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E Prostanoid (EP) receptors play an important role in urinary Na+ excretion. In the kidney, the epithelial
sodium channel (ENaC) is the rate-limiting-step for Na+ reabsorption. We hypothesized that activation of
EP1/EP3 regulates the expression of ENaC in the face of renin–angiotensin–aldosterone-system (RAAS)
activation. In primary cultures of inner medullary collecting duct (IMCD) cells, sulprostone (EP1 > EP3
agonist, 1 lM) and 17 Phenyl trinor (17 Pt, EP1 agonist, 10 lM) prevented the up-regulation of aENaC
mRNA induced by aldosterone (10 nM). In Sprague–Dawley rats infused with angiotensin II (0.4 lg/kg/
min), aENaC expression was up-regulated in renal cortex and medulla coincidently with high plasma
aldosterone levels. Sulprostone and/or 17 Pt prevented this effect in renal medulla but not in cortex.
Immunocytochemistry demonstrated that IMCD cells express EP1. Our results suggest that specific acti-
vation of EP1 receptor during RAAS activation antagonizes the action of aldosterone on aENaC expression
in the renal medulla.

� 2009 Elsevier Inc. All rights reserved.
Introduction

Renal prostaglandins (PGs) participate in the maintenance of
renal blood flow and the regulation of urinary salt excretion [1].
Prostaglandin E2 (PGE2) is the major PG produced by cyclooxygen-
ase metabolism in the nephron and is particularly abundant in the
rat kidney medulla [2,3]. PGE2 elicits its biological effects through
interactions with the E-prostanoid family of G protein-coupled cell
surface receptors (EP1, EP2, EP3 and EP4). EP2 and EP4 receptors
are mainly expressed in vasa recta and afferent arteriole [4]. EP1
is detected in the medullary collecting ducts (CD), whereas EP3 is
predominantly in thick ascending limb and cortical CD [4,5].

Activation of the renin–angiotensin–aldosterone-system (RAAS)
has been suggested to cause induction of PGE2 synthesis in the
renal medulla [6,7]. On the other hand, experimental and clinical
evidence have shown that inhibition of PGE2 synthesis cause salt
retention in humans [7–10]. Therefore, in the kidney, the action
of the RAAS could be modulated by PGE2 acting as a buffer against
the RAAS antinatriuretic effects [11].

Since Na+ reabsorption in CD is mainly modulated by aldoste-
rone, the activation of EP1 and/or EP3 could modify Na+ transport
proteins [12]. The rate-limiting-step for Na+ reabsorption in the CD
ll rights reserved.
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is the activity of the apical epithelial sodium channel (ENaC). ENaC
is composed by a, b and c subunits and among the three subunits;
the production of the a subunit is the rate-limiting for assembly of
the mature ENaC complexes [13]. Aldosterone is the main regula-
tor of ENaC, increasing aENaC gene expression and the abundance
of the functional channel present in plasma membrane of principal
CD cells [14–16].

Although EP1 and EP3 are suggested to be expressed in CD, the
mechanism through which PGE2 inhibits Na+ transport in the distal
nephron is not well understood. Experimental data obtained in iso-
lated rabbit cortical CD demonstrated that PGE2 inhibits Na+ trans-
port. Studies with specific EP agonists suggested that the EP1
receptor activation mediates the inhibition of Na+ transport
through a Ca2+-coupled mechanism [17,18,12].

We hypothesized that activation of EP1 and/or EP3 can down-
regulate the expression of ENaC in the renal medulla in the context
of RAAS activation. To test this hypothesis we evaluated changes of
ENaC expression and plasma membrane protein abundance in
primary cultures of inner medullary collecting duct (IMCD) cells
incubated with RAAS effectors in the presence or absence of EP
agonists; sulprostone an EP1 > EP3 agonist or 17 Phenyl trinor
(17 Pt), an EP1 specific agonist. To evaluate the effect of EP1 and/
or EP3 activation in the context of RAAS activation in vivo, male
Sprague–Dawley rats were infused with angiotensin II (Ang II),
Ang II + sulprostone, Ang II + 17 Pt or Ang II + SC19220 (EP1 antag-
onist) for 5 days. We studied the expression of ENaC subunits in
the renal cortex and medulla and the effect on Na+ excretion.

http://dx.doi.org/10.1016/j.bbrc.2009.08.157
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Materials and methods

Primary cultures of inner medullary collecting duct (IMCD) cells.
Primary cultures were prepared as described previously [19]. Aldo-
sterone (Sigma, St. Louis, MO) was used at 10 nM [20], Ang II at
0.1 nM [21], sulprostone at 1 lM [18], 17 Pt and SC19220 at
10 lM [18,22]. Ethanol was used as vehicle. Immunofluorescence
studies for aquaporin-2 (AQP-2) detection were performed as de-
scribed previously [19]. For immunocytochemical studies, cells
were fixed by immersion in Bouin’s solution for 24 h followed by
the same procedure described below.

RNA isolation and reverse transcription-polymerase chain reaction
(RT-PCR). Total RNA was extracted from 35 mm dishes of primary
cultured cells, according to the Chomczynski and Sacchi method
[23] Single-stranded cDNA was synthesized from 0.3 lg of total
RNA by RT-PCR using the ImProm-IITM Reverse Transcription Sys-
tem (Promega, Madison, WI). The same procedure was performed
for kidney cortex and renal medulla (15 mg).

Quantitative real-time RT-PCR. After RT-PCR, 3 lL of RT-PCR prod-
uct was heated to 95 �C for 5 min and then subjected to quantitative
PCR analysis in the Mx3000P� real-time PCR system (Stratagene, La
Jolla, CA) with Brilliant SYBR green and 10 mM of the appropriate
primers. Primers used for RT-PCR were;aENaC: 50-TCCTGCTTCCAGG
AGAACAT-30 and 30-GAGCTTTGCAACTCCGTTTC-50; bENaC: 50-CTA
CACCTACAAGGAGCTGCTAGT-30 and 30-CACAGCACTGTACTTGTAA
GGGTTGATA-50; cENaC: 50-CCTCTGCTGTGGATCGCGTTCAC-30, and
30-CACAGCACTGTACTTGTAAGGGTTGATA-50; EP1: 50-CGGACATGAG
GGTTGAGATT-30 and 30-CCCTTTCAGATCCCACTTCA-50; EP2: 50-AC
CTTATTCGCATGCAGCTT-30 and 30-TTTCCTTTCGGGAAGAGGTT-50;
EP3: 50-TGTCTAGGCTTGCTGGCTCT-30 and 30-TGCGTCTTGCATTGCT
CTAC-50; EP4: 50-ATGAGCATTGAGCGCTACCT-30 and 30- ATGTAAGA
GAAGGCGGCGTA-50; 18S: 50-CGACGACCCATTCGAACGTCT-30 and
30-GCTATTGGAGCATGGAATTACCG-50.

IMCD cells immunoblots. After 16 h treatment, cells were lysed
directly in Sample buffer (100 mM Tris–HCl, pH 6.8, 200 mM dithi-
othreitol, 4% SDS, 0.2% bromophenol blue, 20% glycerol). Prelimin-
ary gels were run for the entire set of a given experiment on 10%
polyacrylamide/SDS gels, and stained with Coomassie blue dye to
assess equality of loading. Blots were scanned, and densitometric
analysis was performed using NIH Image v1.61 (US NIH, http://
rsb.info.nih.gov/nih-image).

Biotinylation of membrane proteins. Biotinylation was performed
as described previously [24]. After biotinylation, total protein con-
centration was determined and 300 lg was combined with strep-
tavidin beads (Pierce, Rockford, IL) and incubated overnight at
4 �C. Samples were collected and subjected to Western blot
analysis.

Animals. Adult male Sprague–Dawley rats (180–200 g) were
housed in individual metabolic cages 12:12-h light–dark cycle
with 3 days of habituation before treatment. All rats were main-
tained at the University Animal Care Facilities in accordance with
institutional and international standards for the human care and
use of laboratory animals (Animal Welfare Assurance Publication
A5427-01, Office for Protection from Research Risks, Division of
Animal Welfare, National Institutes of Health). Food and water
were supplied at equal quantities.

Drugs and treatment. Ang II was used at 0.4 lg/kg/min (Sigma,
St. Louis, MO), sulprostone at 20 lg/kg/d [25], 17 Pt at 30 lg/kg/d
[26] and SC19220 at 60 lg/kg/d. EP agonists and antagonists were
obtained from Cayman Chemical Co., Ann Arbor, MI, all adminis-
tered by constant infusion using osmotic mini-pumps (Alzet,
Cupertino, CA) implanted subcutaneously. Control rats were
sham-operated. Losartan (AT1 receptor blocker) was used at
40 mg/kg/d [27] and spironolactone at 400 mg/kg/d [13]; both
were administered by gavage. Systolic blood pressure was
measured daily by tail-cuff method. Animals were sacrificed on
day 5 of treatment and urine and blood collected.

Biochemical parameters. Serum aldosterone determination were
performed by commercially available radioimmunoassay kit (Euro/
DPC Ltd, Caernarfon, UK), serum and urine electrolytes were as-
sayed using an ion selective electrolyte analyzer 9180 (Roche Diag-
nostic, Mannheim, Germany). Serum and urinary creatinine was
measured using Creatinine Analyzer 2 (Beckman Coulter, Inc., Ful-
lerton, CA). PGE2 was measure using a commercial kit (Cayman
Chemical Co., Ann Arbor, MI).

Renal tissue preparation and immunoblotting. Extracts from renal
medulla and cortex (30 mg) were homogenized in phosphate buf-
fer saline solution containing 250 mM sucrose, 10 mM triethanola-
mine, adjusted to pH 7.6. Protein concentration was determined by
Bradford method (Bio-Rad, Hercules, CA). Western blotting was
performed as described previously [28]. Western blots were run
with the total samples in each time-period (n = 4–8 for each
group). Selected blots are representative of each group.

Immunohistochemistry and double immunolabeling in the same
tissue sections. This technique was performed as previously de-
scribed [29]. After immunohistochemistry procedure, samplers
were dehydrated and cleared with xylene and then coverslipped
without hematoxylin counterstaining (except Fig. 4A, C and E).

Antibodies. EP1 (catalog 101740) and EP3 (catalog 101760) poly-
clonal antibodies were obtained from Cayman (Ann Arbor, MI).
Antibodies against ENaC subunits were obtained from Chemicon
International, Inc. (Temecula, CA; according catalog number;
a:AB3530P, b:AB3532P and c:AB3534P). Antibody against rabbit
polyclonal anti-aquaporin-2 (AQP-2) was obtained from Chemicon
International, Inc. (Temecula, CA; according catalog number
AB3066).

Statistical analysis. ANOVA was used to detect differences be-
tween three or more groups. Mann–Whitney rank-sum tests were
used when variances were significantly different between groups.
P-value <0.05 was considered significant. Data are presented as
mean ± SE. For quantitative RT-PCR and protein abundances values
are normalized by the mean of the control group, which was de-
fined as 100%.

Results

Expression of EP receptors in IMCD cells

Primary cultures of rat IMCD cells expressed aquaporin-2 (AQP-
2), a principal cell specific protein (Fig. 1A). The presence of EP recep-
tors was first evaluated by RT-PCR. We found EP1 and low levels of
EP3 transcripts in IMCD cells; EP2 and EP4 mRNAs were not detected
(Fig. 1B). As expected, immunoblots from total protein obtained
from IMCD primary cultures confirmed the expression of EP1 and
low levels of EP3 (Fig. 1C). Immunocytochemistry in IMCD cells de-
tected the presence of EP1 but not EP3 (Fig. 1D).

EP1 receptor activation prevents the aldosterone-induced aENaC up-
regulation in IMCDs cells

We evaluated the effect of aldosterone (10 nM) on the abundance
of aENaC mRNA. After 16 h, aldosterone caused the up-regulation of
aENaC mRNA as compared to control cells (197 ± 38% vs. 100 ± 15%
P < 0.05). Spironolactone, a mineralocorticoid receptor antagonist
(1 lM) blunted the up-regulation of aENaC (112 ± 36%, NS). Since
reports have suggested that the activation of AT1 receptor in CD
could directly up-regulate aENaC expression [13], we evaluated
the effect of Ang II (0.1 nM) on aENaC mRNA abundance. As showed
in Fig. 2A we observed that Ang II did not affect the aENaC mRNA
abundance as compared to control (121 ± 20%, P = NS). As depicted

http://www.rsb.info.nih.gov/nih-image
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Fig. 1. (A) Immunofluorescence of primary cultures demonstrated the expression of AQP-2 a principal cell specific protein (green: AQP-2; blue: nucleus staining performed
with 40 ,6-diamidino-2-phenylindole, dihydrochloride (DAPI). (B) Detection of EP1, EP2, EP3 and EP4 transcripts by RT-PCR in renal cortex (C), renal medulla (M) and IMCD
cells. (C) Immunoblots of EP1 and EP3 in kidney and IMCD cells. (D) Detection of EP1 and EP3 through immunocytochemistry. Negative controls were performed by omission
of the primary antibody. NTC, non template control; MW Std, molecular weight standard.
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in Fig. 2B, sulprostone alone did not modify aENaC mRNA abun-
dance (122 ± 16%, P = NS). Interestingly, sulprostone and 17 Pt im-
paired the aldosterone-dependent up-regulation of aENaC mRNA
(127 ± 27% and 125 ± 36%, respectively, P = NS). The EP1 antagonist
SC19220 (10 lM) blocked this effect (175 ± 23% and 163 ± 13%,
respectively, P < 0.05) (Fig. 2B). Immunoblotting of total protein
homogenates from IMCD cells demonstrated that aldosterone sig-
nificantly increased aENaC protein abundance (169 ± 7% vs.
100 ± 4%, P < 0.05). As hypothesized, 17 Pt prevented the aldoste-
rone-induced up-regulation of aENaC protein (120 ± 10%, P = NS).
Neither aldosterone nor 17 Pt affected the expression of bENaC or
cENaC (Fig. 2C).

EP1 activation prevents the membrane destination of ENaC subunits

We evaluated if EP1 activation would blunt the effect of aldoste-
rone on ENaC expression in plasma membrane. Biotinylation exper-
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prevent the aldosterone-induced aENaC up-regulation. (C) Representative immunoblot o
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iments demonstrated that aldosterone caused a significant increase
in the abundance of all subunits in plasma membrane of IMCD cells,
as compared with control (aENaC = 164 ± 9%, bENaC = 140 ± 8% and
cENaC = 148 ± 16%, P < 0.05). Interestingly, 17 Pt impaired the in-
crease of ENaC subunits in plasma membrane induced by aldoste-
rone (aENaC = 104 ± 8%, bENaC = 114 ± 10% and cENaC = 115 ±
10%, P = NS) (Fig. 2D).

Effect of RAAS activation on ENaC subunit abundance in vivo

To activate the RAAS in vivo we infused Sprague–Dawley rats
with Ang II. After 5 days of Ang II infusion we evaluated changes
in ENaC subunit abundance in kidney cortex and medulla. Ang II
caused a significant increase in the abundance of aENaC protein
in the cortex compared to control animals (186 ± 17% vs.
100 ± 9%, P < 0.05). In the renal medulla, we observed a similar
effect (167 ± 12% vs. 100 ± 13%, P < 0.05). No changes were seen
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in bENaC or cENaC in cortex and medulla. The increase in aENaC
protein abundance caused by Ang II infusion was prevented by
losartan (cortex: 95 ± 8%; medulla: 98 ± 5%, P = NS) and spironolac-
tone treatment (cortex: 108 ± 5%; medulla: 95 ± 7%, P = NS).

Sulprostone prevented the up-regulation of aENaC caused by Ang II in
the renal medulla but not in cortex

In the kidney cortex, sulprostone infusion did not affect the up-
regulation of aENaC protein levels in response to Ang II (Fig. 3A).
By contrast, in the renal medulla, sulprostone was able to prevent
the up-regulation of aENaC protein levels (119 ± 9%, P = NS)
(Fig. 3B). Consistent with these results, sulprostone ameliorated
the up-regulation of aENaC mRNA induced by Ang II in the renal
medulla (control: 100 ± 28%, Ang II: 302 ± 54%, P < 0.05 vs. control,
Ang II + sulprostone: 140 ± 30%, P = NS vs. control). No changes
were seen in bENaC or cENaC mRNAs. Previous experiments dem-
onstrated that sulprostone alone did not modify a, b or cENaC pro-
tein levels in the renal cortex and medulla (data not shown).

Expression of EP1 and EP3 in the rat kidney

Since we observed differential effects of sulprostone in kidney
cortex and renal medulla, we evaluated the distribution of EP1
and EP3 receptor in renal cortex and medulla by immunohisto-
chemistry. Kidney sections showed specific labeling for EP1 recep-
tor in afferent arterioles (Fig. 4A and B, upper panels) and EP3
restricted to cortical CD (Fig. 4C and D, upper panels). By using
AQP-2 as a specific marker for CD, we observed that EP1 was pres-
ent mainly in medullary CD with a basolateral distribution (Fig. 4A
and B, lower panels). We did not observe co-localization of EP3 and
AQP-2 in the medulla (Fig. 4C and D, lower panels).

EP1-specific activation prevents the aENaC up-regulation caused by
Ang II infusion

In a new set of experiments we evaluated the effect of EP1
specific agonists/antagonists on cortical and medullary ENaC
expression in a context of activated RAAS. 17 Pt did not affect
the up-regulation of aENaC abundance induced by Ang II in renal
cortex as compared to control rats (212 ± 40% vs. 100 ± 15%,
P < 0.05) (Fig. 3C). However, aENaC protein abundance in renal me-
dulla of rats infused with Ang II plus 17 Pt was not changed
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See Results section for details.
(126 ± 16% vs. 100 ± 10%, P = NS) (Fig. 3D). 17 Pt caused similar ef-
fects on medullary aENaC mRNA abundance as compared to con-
trol (144 ± 69 vs. 100 ± 28%, P = NS). Interestingly, the infusion of
the EP1 antagonist (SC19220) in Ang II infused rats did not modify
the up-regulation of medullary aENaC protein and mRNA. No
changes were seen in bENaC or cENaC mRNAs and protein levels.

The EP1 activation causes natriuresis in rats infused with the Ang II

To evaluate the effect of EP1 and EP1/EP3 activation on sodium
balance at day 5 of treatment, four male Sprague–Dawley rats were
infused either with Ang II (0.4 lg/kg/min), Ang II + sulprostone,
Ang II + 17 Pt or Ang II + SC19220. Table 1 summarizes relevant
physiological parameters by treatment at day 5. Ang II infusion
causes an increase in systolic blood pressure. Arterial pressure
was not modified by co-infusion of sulprostone, 17 Pt or
SC19220. Chronic infusion of Ang II + sulprostone or Ang II + 17
Pt caused an increase in Na+ excretion, as compared to control rats
(Table 1), this effect was observed at day 5 of treatment.

Discussion

The main finding of the present study is that the activation of
EP1 receptor in cultured IMCD cells and in the renal medulla
in vivo prevented the aldosterone-induced up-regulation of aENaC.
We showed that aldosterone up-regulates both, aENaC mRNA and
protein and increases the abundance of all three ENaC subunits in
the plasma membrane. The EP1 activation in IMCD cells prevented
the up-regulation of aENaC mRNA and blunted the increase of all
three ENaC subunits present at the plasma membrane of IMCD
cells caused by aldosterone, suggesting reduced assembly of the
mature ENaC complexes. The aldosterone-induced up-regulation
of aENaC mRNA was also prevented by sulprostone (EP1 > EP3
agonist), however, this effect can be blunted in vitro by SC19220
(specific EP1 antagonist), confirming an EP1 receptor-dependent
action. In addition to observing that the EP1 activation in IMCD
cells directly prevents the aldosterone-dependent ENaC up-regula-
tion, we found that sulprostone did not alter ENaC expression in
the absence of aldosterone.

Based in our in vitro results, we tested the hypothesis that EP1
activation would modulate the expression of ENaC under RAAS
activation. As expected, Ang II infusion caused an increase in
plasma aldosterone (�10 nmol/L) and induced a significant
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Fig. 4. (A) EP1 immunolabeling in normal kidneys (brown), (B) double immunolabeling for EP1 (brown reaction and arrowhead) with AQP-2 (collecting duct principal cell,
blue reaction) showing EP1 expression in medullary collecting ducts, and afferent arteriole in cortex. (C) EP3 immunolabeling (brown). (D) Double immunolabeling for EP3
(brown reaction and arrow) with AQP-2 (blue reaction) demonstrates co-localization of EP3 and AQP-2 in cortical collecting ducts but not medullary collecting duct. (E)
Negative control performed by omission of the primary antibody. G, glomeruli; CCD, cortical collecting duct; IMCD, inner medullary collecting duct. Scale bar = 50 lm.

Table 1
Physiological parameters at day 5 of treatment.

Control Ang II Ang II + Sul Ang II + 17 Pt Ang II + SC19220

n 4 4 4 4 4
Systolic blood pressure (mmHg) 127 ± 2 190 ± 7* 185 ± 8* 186 ± 5* 188 ± 4*

Creatinine clearance (mL/min/100 g) 0.86 ± 0.09 0.80 ± 0.11 0.73 ± 0.12 0.71 ± 0.20 0.86 ± 0.22

Serum concentrations:
Aldosterone (nmol/L) 0.6 ± 0.1 10.1 ± 2.1* 7.2 ± 2.0* 8.1 ± 2.1* 6.1 ± 1.8*

Na+ (mEq/L) 139 ± 1 137 ± 1 137 ± 1 138 ± 1 136 ± 2
K+ (mEq/L) 3.2 ± 0.1 2.9 ± 0.2 3.1 ± 0.1 3.2 ± 0.2 2.8 ± 0.2

Urinary excretion:
Na+ (lEq 24 h/g) 2.7 ± 0.2 2.9 ± 0.4 4.2 ± 0.5* 3.9 ± 0.4* 2.8 ± 0.6
K+ (lEq 24 h/g) 7.5 ± 0.4 7.5 ± 0.4 7.1 ± 0.5 7.3 ± 0.6 7.7 ± 0.7

* P < 0.05 vs. control group.
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increase in aENaC mRNA and protein in kidney cortex and medul-
la. The in vivo effect of Ang II infusion on aENaC expression was
blocked by co-administration of spironolactone, indicating an
MR-dependent effect.

Interestingly, we observed that sulprostone was able to prevent
the up-regulation of aENaC induced by aldosterone in the medulla
but not in cortex. Previous studies have demonstrated EP1 mRNA
expression in medullary CD, whereas EP3 mRNA is predominantly
expressed in the thick ascending limb and cortical and outer med-
ullary CD [4,5,11]. Our immunolabeling studies, using EP1/EP3
antibodies combined with AQP-2 antibody as a principal CD cell
marker demonstrated the expression of EP1 in medullary, but not
in cortical CD (Fig. 4B and D). Thus, we conclude that in vivo
chronic activation of the EP1 present in medullary CD prevents
the aldosterone-induced up-regulation of aENaC. These results
indicate that activation of EP1 receptor under high plasma levels
of aldosterone or Ang II could activate cellular pathways antago-
nizing aENaC up-regulation in the renal medulla.

Several studies have suggested natriuretic effect of PGE2 in cor-
tical CD [9–12]. We observed that both, sulprostone and 17 Pt in-
creased urinary Na+ excretion at day 5 of treatment in rats
infused with Ang II, coincidently with highest arterial pressure val-
ues. We did not observe the effect on arterial pressure at the early
phase of the treatment. Also, we found in previous experiments
that sulprostone infusion in normotensive rats did not cause
changes in medullary aENaC protein levels and Na+ excretion (data
not shown); supporting the hypothesis that EP1 activation would
be able to modulate ENaC expression when the RAAS is active.

Our results provide new evidence that contributes to a better
understanding of the role of EP1 and EP3 receptors in the regula-
tion of Na+ handling and ENaC expression in the setting of RAAS
activation. In vitro and in vivo studies strongly suggest that the acti-
vation of EP1 can modify the aldosterone-mediated up-regulation
of aENaC in the renal medulla.
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