Applied nutritional investigation

The four-compartment model of body composition in obese Chilean schoolchildren, by pubertal stage: Comparison with simpler models

Fabian Vasquez Vergara Ph.D. a,*, Erik Diaz Bustos Ph.D. b, Lydia Lera Marques Ph.D. b, Loretta Vasquez Flores Ph.D. b, Alyerina Anziani Gonzalez B.Sc. b, Raquel Burrows Argote M.D. b

a School of Nutrition and Dietetics, Faculty of Medicine, University of Chile, Santiago, Chile
b Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile

ARTICLE INFO

Article history:
Received 11 March 2013
Accepted 7 September 2013

Keywords:
Body fat
Fat-free mass
Four-compartment model
Isotopic dilution
Radiographic absorptiometry
Plethysmography
Anthropometric equations

ABSTRACT

Objectives: We assessed the agreement of body fat and fat-free mass measured by simpler methods against the four-compartment model (4C).

Methods: In 60 obese schoolchildren (body mass index >95th percentile) between the ages of 8 and 13 y who were recruited from one school in Chile, multicompartmental body composition was estimated with the use of isotopic dilution, plethysmography (BodPod), radiographic absorptiometry (DEXA), and anthropometric equations. These results were compared to those of the 4C model, which is considered the gold standard.

Results: For body fat, the 4C model showed the best agreement with DEXA for boys in Tanner stages I and II ($r = 0.971$) and with isotopic dilution for boys in Tanner stages III and IV ($r = 0.984$). The best agreement in girls occurred with isotopic dilution, regardless of pubertal stage ($r = 0.948$ for Tanner stages I and II; $r = 0.978$ for Tanner stages III and IV). Both isotopic dilution and the Huang, Ellis, and Deurenberg anthropometric equations underestimated body fat in boys; by contrast, DEXA, BodPod, and the Slaughter equation overestimated body fat in boys. All of the equations underestimated body fat in girls. For fat-free mass in both boys and girls, the 4C model showed the best agreement with isotopic dilution, regardless of pubertal stage. The Huang equation showed the best agreement for boys ($r = 0.730$ for Tanner stages I and II; $r = 0.695$ for Tanner stages III and IV) and for girls in Tanner stages I and II ($r = 0.884$). The Ellis equation had the best agreement for girls in Tanner stages III and IV ($r = 0.917$).

Conclusions: For obese Chilean children of both sexes, isotopic dilution and DEXA were the two-compartment methods that had the best agreement with the gold-standard 4C model for both body fat and fat-free mass; these were followed by the Huang and Ellis anthropometric equations.
the BF and fat-free mass (FFM) percentages. Childhood obesity is defined with the use of the body mass index formula, which measures weight in relation to height [11,12]. This indicator is the most widely applied formula for using weight to predict health risk, but it has significant limitations, including the failure to distinguish between BF and FFM [13]. Because obesity-related health risks are attributable to BF rather than FFM, various alternative methods have been proposed to quantify risk [3], such as the following: waist circumference and waist-to-hip ratio [14]; upper arm length and sitting height [15] or knee height [16] in relation to weight; waist-to-hip ratio [17]; a body adiposity index [18]; an index of central obesity [19]; maternal body size [20]; bioimpedance spectroscopy [21]; and estimates of the percentage of body fat (%BF) [22]. This last measure, %BF, seems to provide the most accurate and predictive measure of BF and its associated health risks; however, the methods used to measure %BF are costly, sophisticated, or invasive, thereby making the measure difficult to apply to large population samples [13,23,24]. One alternative is to estimate body composition with the use of anthropometric techniques, in which body measurements are used as inputs for equations that predict BF and FFM. This method is simple, inexpensive, and easy to apply in a pediatric population. Therefore, it would be useful to determine how well these equations approximate the gold standard [25]. Most evaluations of pediatric body composition are based on Siri’s two-compartment (2C) model [26], which has been shown to overestimate %BF. This discrepancy is attributable to the chemical immaturity of children. Because children have a higher proportion of water and a lower proportion of minerals and proteins, they have a lower density of FFM as compared with adults [27]. To improve the accuracy of such estimates, more precise methods have been developed, such as multiple-compartment models to estimate BF and FFM in children and adolescents [28]. The 4C model divides the body into constituent fractions of fat, water, minerals, and protein. This 4C model is considered the gold standard for determining body composition in adults [29], but it has not been widely validated in children and adolescents [27]. Therefore, the aim of this study was to assess the agreement of BF and FFM measures obtained by simpler models (e.g., the 2C model, anthropometric equations) with those obtained by the four-compartment (4C) model in obese schoolchildren.

Materials and methods

Subjects

The subjects were 60 obese schoolchildren between the ages of 8 and 13 y (13 boys and 27 girls) who were recruited from an elementary school in the commune of Mauci in Santiago, Chile. The study group was a convenience sample that was chosen based on the school’s proximity to the measurement center. The inclusion criteria were a body mass index at the 95th percentile or greater according to the Centers for Disease Control and Prevention National Center for Health Statistics reference standards [30]; full-day school enrollment, the consent of the parents, and the assent of the children. The exclusion criteria were diagnosis with a psychomotor disorder or the use of medications that affect body composition, physical activity, dietary intake, or biochemical parameters. The study was approved by the Ethics Committee of the University of Chile.

Biological age

Pubertal development was classified by Tanner stage in accordance with female breast development and male genital development [31]. Tanner stage was evaluated by visual inspection during the physical examination, which was performed by the study’s pediatrician.

Anthropometry

Fasting weight and height were measured in the early morning. The children wore underwear only and stood on the scale with their feet near the center, their arms at their sides, and their heads in a neutral position so that the line from the corner of the eye to the origin of the ear was parallel with the floor. Weight was measured using an electronic precision scale (SECA® Model 767) with a sensitivity of 10 grams. Height was measured using a Holtain stadiometer (SECA) with a sensitivity of 0.1 cm. Both values were imported via a Precision Hispa Touch screen. Four skinfold measurements were obtained in triplicate (i.e., biceps, triceps, subscapular, and suprailiac) with the use of a Lange caliper with millimetric precision (1 mm) using the technique described by Lohman and colleagues [32].

Anthropometric equations

The following anthropometric equations were performed:

a) Slaughter [33], %BF is estimated on the basis of the triceps and subscapular skinfolds and by sex, pubertal stage, and race.

Girls:

%BF = 1.33 × (Triceps + Subscapular) – 0.013 × (Triceps + Subscapular)² – 2.5

Prepubescent boys:

%BF = 1.2 × (Triceps + Subscapular) – 0.008 × (Triceps + Subscapular)² – 1.7

Pubescent boys:

%BF = 1.2 × (Triceps + Subscapular) – 0.008 × (Triceps + Subscapular)² – 3.4

Postpubescent boys:

%BF = 1.2 × (Triceps + Subscapular) – 0.008 × (Triceps + Subscapular)² – 5.5

b) Ellis [34,35], BF in kg is estimated on the basis of height and weight and by race and sex.

Hispanic girls:

BF (kg) = 0.677 × Weight (kg) – 0.217 × Height (cm) + 15.5

Hispanic boys:

BF (kg) = 0.591 × Weight (kg) – 1.82 × Age (y) + 3.36

c) Deurenberg [36], %BF is estimated on the basis of body density (BD), which in turn is estimated on the basis of four skinfold measures (i.e., biceps, triceps, subscapular, and suprailiac) and by pubertal stage.

%BF = (562–4.2) × (Age [y] – 2) × (525 – 4.7) × (Age [y] – 2) × BD (kg/L)

BD is calculated on the basis of the following equations:

Prepubescent girls:

BD (kg/L) = 1.1187 – 0.0630 × log (∑4 Skinfolds) + 1.9 × (Age [y] × 10⁻³)

Pubescent girls:

BD (kg/L) = 1.1074 – 0.0504 × log (∑4 Skinfolds) + 1.6 × (Age [y] × 10⁻³)

Postpubescent girls:

BD (kg/L) = 1.0813 – 0.0813 × log (∑4 Skinfolds)

Prepubescent boys:

BD (kg/L) = 1.1133 – 0.0561 × log (∑4 Skinfolds) + 1.7 × (Age [y] × 10⁻³)

Pubescent boys:

BD (kg/L) = 1.0555 – 0.0352 × log (∑4 Skinfolds) + 3.8 × (Age [y] × 10⁻³)

Postpubescent boys:

BD (kg/L) = 1.1324 – 0.0429 × log (∑4 Skinfolds)

d) Huang [37], BF in kg is estimated on the basis of weight, age, and sex (girls = 0, boys = 1).

BF (kg) = 0.632 × Weight (kg) – 1.606 × Age (y) – 1.882 × Sex + 3.330

Isotopic dilution

Total body water was measured via deuterium dilution. The isotope was administered orally at a dose of 4 grams of deuterium oxide (99.8%) in accordance with the subject’s body weight. Body water values were derived from deuterium oxide concentrations according to the plateau method. Subjects fasted for a 3-h equilibration period to minimize changes in total body water content [38]. A baseline saliva sample of approximately 2 mL was taken, and then the dose of deuterium was given along with 20 mL of water. The post-dose saliva sample was
Table 1

Physical characteristics and body composition of the sample by sex and pubertal stage

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boys Genital stages I and II (n = 19)</th>
<th>Boys Genital stages III and IV (n = 14)</th>
<th>Girls Breast stages I and II (n = 5)</th>
<th>Girls Breast stages III and IV (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>11.5 ± 1.1</td>
<td>13.6 ± 1.0</td>
<td>8.4 ± 0.8</td>
<td>11.5 ± 1.7</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>60.9 ± 13.5</td>
<td>76.3 ± 11.7</td>
<td>38.5 ± 5.1</td>
<td>58.2 ± 14.3</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>149.4 ± 12.0</td>
<td>161.4 ± 4.8</td>
<td>131.1 ± 3.7</td>
<td>147.8 ± 8.0</td>
</tr>
<tr>
<td>Total body water (L)</td>
<td>26.9 ± 5.5</td>
<td>35.6 ± 5.0</td>
<td>17.8 ± 2.1</td>
<td>25.6 ± 5.2</td>
</tr>
<tr>
<td>Bone mineral density (kg)</td>
<td>1.8 ± 0.5</td>
<td>2.4 ± 0.3</td>
<td>1.2 ± 0.1</td>
<td>1.7 ± 0.4</td>
</tr>
<tr>
<td>Four-component model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF (kg)</td>
<td>25.3 ± 7.9</td>
<td>28.6 ± 9.3</td>
<td>14.4 ± 3.1</td>
<td>24.1 ± 8.5</td>
</tr>
<tr>
<td>BF (%)</td>
<td>41.2 ± 6.0</td>
<td>36.9 ± 7.9</td>
<td>37.2 ± 4.3</td>
<td>40.4 ± 6.2</td>
</tr>
<tr>
<td>FFM (kg)</td>
<td>35.6 ± 7.7</td>
<td>47.7 ± 6.4</td>
<td>24.1 ± 2.6</td>
<td>34.1 ± 6.9</td>
</tr>
<tr>
<td>Two-component model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isotopic dilution BF (kg)</td>
<td>24.8 ± 7.8</td>
<td>28.4 ± 8.2</td>
<td>15.4 ± 2.9</td>
<td>24.4 ± 7.8</td>
</tr>
<tr>
<td>Isotopic dilution FFM (kg)</td>
<td>40.3 ± 5.7</td>
<td>36.8 ± 6.7</td>
<td>39.9 ± 3.6</td>
<td>41.3 ± 4.3</td>
</tr>
<tr>
<td>DEXA BF (kg)</td>
<td>36.1 ± 7.3</td>
<td>47.9 ± 6.8</td>
<td>23.1 ± 2.7</td>
<td>33.8 ± 7.1</td>
</tr>
<tr>
<td>DEXA BF (%)</td>
<td>35.8 ± 6.7</td>
<td>46.2 ± 6.5</td>
<td>23.7 ± 2.6</td>
<td>33.6 ± 6.9</td>
</tr>
<tr>
<td>Plethysmography BF (kg)</td>
<td>27.2 ± 8.3</td>
<td>30.6 ± 10.5</td>
<td>15.2 ± 3.6</td>
<td>25.5 ± 9.5</td>
</tr>
<tr>
<td>Plethysmography FFM (%)</td>
<td>44.4 ± 6.7</td>
<td>39.2 ± 9.0</td>
<td>39.1 ± 6.1</td>
<td>42.6 ± 7.9</td>
</tr>
<tr>
<td>Anthropometric equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slaughter BF (kg)</td>
<td>26.2 ± 9.3</td>
<td>30.7 ± 11.3</td>
<td>11.6 ± 3.3</td>
<td>20.7 ± 8.0</td>
</tr>
<tr>
<td>Slaughter BF (%)</td>
<td>42.3 ± 7.6</td>
<td>39.5 ± 9.9</td>
<td>29.5 ± 5.3</td>
<td>34.5 ± 6.6</td>
</tr>
<tr>
<td>Slaughter FFM (kg)</td>
<td>34.7 ± 7.2</td>
<td>45.6 ± 6.5</td>
<td>26.9 ± 1.9</td>
<td>37.5 ± 7.6</td>
</tr>
<tr>
<td>Huang BF (kg)</td>
<td>21.4 ± 8.1</td>
<td>27.9 ± 7.1</td>
<td>14.2 ± 2.5</td>
<td>21.7 ± 7.1</td>
</tr>
<tr>
<td>Huang BF (%)</td>
<td>34.1 ± 6.0</td>
<td>36.1 ± 4.0</td>
<td>36.7 ± 2.6</td>
<td>36.6 ± 4.1</td>
</tr>
<tr>
<td>Huang FFM (kg)</td>
<td>39.5 ± 5.8</td>
<td>48.4 ± 5.0</td>
<td>24.3 ± 2.9</td>
<td>36.5 ± 7.6</td>
</tr>
<tr>
<td>Ellis BF (kg)</td>
<td>18.4 ± 7.5</td>
<td>23.7 ± 6.7</td>
<td>13.8 ± 2.8</td>
<td>22.8 ± 8.2</td>
</tr>
<tr>
<td>Ellis BF (%)</td>
<td>29.1 ± 6.2</td>
<td>30.6 ± 4.3</td>
<td>33.7 ± 3.0</td>
<td>38.2 ± 4.6</td>
</tr>
<tr>
<td>Ellis FFM (kg)</td>
<td>42.5 ± 6.2</td>
<td>52.6 ± 6.2</td>
<td>25.4 ± 2.5</td>
<td>35.4 ± 6.3</td>
</tr>
<tr>
<td>Deurenberg BF (kg)</td>
<td>18.0 ± 4.8</td>
<td>19.3 ± 3.7</td>
<td>11.9 ± 3.2</td>
<td>17.5 ± 6.1</td>
</tr>
<tr>
<td>Deurenberg BF (%)</td>
<td>29.4 ± 3.2</td>
<td>25.2 ± 2.2</td>
<td>30.3 ± 4.7</td>
<td>29.4 ± 3.7</td>
</tr>
<tr>
<td>Deurenberg FFM (kg)</td>
<td>42.9 ± 9.4</td>
<td>57.0 ± 8.5</td>
<td>26.6 ± 2.0</td>
<td>40.7 ± 8.5</td>
</tr>
</tbody>
</table>

BF, Body fat; DEXA, dual-energy x-ray absorptiometry; FFM, fat-free mass

* Significant difference by gender; P < 0.05.
† Significant different by pubertal stage; P < 0.05.

The four-component model [39–41]

The 4C model divides the body into fat, water, protein, and minerals. Because the 4C model adjusts for mineral content, estimates of FFM hydration fraction and density are more precise as compared with the 3C model. The 4C model is considered the gold standard because it accounts for more of the sources of variability of its components. This equation has been validated previously in children of the same age group [42].

The 4C model makes use of the following equation:

\[\text{BF (kg)} = \left(\frac{2.747 \times \text{Body volume (L)}}{\text{plethysmography}}\right) - \left(0.710 \times \text{Total body water (L)} \times \text{isotopic dilution} \right) \]

\[+ \left(\frac{[1.460 \times \text{Bone mineral content} (kg)]}{\text{DEXA}} - (2.050 \times \text{Body weight} (kg))\right) \]

Statistical analysis

Descriptive statistics including minimum, maximum, and frequency distribution were derived for all variables. The Shapiro–Wilks goodness-of-fit test and the homogeneity of variance test were performed for continuous variables. For variables that fulfilled the assumption of normality, averages and standard deviations were calculated; for variables that were not normally distributed, median and interquartile ranges were calculated. Two-way analyses of variance were performed for [(2 Sex) × (2 Pubertal stage)] to compare physical characteristics and body composition between groups.

Results

Table 1 shows the physical characteristics and body composition of the sample by sex and pubertal stage. There were...
significant differences by sex and by pubertal stage, although there were no interaction effects between the two variables. Age, weight, height, total body water, and bone mineral density were significantly higher for boys as compared with girls. Values were also significantly higher among boys for BF (kg) and FFM (kg) per the 4C model, isotopic dilution, DEXA, and plethysmography as well as per the Huang and Deurenberg equations. Boys had significantly higher values for BF (kg) per the Slaughter equation and for FFM (kg) per the Ellis equation. Alternatively, girls had higher values for BF (%) per the Ellis and Deurenberg equations. However, %BF was greater among boys for BF (kg) and FFM (kg) per the Slaughter equation as compared with the Huang equation. Overestimation of FFM (kg) was also significantly greater BF (kg) and FFM (kg) per the Huang, Ellis, and Deurenberg equations. In girls, all 2C methods overestimated BF, whereas isotopic dilution produced the highest concordance during the later stages. The Deurenberg equation produced the lowest concordance, regardless of sex or pubertal stage. For girls in all pubertal stages, isotopic dilution showed the greatest agreement with the reference standard. Among the anthropometric equations, the best concordance with the 4C model was for the Huang equation for boys at all pubertal stages and for girls in stages I and II, whereas the Ellis equation produced the highest concordance for girls in stages III and IV.

Table 2 shows the concordance coefficients by sex and pubertal stage according to the Deurenberg equation.

\[
\begin{array}{cccccc}
\text{Variable} & \text{Boys} & \text{Girls} \\
& \text{Genital stages I and II (n = 19)} & \text{Breast stages I and II (n = 5)} & \text{Genital stages III and IV (n = 14)} & \text{Breast stages III and IV (n = 22)} \\
& \text{Stage I (n = 8)} & \text{Stage I (n = 4)} & \text{Stage III (n = 8)} & \text{Stage III (n = 15)} \\
& \text{Stage II (n = 11)} & \text{Stage II (n = 6)} & \text{Stage IV (n = 6)} & \text{Stage IV (n = 7)} \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Dif} 95\% \text{ CI} & \text{r} & \text{Dif} 95\% \text{ CI} & \text{r} & \text{Dif} 95\% \text{ CI} & \text{r} \\
\text{Isotopic dilution} & 0.968 & -0.509 & -4.296-3.279 & 0.984 & -0.259 & -3.265-2.747 & 0.948 & 1.004 & -0.407-2.414 & 0.978 & 0.344 & -2.926-3.613 \\
\text{Dual-energy x-ray absorptiometry} & 0.971 & 0.284 & -3.510-4.078 & 0.958 & 1.523 & -2.649-5.696 & 0.943 & 0.377 & -1.626-2.379 & 0.965 & 0.561 & -3.563-4.686 \\
\text{Plethysmography} & 0.958 & 1.849 & -0.955-4.653 & 0.965 & 1.967 & -1.330-5.264 & 0.942 & 0.741 & -0.895-2.377 & 0.970 & 1.437 & -1.838-4.712 \\
\text{Slaughter} & 0.746 & 0.899 & -11.058-12.856 & 0.834 & 2.121 & -8.875-13.118 & 0.638 & -2.862 & -5.321-2.403 & 0.849 & -1.415 & -9.770-2.940 \\
\text{Huang} & 0.796 & -3.901 & -11.081-3.280 & 0.853 & -0.752 & -9.464-7.959 & 0.910 & -0.275 & 1.963-1.413 & 0.881 & 0.210 & -4.807-3.588 \\
\text{Ellis} & 0.627 & -6.953 & -13.889-0.017 & 0.707 & 4.874 & -13.731-3.982 & 0.814 & -1.342 & -3.662-0.978 & 0.948 & -1.248 & -5.927-3.431 \\
\text{Deurenberg} & 0.474 & -7.334 & -15.646-0.977 & 0.323 & -9.330 & -21.388-2.729 & 0.620 & -2.587 & -5.264-0.091 & 0.630 & -6.570 & -13.499-0.360 \\
\end{array}
\]

95\% CI, 95% confidence interval; Dif, difference; r, correlation

Table 3 shows the concordance coefficients by sex and pubertal stage according to the Slaughter and Deurenberg equations.

\[
\begin{array}{cccccc}
\text{Variable} & \text{Boys} & \text{Girls} \\
& \text{Genital stages I and II (n = 5)} & \text{Breast stages I and II (n = 5)} & \text{Genital stages III and IV (n = 22)} & \text{Breast stages III and IV (n = 22)} \\
& \text{Stage I (n = 4)} & \text{Stage I (n = 4)} & \text{Stage III (n = 15)} & \text{Stage III (n = 15)} \\
& \text{Stage II (n = 11)} & \text{Stage II (n = 6)} & \text{Stage IV (n = 6)} & \text{Stage IV (n = 7)} \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Dif} 95\% \text{ CI} & \text{r} & \text{Dif} 95\% \text{ CI} & \text{r} & \text{Dif} 95\% \text{ CI} & \text{r} \\
\text{Isotopic dilution} & 0.964 & 0.509 & -3.279-4.296 & 0.972 & 0.259 & -2.747-2.365 & 0.946 & 1.004 & -2.414-0.407 & 0.970 & -0.344 & -3.613-2.926 \\
\text{Dual-energy x-ray absorptiometry} & 0.963 & -0.284 & -4.078-3.510 & 0.918 & 1.523 & -5.696-2.649 & 0.912 & -0.377 & -2.379-1.626 & 0.950 & 0.561 & -4.686-3.563 \\
\text{Plethysmography} & 0.955 & -1.849 & -4.653-0.955 & 0.912 & 1.967 & -5.264-1.330 & 0.911 & -0.741 & -3.277-0.895 & 0.950 & -1.437 & -4.712-1.838 \\
\text{Slaughter} & 0.661 & -0.899 & -12.856-11.058 & 0.588 & 2.121 & -13.118-8.875 & 0.471 & 2.862 & 0.403-5.321 & 0.806 & 3.415 & -2.940-9.770 \\
\text{Huang} & 0.730 & 3.901 & -3.280-11.081 & 0.695 & -0.752 & -7.959-9.464 & 0.884 & 0.275 & -1.413-1.963 & 0.862 & 2.410 & -3.588-8.407 \\
\text{Ellis} & 0.635 & 6.953 & 0.017-13.889 & 0.530 & 4.874 & -3.982-13.731 & 0.760 & 1.342 & -0.978-3.662 & 0.917 & 1.248 & -3.431-5.927 \\
\text{Deurenberg} & 0.583 & 7.334 & -0.977-15.646 & 0.367 & 9.330 & -2.729-21.388 & 0.428 & 2.587 & -0.091-5.264 & 0.651 & 6.570 & -0.360-13.499 \\
\end{array}
\]

95\% CI, 95% confidence interval; Dif, difference; r, correlation
Figure 1 shows the concordance analysis according to the Bland and Altman plots for BF (kg) for the 4C model versus the 2C methods (i.e., isotopic dilution and DEXA) and the Huang and Ellis anthropometric equations, which showed the greatest extent of agreement with the gold standard. In boys, isotopic dilution underestimated BF, whereas DEXA overestimated BF by +0.284 during pubertal stages I and II and by +1.523 during pubertal stages III and IV. In girls, both methods overestimated BF. The Huang and Ellis equations underestimated BF in all subjects, regardless of sex or pubertal stage.

Figure 2 shows the concordance analysis according to the Bland and Altman plots for FFM (kg) for the 4C model versus the 2C methods (i.e., isotopic dilution and DEXA) and the Huang and Ellis anthropometric equations. In boys of all pubertal stages, isotopic dilution overestimated FFM, whereas DEXA underestimated FFM. In girls, both isotopic dilution and DEXA underestimated FFM. The Huang and Ellis equations overestimated FFM in all subjects, regardless of sex or pubertal stage.

Discussion

Several studies in children have agreed that increased BF and the central distribution of BF are responsible for early cardiometabolic alterations and premature mortality during adulthood [3–7]. For this reason, it is necessary to properly assess BF and its distribution to establish the biological risk associated with adiposity [9,10]. This research provides a background for the measurement of BF in schoolchildren, thereby helping to increase the evidence available for both the country and the region studied. Although some methods are ostensibly more exact than others, there is no true gold standard for measuring body composition in vivo. All methods rely on assumptions that
may not be valid in all cases; therefore, the best model is the one that minimizes assumptions. The 4C model quantifies BF and FFM more precisely than other methods because it directly measures mineral, water, and protein content rather than assuming a constant density of FFM [45]. In this study, we chose the 4C model as the reference standard to validate the sensitivity of other methods to estimate body composition (i.e., BF and FFM) in obese schoolchildren at various stages of secondary sex development. Isotopic dilution and DEXA showed the greatest extent of agreement with the reference standard 4C model for both BF and FFM, regardless of sex or pubertal stage, whereas the Deurenberg equation consistently produced the lowest concordance.

Among the various techniques used to estimate adiposity, DEXA \(r = 0.971 \) and isotopic dilution \(r = 0.984 \) showed the greatest agreement with the 4C model in boys during pubertal stages I and II. In girls, isotopic dilution showed the greatest agreement with the 4C model \(r = 0.948 \) for Tanner stages I and II; \(r = 0.978 \) for Tanner stages III and IV). This finding is consistent with results from a study of 30 obese adolescents, which reported an \(r \) value of 0.96 for boys for both DEXA and isotopic dilution as well as \(r \) value of 0.90 and 0.92, respectively, for girls for the two methods [46]. Another study in a group of Mexican adolescents between the ages of 9 and 14 y also found a high concordance of DEXA with the reference standard, regardless of sex or pubertal stage \(r = 0.95 \). Furthermore, a study of 25 children (14 boys and 11 girls) involving similar methodology found that isotopic dilution produced the best concordance with the reference standard \(r = 0.98 \); this was followed by plethysmography \(r = 0.97 \) and DEXA \(r = 0.95 \) [47].

The anthropometric equations produced the lowest concordance with the reference model, regardless of sex or pubertal stage. This finding is consistent with the results of Roemmich and colleagues [27] in a study that compared multicompartmental models with the Slaughter equation \(r = 0.621 \) in 47 adolescents by pubertal stage [39]. In another study that looked at a sample of
114 children who were 12 y old, the lowest concordance with the 4C model was with the Ellis \((r^2 = 0.51)\) and Slaughter \((r^2 = 0.85)\) equations [48].

BF (kg) estimates obtained with the use of the 2C models (i.e., isotopic dilution, DEXA, and plethysmography) were no more than 2 kg different from those calculated with the use of the 4C model for both sexes and for all pubertal stages. This discrepancy is lower than reported by Bray and colleagues [48], who found an average difference of \(-1.73\% (-2.21; -1.26)\) [40].

Isotopic dilution overestimated FFM (kg), which is consistent with the findings of a study of 60 schoolchildren between the ages of 6 and 14 y by Ramirez and colleagues [49], in which isotopic dilution overestimated FFM by 0.75 and 1.41 kg in boys and girls, respectively. In the present study, isotopic dilution overestimated FFM equally in boys and girls and by less than 1 kg during all stages of pubertal development.

When comparing girls with boys in Tanner stages I and II, an overestimation of BF was found for girls, and an underestimation was found for boys. Similar results were found when comparing the results obtained for girls and boys in Tanner stages III and IV.

DEXA overestimated BF in both sexes and during all pubertal stages (+0.284–1.523 kg in boys and +0.377–0.561 kg in girls). Another study reported similar results in a group of obese schoolchildren, in whom DEXA overestimated BF by +1.7\% ± 3.8\% for boys and +2.2\% ± 4.4\% for girls [46]. DEXA underestimated FFM in both sexes and during all pubertal stages as compared with the reference 4C model. These results are consistent with findings reported by Wells and colleagues [45], who found that DEXA underestimated FFM by \(-0.7\%\) as compared with the 4C model.

Among the anthropometric equations, only the Slaughter equation overestimated BF in boys; it did so by +0.899 kg during pubertal stages I and II and by +2.121 kg during stages III and IV, which was contrary to the findings reported by Roemmich and colleagues [27], Bray and colleagues [48], and Wells and colleagues [50], with the last study reporting a discrepancy of \(-3.77\% (-4.53, -3.02)\). The other equations (including the Slaughter equation for girls) underestimated BF for both sexes. This finding is consistent with the studies noted previously [27, 48, 50].

With the exception of the Slaughter equation for boys, all equations overestimated FFM (kg). A previous study of 41 children between the ages of 8 and 12 y reported similar results, with all anthropometric equations overestimating FFM as compared with the 4C model [45].

The literature suggests that anthropometric measures (i.e., skinfold measurements) for obese subjects may be unreliable as a result of the size of the skinfold and the inconsistent level of skill among evaluators. Webber and colleagues [51] compared FFM estimates in 21 obese subjects by using body mass index and skinfolds as compared with bioelectrical impedance analysis (BIA) and DEXA methods. The authors found high correlations between some of the methods \((r^2 = 0.94\) for DEXA versus BIA), but agreement was low among other measures, particularly among skinfolds as compared with DEXA measurements (concordance coefficient, \(-21.9\) to \(-15.8\) kg for estimated FFM).

Another method that is useful for determining body composition is BIA; however, various factors limit its application in an obese population. For example, body geometry and the distribution of body water differ in obese subjects as compared with individuals of normal nutritional status [45]. Anthropometric equations developed for eutrophic subjects generally overestimate FFM in obese children [52].

This study has validated the use of 2C models (i.e., isotopic dilution and DEXA) and anthropometric equations for estimating BF and FFM as compared with the gold standard 4C model in a sample of obese schoolchildren. The high cost and the need for sophisticated equipment associated with the use of the 4C model prevents its wide application in clinical practice; therefore, it is essential to validate other, lower-complexity and lower-cost techniques. The most widely used of these techniques are skinfold measurement, DEXA, and BIA, which rely on various assumptions to convert raw measurements into body composition estimates [53]. These methods represent an improvement over the body mass index, because they provide information about fat versus lean components.

One limitation of this study is that it included only obese children, so the findings cannot be extrapolated to the entire pediatric population. However, it is precisely these children with malnutrition by excess who would benefit most from the evaluation of the fat-to-lean tissue ratio to predict their risk of future cardiovascular disease.

Another limitation is the age group included, which was limited to children between the ages of 8 and 13 y. Future studies should expand the sample to children of a broader age range.

In summary, the results show that there are simpler methods for the evaluation of body composition in obese children that produce high levels of agreement with the ideal 4C model. These methods include isotopic dilution and DEXA, and, as somewhat less preferable options, anthropometric equations.

Conclusion

Both isotopic dilution and DEXA 2C methods demonstrate acceptable levels of agreement with the reference 4C model in obese schoolchildren between the ages of 8 and 13 y. Because of its greater availability, lower cost, and more rapid administration, DEXA is the recommended method for a pediatric population. If groups of children are to be measured, deuterium dilution is suggested, because several children can be dosed and sampled at the same time. As compared with the reference methods used, the anthropometric equations of Slaughter, Huang, Ellis, and Deurenberg showed the lowest concordance with the gold standard for the measurement of BF and FFM. However, anthropometry remains a useful measure of body composition for group or population studies if there are no other methods available.

Acknowledgments

This research was funded by the Domeyko Project at the University of Chile. The authors would also like to thank the educational communities for their active and enthusiastic participation in this study.

References

