EFECTO TERAPÉUTICO DE LAS VITAMINAS ANTIOXIDANTES (C + E) EN EL TRATAMIENTO DE LA HIPERTENSIÓN ARTERIAL ESENCIAL

ROBERTO BECERRA BUSTAMANTE

Memoria para optar al Título Profesional de Médico Veterinario Departamento de Ciencias Biológicas Animales.

PROFESOR GUÍA: Prof. Dr. RAMÓN RODRIGO SALINAS

SANTIAGO, CHILE
2007
EFECTO TERAPÉUTICO DE LAS VITAMINAS ANTIOXIDANTES (C + E) EN EL TRATAMIENTO DE LA HIPERTENSIÓN ARTERIAL ESPECIAL

ROBERTO BECERRA BUSTAMANTE

Memoria para optar al Título Profesional de Médico Veterinario Departamento de Ciencias Biológicas Animales.

NOTA FINAL: …………………...

NOTA FIRMA

PROFESOR GUÍA: RAMÓN RODRIGO SALINAS …………………… ……………………
PROFESOR CONSEJERO: BESSIE URQUIETA MANGIOLA …………………… ……………………
PROFESOR CONSEJERO: VÍCTOR PARRAGUEZ GAMBOA …………………… ……………………

SANTIAGO, CHILE 2007
Agradecimientos

A mis padres y hermana por darme una hermosa familia, gracias por su amor y apoyo incondicional durante todos estos años. Gracias a ellos he podido estudiar y llegar a ser lo que actualmente soy.

A Denice, mi amor, gracias por el apoyo y la paciencia que me haz brindado todos estos años. Espero que éste sea el inicio de una nueva etapa y que todos nuestros anhelos y proyectos se hagan realidad.

A todos mis amigos de la Universidad, que a pesar de compartir entre libros y pruebas, pasamos muy buenos momentos, que hicieron de la U un lugar más ameno.

A mi profesor guía Dr. Ramón Rodrigo, por su ayuda y guía en este trabajo, por su cordialidad y buena disposición en todo momento.

A los funcionarios del laboratorio Diego Soto y Juan Pinto, gracias por su tiempo, simpatía y disposición.

Y por supuesto, agradezco a Dios, porque me ha permitido vivir este momento junto a los que más quiero en la vida.
ÍNDICE

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN</td>
<td>1</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>3</td>
</tr>
<tr>
<td>1. INTRODUCCIÓN.</td>
<td>3</td>
</tr>
<tr>
<td>2. REVISIÓN BIBLIOGRÁFICA</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Características de la hipertensión arterial</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Etiología de la Hipertensión arterial.</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Radicales Libres.</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Defensas Antioxidantes.</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Superóxido dismutasa (SOD).</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2 Catalasa (CAT).</td>
<td>17</td>
</tr>
<tr>
<td>2.4.3 Glutación peroxidasa (GSH-Px).</td>
<td>18</td>
</tr>
<tr>
<td>2.4.4 Sustancias o moléculas antioxidantes no enzimáticas</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Estrés oxidativo.</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1 Acción del estrés oxidativo sobre macromoléulas</td>
<td>21</td>
</tr>
<tr>
<td>2.6 Antioxidantes naturales en la prevención del estrés oxidativo.</td>
<td>23</td>
</tr>
<tr>
<td>2.6.1 Flavonoides y polifenoles.</td>
<td>24</td>
</tr>
<tr>
<td>2.6.2 Carotenoides.</td>
<td>25</td>
</tr>
<tr>
<td>2.6.3 Vitamina C.</td>
<td>26</td>
</tr>
<tr>
<td>2.6.4 Vitamina E.</td>
<td>28</td>
</tr>
<tr>
<td>2.7 Tratamientos antihipertensivos.</td>
<td>29</td>
</tr>
<tr>
<td>2.7.1 Medidas no farmacológicas.</td>
<td>30</td>
</tr>
<tr>
<td>2.7.2 Tratamiento farmacológico.</td>
<td>31</td>
</tr>
<tr>
<td>2.7.2.1 Diuréticos.</td>
<td>31</td>
</tr>
<tr>
<td>2.7.2.2 β-bloqueadores.</td>
<td>32</td>
</tr>
<tr>
<td>2.7.2.3 Inhibidores de la enzima convertidora de angiotensina (ECA)</td>
<td>32</td>
</tr>
<tr>
<td>2.8 Vitaminas C y E en el tratamiento de la hipertensión arterial esencial.</td>
<td>33</td>
</tr>
<tr>
<td>3. HIPÓTESIS.</td>
<td>36</td>
</tr>
<tr>
<td>4. OBJETIVOS.</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Objetivo General.</td>
<td>36</td>
</tr>
<tr>
<td>4.2 Objetivos Específicos.</td>
<td>36</td>
</tr>
<tr>
<td>5. MATERIAL Y MÉTODOS.</td>
<td>37</td>
</tr>
</tbody>
</table>
5.1 Diseño del protocolo de estudio de los pacientes: ...37
 5.1.1 Selección de pacientes hipertensos..37
 5.1.2 Condiciones de los pacientes para la obtención de la muestra..................38
5.2 Procesamiento de la muestra...38
5.3 Evaluación de los parámetros relacionados con estrés oxidativo.....................38
 5.3.1 Capacidad antioxidante total del plasma (FRAP).38
 5.3.2 Actividad de enzimas antioxidantes en hemolizado de eritrocitos:39
 5.3.2.1 Catalasa (CAT). ...39
 5.3.2.2 Superóxido dismutasa (SOD). ...40
 5.3.2.3 Glutatión peroxidasa (GSH-Px). ...41
 5.3.3 Relación GSH/GSSG en hemolizado de eritrocitos:44
 5.3.4 Lipoperoxidación: ..45
 5.3.4.1 Niveles plasmáticos de F2-isoprostanos ..45
 5.3.4.2 Niveles de malondialdehído (MDA) en eritrocitos45
 5.3.5 Determinación de hemoglobina en el glóbulo rojo47
5.4 Análisis estadístico. ...47
 5.4.1 Determinación del tamaño muestral. ...47
 5.4.2 Análisis de datos...47
6. RESULTADOS. ...49
 6.1 Características de los pacientes ...49
 6.2 Parámetros relacionados con las defensas antioxidantes...............................53
 6.2.1 Plasmáticos. ..53
 6.2.2 Eritrocitos. ..56
 6.3 Parámetros relacionados con estrés oxidativo: lipoperoxidación....................60
 6.3.1 Plasmáticos. ..60
 6.3.2 Eritrocitarios...61
 6.4 Correlaciones establecidas entre los niveles plasmáticos de lipoperoxidación y presión arterial de pacientes hipertensos esenciales tratados con placebo y vitaminas.62
 6.5 Correlaciones establecidas entre la capacidad antioxidante total del plasma y presión arterial de pacientes hipertensos esenciales tratados con placebo y vitaminas..64
7. DISCUSIÓN ...66
8. CONCLUSIONES. ...73
9. BIBLIOGRAFÍA. ..74
RESUMEN

Actualmente se ha involucrado al estrés oxidativo en la patogenia de la hipertensión arterial esencial. El aumento de radicales libres, sumado a una disminución de las defensas antioxidantes, pueden inducir disfunción endotelial con el consiguiente aumento de la presión arterial. Es por este motivo, que durante la última década las terapias antioxidantes han generado un considerable interés por parte de los investigadores. Sin embargo, los resultados de la eficacia clínica de los tratamientos antioxidantes contra la hipertensión arterial esencial, han resultado controvertidos. El objetivo del presente estudio consiste en comprobar la hipótesis que la administración oral de vitaminas C + E reduce el estrés oxidativo, conjuntamente con la presión arterial en pacientes con hipertensión arterial esencial.

Se realizó un estudio prospectivo, doble ciego, controlado con placebo, en una población de 60 pacientes hipertensos esenciales de sexo masculino, entre 35 y 65 años de edad, sin factores de riesgo tales como tabaquismo, alcoholismo, obesidad o dislipidemia. Los participantes fueron separados en forma aleatoria en 2 grupos. El primer grupo de 30 pacientes fue tratado con vitaminas C (1000 mg/día) + vitamina E (400 UI/día) durante dos meses. En cambio, el segundo grupo de 30 pacientes fue tratado con placebo durante igual período.

Antes y después del tratamiento se midió la presión arterial durante 24 horas a través de un Holter. Además, se evaluaron las defensas antioxidantes a través de la determinación de la capacidad antioxidante del plasma (FRAP, ferric reducing ability of plasma) y la actividad de las enzimas antioxidantes superóxido dismutasa (SOD), catalasa (CAT) y glutatión peroxidasa (GSH-Px), la relación glutatión reducido/oxidado (GSH/GSSG) en eritrocitos y las concentraciones plasmáticas de vitamina C y E. La evaluación del estrés oxidativo se realizó a través de la determinación de F2-isoprostanos en el plasma y malondialdheido (MDA) en eritrocitos.

Los pacientes hipertensos esenciales tratados con vitaminas antioxidantes, respecto de los tratados con placebo, presentaron menores valores de presión arterial sistólica y diastólica (p < 0.001) y mayor actividad enzimática de SOD, CAT y GSH-Px en los eritrocitos (p < 0.001). También los pacientes hipertensos esenciales tratados con vitaminas antioxidantes presentaron mayores valores de la capacidad antioxidante del plasma y de la
relación GSH/GSSG en el eritrocito, respecto de los pacientes tratados con placebo. A cerca de los parámetros relacionados con el estrés oxidativo, los pacientes hipertensos esenciales tratados con vitaminas demostraron una menor lipoperoxidación, comparados con los pacientes tratados con placebo. Por lo tanto, las concentraciones plasmáticas de F₂-isoprostanos de los pacientes hipertensos tratados con vitaminas fueron significativamente más bajas que aquellas de los pacientes tratados con placebo.

Finalmente, en ambos grupos, las cifras de presión arterial se correlacionaron positivamente con las concentraciones plasmáticas de F₂-isoprostanos y negativamente con las concentraciones plasmáticas de FRAP.

Estos resultados nos permiten confirmar que el estrés oxidativo está involucrado en la patogénesis de la hipertensión arterial esencial y que el aumento del estatus antioxidante a través de la administración oral de vitaminas C + E, reduce la presión arterial en estos pacientes.
SUMMARY

Oxidative stress has been related to the pathogenesis of essential hypertension. The increase of free radicals and decrease of the antioxidant defense systems may cause endothelial dysfunction increasing the blood pressure. Therefore, during the last decade, antioxidant therapies have gained considerable interest. However, the clinic efficacy of the antioxidant therapies to treat essential hypertension remains controversial. The objective of this study is to test the hypothesis that oral administration of vitamins C and E reduces the oxidative stress, diminishing the blood pressure in patients with essential hypertension.

A prospective, double blind, placebo-controlled clinical trial was carried out in 60 essential hypertensive patients all men between 35 and 65 years old, excluding patients with additional risk factors such as smoking, alcoholism, obesity and dyslipidemia. Patients were randomly divided in two groups. The 30 patients of the first group received vitamin C (1000 mg) and vitamin E (400 UI) every day during two months, whereas the 30 patients of the second group received placebo.

Before and after the treatment there was a 24 hours blood pressure measurement using a Holter. Besides, antioxidant defenses were evaluated through the determination of the plasma antioxidant status (FRAP, ferric reducing ability of plasma) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (GSH-Px). The ratio of reduced to oxidized glutathione (GSH/GSSG) in erythrocytes and the plasma levels of vitamin C and E were also measured. Evaluation of oxidative stress was carried out by determining the F$_2$-isoprostanes and malondialdehyde (MDA).

Compared to the patients that received placebo, the essential hypertensive patients treated with antioxidant vitamins showed lower rates of systolic and diastolic blood pressure (p < 0.001) and an increase of the enzymatic activity of SOD, CAT y GSH-Px in erythrocytes. They also presented higher rates of the plasma antioxidant capacity and of the GSH/GSSG ratio as measured in the erythrocyte. Regarding the parameters related to the oxidative stress, essential hypertensive patients treated with vitamins showed lower lipoperoxidation indices than the patients treated with placebo. Therefore, the plasma F$_2$-isoprostanes concentrations of the hypertensive patients treated with vitamins, were significantly lower than those of the patients treated with placebo.
Finally, the blood pressure levels correlated positively with the plasma levels of F₂-isoprostanes and negatively with the plasma concentrations of FRAP in both groups.

These results allow us to confirm that the oxidative stress is involved in the pathogenesis of essential hypertension, and that the increase of the antioxidant status through oral administration of vitamins C + E reduces the blood pressure in those patients.
1. INTRODUCCIÓN

La Hipertensión Arterial (HTA) es una enfermedad crónica de etiología variada y que se caracteriza por el aumento sostenido de la presión arterial, ya sea sistólica, diastólica o de ambas. Esta es una enfermedad altamente prevalente a nivel mundial y es un importante factor de riesgo para las enfermedades cardiovasculares y cerebrovasculares.

A pesar de que desde la década del 50 se sabía que la HTA intervenía en el aumento de la morbilidad cardiovascular en los países desarrollados, fueron los estudios realizados en las décadas de los 60 y 70, los que claramente demostraron la relación entre hipertensión y las muertes por complicaciones en los órganos blancos: corazón, cerebro, riñones y vasos sanguíneos.

Según datos obtenidos por la Organización Mundial de la Salud, las enfermedades cardiovasculares como la HTA deben ser consideradas como un problema de salud prioritario en las Américas, debido a la gran cantidad de pacientes que la padecen y a las enormes repercusiones sociales y económicas.

Del total de pacientes hipertensos, en un 95% se desconoce su causa y mecanismo fisiopatológico, constituyendo ésta la HTA esencial. Las causas específicas que producen la HTA esencial todavía no han sido descritas con claridad, sin embargo, se le ha relacionado con una serie de factores que suelen estar presentes en la mayoría de los pacientes que la padecen. En este sentido, diversos estudios clínicos y experimentales le han asignado un importante papel al estrés oxidativo como agente causal de la HTA esencial, debido a que el aumento de radicales libres puede provocar alteraciones en la estructura y función de la pared vascular y producir así, una elevación crónica de la presión arterial. El estrés oxidativo inducido por las especies reactivas del oxígeno es causado por una producción aumentada de anión superóxido y de sus metabolitos y/o por una actividad reducida de las defensas antioxidantes.

Por esto se piensa que si aumentamos la biodisponibilidad de sustancias antioxidantes, debería disminuir el estrés oxidativo con la consecuente disminución de la presión arterial. Existen evidencias experimentales que apoyan la idea de que los antioxidantes exógenos tienen eficacia terapéutica. Hay estudios que demuestran que la incidencia de ciertos tipos de cáncer y de enfermedades cardiovasculares, es menor en poblaciones cuyo consumo de vitaminas C, E y carotenos está por encima del promedio.
Además, se sabe que el consumo de alimentos con propiedades antioxidantes origina un incremento de la capacidad antioxidante en el plasma sanguíneo. Esto podría explicar la llamada paradoja francesa, que consiste en la baja incidencia de enfermedades coronarias entre los franceses, a pesar de su importante consumo de ácidos grasos.

Las recomendaciones actuales para los pacientes hipertensos se basan en el consumo de dietas que contengan antioxidantes como las vitaminas C, E y flavonoides, las que además serían útiles en la prevención de otras enfermedades crónicas, cuya fisiopatología esté relacionada con el estrés oxidativo. Lo anterior se sustenta en diversos estudios que indican que una dieta rica en frutas y verduras, reduce la presión arterial en personas con hipertensión moderada.

Sin embargo, aún faltan estudios concluyentes sobre el uso de terapias antioxidantes contra la HTA esencial. Debido a lo anterior, por medio de la experimentación que comprende este estudio, se pretende comprobar la eficacia de la vitaminas antioxidantes C+E en el tratamiento de la HTA esencial.
2. REVISIÓN BIBLIOGRÁFICA

2.1 Características de la Hipertensión Arterial

La HTA es un importante problema de salud pública, tanto en países desarrollados como en aquellos en vías de desarrollo. La HTA afecta aproximadamente a 50 millones de personas en los Estados Unidos y a 1 billón en todo el mundo, provocando 7,1 millones de muertes, alrededor del 13% del total mundial (World Health Organization, 2002). A pesar de esta alta incidencia, la mayor parte de los pacientes desconoce su enfermedad, motivo por el cual se le ha llamado “el asesino silencioso”.

La presión sanguínea elevada (hipertensión arterial) es definida como un aumento por sobre 140 mm Hg para la presión sistólica y sobre 90 mm Hg para la presión diastólica. Pacientes con presión sistólica entre 120 a 139 mm Hg o diastólica entre 80 a 89 mm Hg, son considerados “pre-hipertensos” y necesitan monitoreo médico y cambios en su estilo de vida (Chobanian et al., 2003)

La HTA se presenta en el 60 a 70% de la población sobre los 60 años de edad y puede provocar complicaciones cardiovasculares tales como paro cardíaco, enfermedad coronaria e insuficiencia cardiaca (Kashyap et al., 2005).

En nuestro país, según la Encuesta Nacional de Salud del año 2003, existe una prevalencia de HTA de un 33,7%, según el tamizaje realizado en la población de 17 años y más. Además, se encontró que el 40,2% de estas personas no conocía su condición. De la población de pacientes con presión arterial alta, el 63% se sabe hipertenso, el 44% está recibiendo medicación y sólo un 22% presenta cifras de presión dentro de rangos normales (MINSAL, 2005). Todo esto se transduce en una carga importante para el nivel primario de salud, siendo la HTA la primera causa de consulta en el nivel primario de atención (9,4% de todas las consultas).

La prevención de la enfermedad y sus complicaciones parece ser el punto más importante y constituye, además, un desafío debido a que el 35% de la mortalidad del país es causada por enfermedades directamente relacionadas a complicaciones derivadas de la HTA. Parte de la prevención incluye la detección, ya que casi el 40% de los hipertensos desconoce su condición (Lama y Oliva, 2001).
La HTA es una manifestación de un proceso multifactorial en cuya fisiopatología están implicados numerosos factores genéticos y ambientales, que determinan cambios estructurales del sistema cardiovascular, produciendo el estímulo hipertensivo e iniciando el daño cardiovascular. La interacción de estos factores no está todavía lo suficientemente aclarada, involucrándose alteraciones del sistema nervioso simpático, renales, del sistema renina-angiotensina-aldosterona, diversos mecanismos humorales y, más recientemente, la disfunción endotelial producto del estrés oxidativo. Debido a esto, se acepta que la HTA es una patología de múltiples etiologías (de Champlain et al., 2004).

Actualmente, el estrés oxidativo asociado al daño oxidativo ha sido involucrado como mediador de injuria e inflamación vascular en muchas enfermedades cardiovasculares que incluyen hipertensión, ateroesclerosis y diabetes. Se ha demostrado un aumento en la generación de especies reactivas del oxígeno en pacientes hipertensos (Touyz y Schiffrin, 2004). También se ha descubierto que la capacidad antioxidante total del plasma estaría disminuida en forma significativa en pacientes con HTA esencial, en comparación con los controles sanos (Kashyap et al., 2005).

El estrés oxidativo es un fenómeno que puede resultar de una depleción de antioxidantes en el organismo, debido a causas nutricionales o a una excesiva producción de especies reactivas del oxígeno (ROS), que facilitan la patogenia de diversas enfermedades (Kashyap et al., 2005).

Cuando aumenta el estrés oxidativo, aumentan también las lesiones que producen los radicales libres. Éstos reaccionan químicamente con lípidos, proteínas, carbohidratos y DNA al interior de las células y con componentes de la matriz extracelular, por lo que pueden desencadenar un daño irreversible que, si es muy extenso, puede llevar a la muerte celular.

Por lo tanto, el sistema antioxidante exógeno y endógeno del organismo, juega un papel fundamental en la prevención y limitación del daño oxidativo. Las enzimas superóxido dismutasa (SOD), catalasa (CAT), glutatión peroxidasa (GSH-Px) y la relación glutatión reducido/oxidado (GSH/GSSG) corresponden a antioxidantes endógenos del organismo. Por otra parte, muchos de los antioxidantes exógenos como polifenoles, vitaminas A, C y E, pueden ser suplementados en la dieta.
Actualmente, diversos estudios clínicos y experimentales, le han asignado un importante papel al estrés oxidativo como agente causante de la HTA esencial, debido a que el aumento de radicales libres puede provocar alteraciones en la estructura y función de la pared vascular y producir así, una elevación crónica de la presión arterial (Cai y Harrison, 2000).

Se ha comprobado que un aumento del estrés oxidativo altera la función endotelial, reduciendo la biodisponibilidad del óxido nítrico (NO) (Ferroni et al., 2006). Una excesiva generación de ROS, puede producir daño en células endoteliales o musculares, generando cambios agudos y crónicos en su estructura y función. Dentro de estas alteraciones encontramos reducción del lumen vascular, hiperтроfia e hiperplasia de las células musculares de la vasculatura y disfunción del endotelio (Escobales y Crespo, 2005). Además, el endotelio dañado pierde su capacidad vasodilatadora, lo que contribuye a la trombosis y oclusión arterial (Rosendorff et al., 2007).

Actualmente, la disfunción endotelial se reconoce como un componente precoz de una variedad de enfermedades cardiovasculares y como un factor de riesgo en las enfermedades coronarias. Debido a esto, es importante valorar este concepto, a fin de que cualquier intervención terapéutica que se lleve a cabo, debe considerar dicha alteración. De hecho, varias intervenciones tales como: el dejar de fumar, la actividad física, el uso de antioxidantes, una dieta saludable y el uso de algunos medicamentos antihipertensivos, influyen benéficamente sobre la función endotelial deteriorada (Lama y Oliva, 2001).

El estrés oxidativo ha sido involucrado en varias enfermedades degenerativas tales como: el cáncer, la diabetes, enfermedades cardiovasculares y la enfermedad de Alzheimer, así como también en el envejecimiento (Rabovsky et al., 2006). Es por esto que se ha relacionado una menor incidencia de enfermedades degenerativas en aquellas personas que han iniciado un incremento en el consumo de frutas y verduras, debido al alto contenido de varios antioxidantes que se encuentran presentes en estos alimentos, los cuales neutralizan la acción de los radicales libres, desempeñando una función fundamental en la prevención de dichas enfermedades (Keith et al., 2001).

Estudios realizados en pacientes hipertensos demuestran que el consumo de una dieta rica en frutas y verduras, contribuye a la reducción de la presión arterial (Sacks et al., 2001). Por lo tanto, la adopción de un estilo de vida saludable es imprescindible para
prevenir la elevación de la presión arterial e indispensable en personas hipertensas, constituyendo esto un pilar fundamental en el tratamiento. Por esta razón, actualmente se ha enfocado el estudio en las propiedades antioxidantes de las drogas actualmente disponibles y en la suplementación con principios antioxidantes (Rosendorff et al., 2007).

Es así que un estudio demostró que el tratamiento antioxidante con tempol (compuesto con efecto mimético de la superóxido dismutasa), reduce el estrés oxidativo y previene el desarrollo de hipertensión relacionado con la edad, en ratas espontáneamente hipertensas (Nabha et al., 2005). Otro estudio demostró que la suplementación con antioxidantes ayuda a incrementar la protección antioxidante del plasma (Rabovsky et al., 2006).

Recientemente, se demostró que el consumo diario de cacao ayuda a personas con prehipertensión o hipertensión moderada a controlar sus niveles de tensión arterial, sin que este suplemento contribuya a aumentar otros factores de riesgo cardiovascular. Esto debido a que el cacao contiene sustancias antioxidantes como los polifenoles, los que reducirían el daño oxidativo, aumentando la generación de óxido nítrico por parte del endotelio (Taubert et al., 2007).

Con toda esta evidencia, se piensa que la administración de antioxidantes tales como las vitaminas C y E, además de disminuir el estrés oxidativo, podrían también reducir la presión arterial de los pacientes tratados. Sin embargo, la principal dificultad para sugerir el uso de vitaminas antioxidantes como el tratamiento más adecuado para la HTA esencial, es la escasez de estudios que avalen la eficacia de estas vitaminas sobre dicha enfermedad.
2.2 Etiología de la Hipertensión Arterial

La elevación crónica de la presión arterial puede resultar de una variedad de alteraciones fisiopatológicas, que pueden involucrar al sistema nervioso autónomo, disfunciones renales, disfunciones endocrinas, anormalidades neurohumorales, alteraciones de membrana celular y cambios vasculares estructurales.

La patogenia de la hipertensión involucra una variedad de mecanismos autoperpetuantes, a nivel celular y molecular, que contribuyen a su cronicidad y al daño de órganos blanco. Se produce daño vascular con disfunción endotelial, que lleva a la pérdida de la capacidad de relajación vascular, agregación plaquetaria, inflamación, remodelación y aumento de la resistencia vascular periférica (Hernández, 2005).

El 95% de las hipertensiones que se observan en la clínica no tienen una etiología definida, constituyen la llamada hipertensión arterial esencial, también denominada primaria o idiopática, mientras que el 5%, son secundarias a diversas causas, entre las que destacan por su frecuencia las inducidas por drogas o fármacos, la enfermedad cardiovascular, renovascular, la falla renal, el feocromocitoma y el hiperaldosteronismo. HTA esencial o primaria no significa que la causa sea desconocida, sino que no se ha establecido una causa única. Sin embargo, distintos estudios indican que los factores genéticos y ambientales, juegan un papel importante en el desarrollo de la HTA esencial.

Los estudios de familias han indicado que menos de la mitad de las variaciones de la presión arterial en la población general, son explicadas por factores genéticos. Hay muchos genes que pueden participar en el desarrollo de hipertensión, la mayoría de ellos están involucrados, directa o indirectamente, en la reabsorción renal de sodio (Maicas et al., 2003).

La existencia de mayor prevalencia de antecedentes familiares de HTA en estos pacientes y la ausencia de éstos en normotenso, sugiere la existencia de alteraciones genéticas, que explicarían la mayor facilidad para la aparición de la HTA en determinados individuos sometidos a la acción de los factores ambientales que favorecen su aparición, tales como el consumo de sal, el sobrepeso y el estrés. Así, por ejemplo, se ha establecido una asociación entre hipertensión arterial y una dieta rica en sal y también una relación inversa entre ingesta de potasio e hipertensión. Cabe destacar que el consumo elevado de sal, es un factor que coopera al desarrollo de HTA, pero no es suficiente por sí solo para
generar HTA. Otro factor importante a considerar es el consumo excesivo de alcohol, así como también la obesidad. Esta última genera resistencia insulínica y un aumento de la secreción de insulina, la cual genera cambios a nivel vascular aumentando la resistencia sistémica y por ende la presión arterial (Lopes et al., 2003).

Existen muchos otros factores a los cuales se le ha relacionado con la fisiopatología de la HTA esencial, como por ejemplo: el incremento en la secreción o la inapropiada actividad de la renina, con el resultante incremento en la producción de angiotensina II, el incremento en la actividad de factores de crecimiento, las alteraciones en los receptores adrenérgicos, que influencian la frecuencia cardíaca, el inotropismo cardíaco y el tono vascular y las alteraciones celulares en el transporte iónico (Gamboa, 2006).

En la actualidad existe un nuevo concepto que involucra a las anormalidades funcionales y estructurales, incluyendo la disfunción endotelial, el incremento del estrés oxidativo y la remodelación vascular en la fisiopatología de la HTA esencial (Ferroni et al., 2006). Una excesiva generación de ROS puede producir daño en células endoteliales o musculares, generando cambios agudos y crónicos en su estructura y función (Rosendorff et al., 2007). Lo anterior proporciona nuevos antecedentes en el tratamiento de la HTA esencial con medidas que atenúen el efecto nocivo del estrés oxidativo, mediante el empleo de agentes antihipertensivos que controlen (o eliminen) los factores fundamentales que producen aumentos de la resistencia periférica, que determinan HTA sostenida y posean acción antioxidante (Pandya, 2001).

2.2.1 Endotelio

El endotelio vascular es un órgano distribuido en todo el organismo con multiplicidad de funciones físicas, bioquímicas y hormonales, como barrera de contención, regulador del flujo y de la migración celular, así como modulador del tono vascular local, expresión de factores del crecimiento y de hormonas locales responsables de influir en procesos como el estrés oxidativo, la inflamación, la respuesta inmune, la trombosis, la remodelación vascular y la apoptosis, todo esto en íntima relación con el exacto equilibrio de la salud cardiovascular.

El endotelio vascular ya no es considerado únicamente como una mera barrera que separa la sangre circulante del espacio subendotelial, sino como un receptor de estímulos...
físicos y químicos, que responde liberando diferentes mediadores que influyen poderosamente en el tono vascular y en el crecimiento y proliferación de las células vasculares, manteniendo así el balance vasomotor y la homeostasis vascular (Esper et al., 2006).

Entre las principales sustancias vasodilatadoras secretadas por el endotelio se encuentran:
- El NO, al que se le reconocen además propiedades antiagregantes y antiproliferativas.
- La prostaciclina, de menor poder vasodilatador y que se produce fundamentalmente en respuesta a la fuerza que ejerce la sangre sobre las paredes de los vasos sanguíneos o *shear stress*.
- El factor hiperpolarizante, derivado del endotelio (EDHF) que a través de cambios en la polarización de la membrana, también provoca dilatación.
- La bradicinina es un potente vasodilatador y también estimula la liberación de NO y del EDHF, ambas sustancias vasodilatadoras. Además posee propiedades antiagregantes y antiproliferativas (Schiffrin, 2001)

El NO es el derivado endotelial más relevante y su función vasodilatadora y antiproliferativa bien reconocida. Su producción o biodisponibilidad disminuida podría inducir vasoconstricción y crecimiento vascular y, consecuentemente, aumento de las resistencias vasculares, con el consiguiente aumento de la tensión arterial.

Las sustancias vasoconstrictoras secretadas por el endotelio son la Angiotensina II (AII), de acción vasoconstrictora directa e indirecta a través del estímulo para la liberación de la Endotelina (ET-1), ésta última es la más potente sustancia vasoconstrictora conocida. El Tromboxano A2, que es un metabolito del ácido araquidónico, también constrictor y la Prostaglandina H2 (Schiffrin, 2001).

El equilibrio que resulta de la acción de los factores endoteliales inductores de vasoconstricción y proliferación celular y los factores inductores de vasodilatación y antiproliferación, es esencial para la homeostasis vascular (Ferroni et al., 2006).

Dentro de las funciones que podemos destacar del endotelio se encuentran:

1. Forma una superficie lisa que facilita el flujo laminar de la sangre y previene la adherencia de las células sanguíneas.
2. Forma una barrera permeable para el intercambio de nutrientes entre el plasma y el intersticio celular, regulando al mismo tiempo el transporte de sustancias entre ambos.
3. Regula la angiogénesis y el remodelado vascular.
4. Contribuye a la formación y mantenimiento de la matriz extracelular.
5. Produce factores de crecimiento en respuesta al daño vascular, influyendo especialmente en la proliferación del músculo liso vascular.
6. Produce sustancias que regulan la agregación plaquetaria, coagulación y fibrinolisis. Sintetiza y degrada diversas hormonas.
7. Participa en la respuesta inmune generando citoquinas que modulan la actividad de los linfocitos.
8. Libera agentes que actúan de forma paracrina sobre las células musculares lisas adyacentes, regulando su contracción.

2.2.2 Disfunción endotelial

La disfunción endotelial se define como el conjunto de alteraciones que afectan a la síntesis, liberación, difusión y degradación de los diferentes factores derivados del endotelio y constituye un fenómeno de aparición precoz en diversas enfermedades (Simón et al., 2001).

La mayoría de los investigadores ha comprobado que la disfunción endotelial coexiste en la mayoría de los pacientes hipertensos, aunque algunos estudios demuestran que ésta pueda estar presente mucho antes que el aumento de la presión arterial, cuando prevalece junto con resistencia a la insulina e hiperinsulinemia, concomitantes con otras enfermedades, como la dislipidemia, la diabetes y la obesidad (Alexanderson et al., 2003).

También se ha comprobado que la disfunción endotelial puede ser un factor que predice tempranamente eventos cardiovasculares, particularmente en pacientes hipertensos (Zoccali et al., 2006).

Existen dos mecanismos comprobados de activación y disfunción del endotelio en los pacientes hipertensos: el aumento del shear stress y el estrés oxidativo.

El shear stress, llamado también estrés por roce, se ha observado en la hipertensión arterial como mecanismo de disfunción endotelial. Las células endoteliales expuestas
constante a fuerzas hemodinámicas alteradas, como el flujo pulsátil y el aumento de la presión hidrostática, generan una respuesta vasodilatadora produciendo NO y bradicinina (Osanai et al., 2000). Sin embargo, una vez superado el efecto vasodilatador se producen modificaciones estructurales en la pared endotelial (Alexanderson et al., 2003).

Las membranas de la célula endotelial tienen canales iónicos especializados, como el canal activado por K\(^{+}\), que se abre en respuesta al shear estrés. Este efecto es para hiperpolarizar la célula endotelial, obligando al incremento del ingreso de calcio y activando la eNOS y la subsecuente generación de NO (Esper et al., 2006).

Otro mecanismo decisivo de daño endotelial en la HTA esencial es el estrés oxidativo. Existen numerosos reportes que consideran que este último contribuye al daño vascular y varios estudios han demostrado que un aumento del estrés oxidativo altera la función endotelial, reduciendo la biodisponibilidad del NO (Ferroni et al., 2006), generando una disminución de la vasodilatación dependiente del endotelio en pacientes con hipertensión arterial (López y Casado, 2001).

El NO se sintetiza en las células endoteliales a partir del aminoácido L-arginina por una enzima citosólica, la óxido nítrico sintasa (NOS) de la cual hay tres tipos, la endotelial o tipo III (eNOS), la neuronal o tipo I (nNOS) y la inducible, calcio independiente (iNOS).

En ausencia de cofactores (L-arginina y tetrahidrobiopterina) la NOS puede producir anión superóxido y peróxido de hidrógeno, contribuyendo así al estrés oxidativo y a la disfunción endotelial. Este hecho se ha denominado desacoplamiento de la eNOS y se ha presentado evidencia de que esto puede suceder in vivo en varias condiciones fisiopatológicas asociadas a estrés oxidativo (Cai et al., 2000).

Numerosos estudios han demostrado efectos beneficiosos en la suplementación aguda y crónica de L-arginina en la producción de NO y función endotelial, demostrando así su capacidad de reducir la presión sanguínea en algunas formas de hipertensión experimental (Gokce, 2004).

En presencia de estrés oxidativo, el anión superóxido actúa neutralizando al NO, con el cual se combina para formar peroxinitrito (Pryor y Squadrito, 1995). El peroxinitrito es un compuesto con una capacidad oxidante muy alta, que puede inducir la oxidación de proteínas, DNA y lípidos de las células vasculares (Ballinger et al., 2000). A su vez, el peroxinitrito puede oxidar el ácido araquidónico, liberando F\(_2\)-isoprostanos. Estos últimos
son compuestos similares a las prostaglandinas y tienen un poderoso efecto vasoconstrictor a nivel renal, causando una marcada reducción de la filtración glomerular y del flujo renal (Takahashi et al., 1992).

Se ha demostrado que los F_2-isoprostanos estimulan la síntesis de DNA, de RNA mensajero y la expresión proteica de endotelina-1 (ET-1), que es considerado el vasoconstrictor más potente actualmente conocido (Yura et al., 1999).

Debido a su potente efecto vasoconstrictor y mitogénico, las endotelinas han sido involucradas en la patogenia de la hipertensión (Ergul, 2000). Se ha demostrado en variados modelos de hipertensión en animales, que las concentraciones plasmáticas de ET-1 expresados por el endotelio vascular están incrementados (Day et al., 1995). En humanos, varios estudios han demostrado también un aumento de las concentraciones plasmáticas de ET-1 en pacientes hipertensos (Kohno et al., 1990).

La familia de las endotelinas (ET) está constituida por tres isoformas de 21 aminoácidos: endotelina-1 (ET-1), endotelina-2 (ET-2) y endotelina-3 (ET-3). Las ET son potentes presores endógenos secretadas por diferentes células y tejidos del organismo. De las tres isoformas, la ET-1 es sintetizada predominantemente por el endotelio vascular. La ET-1 induce vasoconstricción, es proinflamatoria, profibrosis y tiene acción potencialmente mitógena, además, es un importante factor en la regulación del tono vascular y participa en la remodelación vascular (Baltazares et al., 2005). Los tres tipos de ET descritas actúan sobre dos tipos de receptores: A y B. Los receptores Tipo A (ET-A) tienen 10 veces más afinidad por la ET-1 que por la ET-3 y se hallan mayormente en las células musculares lisas de los vasos y en los cardiomiocitos. La estimulación de estos receptores por la ET -1 activa la fosfolipasa C que por una serie de pasos lleva a un aumento de la concentración intracelular de calcio, determinando la contracción de las células musculares lisas de los vasos. Los receptores Tipo B (ET-B) se encuentran predominantemente en las células endoteliales y en mucha menor medida en las células musculares lisas y tienen similar afinidad tanto para la ET-1 como para la ET-3. La estimulación de los ET-B produce tanto vasoconstricción como vasodilatación, esta última mediada por el incremento de la producción de NO y prostaciclinas.

El bloqueo de los receptores ET-A ha prevenido la remodelación vascular, el estrés oxidativo y ha disminuido significativamente la presión arterial sistólica en un modelo de
hipertensión arterial inducida mediante la inyección de aldosterona en ratas (Pu Q et al., 2003).

Se ha comprobado que bajo condiciones de estrés oxidativo aumentan las concentraciones de ET-1 como respuesta inflamatoria, esto induce remodelación vascular y disfunción endotelial, en modelos de hipertensión (Schiffrin, 2005). Además, en células musculares lisas tratadas con peróxido de hidrógeno (H$_2$O$_2$) existe un significativo aumento en la formación de ET-1 y F$_2$-isoprostanos (Ruef et al., 2001), lo que indica que el estrés oxidativo aumenta la generación y la actividad autocrina de ET-1 en estas células.

También se han encontrado concentraciones plasmáticas significativamente más altas de ET-1 en los hipertensos negros, en comparación con los hipertensos de raza blanca, por lo que el sistema de las endotelinas podría ser de importancia en el desarrollo y/o en el mantenimiento de la HTA en esta población (Ergul, 2000).

2.3 Radicales Libres

En la última década se han acumulado evidencias que permiten afirmar que los radicales libres y el conjunto de especies reactivas que se les asocian, juegan un papel central en nuestro equilibrio homeostático. Las reacciones químicas de los radicales libres se dan constantemente en las células de nuestro cuerpo y son necesarias para la salud, pero el proceso debe ser controlado con una adecuada protección antioxidante. Entre los antioxidantes que se ingieren por la dieta destacan las vitaminas y los compuestos fenólicos, que por diversos mecanismos neutralizan especies radicalarias. Por lo tanto, es de especial importancia su consumo moderado a través de la dieta y evitar los factores de riesgo que inducen reacciones oxidativas en nuestro organismo (Avello y Suwalsky, 2006).

En sentido estricto, un radical libre representa cualquier especie química de existencia independiente que posee uno o más electrones desapareados (es decir, un número impar) girando en sus orbitales atómicos externos. Esta configuración, electroquímicamente muy inestable, le confiere la propiedad de ser una especie química altamente agresiva y de corta vida (Halliwell y Whiteman, 2004).

Una vez formados, los radicales libres interactúan con otras moléculas a través de reacciones redox con el propósito de lograr una configuración electrónica estable. En una reacción redox ocurre una transferencia de electrones entre las especies químicas
participantes. Una de ellas cede electrones libres (proceso denominado oxidación) y otra, necesariamente, los recibe (proceso denominado reducción) (Chihuailaf et al., 2002).

La importancia biológica de estas especies químicas estriba en que pueden alterar la estructura de las membranas celulares, producir daño en las proteínas intracelulares, oxidación de las lipoproteínas plasmáticas y aceleración del envejecimiento celular. Los radicales libres pueden formarse químicamente por la transferencia de un electrón, o bien por la ruptura homolítica de un enlace covalente de una molécula normal, lo que significa que cada fragmento de la molécula retiene uno de los electrones que formaban el par del enlace (Rodrigo y Rivera, 2003).

En los organismos vivos, las ROS tienen orígenes endógenos y exógenos. El primer grupo abarca a los radicales libres generados intracelularmente y que actúan tanto dentro, como fuera de la célula. Su producción, accidental o deliberada, se localiza en cuatro fuentes claramente definidas (Yu, 1994; Morrisey y O’ Brien, 1998):

a) Durante el metabolismo aeróbico normal, las mitocondrias consumen oxígeno molecular y lo reducen secuencialmente hasta producir agua. Una pequeña fracción del oxígeno se metaboliza vía reducción univalente y los inevitables productos intermedios de esta reacción son el radical superóxido, el peróxido de hidrógeno y el hidroxilo.
b) Los peroxisomas que contienen acil coA oxidasa, dopamina β-hidroxilasa, urato oxidasa y otras, generan peróxido de hidrógeno como producto intermedio.
c) El sistema enzimático citocromo P-450 constituye una defensa primaria contra varios xenobióticos y sustancias endógenas que aumentan la producción de radicales libres.
d) Los aniones superóxido pueden ser producidos deliberadamente cuando los fagocitos (monocitos, neutrófilos y macrófagos) destruyen células infectadas con bacterias o virus, mediante una descarga oxidante compuesta básicamente por el peróxido de hidrógeno, hipoclorito y óxido nítrico, además del anión superóxido.

Los iones metálicos de los elementos de transición también pueden formar radicales libres, especialmente cuando se encuentran en el estado reducido, pueden sufrir una autoxidación a la vez que transforman la molécula de oxígeno en anión superóxido:

\[\text{Fe}^{2+} + \text{O}_2 \rightarrow \text{Fe}^{3+} + \text{O}_2^- \]
El peróxido de hidrógeno (H_2O_2) aunque no es un radical libre (pero se considera también una de las especies reactivas de oxígeno), puede generar un radical libre extremadamente reactivo, como es el hidroxilo ($\cdot\text{OH}$) en presencia de iones metálicos como Fe$^{2+}$, Cu$^{+}$ ó Mn$^{+}$ a través de la reacción de Fenton (Rodrigo y Rivera, 2003).

Por otra parte, estos iones al estado reducido también pueden catalizar la reacción entre el peróxido de hidrógeno y el anión superóxido, conocida como la reacción de Haber-Weiss (Rodrigo y Rivera, 2003).

Es importante señalar que los iones metálicos de elementos de transición pueden catalizar estas reacciones químicas solamente cuando se encuentran libres. Por lo tanto, una manera de controlar este efecto es a través de la formación de complejos con sustancias quelantes, que por esta vía previenen la formación de radicales libres.

Un aumento en la producción de las ROS ha sido asociado con el desarrollo de la hipertensión y su rol ha sido muy estudiado en los últimos años (Zalba et al., 2001; Chang y Wu, 2006). Sin embargo, se cree que la administración de sustancias antioxidantes podría generar una defensa contra el estrés oxidativo a través de la reducción de las ROS, disminuyendo así la inactivación del NO, generando efectos beneficiosos en la estructura y función vascular.

2.4 Defensas antioxidantes

Dado que las ROS y otras formas de radicales libres se producen constantemente en forma inevitable durante los procesos metabólicos, la célula ha desarrollado un poderoso y complejo sistema de defensa para limitar la exposición a estos agentes, que recibe el nombre genérico de antioxidantes, los que pueden definirse como moléculas que previenen la formación descontrolada de radicales libres o inhiben sus reacciones con estructuras biológicas (Chaudière y Ferrari, 1999).

A partir de esta definición se considera que las defensas antioxidantes incluyen:

a) Agentes que remueven catalíticamente las especies reactivas.

b) Proteínas que minimizan la disponibilidad de prooxidantes como iones de fierro o cobre.
c) Proteínas que protegen biomoléculas por otros mecanismos.

d) Agentes de bajo peso molecular que reducen las especies reactivas.

Posteriormente, este concepto fue aplicado a los antioxidantes aportados por la dieta, los que fueron definidos como “sustancias presentes en los alimentos que disminuyen los efectos de las especies reactivas, tales como especies reactivas de oxígeno y nitrógeno”.

Las defensas antioxidantes del organismo se pueden clasificar en 2 categorías: enzimáticas y no enzimáticas. Las enzimas antioxidantes (superóxido dismutasa, catalasa y glutatión peroxidasa), constituyen la primera línea de defensa contra los radicales libres y esta acción se lleva a cabo neutralizando a estas especies químicas, a través de la conversión en otras de efecto menos dañino (Rodrigo y Rivera, 2003).

2.4.1 Superóxido dismutasa (SOD)

Esta enzima es una metaloproteína presente en las células aerobias y fluidos extracelulares. Su función es catalizar la dismutación del radical libre superóxido a peróxido de hidrógeno, lo que no requiere de cosustratos. Así, reaccionan dos moléculas de anión superóxido para formar peróxido de hidrógeno, el cual a su vez puede ser destruido por las actividades de catalasa o glutatión peroxidasa (Rodrigo y Rivera, 2003).

\[
O_2^- + O_2^- + 2H^+ \xrightarrow{SOD} H_2O_2 + O_2
\]

La SOD presenta tres isoformas, dependiendo del metal que contenga. Las isoformas predominantes son la SOD-Cu y SOD-Zn, localizadas preferentemente en el citosol. La isoforma SOD-Mn se encuentra en la matriz mitocondrial y es un homotetramero de 96 kDa que contiene un átomo de Mn en cada subunidad y es esencial para la supervivencia de la vida aerobia y el desarrollo de resistencia celular a la toxicidad inducida por las ROS. Además, es inducida por su sustrato u otros oxidantes y su expresión es aumentada por el factor de necrosis tumoral-alfa (Gutteridge y Halliwell, 2000).

Se ha comprobado que una infusión de superóxido dismutasa disminuye las ROS, así como también la presión arterial en ratas espontáneamente hipertensas (Nakazono et al., 1991).
Diversos estudios han demostrado que los niveles plasmáticos de superóxido dismutasa están disminuidos en pacientes con HTA esencial (Redon et al., 2003; Kashyap et al., 2005).

También se ha demostrado que la administración de vitaminas C y E reducen el estrés oxidativo, restauran la estructura y función vascular y previenen la progresión de la hipertensión en ratas espontáneamente hipertensas, además de aumentar los niveles de superóxido dismutasa en el plasma (Chen et al., 2001).

2.4.2 Catalasa (CAT)

La catalasa es una de las enzimas más abundantes en la naturaleza y se encuentra ampliamente distribuida en el organismo humano, aunque su actividad varía en dependencia del tejido. Ésta resulta más elevada en el hígado y en los riñones, más baja en el tejido conectivo y en los epitelios y prácticamente nula en el tejido nervioso. A nivel celular se localiza en las mitocondrias y en los peroxisomas, excepto en los eritrocitos, donde se encuentra en el citosol.

Es una enzima tetramérica de 60 kDa formada por cuatro subunidades idénticas. La CAT como parte del sistema antioxidante está involucrada en la destrucción del H$_2$O$_2$ generado durante el metabolismo celular. Esta enzima se caracteriza por su alta velocidad de reacción, sin embargo, posee una menor afinidad por el H$_2$O$_2$, en comparación con la GSH-Px.

\[
2 \text{H}_2\text{O}_2 \xrightarrow{\text{CAT}} \text{H}_2\text{O} + \text{O}_2
\]

En animales, el H$_2$O$_2$ se detoxifica mediante las actividades de la CAT y GSH-Px. Aunque la CAT no es esencial para algunos tipos de células en condiciones normales, tiene un importante papel en la adquisición de tolerancia al estrés oxidativo en la respuesta adaptativa de las células (Cheeseman y Slater, 1993).

Se ha descubierto que a medida que aumenta la concentración plasmática de ácido ascórbico, se incrementa la actividad de CAT y aumentan los niveles de tioles no proteicos. Por lo tanto, cuando existe sobreproducción de ROS, disminuye la concentración
plasmática de ácido ascórbico y por consiguiente de CAT (Kashyap et al., 2005). Otro estudio demostró que los niveles de CAT se encuentran disminuidos en pacientes hipertensos esenciales, al ser comparados con controles sanos (Nandeesha et al., 2007).

2.4.3 Glutación peroxidasa (GSH-Px)

Es una selenoproteína que, en las células animales, se ubica en la matriz mitocondrial y en el citosol. En presencia de glutación reducido (GSH), como agente reductor, cataliza la reducción del peróxido de hidrógeno y otros hidroperóxidos orgánicos en agua y alcohol, respectivamente.

\[
\begin{align*}
H_2O_2 + 2GSH & \xrightarrow{GSH-Px} H_2O + GSSG \\
ROOH + 2GSH & \xrightarrow{GSH-Px} ROH + GSSG + H_2O
\end{align*}
\]

Se han descrito cuatro isoformas de GSH-Px que difieren tanto en su ubicación como en la especificidad de sustrato, tres de las cuales presentan estructura tetramérica. La primera de ellas, GSH-Px celular o clásica, está prácticamente en todas las células, puede reducir el peróxido de hidrógeno e hidroperóxidos orgánicos libres y convertirlos en agua y alcoholes. La segunda isoforma es la GSH-Px plasmática o extracelular, es una glicoproteína purificada, caracterizada a partir de plasma humano que se sintetiza principalmente en las células tubulares proximales del riñón. El tercer tipo es la GSH-Px fosfolípido hidroperóxido, cuya función biológica primaria es proteger contra la lipoperoxidación, reduciendo hidroperóxidos de ácidos grasos en las membranas celulares y previniendo la oxidación de lipoproteínas de baja densidad. Es la única isoforma cuya estructura es monomérica, es decir, contiene un sólo residuo de selenocisteína. El último tipo se denomina GSH-Px gastrointestinal y representa la principal peroxidasa dependiente de glutación en el tracto gastrointestinal. Es importante en la reducción de hidroperóxidos de colesterol y en la protección contra la toxicidad por ingestión de hidroperóxidos lipídicos (Holben y Smith, 1999).
En células animales y especialmente en eritrocitos humanos, la principal enzima antioxidante para la detoxificación de H$_2$O$_2$ es la GSH-Px, ya que la CAT presenta mucho menor afinidad por el H$_2$O$_2$. La GSH-Px es una enzima dependiente del aporte dietético de selenio (Se), elemento traza que puede, por lo tanto, modular la actividad de esta enzima (Rodrigo y Rivera, 2003).

Al igual que las enzimas antes mencionadas, y debido al efecto del estrés oxidativo, la GSH-Px también se encuentra disminuida en pacientes con HTA esencial (Kashyap et al., 2005).

2.4.4 Sustancias o moléculas antioxidantes no enzimáticas

La segunda barrera antioxidante es de tipo no enzimático, dada por compuestos antioxidantes que actúan a nivel celular y extracelular, que son responsables de la capacidad antioxidante de los fluidos biológicos (plasma) y de la protección del daño oxidativo de las distintas partículas y macromoléculas circulantes. Las moléculas antioxidantes son vitaminas, minerales y otras sustancias de bajo peso molecular que inhiben la tasa de oxidación de los radicales libres. Pueden aumentar su velocidad de ruptura, prevenir la participación de iones de metales de transición, inactivar y barrer (scavengers) para proteger el organismo de infecciones, deterioro celular, envejecimiento prematuro y cáncer (Cheeseman y Slater, 1993).

Las enzimas antioxidantes requieren metales como cobre (Cu), hierro (Fe), manganeso (Mn), zinc (Zn) o selenio (Se) para su acción, éstos se conocen como metales antioxidantes. A diferencia de las enzimas antioxidantes, que no se consumen, las sustancias antioxidantes se modifican al reaccionar con los radicales libres y deben reemplazarse porque sí se consumen. Algunos de origen endógeno, tales como glutatión, urato, ubiquinol y proteínas plasmáticas, deben ser reemplazados por síntesis.

Si son de origen exógeno (provenientes de la dieta), para ser reemplazados necesitan ser nuevamente ingeridos. Una molécula antioxidante al reaccionar con un radical libre se puede transformar en otro radical libre más estable y, por lo tanto, menos dañino para el organismo. Otra de las acciones de los antioxidantes consiste en formar complejos con los iones metálicos (acción quelante), impidiendo de esta manera que estos iones lleguen a
favorecer la formación de radicales libres. Son fundamentales para la prevención de enfermedades porque son fácilmente modificables.

Entre los compuestos más representativos de antioxidantes endógenos intracelulares se puede mencionar al glutatión reducido (GSH), la tioredoxina, la glutaredoxina, aminoácidos, melatonina y otros. Entre los antioxidantes exógenos se encuentran la vitamina E, ácido ascórbico (vitamina C), beta-caroteno (provitamina A), vitamina A, bilirrubina, ácido úrico, polifenoles, entre otros.

2.5 Estrés Oxidativo

El sistema de defensa antioxidante puede manejar y disponer de las ROS formadas, evitando que estas especies aumenten lo suficiente como para producir daño a biomoléculas y estructuras de la célula. Esto obedece a que el organismo dispone de mecanismos antioxidantes defensivos para combatir la producción normal de radicales libres. Sin embargo, hay situaciones patológicas en las cuales se elevan las ROS en el estado estacionario, como resultado de un desbalance producido entre los efectos prooxidantes y las defensas antioxidantes, con predominio de los primeros. Este estado metabólico es lo que se conoce como estrés oxidativo y ha sido definido como “un trastorno en el balance prooxidante-antioxidante a favor del prooxidante, que conduce a daño potencial” (Sies, 1991). Miller et al, (1993) se refieren también al estrés oxidativo como la resultante de una deficiencia de sustancias protectoras naturales o de una excesiva exposición a agentes generadores de radicales libres. En otras palabras, el estrés oxidativo se desencadena cuando los prooxidantes exceden a la capacidad antioxidante de un organismo.

Diversos estudios han puesto de manifiesto que una ingesta inadecuada sustancias antioxidantes deprime la acción de algunas enzimas antioxidantes, lo que favorece la presentación del estrés oxidativo. Otros factores como el estrés, la enfermedad, o la inducción de la respuesta inmune, llevan a un incremento en los requerimientos de vitaminas y minerales traza, la mayoría de ellos involucrados en la defensa antioxidante.

Las reacciones de las ROS con sustratos orgánicos son complejas y pueden afectar diversas estructuras de la célula, según el tipo de biomolécula que resulte atacado por ellas, pudiendo llegar incluso a producir la muerte celular (Rodrigo y Rivera, 2003). A continuación se revisarán los efectos de las ROS sobre lípidos, proteínas y ácidos nucleicos.
2.5.1 Acción del estrés oxidativo sobre macromoléculas

La mayoría de las macromoléculas biológicas pueden ser oxidadas por los radicales libres, sin embargo, las biomoléculas más lábiles son los lípidos. Esto parece estar relacionado con el grado de insaturación de estas moléculas. Las reacciones de lipoperoxidación consisten en un proceso de oxidación de los ácidos grasos poliinsaturados (PUFA). Como consecuencia de este proceso, se destruyen los PUFA, compuestos que poseen tres o más uniones carbono-carbono con doble enlace, que les confiere una zona de enlace lábil (hidrógeno alílico) lo que permite que una molécula activa como el •OH, les sustraiga un átomo de hidrógeno (etapa de iniciación). Así, se genera un radical lipídico (R•) que continúa participando de reacciones en cadena (etapa de propagación), ya que se trata de un proceso autocatalítico, perpetuando así el proceso. El radical R• se combina con el oxígeno formando un lipoperóxido (ROO•), el que a su vez puede retirar un nuevo átomo de hidrógeno de otro carbono molecular y formar un hidroperóxido. De esta manera, persiste el proceso autocatalítico que convierte el carbono del ácido graso de los fosfolípidos de membrana, en hidroperóxidos. Los hidroperóxidos lipídicos son inestables y en presencia de iones metálicos pueden participar en la reacción de Fenton para formar radicales alcóxidos (RO•). Las reacciones de lipoperoxidación tienen una etapa de término, cuando reaccionan dos radicales libres para formar productos conjugados que no son radicales.

La lipoperoxidación sigue propagándose de esta manera y llega a su término cuando dos ROOH reaccionan entre sí, dando un tetróxido o cuando son neutralizados por los antioxidantes. Los tetróxidos son inestables, al romperse generan aldehidos de bajo peso molecular (malondialdehido) y cadenas hidrocarbonadas (etano, etileno, pentano, dienos conjugados, etc.). Los aldehidos son moléculas muy reactivas y, por lo tanto, se desplazan sólo hasta escasa distancia del sitio de su formación.

La lipoperoxidación afecta principalmente a los fosfolípidos de las membranas celulares, donde residen los ácidos grasos poliinsaturados. En el caso del ácido araquidónico, su lipoperoxidación forma compuestos entre los que se encuentran los 8-isoprostanos (F₂-isoprostanos) que poseen una estabilidad que permite utilizarlos como biomarcadores de estrés oxidativo in vivo, ya que sus niveles pueden ser medidos en el plasma. De esta manera, se puede evaluar la contribución del estrés oxidativo en una
determinada situación fisiológica o fisiopatológica, o bien, probar la eficacia que un tratamiento o intervención pueden tener para disminuir los niveles de estrés oxidativo.

Un elevado consumo de ácidos grasos poliinsaturados puede provocar que el organismo tenga mayor susceptibilidad a la lipoperoxidación. Sin embargo, esto puede ser contrarrestado con la suplementación de antioxidantes tales como la vitamina C, vitamina E y carotenoides (Fang et al., 2002).

El ataque de las ROS también afecta a las proteínas, a través de modificaciones de determinados aminoácidos, los cuales poseen mayor susceptibilidad. Los sitios más susceptibles son las cadenas laterales de amino ácidos azufrados y los grupos tiol (-SH). Las ROS pueden abstraer un átomo de H⁺ de la cisteína para formar un radical libre en la proteína, el que se unirá a un segundo grupo para formar un puente disulfuro (unión cruzada). El O₂⁻ puede destruir en forma irreversible funciones enzimáticas que dependen del centro hierro-azufre, por oxidación de este grupo. Triptofano tiene mucha facilidad para formar productos de unión cruzada a través de los residuos tirosina. Otros aminoácidos como histidina, lisina, prolina, arginina y serina forman grupos carbonilo por su oxidación (carbonilación), proceso que puede ser utilizado para evaluar el grado de estrés oxidativo. La degradación oxidativa de las proteínas es exacerbada en presencia de cofactores metálicos como iones de elementos de transición (Ej. hierro). En estos casos, el metal se une a un sitio bivalente de la proteína y allí reacciona con H₂O₂ a través de una reacción de Fenton para formar un radical •OH, que rápidamente oxida un residuo aminoácido cercano. Como consecuencia, se altera la estructura primaria, secundaria y terciaria de las proteínas afectadas, cambia su carga eléctrica y se producen reacciones de unión cruzada formando productos de agregación. Resulta particularmente relevante señalar que en estas condiciones, las proteínas aumentan la susceptibilidad a la proteolisis y se produce la fragmentación de la cadena polipeptídica (Rodrigo y Rivera, 2003).

Estas alteraciones provocadas por los radicales libres se manifiestan tanto en el catabolismo intracelular de proteínas, como en sistemas extracelulares, en especial en las proteínas de la matriz intercelular. Por otra parte, algunas proteínas pueden comportarse como generadoras y propagadoras de radicales libres, como es el caso de la mioglobina y la peroxidasa que generan radicales libres en presencia de H₂O₂ (Vicedo y Vicedo, 2000).
El DNA también constituye un blanco de ataque por parte de las ROS, principalmente el DNA mitocondrial (Machlin y Bendich, 1987). Este DNA, por su localización, se encuentra expuesto a un flujo constante y elevado de ROS provenientes de la cadena respiratoria. Además, carece de histonas en su estructura, lo que le resta estabilidad. Por otra parte, se ha observado que sus mecanismos de reparación son menos eficientes (Chaudière y Ferrari, 1999). En general, dentro del espectro de alteraciones que puede sufrir el DNA se describe la oxidación de desoxirribosas, ruptura y entrecruzamientos de cadenas y la modificación de bases nitrogenadas. Sin embargo, estas alteraciones serán significativas en la medida que sean intensas y capaces de eludir los sistemas de reparación antes de que ocurra la replicación.

Como consecuencia del daño oxidativo, se producen delecciones, que pueden llegar a la ruptura de la cadena, o bien se puede eludir al sistema de reparación antes de que ocurra la replicación, llevando así a mutaciones (Rodrigo y Rivera, 2003).

2.6 Antioxidantes naturales en la prevención del estrés oxidativo

Los agentes capaces de reforzar las defensas antioxidantes pueden ser administrados como fármacos o suplementos. Sin embargo, el papel más relevante queda a cargo de los antioxidantes aportados por la dieta. Estas sustancias van a contribuir a reducir el estrés oxidativo a través de sus variados efectos. Estudios epidemiológicos han dado a conocer que la mayor eficiencia de estos agentes se observa en el efecto complementario que producen sus diversos representantes, que es superior al efecto individual científicamente demostrado. La exposición a los antioxidantes naturales puede ser analizada a través de las encuestas dirigidas. También, se pueden medir biomarcadores plasmáticos que reflejen la ingesta. Ambos procedimientos dan información complementaria. Una de las mediciones que se puede realizar, de uso creciente en la actualidad, es la determinación de la capacidad antioxidante total del plasma. Este parámetro mide la presencia de sustancias reductoras en la sangre, capaces de reducir el hierro férrico a ferroso (FRAP: ferric reducing ability of plasma) y da cuenta del efecto producido por el conjunto de los antioxidantes presentes en el plasma (Pulido et al., 2000)

También se puede cuantificar este parámetro en algunos alimentos que permiten que la determinación se aplique (por ejemplo: vino, aceite, algunas bebidas o dietas líquidas,
etc.), pero la eficacia in vivo va a depender de la biodisponibilidad de los componentes antioxidantes que se encuentran presentes en estas fuentes. Por esta razón, para validar esta determinación resulta necesario relacionar el valor del parámetro in vitro con los efectos que tiene la ingestión de esta sustancia sobre el parámetro medido en el plasma.

Entre los antioxidantes que se ingieren por la dieta, destacan las vitaminas y los compuestos fenólicos, que por diversos mecanismos neutralizan a los radicales libres. Dichos radicales pueden encontrarse en el plasma sanguíneo, los que son estabilizados por las sustancias antioxidantes, previniendo reacciones que pueden generar especies aún más nocivas. Es de especial importancia asegurar su consumo moderado a través de la dieta y evitar los factores de riesgo que inducen reacciones oxidativas en nuestro organismo (Avello y Suwalsky, 2006).

Para analizar la identidad de los antioxidantes se han agrupado de acuerdo a sus características químicas. A continuación se presentan las propiedades y los efectos de: flavonoides, carotenoides, vitamina E y vitamina C.

2.6.1 Flavonoides y polifenoles

Los flavonoides son compuestos orgánicos derivados de la estructura de la flavona, que se encuentran en frutas, verduras, granos, raíces, tallos, flores, té y vino. Sin embargo, no es requisito indispensable para los antioxidantes ser flavonoides. Una característica estructural más importante para tal efecto, es la presencia de la función fenol, es decir, un radical OH unido a un anillo aromático (compuestos fenólicos), lo que puede repetirse varias veces en el caso de los polifenoles. Existen también flavonoides con grupos fenólicos que son los flavonoles (E.J. miricetina y quercetina).

Los efectos beneficiosos que estos productos tienen sobre la salud humana, ya eran conocidos desde antes de que fueran aislados. En la actualidad se han identificado más de 4 mil variedades de flavonoides, muchos de los cuales son responsables del color de las flores, frutos y hojas. Un producto con contenido importante en polifenoles es el vino, componente esencial de la dieta mediterránea y que puede ser uno de los factores responsables de la baja incidencia de enfermedad coronaria, en las poblaciones mediterráneas (Renaud y Ruf, 1994).
Varios estudios han analizado las posibles explicaciones de la así llamada “paradoja francesa” y el efecto de la dieta mediterránea (Renaud y Ruf, 1994). Podemos concluir entonces que los flavonoides polifenólicos del vino tinto son, al menos en parte, responsables de aumentar las defensas antioxidantes del organismo, disminuyendo así los efectos del estrés oxidativo (Rodrigo y Bosco, 2006).

El mecanismo de la acción antioxidante de los flavonoides consiste en reaccionar con las ROS, u otros radicales libres, para formar un radical libre menos reactivo, de acuerdo con la siguiente ecuación:

\[
\text{Flavonoide(OH)} + \text{R} \cdot \rightarrow \text{Flavonoide(O•) + RH}
\]

Algunos flavonoides pueden amortiguar directamente el \(\text{O}_2^{-} \), mientras que otros lo hacen con el altamente reactivo peroxinitrito. Mediante esta habilidad los flavonoides pueden inhibir la oxidación de las lipoproteínas de baja densidad (LDL) \textit{in vitro}, lo que teóricamente les da una acción preventiva contra la ateroesclerosis.

2.6.2 Carotenoides

Los carotenoides son un grupo de pigmentos naturales liposolubles que el ser humano no es capaz de sintetizar y que necesita adquirirlos por medio de la dieta. Se encuentran fundamentalmente en las frutas y verduras, proporcionándoles coloración amarilla, anaranjada y roja que a veces se enmascara por el color de la clorofila, dando coloración verde oscura como ocurre en algunos vegetales de hojas (Macías et al., 2002).

En estudios epidemiológicos recientes se ha demostrado una asociación entre niveles elevados de carotenoides en la dieta o en sangre y un efecto protector contra el desarrollo de enfermedades crónicas como ciertos tipos de cáncer, enfermedades cardiovasculares, enfermedades degenerativas de la mácula y cataratas. Este hecho, sumado a la función de algunos de estos compuestos como precursores de la vitamina A, ha provocado un interés creciente.
El perfil de carotenoides séricos está determinado fundamentalmente por la dieta. Por lo tanto, cambia con la época del año y se manifiestan diferentes características por países. En el suero humano se han identificado, gracias a la cromatografía líquida de alta resolución (HPLC), unos 20 carotenoides, muchos de ellos isómeros (Khachik et al., 1997). Generalmente se cuantifican 6 que se encuentran mayoritariamente en todos los individuos de distintos países y son: alfa-caroteno, beta-caroteno, beta-criptoxantina, luteína, zeaxantina y licopeno. Todos ellos tienen actividad como antioxidantes y sólo los 3 primeros son precursores de la vitamina A.

La exposición a estos compuestos puede ser evaluada ya sea a través de encuestas dietéticas o a través de los niveles plasmáticos o tisulares (tejido adiposo). El carácter liposoluble de estos compuestos permite estimar la exposición sistémica en una muestra de tejido adiposo donde se acumulan. La ventaja de este estudio, en relación a la medición de los niveles plasmáticos, es que permite tener una evaluación de la exposición a largo plazo, pero la necesidad de practicar una biopsia disminuye la participación y además el costo del estudio analítico es elevado.

La biodisponibilidad de los carotenoides en los alimentos depende de la matriz alimenticia y del tratamiento previo. Las verduras de hojas verdes cuando están crudas tienen pobre biodisponibilidad, que pasa a ser intermedia en las verduras cocidas. La cocción moderada y el vapor, mejoran la biodisponibilidad de los carotenoides. Así, el licopeno de la salsa de tomate tiene una biodisponibilidad considerablemente superior a la del jugo de tomate o tomate crudo.

Se ha comprobado que el tomate tiene una gran capacidad antioxidante debido al gran contenido de vitamina C, vitamina E y licopeno, antioxidantes que son capaces de inactivar a los radicales libres. Además, se ha comprobado que estos antioxidantes naturales presentes en el tomate, reducen la presión sanguínea en pacientes con HTA esencial (Engelhard et al., 2006).

2.6.3 Vitamina C

La vitamina C (ácido ascóbico) es un nutriente esencial para el normal funcionamiento metabólico. Los seres humanos y otros primates, así como los cobayos y algunos murciélagos, son los únicos mamíferos conocidos que son incapaces de sintetizar
ácido ascórbico. Como es característico en animales que no requieren vitamina C en la dieta, la rata sintetiza ácido ascórbico a partir de glucosa por medio de la formación intermediaria de ácido D-glucurónico, ácido L-gulónico, y L-gulonolactona. Los seres humanos, monos y cobayos carecen de la enzima hepática necesaria para llevar a cabo esta última reacción, es decir, la conversión de L-gulonolactona en ácido L-ascórbico (Linster y Van Schaftingen, 2007).

Las principales fuentes son frutas y verduras, en particular cítricos. La deficiencia de esta vitamina provoca una condición llamada escorbuto, la cual puede ser prevenida con aportes tan mínimos como 10 mg al día.

La vitamina C participa como cofactor enzimático en varias etapas del metabolismo del colágeno, carnitina y neurotransmisores. La deficiencia de esta vitamina causa inestabilidad y debilidad de estructuras compuestas de colágeno, lo que se expresa como debilidad general, dolor articular, mala capacidad de cicatrización, etc. La carnitina es esencial para el transporte de ácidos grasos hacia la mitocondria. De no ocurrir esto, se producen sensaciones de fatiga y letargia. Se ha determinado que el ácido ascórbico está involucrado en diferentes acciones en los sistemas biológicos. Por ejemplo, participa como cofactor durante la hidroxilación de dopamina por la dopamina b-hidroxilasa en la médula adrenal, en la glándula pituitaria y en el sistema endocrino en general (Madrigal et al., 1997). Cuadros caracterizados por depresión o cambios de ánimo, observados tempranamente en el escorbuto, pueden derivar de la alteración en el metabolismo de la dopamina, derivados de la deficiencia de la vitamina C.

La vitamina C participa en las vías metabólicas reduciendo el ión metálico del centro activo de varias mono y dioxigenasas. La habilidad de la vitamina de reducir iones metálicos está relacionada con su potencial redox. Una expresión de lo anterior es la reducción del hierro férrico a estado ferroso en el tracto gastrointestinal, aumentando así su posibilidad de ser absorbido. Otras actividades de la vitamina C se relacionan con la mantención de los grupos tioles de enzimas en estado reducido, con lo que se preservarían los niveles de glutatión.

Dentro de las acciones como antioxidante de la vitamina C, destaca su capacidad de atrapar tanto especies reactivas de oxígeno, como de nitrógeno. La vitamina C, in vitro también puede actuar como co-antioxidante al regenerar el α-tocoferol, β-carotenó y
glutatión, a partir de sus respectivos compuestos oxidados. Sin embargo, se desconoce si esta actividad es cuantitativamente importante. Una característica que hace a la vitamina C un buen antioxidante, es que su radical oxidado (radical ascorbilo) posee gran estabilidad y rápidamente puede ser reducido a vitamina C, por sistemas NADH dependientes (Rodrigo y Rivera, 2003).

La dosis diaria actualmente recomendada es de 75 mg al día en mujeres y 90 mg al día en hombres (Olguín et al., 2004), aunque se ha propuesto que dosis de entre 90 y 120 mg al día, serían las óptimas para observar un efecto en la reducción del riesgo de enfermedades crónicas en población no fumadora. De cualquier forma, en la estimación de la dosis diaria se debe tomar en cuenta la alteración derivada del procesamiento de los alimentos. Se sabe que la vitamina C puede ser destruida con la exposición a altas temperaturas o con la oxidación provocada por la cocción de los alimentos con grandes volúmenes de agua.

2.6.4 Vitamina E

El término vitamina E es atribuible a 8 diferentes formas de compuestos producidos exclusivamente por vegetales: α-, β-, γ-, y δ-tocoferoles y α-, β-, γ-, y δ-tocotrienoles. La vitamina E comercialmente disponible contiene una mezcla de estos compuestos en su forma natural y algunos sintéticos. Todos poseen una biodisponibilidad y bioequivalencia diferente. Por ejemplo, la cantidad de γ-tocoferol en una dieta habitual, es mayor que la de α-tocoferol. Sin embargo, su concentración plasmática es sólo un 10% la del α-tocoferol.

La vitamina E se encuentra ampliamente distribuida en los aceites vegetales, huevos, lechuga, mantequilla y cereales. A pesar de que representa uno de los más abundantes antioxidantes en las plantas, su concentración en las membranas celulares y en las LDL es baja. Dada la proporción tan pequeña que tiene la vitamina E en la célula, durante su mecanismo de acción antioxidante es necesario y obligatorio, la regeneración del radical α-tocoferil, para su nueva utilización. De no ocurrir esto, se pondría de manifiesto su acción pro-oxidante. En la regeneración del α-tocoferol, participan otros antioxidantes no enzimáticos como son la vitamina C, el ácido alfa lipoico y el ubiquinol (Herrera y Barba, 2001).
El mecanismo de absorción de la vitamina E no es conocido completamente. Todas las formas son captadas por las células del intestino delgado y liberadas a la circulación dentro de los quilomicrones. En el hígado, una proteína receptora incorpora selectivamente el α-tocoferol a las lipoproteínas de muy baja densidad (VLDL). Las otras formas son mayormente excretadas hacia la vía biliar. Las concentraciones plasmáticas de tocoferoles se relacionan pobremente con la ingesta de estos compuestos, sin embargo, es fácil de medir.

La principal acción de la vitamina E como antioxidante, se basa en su capacidad de atrapar radicales libres y de inhibir la oxidación de las LDL. Se ha considerado que actúa como un antioxidante natural debido a que reacciona con radicales libres solubles en lípidos de membranas (Pita, 1997). En el plasma y en eritrocitos, la vitamina E es el principal antioxidante liposoluble que protege los lípidos contra el daño oxidativo. El contenido de vitamina E determina la susceptibilidad al daño por agentes oxidantes tales como son los radicales hidroxilo, alcoxilo, peroxilo, oxígeno singlete y quizás a varios complejos de metales unidos al oxígeno en los microsomas, hepatocitos u órganos enteros.

Entre sus acciones no antioxidantes se describen propiedades antiinflamatorias, moduladoras de la inmunidad, inductivas de la apoptosis en células tumorales, entre otras.

La recomendación actual según valores establecidos por la FDA (Food and Drug Administration), es un consumo diario de 30 UI. Efectos beneficiosos con dosis supranutricionales de vitamina E, se han reportado en diversas enfermedades crónicas. Aunque estudios experimentales y epidemiológicos han sido concluyentes en cuanto a dichos resultados, estudios prospectivos y controlados no han verificado tal efecto benéfico.

2.7 Tratamientos antihipertensivos

El tratamiento de la HTA esencial está destinado a llevar la presión arterial a niveles normales (<140/90 mm Hg). Es así que el riesgo de presentar una enfermedad cardiovascular en pacientes con hipertensión, puede ser reducido con una efectiva terapia antihipertensiva (Rosendorff et al., 2007). Se ha demostrado que el tratamiento antihipertensivo es efectivo al reducir la morbimortalidad cardiovascular y cerebrovascular, aún en personas mayores de 80 años. El tratamiento incluye medidas no farmacológicas y terapia en base a medicamentos.
2.7.1 Medidas no farmacológicas

Son la primera intervención terapéutica para la gran mayoría de los pacientes hipertensos y a muchos de ellos, esta medida los acompañará en su terapia farmacológica. El tratamiento no farmacológico incluye fundamentalmente cambios en el estilo de vida del paciente, tales como disminuir el consumo de sal, aumentar la actividad física, bajar de peso y medidas nutricionales, es decir, la adopción de estilos de vida saludables. Dichos estilos han demostrado ser efectivos en reducir la presión arterial (Chobanian et al., 2003).

- **Aumento de la actividad física:** Caminar 30 minutos diarios puede derivar en una reducción de la presión arterial de 4-9 mm Hg en hipertensos y hasta de 3 mm Hg en normotensos.

- **Dieta saludable:** Una dieta sana y equilibrada reduce el riesgo a través de diversos mecanismos, entre los que se encuentra la disminución del índice de Masa Corporal (IMC), lo que puede tener un efecto beneficioso en la reducción de la presión arterial sistólica (Sacks et al., 2001). Por ejemplo, se estima que la reducción del peso en 10 Kg, reduce la presión arterial sistólica en 5-20 mm Hg (Chobanian et al., 2003) y previene la HTA en una alta proporción de personas obesas.

- **Moderación en consumo de alcohol:** La mayoría de los trabajos publicados consideran que la ingesta excesiva de alcohol, aumenta el riesgo de sufrir HTA (Xin et al., 2001). Limitar el consumo de alcohol a no más de dos copas al día, reduce aproximadamente la presión arterial sistólica entre 2-4 mm Hg (Chobanian et al., 2003).

- **Reducción de sodio en la dieta:** Reducir el consumo de sodio, en no más de 100 mmol al día (2,4 g de sodio ó 6 de cloruro de sodio), disminuye la presión arterial sistólica entre 2-8 mm Hg (Chobanian et al., 2003).

Por lo tanto, la adopción de estilos de vida saludables, es imprescindible para prevenir la elevación de la presión arterial e indispensable en personas hipertensas. Su modificación permite disminuir la presión arterial, aumentar la eficacia de los fármacos antihipertensivos y disminuir el riesgo cardiovascular.

La combinación de dos o más modificaciones en el estilo de vida, puede mejorar los
resultados en las terapias farmacológicas. La incorporación de la Dieta DASH (Dietary Approaches to Stop Hipertensión) -que consiste en una alimentación rica en frutas y vegetales, baja en grasa saturada y en colesterol- combinada con una baja ingesta de sodio, puede contribuir a la reducción de la presión arterial sistólica (Sacks et al., 2001). Todos los efectos de estas modificaciones pueden ser mayores en algunas personas dependiendo de las condiciones que presenten cada una de ellas.

2.7.2 Tratamiento farmacológico

Si el cambio en el estilo de vida del paciente, no es suficiente para controlar y reducir la presión arterial, se debe recurrir al uso de terapias farmacológicas. Dichas terapias siempre dependerán del tipo de hipertensión que se padezca, de los factores de riesgo asociados y de la edad del paciente, entre otros. Es importante no dejar de considerar los posibles efectos secundarios que pueden derivar de los medicamentos utilizados.

Los fármacos antihipertensivos no sólo deben disminuir de forma efectiva los valores de presión arterial, sino que también deben presentar un perfil de seguridad favorable. El objetivo del tratamiento es prevenir o limitar la morbilidad y la mortalidad cardiaca, vascular, cerebral y renal secundarias a la enfermedad hipertensiva, manteniendo o mejorando la calidad de vida del paciente que la padece (Cardona et al., 2001).

Entre los distintos fármacos utilizados en la HTA esencial destacan:

2.7.2.1 Diuréticos

Han sido ampliamente utilizados como terapia antihipertensiva inicial y su administración ha demostrado ser eficaz en la reducción de la morbimidad y mortalidad cardiovascular. Sin embargo, no deben ser utilizados en dosis altas porque pueden causar una serie de efectos metabólicos indeseables como: hipokalemia, hiperuricemia, aumento transitorio en los niveles de colesterol total y triglicéridos, disminución en la tolerancia a la glucosa y aumento en la resistencia a la insulina (Cardona et al., 2001).

Los diuréticos producen una pérdida neta de sodio y agua del organismo, actuando directamente sobre el riñón y previniendo la retención hidrosalina. Los que actúan sobre el asa de Henle, son los más potentes, siendo de acción corta (furosemida) o prolongada (torasemida). Los “diuréticos tiazídicos”, que actúan desde la superficie luminal, son de
potencia intermedia y los “diuréticos ahorrores de potasio”, de menor potencia -al contrario que los demás- reducen la excreción renal de potasio.

2.7.2.2 β-bloqueadores

Son medicamentos altamente recomendados como fármacos de primera línea, los fármacos de este grupo afectan la presión arterial de múltiples maneras. Producen un bloqueo competitivo y reversible de las acciones de las catecolaminas mediadas a través de la estimulación de los receptores β-adrenérgicos. Reducen gradualmente las cifras de presión arterial solamente en pacientes hipertensos, no producen hipotensión postural ni retención hidrosalina y no alteran las concentraciones plasmáticas de potasio o ácido úrico. Además, reducen la hipertrofia ventricular y presentan propiedades antianginosas, antiarrítmicas, ansiolíticas y cardioprotectoras, disminuyendo el consumo de oxígeno del miocardio y el gasto cardíaco, con tendencia a causar vasoconstricción periférica.

Estos medicamentos son eficaces y seguros y han sido ampliamente utilizados como tratamiento de elección en hipertensos de todas las edades y en todos los grados de gravedad de HTA, en los que han mostrado su efecto positivo en cuanto a la reducción de la morbilidad y la mortalidad cardiovascular asociada a la HTA.

2.7.2.3 Inhibidores de la enzima convertidora de angiotensina (ECA)

Producen un bloqueo competitivo de la enzima que transforma la angiotensina I en angiotensina II, reduciendo los niveles plasmáticos y tisulares de angiotensina II. La angiotensina II es potente vasoconstrictor arteriovenoso, que aumenta el tono simpático y libera vasopresina y aldosterona con la consiguiente retención hidrosalina. Los inhibidores de la ECA son seguros y efectivos para reducir la presión arterial y parece claro que para algunas subpoblaciones de pacientes hipertensos, como aquellos diabéticos con microalbuminuria, serían los de elección. Se debe recordar que los inhibidores de la ECA pueden producir tos hasta en el 20 % de los pacientes, relacionada con aumento de la bradikinina, producido por la inhibición de la enzima convertidora de angiotensina que impide su catálisis hacia productos inactivos (Galiana y Gil, 1997).
2.8 Vitaminas C y E en el tratamiento de la hipertensión arterial esencial

Se ha demostrado que en la HTA esencial hay estrés oxidativo, lo que produce una reducida disponibilidad de NO en pacientes hipertensos esenciales (Kumar y Das, 2000). Dentro de las ROS el anión superóxido (O$_2^-$) tiene un papel importante en la fisiopatología de la HTA. El O$_2^-$ reacciona con el NO, inactivando a este último al formar el peroxinitrito (ONNO-), disminuyendo la biodisponibilidad del mismo y con ello sus acciones vasodilatadora, vaso protectora y anti-aterogénica, lo que provoca un empeoramiento de la función endotelial en pacientes con HTA (Chen et al., 2001).

El O$_2^-$ es el principal factor determinante en la biodisponibilidad de NO, alterando directamente la función y estructura endotelial. Cabe señalar que en las células vasculares, la principal fuente de O$_2^-$ es la enzima NAD(P)H oxidasa que está asociada a la membrana plasmática (Griendling et al., 2000; Ülker et al., 2003). Debido a esto, las estrategias terapéuticas deberían apuntar hacia la restauración de la biodisponibilidad del NO, ya sea disminuyendo el estrés oxidativo o aumentando las defensas antioxidantes.

Numerosos estudios demuestran que dietas ricas en antioxidantes, pueden reducir la presión arterial. Un ejemplo de esto es el estudio llamado “Dietary Approaches to Stop Hypertension” o más comúnmente conocido como Dieta (DASH) (Appel et al., 1997). Los investigadores descubrieron que una dieta diaria compuesta de ocho a diez porciones de frutas y vegetales, tres porciones de productos de leche con baja grasa o sin grasa, granos y cantidades moderadas de proteínas animales, más cuatro a cinco porciones de nueces, semillas y legumbres una vez a la semana, disminuye significativamente la presión arterial de los participantes. La dieta DASH es rica en vitamina C (266mg/día comparado con 133mg/día en dieta control). Esta dieta condujo a la reducción de la presión sanguínea en 5.5 / 3.0 mm Hg en pacientes con hipertensión arterial esencial.

La atención ha sido enfocada al potencial efecto antihipertensivo de la vitamina C y varios estudios indican que el consumo de esta vitamina, produce una disminución de la presión sanguínea (Duffy et al., 1999; Fotherby et al., 2000).

Diversos estudios realizados en ratas espontáneamente hipertensas, demuestran que la administración de vitamina C mejora la función vascular y reduce los niveles de presión sanguínea en estos animales (Vasdev et al., 2001; Nishikawa et al., 2003).
Otro estudio demostró que la vitamina C mejora la vasodilatación dependiente del endotelio, a través de la restauración del ON en pacientes con HTA esencial (Taddei et al., 1998). Es así que la vitamina C puede mejorar la función vascular, aumentar la biodisponibilidad del ON y disminuir la presión arterial en pacientes con HTA esencial, debido tal vez a su efecto antioxidante, disminuyendo así los efectos del estrés oxidativo.

Respecto de la vitamina E y sus efectos, existen algunos estudios realizados en modelos animales de hipertensión, sin embargo, existen muy pocos estudios respecto del efecto de esta vitamina en humanos hipertensos. Un estudio experimental en ratas espontáneamente hipertensas, demostró que las propiedades antioxidantes de la vitamina E están asociadas con una disminución de la presión sanguínea (Vasdev et al., 2002).

En humanos, los efectos de esta vitamina han sido contradictorios. En un estudio realizado en pacientes hipertensos suplementados con vitamina E, los investigadores concluyeron que dicha vitamina parece no tener efectos clínicos relevantes en pacientes hipertensos (Palumbo et al., 2000). Sin embargo, otro estudio demostró que la administración de vitamina E produce una notable disminución de la presión arterial sistólica y una disminución menos notable de la presión arterial diastólica. Los investigadores de este estudio sugieren que la administración de 200 UI al día de vitamina E, puede ser efectivo en el tratamiento a largo plazo de hipertensos esenciales (Boshtam et al., 2002).

La combinación de las vitaminas C y E en el tratamiento de la HTA esencial responde a que ambas tienen la capacidad de actuar sinérgicamente, debido a que concentraciones adecuadas de vitamina C son necesarias para la regeneración de la vitamina E, así ambas vitaminas pueden proveer óptimas condiciones para una adecuada formación de NO (Heller et al., 2004). Es así que un estudio realizado en ratas espontáneamente hipertensas demostró que la administración de vitaminas C y E reduce el estrés oxidativo, mejora la estructura y función vascular y previene la progresión de la hipertensión (Chen et al., 2001). Otro estudio, realizado en humanos, en el que se utilizó una combinación de vitaminas y minerales, entre ellas las vitamina C y E, redujo la presión arterial de los pacientes suplementados (Galley et al., 1997).

Por lo tanto, el tratamiento propuesto con vitaminas antioxidantes (C+E) permitirían normalizar el status de estrés oxidativo, debido a que estas vitaminas han
demostrado ser efectivas en reducir el estrés oxidativo sistémico. Se espera que esta suplementación se traduzca además, en una disminución de la presión arterial en hipertensos esenciales.
3. HIPÓTESIS

La administración de vitaminas antioxidantes (C+E) a pacientes con hipertensión arterial esencial, provoca la disminución del estrés oxidativo y consecuentemente de la presión arterial.

4. OJETIVOS

4.1 Objetivo General

Aportar antecedentes del efecto antioxidante de las vitaminas C y E sobre el estrés oxidativo y la hipertensión arterial esencial.

4.2 Objetivos Específicos

En un grupo de pacientes hipertensos esenciales tratados con vitaminas antioxidantes (C+E) y en otro grupo de pacientes hipertensos esenciales tratados con placebo:

a) Determinar la concentración de moléculas relacionadas con el estrés oxidativo.
b) Determinar la capacidad antioxidante tanto del plasma como de los glóbulos rojos.
c) Correlacionar los valores de presión arterial con la concentración de F2-isoprostanos como indicador de lipoperoxidación.
5. MATERIAL Y MÉTODOS

5.1 Diseño del protocolo de estudio de los pacientes

5.1.1 Selección de pacientes hipertensos

Se realizó un estudio de carácter prospectivo o longitudinal tipo cohorte, que consistió en seleccionar 60 pacientes hipertensos esenciales, sexo masculino, entre 35 y 65 años de edad, a los cuales se les aplicó una evaluación clínica estandarizada basada en el más reciente informe del Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (Chobanian et al., 2003), orientada a:

1) Determinar el estilo de vida del paciente e identificar factores de riesgo de enfermedad cardiovascular (ECV).
2) Revelar causas identificables de hipertensión arterial.
3) Determinar la presencia o ausencia de daño de órgano blanco y ECV.

Luego de esta evaluación clínica se seleccionaron los pacientes que fueron ingresados al protocolo, los que debieron cumplir con la categoría de:

Hipertensión esencial, sin factores de riesgos de ECV tales como: tabaquismo, alcoholismo, obesidad y dislipidemia, debido a que dichos factores producen estrés oxidativo, lo que podría llevar a un error en la interpretación de los resultados finales. Además se excluyeron todos aquellos pacientes que estaban consumiendo alguna terapia antihipertensiva previa.

Cabe destacar que todos los pacientes que ingresaron al protocolo, firmaron un consentimiento informado, en el que se describe el proceso del tratamiento al que serán sometidos. Además, este estudio contó con la aprobación del Comité de Ética del Hospital Clínico de la Universidad de Chile y se encuentra enmarcado dentro del proyecto FONDECYT 1040429.

Los pacientes portadores de HTA esencial seleccionados, fueron separados en forma aleatoria en dos subgrupos. El primer subgrupo fue tratado con vitaminas antioxidantes E (400 UI/día) + vitamina C (1000 mg/día) por dos meses. En cambio, el segundo subgrupo fue tratado con placebo durante igual período utilizando el método doble ciego.
5.1.2 **Condiciones de los pacientes para la obtención de la muestra:** Previo al momento de obtención de la muestra de sangre, los pacientes fueron citados en ayuno de 12 horas.

5.2 **Procesamiento de la muestra**
La muestra de sangre fue procesada de la siguiente manera:

- Se recibió en tubos con EDTA 5% como anticoagulante.
- A continuación se centrífugó a 2862 x g durante 15 minutos, para separar el plasma del sedimento (eritrocitos, glóbulos blancos y plaquetas).
- El sedimento obtenido fue lavado con suero fisiológico y centrífugado a 2862 x g durante 10 minutos, procedimiento que se repitió 2 veces.
- El sedimento fue hemolizado con 3 volúmenes de agua destilada.
- Tanto el plasma como el hemolizado de eritrocitos fueron almacenados a -70ºC.
- En el plasma se determinó la capacidad antioxidante total y los niveles de F2-isoprostanos, mientras que en el hemolizado de eritrocitos se determinó la relación GSH/GSSG, la concentración de malondialdehído (MDA) y la actividad de las enzimas antioxidantes CAT, SOD y GSH-Px.

5.3 **Evaluación de los parámetros relacionados con estrés oxidativo.**

5.3.1 **Capacidad antioxidante total del plasma (FRAP).**
Se utilizó el método FRAP (*ferric reducing ability of plasma*) que mide la capacidad del plasma para reducir el hierro férrico a ferroso siguiendo la cinética a una longitud de onda de 593 nm (Benzie y Strain, 1996). La técnica consiste en lo siguiente:

- **Reactivos utilizados**
 - solución FRAP: contiene 15 mL de Tampón acetato pH 3,6 + 1,5 mL de solución TPTZ (2,4,6-tripiridil-s-triazina) y 1,5 mL de cloruro férrico. Se preincuba en baño termorregulado a 37°C durante 2 min.

- **Procedimiento:**
 - Se preparan los tubos blancos que contienen 750 µL de solución FRAP y 100 µL de agua bidestilada. Se incuba en baño termorregulado a 37°C durante 2 min.
- Los tubos de muestra contienen 750 μL de solución FRAP más 75 μL de agua bidestilada. Se incuba en baño termostato regulado a 37°C durante 2 min.
- El tubo blanco se agita en Vortex, la mezcla se transfiere a cubeta de 1 mL y se realiza un barrido (scan blank) hasta estabilizar la absorbancia del blanco en un valor cercano a cero a 593 nm. La lectura del blanco corresponde al valor cero de la curva de calibración.
- Al tubo muestra se le agregan 25 μL de plasma o estándar, se agita en Vortex y se transfiere a cubeta de 1 mL. Se espera 60 seg y se registran las lecturas a 593 nm. Estas lecturas corresponden a muestras o estándares.
- Los valores obtenidos se expresan en μM (micromolar).

5.3.2 Actividad de enzimas antioxidantes en hemolizado de eritrocitos:
5.3.2.1 Catalasa (CAT).

Se determinó por método espectrofotométrico, siguiendo la cinética de descomposición del peróxido de hidrógeno a 240 nm (Aebi, 1974) y se calculó la constante cinética para la reacción de primer orden (k). La técnica consiste en:

- **Reactivos utilizados**
 - Triton etanol 10%: 300 μL de etanol absoluto + 300 μL de triton X-100 (sigma X100) y 2400 μL de Tampón fosfato 50 mM pH 7,0.
 - Peróxido de hidrógeno 30 mM: 85 μL de peróxido de hidrógeno al 30% diluido en 25 mL de Tampón fosfato 50 mM pH 7,0.
 - Tampón fosfato 50 mM pH 7,0.

- **Procedimiento**
 - Se mezclan 450 μL de hemolizado de eritrocitos con 50 μL de Triton etanol. Se agita en vortex y se deja reposar en hielo durante 30 min.
 - Transcurrido este tiempo, se realiza la dilución mezclando 25 μL de esta muestra en 5 mL de Tampón fosfato 50 mM pH 7,0.
- **Ensayo no enzimático:**
 En una cubeta de cuarzo agregar 3 mL de Tampón fosfato. Hacer un *scan blank* en el espectrofotómetro.
 Mezclar 2 mL de Tampón fosfato + 1 mL de peróxido de hidrógeno 30 mM. Agitar en Vortex y transferir a la cubeta de cuarzo. Registrar las lecturas a 240 nm en intervalos de 5 ó 10 seg, durante 1 min.

- **Ensayo enzimático:**
 Mezclar 2 mL de muestra (dilución) + 1 mL de Tampón, transferir a cubeta de cuarzo y hacer un *scan blank* en el espectrofotómetro.
 Mezclar 2 mL de muestra (dilución) + 1 mL de H$_2$O$_2$ 30 mM. Agitar en Vortex y transferir inmediatamente a la cubeta de cuarzo para registrar las lecturas en la misma forma antes descrita.
 Finalmente los valores obtenidos de la actividad enzimática de CAT (pendiente de la curva semilogarítmica) se expresan en: k/µg Hb. (k, constante cinética de primer orden para la descomposición del peróxido de hidrógeno).

5.3.2.2 Superóxido dismutasa (SOD).
Se midió la cinética de inhibición de la auto-oxidación de adrenalina a 480 nm por espectrofotometría (Misra y Fridovich, 1972). La técnica consiste en lo siguiente:
- Preparar solución de adrenalina 60 mM., pesando 55 mg de epinefrina, los que serán diluidos en 5 mL de agua destilada, ajustando el pH a 2,0 con aproximadamente 7 µL de ácido clorhídrico concentrado.

- **Centrifugación para obtención de la muestra:**
 1. Transferir 6 mL de hemolizado de eritrocitos en tubos de 10 mL de policarbonato, con tapa atornillada para la centrifugación.
 2. Contrapesar pares de tubos.
 3. Centrifugar en la ultracentrífuga a 100.000 x g durante 45 min.
 4. Obtener el sobrenadante (enzimas) y almacenar en tubos eppendorf (1 mL) en freezer. Las muestras obtenidas mediante este procedimiento servirán para las determinaciones de las enzimas SOD y GSH-Px.
• **Dilución de la muestra:**
 100 µL muestra + 900 µL de KCl-Tris pH 7.4.

• **Procedimiento:**
 - Preparar un blanco con 2,95 mL de Tampón glicina 50 mM pH 10.2. Preincubar 2 a 3 min, para estabilizar el espectrofotómetro haciendo *scan blank*.
 - Preparar 3 tubos con Tampón glicina 50 mM pH 10.2 por cada muestra con: 2,9 mL para el tubo 1; 2,87 mL para el tubo 2 y 2,85 mL para el tubo 3. cada tubo se debe preincubar 2 a 3 min previa lectura.
 • Control:
 a) Agregar adrenalina 50 µL.
 b) Leer a 480 nm.
 • Muestra:
 a) Agregar dilución de la muestra en cada tubo de muestra en la siguiente cantidad:
 50 µL para el tubo 1; 75 µL para el tubo 2 y 100 µL para el tubo 3. (Se hace un *scan blank* en cada tubo antes de agregar adrenalina).
 b) Agregar adrenalina 50 µL.
 c) Leer a 480 nm.

 Se determina la pendiente de la inhibición de la auto-oxidación de la adrenalina. Una unidad (U) de actividad de SOD corresponde a aquella que disminuye la auto-oxidación basal a la mitad.

 Finalmente la actividad enzimática de SOD se expresa en: U/g Hb.

5.3.2.3 **Glutatión peroxidasa (GSH-Px).**

Por técnica espectrofotométrica se midió la cinética de oxidación de NADPH acoplada a la reducción de GSSG a GSH, a 340 nm (Flöhé y Günzler, 1984). La técnica se describe a continuación:

• **Reactivos utilizados:**
 1. Glutatión reductasa (2,4 U/mL): 8125 µL de Tampón fosfato pH 7,0 + 5 µL de glutatión reductasa.
 2. Glutatión 10 mM: 9,39 mg de glutatión Sigma G 4251 en 3 mL de agua destilada.
3. NADPH 1,5 mM: 3,75 mg de NADPH en 3 mL de NaHCO3. precalentar en baño termoregulado a 37°C.
4. Peróxido de hidrógeno1,5 mM: 10 µL de peróxido de hidrógeno + 58,8 mL de agua destilada.

• **Dilución de la muestra:**
 200 µL de sobrenadante + 1000 µL de Tampón fosfato.

• **Procedimiento.**

Ensayo no enzimático del blanco.
1. En tubo de ensayos pipetear:
 - 600 µL de Tampón fosfato pH 7,0.
 - 100 µL de solución de glutatión reductasa.
 - 100 µL de solución de azida sódica.
 - 100 µL de solución de glutatión.
2. Agitar en vortex y preincubar 10 min a 37°C. Transferir a cubeta de cuarzo y realizar un *scan blank*. Regresar la solución al tubo.
3. Agregar 100 µL de solución NADPH (preincubado a 37°C), agitar en vortex y transferir a cubeta de cuarzo de 1 mL, para iniciar el registro de lecturas.

Ensayo no enzimático de la muestra.
1. En tubo de ensayos pipetear:
 - 500 µL de Tampón fosfato pH 7,0.
 - 100 µL de solución de glutatión reductasa.
 - 100 µL de solución de azida sódica.
 - 100 µL de solución de glutatión.
2. Agitar en Vortex y preincubar 10 min a 37°C.
3. Agregar
 - 100 µL de solución de NADPH preincubada a 37°C.
 - 100 µL de solución de Peróxido de hidrógeno1,5 mM.
4. Agitar en Vortex y transferir a cubeta de cuarzo de 1 mL, para iniciar el registro de lecturas.

Ensayo enzimático del blanco
1. En tubo de ensayos pipetear:
 - 500 µL de Tampón fosfato pH 7,0.
 - 100 µL de muestra.
 - 100 µL de solución de glutatión reductasa.
 - 100 µL de solución de azida sódica.
 - 100 µL de solución de glutatión.
2. Agitar en vortex y preincubar 10 min a 37°C. Transferir a cubeta de cuarzo y realizar un scan blank. Regresar la solución al tubo.
3. Agregar 100 µL de solución NADPH preincubado a 37°C, agitar en vortex y transferir a cubeta de cuarzo de 1 mL, para iniciar el registro de lecturas.

Ensayo enzimático de la muestra
1. En tubo de ensayos, pipetear:
 - 400 µL de Tampón fosfato pH 7,0.
 - 100 µL de muestra.
 - 100 µL de solución de glutatión reductasa.
 - 100 µL de solución de azida sódica.
 - 100 µL de solución de glutatión.
2. Agitar en Vortex y preincubar 10 min a 37°C
3. Agregar
 - 100 µL de solución de NADPH precalentado a 37°C.
 - 100 µL de solución de Peróxido de hidrógeno1,5 mM.
4. Agitar en Vortex y transferir a cubeta de cuarzo de 1 mL, para iniciar el registro de lecturas.
 Finalmente la actividad enzimática de GSH-Px se expresa en: U/g Hb.
5.3.3 Relación GSH/GSSG en hemolizado de eritrocitos:

Se determinó por fluorimetría (Hissin y Hilf, 1976). La técnica se describe a continuación:

- **Reactivos utilizados.**
 1. Ácido metafosfórico 25%.
 2. Tampón fosfato 0.1 M, EDTA 5 mM, pH 8.0.
 3. Solución de O-ftalaldehido (OPT): Concentración 1 mg/mL. Preparar el volumen requerido para el protocolo de cada experimento, disolviendo el reactivo en metanol.
 4. Solución de N-etilmaleimida (NEM): Concentración 5 mg/mL. Preparar el volumen requerido para el protocolo de cada experimento, disolviendo el reactivo en Tampón fosfato pH 8.0.

- **Centrifugación**

En tubos de ultracentrifuga se agregan 500 µL de hemolizado de eritrocitos + 6,3 mL de Tampón fosfato 0,1M EDTA 5 mM pH 8,0 + 1,7 ml de HPO₃ 25%. Se centrifugan a: 100.000 x g durante 30 min.

Se obtiene el sobrenadante, que se utiliza para determinar GSH y GSSG.

Determinación de glutatión reducido (GSH)

1. Dilución: En un tubo de ensayos colocar:
 - 3.000 µL de sobrenadante.
 - 1.500 µL de Tampón fosfato pH 8,0.
 - Mezclar en vortex.

2. Reacción de desarrollo de fluorescencia: En un tubo de ensayos mezclar:
 25 µL de la dilución + 1875 µL de Tampón fosfato + 100 µL de OP (El blanco lleva 1900 µL Tampón fosfato + 100 µL de OPT).

 Mezclar en vortex e incubar a temperatura ambiente durante exactamente 15 min.

 Luego leer la fluorescencia a 420 nm (excitación a 350 nm).

3. Los valores obtenidos se expresan en µg de GSH.
Determinación de glutatión oxidado (GSSG)

1. Dilución: mezclar
 250 µL de sobrenadante original.
 100 µL de NEM 0,04 M.
 Incubar a temperatura ambiente durante 30 min.
2. Tomar 140 µL de la dilución + 860 µL de NaOH 0,1 N. Mezclar en vortex.
3. En tubo de ensayos pipetear:
 100 µL de la mezcla anterior (punto 2).
 1800 µL NaOH 0,1 N.
 100 µL solución de OPT.
 (El blanco lleva 1900 µL de NaOH 0,1 N + 100 µL solución de OPT)
3. Incubar a temperatura ambiente durante 15 min.
4. Leer la fluorescencia a 420 nm (excitación a 350 nm).
5. Los valores obtenidos se expresan en µg de GSSG.

5.3.4 Lipoperoxidación:

5.3.4.1 Niveles plasmáticos de F₂-isoprostanos

Se determinaron mediante inmunoensayo enzimático (EIA), usando kits (Cayman, Chemical, Ann Arbor, MI) (Collins et al., 1999).

Las muestras de plasma destinadas a la medición de F₂-isoprostanos se recibieron en tubos plásticos impregnados de hidroxitolueno butilado (concentración final 1 mM), como antioxidante.

Se determinó en una muestra de 500 µL de plasma a la que se aplicó una técnica de inmunoensayo enzimático (EIA) (Pradelles et al., 1985) utilizando kits para 8-isoprostanos. Las muestras de plasma fueron leídas a 420 nm en un lector de microplacas modelo Sunrise (Tekan, Salzburgo, Austria). Los resultados fueron expresados como pg de F₂-isoprostanos /mL.

5.3.4.2 Niveles de malondialdehído (MDA) en eritrocitos

Se determinaron por espectrofotometría luego de aplicar la reacción con ácido tiobarbitúrico seguida de extracción con solventes orgánicos (Ohkawa et al., 1979). La
técnica realizada se describe a continuación:

- **Reactivos utilizados:**
 1. Dodecil sulfato de sodio (SDS) 8,1%.
 2. Solución de perfusión: KCl 1,15%.
 3. Ácido acético 20% pH 3,5.
 4. Ácido tiobarbitúrico (TBA) 0,8%.
 5. n-butanol-piridina.

- **Procedimiento:**
 1. Dilución de la muestra: 100 µL de hemolizado de eritrocitos + 900 µL de KCl 1,15 %.
 2. Esta dilución se centrifuga a 600 x g durante 10 min y se obtiene el sobrenadante, que luego se utiliza en la reacción colorimétrica.
 3. Reacción colorimétrica. En tubos de ensayo de 10 mL, mezclar:
 - 100 µL de sobrenadante.
 - 100 µL de SDS 8,1% (preincubado).
 - 750 µL ácido acético 20% pH 3,5.
 - 750 µL solución de TBA 0,8% (preincubado).
 - 300 µL H₂O.
 (En el blanco se reemplazan los 100 µL de sobrenadante por igual volumen de solución de KCl 1,15% y se continúa el mismo procedimiento).
 4. Incubar en baño de agua a 95°C durante 60 min. Posteriormente enfriar en agua durante 10 min.
 5. Agregar 500 µL H₂O a todos los tubos y agitar en vortex.
 6. Agregar 2,5 mL de n-butanol-piridina a todos los tubos.
 7. Agitar vigorosamente sellando previamente con Parafilm.
 8. Centrifugar a 2862 x g durante 10 min.
 9. Aspirar al menos 2 mL de la fase orgánica (superior) con ayuda de una pipeta automática y transferir a tubos de ensayo que tienen la misma marca.
 10. Leer la absorbancia a 532 nm.

Los resultados obtenidos se expresan en: nmol MDA/g Hb.
5.3.5 Determinación de hemoglobina en el glóbulo rojo

Se realizó añadiendo a la muestra de hemolizado de eritrocitos el reactivo de Drabkin, (NaHCO₃, KCN, K₃Fe(CN)₆, H₂O), el que al reaccionar con la muestra forma cianometahemoglobina, que da su máxima absorbancia a 540 nm.

- **Reactivos utilizados**
 1. Reactivo de Drabkin.
 2. Suero fisiológico.

- **Procedimiento**
 1. En el tubo blanco se agregan 40 µL de suero fisiológico
 2. En cada tubo de muestra se agregan:
 - 5 mL de reactivo de Drabkin.
 - 20 µL de hemolizado de eritrocitos.
 - 20 µL de suero fisiológico
 3. Esperar 10 min y leer en espectrofotómetro a 540 nm.
 4. Los resultados obtenidos se expresan en: g Hb/mL de hemolizado

5.4 Análisis estadístico

5.4.1 Determinación del tamaño muestral

Calculado en base a la fórmula estadística “tamaño de muestra para estimar diferencias entre medias” (Snedecor G. y Cochran W., 1986; programa computacional Win episcop 2.0), según estudios previos en la fórmula se estimó una diferencia de un 20 % en los parámetros relacionados con el estrés oxidativo de ambos grupos. Con estos antecedentes, se obtuvo un tamaño mínimo de muestra entre 13 y 56, dependiendo de la variable en estudio. Por ende se optó por el valor más alto de las variables en estudio (56), con un nivel de confianza del 95%.

5.4.2 Análisis de datos

Las comparaciones entre los pacientes hipertensos tratados con vitaminas (C+E) y el grupo de pacientes tratados con placebo, se realizaron mediante la aplicación del test de t de Student para muestras no pareadas. Se consideró significativa toda diferencia con p<0,05.
Las correlaciones entre variables se realizaron de acuerdo al test de Pearson, con el mismo nivel de significancia ($p < 0,05$).

Los valores se expresan en promedio ± desviación estándar.
6. RESULTADOS.

6.1 Características clínicas

Después de haber realizado el tratamiento durante dos meses (vitaminas o placebo) en los pacientes hipertensos esenciales, no se observaron diferencias en las características clínicas entre ambos grupos y todos los parámetros se encontraron dentro de los rangos normales (Cuadro 1). Sin embargo, los pacientes tratados con vitaminas C + E revelaron una significativa disminución de la presión sistólica promedio, diastólica promedio, y presión arterial media, siendo 5, 7 y 5 % menores que los respectivos valores del grupo tratado con placebo (p<0.001) (Fig. 1A, 1B y 1C).

Cuadro 1: Características clínicas y efectos del tratamiento con vitaminas o placebo en pacientes hipertensos esenciales.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Placebo (n = 30)</th>
<th>Vitaminas (n = 30)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad (años)</td>
<td>45,6 ± 8,22</td>
<td>45,4 ± 6,02</td>
<td>0,91</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>25,3 ± 1,64</td>
<td>25,6 ± 3,83</td>
<td>0,69</td>
</tr>
<tr>
<td>Glucosa (mmol/l)</td>
<td>4,96 ± 0,66</td>
<td>5,16 ± 0,88</td>
<td>0,31</td>
</tr>
<tr>
<td>Creatinina (umol/l)</td>
<td>80,1 ± 6,57</td>
<td>79,1 ± 11,5</td>
<td>0,68</td>
</tr>
<tr>
<td>Colesterol total (mmol/l)</td>
<td>4,64 ± 0,99</td>
<td>4,76 ± 1,26</td>
<td>0,68</td>
</tr>
<tr>
<td>Colesterol HDL (mmol/l)</td>
<td>1,21 ± 0,16</td>
<td>1,18 ± 0,11</td>
<td>0,4</td>
</tr>
<tr>
<td>Colesterol LDL (mmol/l)</td>
<td>2,79 ± 0,49</td>
<td>2,83 ± 0,55</td>
<td>0,76</td>
</tr>
<tr>
<td>Triglicéridos (mmol/l)</td>
<td>1,49 ± 0,6</td>
<td>1,52 ± 0,49</td>
<td>0,83</td>
</tr>
<tr>
<td>Frecuencia cardíaca</td>
<td>72,1 ± 6,02</td>
<td>74,4 ± 9,31</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Los valores están expresados como promedios ± desviación estándar. IMC: índice de masa corporal; HDL: lipoproteína de alta densidad; LDL lipoproteína de baja densidad.
La Fig. 1A muestra la presión sistólica promedio, medida en pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes.

La presión sistólica promedio es 5% menor en pacientes hipertensos esenciales tratados con vitaminas, respecto de los pacientes tratados con placebo (p < 0,001).

Figura 1A: Presión arterial sistólica promedio, medida en pacientes hipertensos esenciales tratados con placebo y en pacientes hipertensos esenciales tratados con vitaminas antioxidantes.
La Fig. 1B muestra la presión diastólica promedio, medida en pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes.

La presión diastólica promedio es 7% menor en pacientes hipertensos esenciales tratados con vitaminas, respecto de los pacientes tratados con placebo (p < 0,001).

Figura 1B: Presión arterial diastólica promedio, medida en pacientes hipertensos esenciales tratados con placebo y en pacientes hipertensos esenciales tratados con vitaminas antioxidantes.
La Fig. 1C muestra la presión arterial media, medida en pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes.

La presión arterial media es 5% menor en pacientes hipertensos esenciales tratados con vitaminas, respecto de los pacientes tratados con placebo (p < 0,001).

* p < 0,001

Figura 1C: Presión arterial media, medida en pacientes hipertensos esenciales tratados con placebo y en pacientes hipertensos esenciales tratados con vitaminas antioxidantes.
6.2 Parámetros relacionados con las defensas antioxidantes

6.2.1 Plasmáticos

La Fig. 2 muestra la capacidad antioxidante medida en el plasma (FRAP) de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. La capacidad antioxidante del plasma (FRAP) es 26 % mayor en pacientes hipertensos esenciales tratados con vitaminas, respecto de los pacientes tratados con placebo (p < 0,001).

Figura 2: Capacidad antioxidante del plasma (FRAP) medida en pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes.

*p < 0,001
La Fig. 3 muestra las concentraciones plasmáticas de vitamina C de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. Los niveles plasmáticos de vitamina C son 47% mayores en pacientes hipertensos esenciales tratados con vitaminas, respecto de los pacientes tratados con placebo (p < 0,001).

Figura 3: Concentraciones plasmáticas de vitamina C medida en pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes.

*p < 0,001
La Fig. 4 muestra las concentraciones plasmáticas de vitamina E de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. Los niveles plasmáticos de vitamina E no mostraron diferencia significativa entre los dos grupos (p > 0,05)

*Figura 4: Concentraciones plasmáticas de vitamina E medida en pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes.

*p < 0,001
6.2.2 Eritrocitos

La Fig. 5 muestra la actividad de CAT medida en eritrocitos de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. La actividad enzimática de CAT fue 31% mayor en pacientes hipertensos esenciales tratados con vitaminas respecto de los pacientes tratados con placebo ($p < 0,001$).

*Figura 5: Actividad enzimática de CAT medida en eritrocitos de pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes. k, constante cinética de primer orden de catalasa para la descomposición del peróxido de hidrógeno. Actividad enzimática expresada por g de hemoglobina (eritrocitos).
La Fig. 6 muestra la actividad de SOD medida en eritrocitos de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. La actividad enzimática de SOD fue 31% mayor en pacientes hipertensos esenciales tratados con vitaminas respecto de los pacientes tratados con placebo (p < 0,001).

Figura 6: Actividad enzimática de SOD medida en eritrocitos de pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes. Actividad enzimática expresada por g de hemoglobina (eritrocitos).
La Fig. 7 muestra la actividad de GSH-Px medida en eritrocitos de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. La actividad enzimática de GSH-Px fue 15% mayor en pacientes hipertensos esenciales tratados con vitaminas respecto de los pacientes tratados con placebo (p < 0.001).

Figura 7: Actividad enzimática de GSH-Px medida en eritrocitos de pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes. Actividad enzimática expresada por g de hemoglobina (eritrocitos).
La Fig. 8 muestra la relación GSH/GSSG medida en eritrocitos de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. La relación GSH/GSSG fue 10% mayor en pacientes hipertensos esenciales tratados con vitaminas respecto de los pacientes tratados con placebo (p < 0.001).

Figura 8: Relación GSH/GSSG medida en eritrocitos de pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes.

*p < 0.001
6.3 Parámetros relacionados con el estrés oxidativo: lipoperoxidación

6.3.1 Plasmáticos

La Fig. 9 muestra los valores de F₂-isoprostanos medidos en el plasma de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. Los valores de F₂-isoprostanos fueron 18% menores en pacientes hipertensos esenciales tratados con vitaminas respecto de los pacientes tratados con placebo (p < 0,001).

* p < 0,001

Figura 9: Concentraciones plasmáticas de F₂-isoprostanos medidos en pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes.
6.3.2 Eritrocitarios

La Fig. 10 muestra los valores de MDA medidos en eritrocitos de pacientes hipertensos esenciales tratados con placebo y vitaminas antioxidantes. Los valores de MDA fueron 27% menores en pacientes hipertensos esenciales tratados con vitaminas respecto de los pacientes tratados con placebo (p < 0,001).

* Figura 10: Concentraciones de MDA medidos en eritrocitos de pacientes hipertensos esenciales tratados con placebo y pacientes hipertensos esenciales tratados con vitaminas antioxidantes. MDA: Malondialdehido, Hb: Hemoglobina.

*p < 0,001
6.4 Correlaciones establecidas entre los niveles plasmáticos de lipoperoxidación y presión arterial de pacientes hipertensos esenciales tratados con placebo y vitaminas.

La Fig. 11A muestra la asociación existente entre presión arterial sistólica (PAS) y presión arterial diastólica (PAD) con los niveles de F₂-isoprostanos. Se encontró una correlación positiva entre PAS y PAD con los niveles plasmáticos de F₂-isoprostanos en los pacientes tratados con placebo.

Figura 11A. Gráfico de Pearson: correlación de presión arterial sistólica (esferas blancas y línea) y presión arterial diastólica (esferas oscuras y línea) con lipoperoxidación medida en el plasma (concentración de F₂-isoprostanos) de pacientes hipertensos esenciales tratados con placebo.
La Fig. 11B muestra la asociación existente entre presión arterial sistólica (PAS) y presión arterial diastólica (PAD) con las concentraciones de F$_2$-isoprostanos. Se encontró una correlación positiva entre PAS y PAD con los niveles plasmáticos de F$_2$-isoprostanos en los pacientes tratados con vitaminas.

Figura 11B. Gráfico de Pearson: correlación de presión arterial sistólica (esferas blancas y línea) y presión arterial diastólica (esferas oscuras y línea) con lipoperoxidación medida en el plasma (niveles de F$_2$-isoprostanos) de pacientes hipertensos esenciales tratados con vitaminas.
6.5 Correlaciones establecidas entre la capacidad antioxidante total del plasma y presión arterial de pacientes hipertensos esenciales tratados con placebo y vitaminas.

La Fig. 12A muestra la asociación existente entre la PAS y PAD con la capacidad antioxidante total del plasma (FRAP). Se encontró una correlación negativa entre PAS y PAD con la capacidad antioxidante total del plasma en los pacientes tratados con placebo.

Figura 12A. Gráfico de Pearson: correlación de presión arterial sistólica (círculo blancos y línea) y presión arterial diastólica (círculos oscuros y línea) con capacidad antioxidante del plasma (FRAP) medida en pacientes con hipertensión arterial esencial tratados con placebo.
La Fig. 12B muestra la asociación existente entre la PAS y PAD con la capacidad antioxidante total del plasma (FRAP). Se encontró una correlación negativa entre PAS y PAD con la capacidad antioxidante total del plasma en los pacientes tratados con vitaminas.

Figura 12B. Gráfico de Pearson: correlación de presión arterial sistólica (círculos blancos y línea) y presión arterial diastólica (círculos oscuros y línea) con capacidad antioxidante del plasma (FRAP) medida en pacientes con hipertensión arterial esencial tratados con vitaminas.
7. DISCUSIÓN

El presente estudio proporciona evidencia sobre los efectos de la administración oral de vitaminas C y E en pacientes con HTA esencial. Los resultados muestran que la administración de dicho tratamiento, disminuye significativamente los niveles de presión arterial, junto con aumentar la capacidad antioxidante y disminuir los biomarcadores del estrés oxidativo.

Diversos estudios clínicos y experimentales recientes, le han asignado importancia al estrés oxidativo en la génesis de la HTA, debido a que el aumento de radicales libres afecta la estructura y función de la pared vascular, efecto que se traduce en la elevación de la presión arterial en forma crónica.

Debido a esto, se ha intentado reducir el estrés oxidativo mediante terapias antioxidantes que disminuyan la presión arterial a través del aumento en la biodisponibilidad de NO, la que estará reducida en pacientes con HTA esencial.

Terapias en base a antioxidantes y dietas ricas en antioxidantes, parecen prevenir o al menos disminuir el deterioro funcional orgánico originado por un exceso de estrés oxidativo. Ejemplo de esto es el estudio llamado “Dietary Approaches to Stop Hypertension” o más comúnmente conocido como Dieta DASH. Esta dieta contribuyó a la disminución de los niveles de presión arterial en los hipertensos (Appel et al., 1997). El efecto producido podría deberse al aumento del estatus antioxidante total, producto de que dicha dieta es rica en vitaminas antioxidantes, polifenoles y carotenoides. Sin embargo, es difícil identificar cuál de todas estas sustancias tiene mayor responsabilidad en tal efecto.

Cada vez que se ha intentado descifrar el verdadero papel que juegan las vitaminas antioxidantes, los resultados obtenidos han sido controvertidos. Algunos estudios concuerdan con nuestros resultados (Galley et al., 1997). Otros, no muestran ningún cambio significativo (Kim et al., 2002), pero también existen estudios cuyos resultados son totalmente opuestos a los obtenidos durante nuestra investigación (Ward et al., 2007).

Estos estudios no concluyentes o contradictorios, pueden deber sus resultados a múltiples causas: inicio precoz o tardío de la intervención, intervenciones poblacionales en grupos reducidos, asociación con enfermedades secundarias, dosis insuficientes, utilización de un solo antioxidante o una combinación de dos o más, etc.
Ejemplo de lo anterior es que, en el estudio realizado por Kim et al, (2002) se utilizó una población que padecía de gastritis atrófica y que inicialmente había sido suplementada con vitamina C (500 mg/día), y β-caroteno (15 mg/día) con el fin prevenir el cáncer gástrico. Luego de terminado este estudio se suplementó solamente con vitamina C (500 mg/día) y se analizaron los efectos de esta vitamina sobre la presión arterial de los participantes. En los resultados no se observaron efectos en la presión arterial de los pacientes tratados con la vitamina. Los resultados obtenidos por este investigador, no pueden ser concluyentes debido a que la población en estudio ya había participado en un estudio previo y presentaba, además, una patología secundaria a la hipertensión arterial. Si bien la gastritis atrófica no es un factor de riesgo en la patología de la hipertensión arterial, esta enfermedad podría haber provocado algún trastorno en la absorción y biodisponibilidad de la vitamina C en los pacientes tratados. Por lo tanto, los efectos benéficos de la vitamina C sobre la presión arterial no se pueden estimar en ésta población.

En el estudio realizado por Ward et al, (2007) el efecto de la suplementación con vitamina E evidenció un efecto negativo, aumentando significativamente la presión arterial sistólica y diastólica de los pacientes tratados con vitamina E, versus los tratados con placebo. Al igual que en el estudio anterior, nos encontramos con una población que presenta una patología secundaria a la hipertensión arterial, en este caso los pacientes tratados presentaban diabetes tipo II. Es importante señalar que el aumento de la presión arterial de los pacientes tratados no fue debido a la suplementación de vitamina E, sino que posiblemente al aumento del estrés oxidativo que presentan los pacientes con diabetes (Niedowicz et al., 2005). La hiperglicemia produce un aumento en la producción de radicales libres a través de varias vías, una de ellas es la autooxidación de la glucosa que genera radicales libres que pueden producir daño oxidativo, contribuyendo así a la disfunción vascular e hipertensión (Jay et al., 2006).

En otro estudio realizado por Ward et al, (2005), donde se analizó el efecto de la suplementación combinada de vitamina C y polifenoles en pacientes con hipertensión, se llegó a la conclusión de que esta terapia aumenta la presión arterial de los pacientes tratados. En dicha investigación la dosis fue menor a la utilizada en nuestro estudio (500 mg/día) y además, se intentó controlar a los factores de riesgo tales como diabetes, falla cardíaca, enfermedades cerebrovasculares, etc. Sin embargo, es muy importante considerar
que todos los pacientes incluidos en el protocolo, previamente seguían un tratamiento en base a uno o más medicamentos antihipertensivos. Frente a dicha situación, resulta evidente que los pacientes que ya están siendo tratados con medicamentos, padecen una hipertensión más avanzada y por lo tanto, los efectos benéficos que podría provocar la suplementación con antioxidantes, son mucho menores. Otro sesgo importante a considerar en este estudio, es la incorporación de pacientes de sexo femenino, debido a que las diferencias hormonales producidas en la mujer durante el ciclo menstrual, pueden incidir directamente en el estrés oxidativo. Durante la menstruación se produce un aumento de las ROS (Sugino et al., 2001) lo que podría afectar directamente la presión arterial de las mujeres participantes.

La controversia en los resultados analizados, también puede ser explicada debido a que en los estudios antes mencionados, no se consideró la influencia de otros factores tales como la actividad física, la suplementación previa con alguna terapia antioxidante, el consumo de frutas y verduras o la utilización de algún medicamento antihipertensivo. Todos estos factores pueden influir directa o indirectamente en el estatus antioxidante y por ende, en los valores de presión arterial. Por el contrario, en el presente estudio fueron considerados todos los factores de riesgo, a fin de obtener resultados significativos sobre el efecto de las vitaminas antioxidantes en la presión arterial de los pacientes.

Recientemente la conocida revista *The Journal of the American Medical Association* (JAMA) publicó los resultados de un metanálisis de todos los estudios aleatorios y controlados realizados con antioxidantes y comparados con placebo (Bjelakovic et al., 2007). El criterio de valoración principal de este metanálisis fue la diferencia en la tasa de mortalidad entre el grupo tratado con uno o varios antioxidantes y el grupo que recibió placebo, es así que se llegó a la conclusión de que los antioxidantes aumentaron la mortalidad. En la revisión de la literatura, los autores seleccionaron un total de 68 estudios, los cuales incluyeron 232.606 participantes.

A pesar de que este metanálisis abarcó una gran población, incurre en defectos metodológicos que en gran medida invalidan sus resultados. Sólo 21 estudios trataron sobre la prevención primaria, el resto tenía como objetivo la prevención secundaria, es decir, que los trabajos se efectuaron sobre pacientes con patologías oncológicas o cardiovasculares ya establecidas. Debemos partir de la base de que la acción de los antioxidantes, a semejanza de otros nutrientes, es preventiva y no curativa, por lo tanto, el enfoque del trabajo fue
inadecuado. Además, no se puso un tope de dosis en los trabajos seleccionados, aspecto que está muy reglamentado en cualquier trabajo controlado. Así por ejemplo, incluyeron trabajos con β-caroteno en dosis de hasta 50 mg, cuando cualquier complejo antioxidante de los laboratorios de primera línea, no contiene más de 5 mg de β-caroteno, es decir, la décima parte.

Diversos estudios han comprobado que el aumento de las ROS por sobre las defensas antioxidantes tanto endógenas como exógenas, trae como consecuencia daño sobre las biomoléculas, siendo los fosfolípidos de membrana los más susceptibles. El daño oxidativo producido sobre lípidos, conocido como lipoperoxidación, se puede conocer mediante la medición de biomarcadores presentes en el glóbulo rojo, como el malondialdehído (MDA) y la medición de niveles plasmáticos de F₂-isoprotanos. Estudios previos han reportado que los niveles plasmáticos de F₂-isoprotanos se encuentran aumentados en pacientes con hipertensión arterial (Hozawa et al., 2004). Sin embargo, Cracowski et al, (2003) no encontraron diferencias significativas al comparar las concentraciones urinarias de F₂-isoprotanos de pacientes normotensos y pacientes hipertensos esenciales. Esta diferencia puede ser explicada debido a que los criterios de inclusión, no consideraron la influencia de otros factores tales como: actividad física, suplementación con algún antioxidante, consumo habitual de frutas o verduras, todos ellos factores que inciden directamente en el estrés oxidativo.

Existen también evidencias de que el uso de terapias antioxidantes reduce los niveles de lipoperoxidación en pacientes hipertensos, influencia que se observa en una disminución de los niveles de MDA y de F₂-isoprotanos (Sato et al., 2006). Esto concuerda con los resultados encontrados en los pacientes hipertensos tratados con vitaminas antioxidantes en nuestro estudio. Sin embargo, la administración de antioxidantes en el estudio antes señalado, se extendió por un período mayor y los pacientes presentaban un promedio de edad superior al de nuestra investigación. Esto es importante porque pacientes de edad muy avanzada, pueden presentar una hipertensión mucho más severa, lo que podría derivar en daños a órganos blanco, además de la mantención del daño y no debiera esperarse una respuesta beneficiosa mediante la administración de agentes antioxidantes.
Respecto de las defensas antioxidantes, las enzimas antioxidantes (CAT, SOD y GSH-Px) desempeñan un papel fundamental constituyendo la primera línea de defensa contra los radicales libres, proceso que realizan mediante la conversión de estas especies químicas, hacia otras de menor reactividad, protegiendo con ello del daño oxidativo a las biomoléculas. Por lo tanto, el estado de estrés oxidativo evidenciado en pacientes con HTA esencial provoca una menor actividad enzimática.

En la presente investigación, se evidencia una mayor actividad de las enzimas antioxidantes eritrocitarias (CAT, SOD y GSH-Px) en los pacientes tratados con vitaminas antioxidantes y se aprecia una menor actividad de estas enzimas en los pacientes tratados con placebo. Esto concuerda con resultados obtenidos en otros estudios donde la actividad de las enzimas antes mencionadas, se encuentra notoriamente disminuida en pacientes con HTA esencial (Redon et al., 2003; Kashyap et al., 2005). El aumento encontrado en la actividad de las enzimas antioxidantes en los pacientes tratados con vitaminas, responde a un menor grado de estrés oxidativo producto de un aumento general en el estatus antioxidante de los pacientes tratados. Sin embargo, queda por determinar el mecanismo de esta modulación positiva de las vitaminas antioxidantes.

Respecto de las defensas no enzimáticas, en nuestro estudio encontramos una mayor capacidad antioxidante del plasma en los pacientes tratados con vitaminas, medida a través de método FRAP (ferric reducing ability of plasma), que mide la capacidad que posee el plasma de reducir el ión ferrico a ferroso. Bajo un estado de estrés oxidativo, donde predominan las ROS, esta capacidad antioxidante se ve sobrepasada, con lo que sus valores disminuyen. Nuestros resultados concuerdan con resultados previos, en los que se observa una mayor capacidad antioxidante en pacientes hipertensos esenciales, tratados con sustancias antioxidantes (Goch et al., 2004), a diferencia de los pacientes tratados con placebo, que presentaron una menor capacidad antioxidante en plasma. Esta situación se ve reflejada, además, en el aumento en la relación GSH/GSSG en los pacientes tratados con vitaminas antioxidantes, a diferencia de los tratados con placebo. El glutatión (GSH), es el mayor tiol no proteínico implicado en muchas funciones celulares. Este tripéptido (g-glutamil-L-cistenil-glicina) juega un papel central en la protección de las células frente a los radicales libres y frente a intermediarios reactivos del oxígeno. El glutatión existe en dos formas, reducido (GSH) y oxidado (GSSG), las que habitualmente se encuentran en
equilibrio. En condiciones de estrés oxidativo, las ROS oxidan GSH a GSSG, produciendo una disminución en la concentración de GSH y un incremento en la concentración de GSSG. Estudios revelan que en individuos con HTA esencial, la relación GSH/GSSG se encuentra significativamente disminuida en comparación a sujetos normotensos (Redon et al., 2003).

Bajo condiciones de estrés oxidativo se ve alterada la función endotelial, debido a que se genera una menor biodisponibilidad de NO, una de las principales sustancias vasodilatadoras secretadas por del endotelio. Analizada esta situación, se ha comprobado que pacientes con HTA esencial presentan una menor biodisponibilidad de NO, debido a que el aumento de las ROS inactiva a este último. Estudios previos, han reportado que la administración de ácido ascórbico, en dosis supra fisiológicas administradas intra-arterialmente, provoca efectos benéficos en la función endotelial de pacientes hipertensos. (Taddei et al., 1998; Sherman et al., 2000). Sin embargo, en un estudio donde se administró la vitamina C oralmente (500 mg/día durante 1 mes), no hubo efecto aparente (Duffy et al., 2001). Posiblemente al administrar la vitamina C intra-arterialmente se logran mayores concentraciones plasmáticas, lo que produce un mayor efecto benéfico en la función endotelial, a diferencia de lo que ocurre con la administración oral. En contraste con lo anterior, otro estudio sí evidenció un efecto benéfico al administrar ácido ascórbico oralmente (500 mg/día durante 1 mes) a pacientes con enfermedad coronaria (Gokce et al., 1999). Por otro lado, un estudio en el que se administró vitamina E (1000 UI/día) durante 10 semanas por vía oral, no mostró efectos benéficos en la función endotelial (Simons et al., 1999). Sin embargo, es válido pensar que la administración crónica de vitaminas antioxidantes, podría beneficiar la función endotelial en pacientes con grados moderados de hipertensión arterial. La diferencia con los estudios anteriormente mencionados, es que se requiere la administración combinada de la vitamina C y E en dosis apropiadas. Esto debido a que la vitamina C puede reciclar el efecto prooxidante de la vitamina E, reduciendo de esta manera el radical α-tocoferoxilo a α-tocoferol. Así, el tratamiento combinado puede ser más efectivo en la reducción de radicales libres, con el consecuente aumento de la biodisponibilidad del NO.

La asociación de vitaminas C y E en el presente estudio, demuestra un efecto antihipertensivo, debido a que ambas vitaminas podrían actuar sinérgicamente en la
generación de óptimas condiciones para la formación de NO a nivel endotelial. Ambas vitaminas, no sólo actúan inactivando y barriendo (*scavengers*) a las ROS, sino que también pueden inducir a una disminución de la NADPH oxidasa y a un aumento de la eNOS (Attia *et al.*, 2001), explicando así su efecto antihipertensivo.

En resumen, el presente estudio aporta evidencia sobre los efectos del tratamiento con vitaminas antioxidantes C y E en el tratamiento de la HTA esencial, basado en la evidencia científica que implica al estrés oxidativo en la fisiopatología de la HTA esencial. Es por eso que una disminución del estrés oxidativo a través del aumento de las defensas antioxidantes, puede provocar una disminución significativa en la presión arterial de los pacientes con HTA esencial.
8. CONCLUSIONES

La administración de vitaminas C + E en pacientes con HTA esencial:
1. Reduce la presión arterial de los pacientes tratados.
2. Aumenta los niveles de las enzimas antioxidantes SOD, CAT, y GSH-Px de los eritrocitos.
3. Aumenta la capacidad antioxidante total del plasma.
4. Disminuye la lipoperoxidación, evidenciado en la reducción de los biomarcadores del estrés oxidativo.

Este estudio confirmó al estrés oxidativo como uno de los principales causantes de la HTA esencial. Si bien los resultados obtenidos a partir de la investigación realizada representan un significativo aporte en el tratamiento de la HTA esencial, es importante recalcar que es necesario seguir investigando acerca del tema y sus alcances. Sin embargo, la responsabilidad de los pacientes respecto de la evolución de la enfermedad, es preponderante y obedece a la adopción de un estilo de vida sano, basado en el consumo de de una dieta balanceada rica en frutas y verduras, con el fin de obtener las vitaminas antioxidantes de la manera más natural posible, para prevenir una futura hipertensión, ya que la eficacia de los antioxidantes naturales ha demostrado ser superior a la administración farmacológica de antioxidantes aislados.
9. BIBLIOGRAFÍA

Rodrigo, R.; Rivera, G. 2003. Papel del estrés oxidativo y de los antioxidantes en la prevención de las enfermedades crónicas no transmisibles (Monografía). Laboratorio de fisiopatología renal; programa de farmacología molecular y clínica; instituto de ciencias biomédicas. Facultad de Medicina. Universidad de Chile. pp. 1-27

