © 2011 Wiley-Liss, Inc.
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INTRODUCTION

Hepatitis B virus (HBV) infection is a severe global
health problem, with approximately 2 billion people
infected worldwide, and with more than 350 million of
them suffering from chronic hepatitis B (CHB)
[Zuckerman and Zuckerman, 2000; Shepard et al.,
2006]. HBV is a DNA virus of the Hepadnaviridae
family, which contains a genome composed of approxi-
mately 3,200 nucleotides (nt), with four overlapping
but frame-shifted open-reading frames for the P,
preC/C, preS1/preS2/S, and X viral genes [Tiollais
et al., 1981].

Molecular variation and sequence changes in the
HBV genome over time have resulted in the emer-
gence of at least nine genotypes. The HBV genotypes
A to I are classified based on an intergroup divergence
of 8% or more in their nucleotide sequence over the
entire genome [Okamoto et al., 1988; Norder et al.,
1994; Stuyver et al., 2000; Arauz-Ruiz et al., 2002; Yu
et al., 2010]. Genotypes may influence the HBeAg
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seroconversion rate (related to mutational patterns in
the pre-core and basal core promoter (BCP) regions),
and the severity of liver disease. The differences
encountered in the severity and progression of HBV-
associated liver disease, as well as the response to
anti-viral agents, in different regions of the world are
probably attributed, at least in part, to the different
HBYV genotypes [Mahtab et al., 2008].

The natural history of CHB can be described by
several distinct phases. These phases are character-
ized by particular serological, biochemical, and viral
marker patterns, generally accompanied by the
appearance of well-defined viral genomic mutations.
Such mutations include the double A1762T/G1764A
BCP mutation and the G1896A pre-C stop-codon
mutation, often in combination with the GI1899A
mutation. Furthermore, additional mutations in the
BCP region that may confer increased replication
efficiency for the virus have also been found [Baumert
et al., 1998; Parekh et al., 2003].

The HBV genotype F (HBV/F) has been identified
as the most prevalent of the HBV genotypes in Cen-
tral and South America, and it is mainly found among
native indigenous people from South America [Devesa
et al., 2008]. Genotype F can be further divided into
four subgenotypes (F1-F4), with a genetic divergence
of 4.3-6.1% [Mcmahon, 2009]. The subgenotype Fla
has been found in Alaska, El Salvador, Guatemala,
Costa Rica, and Nicaragua, whereas the F1b genotype
has been reported in Peru and Argentina. The HBV
subgenotype F2 was found in Venezuela and Brazil,
where it was initially associated with fulminant
hepatitis in patients co-infected with the hepatitis
Delta virus. Subgenotype F3 has been identified in
Venezuela, Colombia, and Panama, and, like the HBV
subgenotype F2, it is also associated with fulminant
hepatitis in these regions. Finally, subgenotype F4
was reported in Argentina and Bolivia [Blitz et al.,
1998; Huy et al., 2006; Devesa et al., 2008; Santos
et al., 2010; Alvarado-Mora et al., 2011].

In a previous study utilizing restriction fragment
length polymorphism (RFLP), the HBV/F was found
to be the most prevalent in Chile (84%), whereas
genotypes A, B, C, and D were found at the frequen-
cies of 3.8%, 3.8%, 6.1%, and 2.3%, respectively
[Venegas et al., 2008]. In the current report, complete
genome sequences of HBV isolates from 21 Chilean
patients infected chronically with HBV/F were
analyzed. The results shown herein identify HBV
subgenotype- and antiviral resistance-associated
substitutions, but no vaccine escape mutations, within
the HBV genomes circulating in Chile.

MATERIALS AND METHODS
Study Population

Serum samples were collected between March 2005
and March 2010 from 21 patients in Chile attending
the Gastroenterology Section, Clinical Hospital,
University of Chile (Santiago, Chile), for routine HBV
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DNA detection or quantitation. This laboratory is the
national reference center in Chile for the molecular
diagnostics of viral hepatitis, and it processes samples
from medical centers throughout the country. In the
current study, however, only samples collected
from Santiago Metropolitan Area were included. All of
the patients were anti-HBc and HBsAg positive
(MEIA AxSym, Abbott, North Chicago, IL), and
HBeAg+/anti-HBe negative, as determined by a com-
mercially available kit from mimiVIDAS (Biomerieux,
Craponne, France). The viral load was determined
using a COBAS"™ TaqMan® Hepatitis B Virus test
(Roche Molecular Systems, Branchburg, NdJ). Viral
genotyping was carried out by polymerase chain
reaction (PCR) and RFLP as previously described
[Venegas et al., 2008]. Chronic infection was defined
by the detection of HBsAg in two serum samples col-
lected at least 6 months apart. Three patients were
co-infected with human immunodeficiency virus (HIV)
(patients HCUCH3, HCUCH15, and HCUCH21),
whereas none of the patients were co-infected with
hepatitis C virus. All of the patients were male and
their age ranged from 10 to 77 years old (mean
age = 46 years). The ethics committee of the Clinical
Hospital, University of Chile, approved this study and
all participating patients signed an informed consent
form. The HBV clinical data and GenBank accession
numbers from the patients are shown in Table I.

HBYV Complete Genome Amplification

Viral DNA was extracted from 500 pl of serum
using a High Pure System Viral Nucleic Acid kit
(Roche Molecular Systems). Amplification of the 21
complete HBV genome was carried out as previously
described (P1 and P2 primers) [Glinther et al., 1995].

HBV Nucleotide Sequencing

The 3.2 kb PCR products were gel-purified using
the Wizard® SV Gel and PCR Clean-Up System
kit (Promega, Madison WI). Complete genomes
were sequenced from both strands of the viral DNA
(Macrogen, Inc., Seoul, Korea) using the primers indi-
cated in Table II. Consensus sequences were obtained
by the alignment of both sequenced strands (sense
and anti-sense) using MegAlign™ software from the
DNAStar package (LaserGene, Inc., Madison, WI).

Phylogenetic Analyses

In order to analyze the distribution of the different
HBV/F subgenotypes in the patients, the full sequen-
ces obtained from this study were genotyped by phylo-
genetic reconstructions using complete HBV genome
reference sequences from each genotype retrieved
from Genbank (n = 290). However, since there are
only a few full HBV/F genome sequences, a larger
dataset comprising 111 sequences with 1,278 nucleoti-
des of the S/POL region of all HBV/F subgenotypes
was also constructed with sequences obtained from
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TABLE I. General Clinical Data of the Samples

Venegas et al.

Sample ID Age (years)/gender (M/F) Sample date Viral load (cp/ml) GenBank number
HCUCH1 55/M June 1, 2007 >640,000,000 HM585198
HCUCH2 69/M August 19, 2009 >640,000,000 HM585199
HCUCH3 20/M October 7, 2009 22,989,000 HM590474
HCUCH4 10/M July 1, 2008 25,957,200 HM585186
HCUCH5 30/M May 28, 2008 >640,000,000 HM622135
HCUCHS6 37/M October 23, 2009 >640,000,000 HM585187
HCUCH7 61/M December 20, 2006 137,352,000 HM585188
HCUCHS 48/M March 15, 2005 >640,000,000 HM585189
HCUCH9 43/M October 23, 2009 >640,000,000 HM585190
HCUCH10 77/M November 2, 2009 >640,000,000 HM585191
HCUCH11 50/M November 20, 2009 >640,000,000 HM585192
HCUCH12 45/M October 7, 2009 >640,000,000 HM585193
HCUCH13 38/M June 12, 2009 3,544,380 HM590471
HCUCH14 67/M March 23, 2007 >640,000,000 HM590473
HCUCH15 48/M December 9, 2009 >640,000,000 HM585200
HCUCH16 72/M December 20, 2007 >640,000,000 HM585194
HCUCH17 45/M March 15, 2010 >640,000,000 HM585195
HCUCH18 52/M February 19, 2010 >640,000,000 HM585196
HCUCH19 14/M February 19, 2010 21,243,000 HM590472
HCUCH20 33/M September 26, 2007 >640,000,000 HM585197
HCUCH21 47/M August 3, 2007 >640,000,000 HM627320

GenBank (datasets available from the authors upon
request). The two datasets of the HBV sequences were
aligned using Clustal X software [Thompson et al.,
1997] and edited in the SE-AL software (available at
http://tree.bio.ed.ac.uk/software/seal/). In order to per-
form the phylogenetic analysis, the missing nucleoti-
des were coded as “missing characters” in the nexus
block. Bayesian phylogenetic analyses were carried
out using Bayesian Markov Chain Monte Carlo simu-
lations implemented in BEAST v.1.5.3 [Drummond
and Rambaut, 2007]. Analysis of the HBV dataset was
performed under relaxed uncorrelated lognormal
and relaxed wuncorrelated exponential molecular
clocks using the best model of nucleotide substitution
(GTR + G + 1) chosen in ModelTest [Posada and
Crandall, 1998], and 10 million generations were suf-
ficient to obtain the convergence of parameters. A
Maximum Clade Credibility (MCC) tree was obtained
from summarizing the 10,000 substitution trees using
Tree Annotator v.1.5.3 [Drummond and Rambaut,
2007].

Detection of Antiviral Resistance Substitutions

The presence of drug resistance substitutions
was determined using CodonCode Aligner Software

v.3.5 (available at http://www.codoncode.com/). This
program includes effective software for sequence as-
sembly, contig editing, and mutation detection. The
results were confirmed by analyzing the sequences
with the SeqHepB program [Yuen et al., 2007]. A
dataset with 290 complete HBV genomes was used to
identify changes in the 21 patients. Firstly, the
mutations associated with HBIg, anti-HBs monoclonal
antibody and vaccination escape were screened
using data reporting 39 relevant mutations in this re-
gion [Sitnik et al., 2004], which included sG145R.
Primary antiviral drug resistance substitutions at the
following positions were then screened: rtI169,
rtL.180, rtA181, rtT184, rtS202, rtM204, rtN236, and
rtM250 [Zoulim and Locarnini, 2009]. Secondary (or
compensatory) mutations were also included in the
analysis, such as rtV173, as reported previously
[Delaney et al., 2003; Zoulim and Locarnini, 2009]. In
addition, any HBV subgenotypes were identified
by the presence of specific substitutions at positions
122, 160, 127, and 140 in the S gene. Finally, BCP
and pre-C mutations [Baumert et al., 1998; Parekh
et al., 2003] were identified via sequence comparisons
with other known sequences from different HBV
genotypes.

TABLE II. Primers Used for Sequencing the HBV Genome

Primer name Nucleotide position

Sequence (5'-3’)

SB409 409-432

SB1174 1174-1195
SB1821 1821-1841
SB2373 2373-2392
SB3010 3010-3031
ASB432 432408

ASB1195 1195-1174
AS1825 1825-1806
ASB2392 23922373
ASB3031 3031-3010

CAT CCT GCT GCT ATG CCT CAT CTT
TGC CAA GTG TTT GCT GAC GCA A
TTT TTC ACC TCT GCC TAA TCA

GAA GAA CTC CCT CGC CTC GC

GCA AAC AAG GTA GGA GTG GGA G
AAG ATG AGG CAT AGC AGC AGG ATG
TTG CGT CAG CAA ACA CTT GGC A
AAA AAG TTG CAT GGT GCT GG

GCG AGG CGA GGG AGT TCT TC

CTC CCA CTC CTA CCT TGT TTG C
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RESULTS
Phylogenetic Analyses

The phylogenies showed that the 21 HBV/F samples
were from subgenotype Flb (Figs. 1 and 2). The
sequences of the 21 samples from the current study
were grouped into four groups within the F1b cluster
with a higher support. Figure 1 shows the first analy-
sis of complete genomes from HBV/F derived from
Chile, but, unfortunately, due to the insufficient
number of complete genome sequences of HBV/F1b in
GenBank, no further inferences about their distribu-
tion were possible. Figure 2 shows a phylogenetic tree
that was constructed from 1,291 base-pair sequences,
comprising all of the HBV/F subgenotypes. In this
analysis, the 21 sequences from the patients were
compared with other sequences previously reported
from Chile, and from other countries. The phylogenet-
ic analysis showed that these sequences were not
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closely related to each other, suggesting that different
lineages of subgenotype F1b are circulating in Chile.
Additionally, because the HBV subgenotype F1b
obtained in this study did not produce a single
cluster, it can be argued that these sequences may
have resulted from separate introductions into the
community.

Detection of Antiviral Resistance Mutations

When the antiviral resistance mutations were ana-
lyzed, one naive patient (HCUCH15) was found to be
infected with an HBV isolate that contained lamivu-
dine (LMV), emtricitabine (FTC), and clevudine (INN)
antiviral resistance-associated substitutions (rtV173L,
rtL180M, and rtM204V). This male patient had the
risk factor of having sex with men, and he was also
co-infected with HIV. Both F and H genotypes have
been described as having T237 and S238. Previously,
P237H and N238T/D substitutions were associated
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Fig. 1. The Maximum Clade Credibility (MCC) tree was estimated by a Bayesian analysis of 290
complete genome sequences of hepatitis B virus strains. The posterior probabilities of the key nodes
are shown above the respective nodes. The HBV/F samples obtained from Chile (n =21, HCUCH)
were analyzed together with other strains from around the world. The clusters containing the strains

of other HBV genotypes collapsed.
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with resistance to Adefovir [Shaw et al., 2006]. Our
data reinforce the current view that these sites are
highly polymorphic and that the mutations therein
are not related to drug resistance.

HBIg/Anti-HBs Monoclonal/Vaccine-Associated
Changes

All of the samples from Chile were found to be from
the subtype adw4. An analysis of the “a” determinant
of HBsAg revealed that none of the isolates contained
changes that would affect binding to HBIg, the
anti-HBs monoclonal antibody or the vaccination-
associated anti-HBs. Furthermore, examination of the
HCUCHS5 sequence showed that it contained a two
amino acid deletion at the Pre-S1 region (codons 46
and 47). No significant changes were observed in any
of the HBV DNA promoter regions. However, sequen-
ces from two patients (HCUCH16 and HCUCH21)
presented BCP mutations: A1762T and G1764A.
Besides this, the sequence from patient HCUCHS5 pre-
sented two core promoter mutations: C1768T and
T1770A. Analyses of the nucleotide sequence at posi-
tion 1858 showed the presence of thymine in all
patients. Finally, none of the patients presented the
T1753C mutation or the Pre-C mutations.

DISCUSSION

This is the first study to report a detailed analysis
of complete HBV genomes circulating in a population
in Chile. The phylogenetic analyses presented here
revealed that all of the patients’ sequences were of the
HBYV subgenotype F1b. In Chile, only data about HBV
prevalence based on the detection of either surface
antigens (HBsAg) or antibodies against the viral core
protein (anti-HBc) have been published [Pereira et al.,
2008, and references therein]. A recent report, based
on RFLP profiles, showed that genotype F is the most
prevalent genotype [Venegas et al., 2008]. Similar
results were later published by others, based on par-
tial sequencing of the HBV genome [DiLello et al.,
2009]. The sequences obtained in the current study
were compared to sequences previously reported from
Chile, and it was possible to conclude that the HBV/
F1b subgenotype distribution in this country is sug-
gestive of a viral diversification process, since there
are many viral lineages circulating within the popula-
tion. Finally, since many strains are present in the
country, they may have entered at different time
points and/or from different origins. Unfortunately, it
was not possible to estimate the time of the most re-
cent common ancestor (TMRCA) for the subgenotype
F1b in Chile. Since genotype F1b sequences are found
in different and distant countries in the Americas, it
is possible that this genotype was widely distributed
over the continent after its introduction into different
populations.

The two BCP mutations, C1768T and T1770A, both
found in the HCUCHS5 isolate, are known to result in
enhanced viral encapsidation and replication. The
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effect of these mutations, leading to increased encap-
sidation, is mediated through enhanced core protein
synthesis by the mutant virus [Baumert et al., 1998].

Variability of the HBV genome during the chronic
phase of the disease determines the selection for
viral-resistant strains [Zoulim and Locarnini, 2009].
Several studies have reported mutations in HBsAg
that alter its antigenicity. In previous studies, it was
observed that the LMV resistance mutations,
rtV173L, rtL180M, and rtM204V, resulted in the
reduced binding of antibodies to the neutralization
domain (“a” determinant) of the HBsAg [Torresi et al.,
2002; Sloan et al., 2008]. Also, the rtV173L mutation,
which accompanies rtLL180M and rtM204V in about
10-20% of cases during LVD use, allows improved
HBYV replication fitness [Delaney et al., 2003; Poordad
and Chee, 2010]. Moreover, genotypic resistance to
TDF has been detected in several patients with HIV-
HBYV co-infection, and the substitution rtA194T (plus
rtL180M and rtM204V) has been associated with TDF
resistance [Sheldon et al., 2005; Zoulim and Locar-
nini, 2009]. However, the rtA194T mutation was not
found in any of the samples from Chile in the current
study. Reduced sensitivity to TDF has been described
in patients infected with rtA181T/V and tN236T [van-
Bommel et al., 2010], but neither codon substitutions
were also found. Other rt sequence changes have been
implicated in Adefovir failure, including rtP237H and
rtN238T/D [Shaw et al., 2006]. In this study, it was
found that the genotype F presents T237 and S238
polymorphisms. These polymorphisms are not related
to antiviral resistance. However, since one treatment-
naive patient with HBV antiviral resistance muta-
tions was identified, it is important to elucidate the
occurrence of potential genotypic resistance mutations
in patients before they start antiviral treatment.

In conclusion, this study describes the complete ge-
nomic analysis of HBV/F1b from Chile. This subgeno-
type is also the most common in Argentina and the
description of the different subgenotypes found in
South American countries will help to understand the
spread of this viral variant throughout this continent.
Since so few complete HBV/F genomes have been
reported to date, this analysis also provides a useful
reference point for future molecular epidemiology
studies of HBV in South America.
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