DETERMINACIÓN DE LOS PERÍODOS DE CARENCIA DE DIFERENTES FORMULACIONES DE FLUMEQUINA ADMINISTRADAS EN POLLOS BROILER

Nicolás Javier Pizarro Aránguiz

Memoria para optar al Título Profesional de Médico Veterinario
Departamento de Ciencias Clínicas

NOTA FINAL:

NOTA FIRMA

PROFESOR GUÍA: DRA. BETTY SAN MARTÍN

PROFESOR CONSEJERO: DRA. DANIELA Iragüen

PROFESOR CONSEJERO: DR. SERGIO CORNEJO

SANTIAGO, CHILE
2009
UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS VETERINARIAS Y PECUARIAS
ESCUELA DE CIENCIAS VETERINARIAS

DETERMINACIÓN DE LOS PERÍODOS DE CARENCIA DE DIFERENTES FORMULACIONES DE FLUMEQUINA ADMINISTRADAS EN POLLOS BROILER

Nicolás Javier Pizarro Aránguiz

Memoria para optar al Título Profesional de Médico Veterinario Departamento de Ciencias Clínicas

PROFESOR GUÍA: DRA. BETTY SAN MARTÍN

SANTIAGO, CHILE
2009
INDICE

RESUMEN .. 4
SUMMARY .. 6
INTRODUCCIÓN .. 8
REVISIÓN BIBLIOGRÁFICA .. 11
 QUINOLonas y Fluoroquinolonas .. 10
 Características farmacocinéticas y farmacodinámicas de las Fluoroquinolonas 11
 Aplicaciones terapéuticas de las quinolonas y fluoroquinolonas ... 12
 Mecanismo de acción .. 12
 Resistencia bacteriana ... 13
 Regulaciones internacionales sobre la resistencia antimicrobiana .. 14
 Residuos de quinolonas y fluoroquinolonas en alimentos de origen animal y sus riesgos en la salud humana ... 17
 Limites Máximos Residuales y Límite Mínimo de Funcionamiento Exigido 18
 Monitoría de residuos a nivel nacional ... 19
 Metodología analítica .. 20
 Flumequina en la avicultura nacional .. 21
HIPÓTESIS ... 22
OBJETIVO GENERAL ... 22
OBJETIVOS ESPECÍFICOS ... 22
MATERIALES Y MÉTODOS .. 23
 OBJETIVO 1: VALIDAR UNA METODOLOGÍA ANALÍTICA POR CROMATOGRAFÍA LÍQUIDA DE ALTO RENDIMIENTO ASOCIADA A ESPECTROMETRÍA MASA/MASA PARA LA DETECCIÓN DE RESIDUOS DE FLUMEQUINA EN MÚSCULO E HÍGADO DE POLLOS
 BROILER DE ACUERDO A RECOMENDACIONES DE NORMATIVAS INTERNACIONALES. .. 23
 Animales y matriz de trabajo ... 23
 Reactivos y estándares .. 24
 Preparación de las muestras y procedimiento analítico .. 24
 Sistema Cromatográfico y Condiciones Cromatográficas .. 25
 Parámetros de validación ... 25
 OBJETIVO 2: DETERMINAR LOS PERÍODOS DE CARENCIA DE 3 PRESENTACIONES COMERCIALES DE FLUMEQUINA, EN RELACIÓN A LOS LMR DESCritos a NIVEL NACIONAL e INTERNACIONAL .. 30
 Animales de Experimentación ... 30
 Grupos experimentales ... 31
 Administración del fármaco .. 31
 Sacrificio de los animales y obtención de las muestras de experimentación 31
 Análisis de las muestras .. 32
 Evaluación del Periodo de Carença ... 32
RESULTADOS .. 33
 OBJETIVO 1: VALIDAR UNA METODOLOGÍA ANALÍTICA POR CROMATOGRAFÍA LÍQUIDA DE ALTO RENDIMIENTO ASOCIADA A ESPECTROMETRÍA MASA/MASA PARA LA DETECCIÓN DE RESIDUOS DE FLUMEQUINA EN MÚSCULO E HÍGADO DE POLLOS
 BROILER DE ACUERDO A RECOMENDACIONES DE NORMATIVAS INTERNACIONALES. .. 33
 Identificación de los Componentes: ... 33
 Especificidad: .. 33
 Recuperación: ... 33
 Precisión (Reproducibilidad intralaboratorio): .. 34
 Repetibilidad: ... 35
 Límite de Decisión (CCa) y Capacidad de detección (CCd): .. 36
 Robustez: ... 36
 OBJETIVO 2: DETERMINAR LOS PERÍODOS DE CARENCIA DE 3 PRESENTACIONES COMERCIALES DE FLUMEQUINA, EN RELACIÓN A LOS LMR DESCritos a NIVEL NACIONAL e INTERNACIONAL .. 37
DISCUSIÓN .. 44
CONCLUSIONES .. 47
BIBLIOGRAFÍA .. 48
RESUMEN

Las quinolonas y fluoroquinolonas son antimicrobianos ampliamente usados en producción animal para el tratamiento de enfermedades bacterianas. Sin embargo, su uso puede ser riesgoso para los consumidores si no se respetan los períodos de carencia, ya que pueden quedar residuos de estos fármacos en los alimentos de origen animal destinados al consumo humano.

El método analítico utilizado para la determinación de flumequina, fue previamente validado de acuerdo a las recomendaciones de la Decisión 2002/657/CE de la Comunidad Europea. Para la detección y cuantificación de la droga en los tejidos en estudio, se utilizó Cromatografía Líquida asociada a Espectrometría de Masa Masa. El límite de detección de la técnica fue de 1,5 μg/kg, la capacidad de detección fue de 2 μg /kg y la recuperación fue mayor al 90% en promedio.

Para determinar el período de carencia de flumequina en músculos e hígados de pollos Broiler, a tres grupos de aves se les administró una formulación comercial de flumequina al 10%, 20% y 80%, respectivamente. Los pollos Broiler fueron tratados con una dosis de flumequina de 24 mg/kg/pv vía oral, por 5 días consecutivos. Las concentraciones de flumequina fueron monitoreadas durante los siguientes días post tratamiento.

Los niveles de antimicrobianos tanto en músculos como hígados, en el primer día posttratamiento, fueron elevados en los 3 grupos experimentales descendiendo rápidamente en los próximos días.

Considerando los LMRs de la Comunidad Europea, Japón y Chile se estimaron los períodos de carencia en pollos Broiler para 3 presentaciones comerciales. Considerando como tejido blanco los músculos de pollo Broiler, en el caso de flumequina al 10% y 20 %, tomando en cuenta los LMRs de 400 o 500 μg /kg. el período de carencia estimado es de 2 días. En el caso de flumequina 80 % el período de carencia estimado es de 1 día.

En el caso de los hígados como tejido blanco, se consideraron los LMR 500, 800 y 1000 μg/kg. Los períodos de carencia estimados para flumequina al 10 % corresponden a 3 días para un LMR de 500 μg/kg y de 2 días para los LMR de 800 y 1000 μg/kg.
En el caso de flumequina al 20 %, los períodos de carencia estimados corresponden a 2 días para los LMR de 500 y 800 µg/kg y de 1 día para el LMR 1000 µg/kg.

Para flumequina 80% los períodos de carencia estimados corresponden a 2 días para los LMR de 500 y 800 µg/kg y de 1 día para el LMR 1000 µg/kg.

En conclusión el período de carencia estimado por el SAG, de 10 días para las 3 presentaciones comerciales de flumequina presentes a nivel nacional, debe ser revisado según los resultados obtenidos en esta memoria de título, ya que se encontró diferencias en los períodos de carencia estimados en las diferentes presentaciones comerciales de flumequina usadas en avicultura a nivel nacional.
SUMMARY

Quinolones and fluoroquinolones are widely used antimicrobials in animal production for the treatment of bacterial diseases. However, their use may be a risk to consumers, as there may contain residues of these drugs in food of animal origin for human consumption.

To determine the withdrawal period of flumequine in muscle and liver of Broilers, were administered a commercial formulation of flumequine at 10%, 20% and 80% respectively to 1, 2 and 3 experimental groups.

The analytical method used for the determination of flumequine, was previously validated in accordance with the recommendations of Decision 2002/657/EC of the European Community. For detection and quantification of drugs in the tissues under study, we used Liquid Chromatography Mass Spectrometry. The detection limit of the technique was 1.5 μg /kg, the detection was 2 μg /kg and the recovery was increased to 90% on average.

The depletion study was conducted using Broiler chickens which were treated with a dose of 24 mg flumequine / kg / pv orally for 5 consecutive days.

Flumequine concentrations were monitored during the following days after treatment.

The levels of antimicrobials in muscle and liver of Broilers in the first days after treatment, in general were high in all 3 experimental groups to decline rapidly in the coming days.

Considering the LMRs of the European Community, Japan and Chile were estimated withdrawal periods to 3 commercial presentations, both in muscle and liver.

Considering muscle of broiler chicken like target tissue, in the case of flumequine at 10% and 20%, taking into account the MRLs of 400 or 500 mg / kg. the estimated withdrawal period is 2 days. For flumequine 80%, the estimated withdrawal period is 1 day.

In the case of the liver as a target tissue, considered the MRL 500, 800 and 1000 mg/kg. the estimated withdrawal period for flumequine 10% corresponds to 3 days for an MRL of 500 mg/kg and 2 days for MRLs of 800 and 1000 mg/kg.

For flumequine 20%, the estimated withdrawal period is 2 days for MRLs of 500 or
800 mg/kg and 1 day to the MRL of 1000 mg/kg.

For flumequine 80% the estimated withdrawal period is to 2 days for MRLs of 500 or 800 mg/kg, and 1 day to the MRL of 1000 mg/kg.

In conclusion the withdrawal period estimated by the SAG, of 10 days for the 3 commercial presentations of flumequine present at the national level should be revised according to the results obtained in this study, as they found differences in the estimated withdrawal period of the different presentations of flumequine used in commercial poultry nationwide.
INTRODUCCIÓN

Durante el año 2008 la producción de carnes a nivel nacional, alcanzó aproximadamente 1.388.000 toneladas, de las cuales un 44% correspondió a carnes de ave, un 38% a cerdo y un 17% a bovinos, el 1% restante corresponde a otras carnes.

En la última década, la producción avícola ha tenido un aumento promedio del 5% anual, con un consumo per cápita de carne de pollo Broiler de 27,3 Kg en el año 2007. Las exportaciones de pollo y pavo en el año 2008 alcanzaron más de 126.809 toneladas varas, reportando más de 269 millones de dólares a la industria nacional (APA, 2009).

Esta creciente demanda de productos de origen animal por parte de la población humana, ha llevado a la intensificación de los sistemas productivos, estando los animales cada vez más expuestos a sufrir enfermedades de diversa índole, incrementando además el uso de fármacos (antiparasitarios, antimicrobianos y antifúngicos).

Por otra parte, actualmente existe mayor preocupación de los consumidores sobre el origen y la inocuidad de los alimentos, especialmente los de origen animal, ya sea tanto por el potencial peligro de enfermedades zoonóticas como por la presencia de residuos y contaminantes.

Debido a esto, ha aumentado la preocupación de la comunidad científica, sobre el uso de antimicrobianos en la producción animal y las posibles repercusiones que estos pueden tener en la salud pública.

En el caso particular de los residuos de fluoroquinolonas en alimentos de origen animal destinados a consumo humano, podemos mencionar efectos sobre el sistema nervioso, sistema gastrointestinal, sistema renal y piel entre otros.

Para asegurar que un producto de origen animal sea inocuo, en términos de residuos farmacológicos, se deben respetar los períodos de carencia. El período de carencia depende de la droga, del animal y de las formulaciones farmacéuticas, entre otros factores. Las formulaciones farmacéuticas pueden producir variaciones en los períodos de carencia al tener diferencias en las concentraciones de la droga y excipientes que hacen variar los parámetros farmacocinéticas, principalmente la velocidad y magnitud de absorción y el tiempo de eliminación.
Dados estos antecedentes, resulta importante evaluar la presencia de residuos de flumequina en músculo e hígado de pollos Broiler y establecer además los períodos de carencia de diferentes presentaciones comerciales del fármaco.
REVISIÓN BIBLIOGRÁFICA

Quinolonas y Fluoroquinolonas

Las quinolonas y fluoroquinolonas son uno de los principales antimicrobianos utilizados tanto en medicina veterinaria, como en medicina humana. Su uso, al momento de su descubrimiento en la década de los sesenta, se restringía a patologías causadas por agentes infecciosos que afectan las vías urinarias. Hoy en día y luego de variadas modificaciones en su estructura básica, se usan frente a una gran variedad de microorganismos causantes de infecciones (Van Bambeke et al., 2005).

El ácido nalidíxico fue la primera quinolona, descubierto en 1962 por Lescher et al., que corresponde a una 1,8 naftaridina, molécula de baja toxicidad y con espectro de acción sobre bacterias Gram negativas, utilizada en el tratamiento de infecciones urinarias (Jacoby, 2005).

En los años siguientes, se empezó a experimentar con la modificación de esta estructura con el fin de ampliar el espectro de acción y mejorar las propiedades farmacocinéticas de este grupo de fármacos. El gran descubrimiento correspondió a la síntesis de compuestos que presentaban los substituyentes 6- fluoro y 7- piperazinil, dando origen al grupo que genéricamente se denomina fluoroquinolonas (Mella et al., 2000).

La adición de substituyentes seleccionados específicamente y posicionados en lugares claves de la molécula base de las quinolonas, permitió atacar grupos específicos de bacterias así como también mejorar las propiedades farmacocinéticas. La adición del grupo fluoro en la posición 6 del anillo básico de las quinolonas, amplió el espectro de acción hacia bacterias Gram positivas, además de mejorar la penetración a las células bacterianas. La adición del grupo piperazinil en la posición 7 mejoró la actividad contra Pseudomonas aeruginosa y Staphylococcus spp. (Andriole, 2005).

Las quinolonas se pueden clasificar en generaciones, según su potencia y espectro de acción; las fluoroquinolonas de primera generación tienen acción sólo frente a bacterias Gram negativas. Las fluoroquinolonas de segunda generación tienen mayor actividad antibacteriana contra Enterobacterias además de otras bacterias Gram negativas como P. aeruginosa, y una cierta actividad contra organismos Gram positivos (Andriole, 2005). Las fluoroquinolonas de tercera generación tienen aún más actividad frente a
bacterias Gram positivas, particularmente neumococo y también presentan buena actividad contra anaerobios. En el caso de las fluoroquinolonas de cuarta generación actúan muy bien frente a anaerobios y Gram positivos (Andriole, 1999; Mella et al., 2000).

Pese a que aún no existe consenso sobre la clasificación de flumequina, se acepta que es una de las primeras fluoroquinolonas.

Flumequina se caracteriza por la presencia del radical 6 fluoro y por la ausencia del radical 7 piperazinil. Este fármaco tiene actividad antimicrobiana sobre aerobios Gram negativos como *E. coli*, pero presenta baja actividad contra aerobios Gram positivas y bacterias anaerobias (Andriole, 2005). Es actualmente utilizada en medicina veterinaria y su uso está permitido en animales de producción tales como bovinos, cerdos y aves de corral (Anadón et al, 2007). La administración de flumequina es vía oral y se recomienda su uso en cuadros gastroentéricos provocados por bacterias Gram negativas.

Características farmacocinéticas y farmacodinámicas de las fluoroquinolonas

En general las fluoroquinolonas poseen una rápida absorción cuando se administran por vía oral, logrando máximas concentraciones plasmáticas una a dos horas post administración. La absorción es escasamente afectada por los alimentos; sin embargo, puede disminuir en presencia de cationes bivalentes, incluyendo Al++, Mg++, Ca++ y Fe++, que frecuentemente se encuentran en algunos medicamentos, como también en productos lácteos (Turnidge, 1999).

La absorción de las fluoroquinolonas se ve reflejada por una alta biodisponibilidad, alcanzando un 90-95 % cuando es administrada por vía oral. Tiene baja unión a proteínas plasmáticas (entre un 20-40%) y se une principalmente a albúmina. Su distribución en tejidos es alta, mayor a 1,5 l/kg., logrando adecuados niveles intersticiales y alta penetración en células como las fagocíticas. La vida media de eliminación de los distintos representantes de este grupo de antimicrobianos varied entre 4 a 10 horas (Turnidge, 1999). Las vías de biotransformación y excreción difieren entre los distintos compuestos, pero principalmente se metabolizan vía hepática y se excretan por el riñón (Andriole, 2005).

Las concentraciones urinarias exceden las Concentraciones Mínimas Inhibitorias para la mayoría de los patógenos (Orden y De La Fuente, 2001; Andriole, 2005). Tienen un
efecto bactericida dependiente de la concentración de la droga. Es decir, a mayor dosis de la droga el efecto bactericida es mejor y esto también permite diseñar los esquemas terapéuticos en relación a la dosis y ritmo horario (Van Bambeke et al., 2005).

Aplicaciones Terapéuticas de las quinolonas y fluoroquinolonas

En el presente, las quinolonas y fluoroquinolonas son una de las herramientas terapéuticas más usadas tanto en medicina humana como medicina veterinaria (Orden y De La Fuente, 2001).

Las fluoroquinolonas son utilizadas para el tratamiento de diversos cuadros infecciosos que afectan el sistema respiratorio, sistema urogenital, próstata, piel, huesos, articulaciones y sistema digestivo. En este ultimo caso, son frecuentes las infecciones por *Salmonella spp.*, *Campylobacter spp.* y *Escherichia coli* (Andriole, 2005).

En la industria avícola nacional se usa flumequina principalmente en enfermedades producidas por *E. coli*, *Salmonella spp.* y *Pasteurella spp.* Existen 6 presentaciones comerciales, 3 en polvo y 3 en solución oral, con distintas concentraciones. Su uso está permitido en pollos Broiler y aves de corral, prohibiéndose su uso en gallinas ponedoras de huevos destinados a consumo humano.

Mecanismo de acción

Las quinolonas y fluoroquinolonas actúan inhibiendo la actividad de la enzima topoisomerasa II en bacterias Gram negativas y sobre la topoisomerasa IV en Gram positivas, las cuales actúan en el proceso de replicación del ADN bacteriano. Una inhibición prolongada conduce a la muerte de la célula, teniendo un efecto bactericida (Jacoby, 2005; San Martín et al., 2005).

Ambas enzimas están compuestas por dos subunidades. La topoisomerasa II o ADN girasa está compuesta por las subunidades GyrA, la cual es codificada por el gen *gyrA*, y la subunidad GyrB codificada por el gen *gyrB*. En tanto la topoisomerasa IV está compuesta por las subunidades ParC y ParE. Ambas enzimas trabajan en conjunto en la replicación, transcripción, recombinación y reparación del ADN bacteriano (Jacoby, 2005).
Las quinolonas y fluoroquinolonas se unen a éstas enzimas, formando un complejo fármaco-enzima alterando su conformación y, de esta manera, les impiden cumplir su función (Jacoby, 2005).

La mayoría de las bacterias tienen ambas enzimas, pero en Gram negativas la ADN girasa es más susceptible a la acción del fármaco, mientras que en bacterias Gram positivas la topoisomerasa IV es más susceptible (Andriole, 1999).

Resistencia bacteriana

El uso de antimicrobianos ya sea como profilaxis o tratamiento, tiene una consecuencia inevitable que es la emergencia y diseminación de bacterias y de genes de resistencia a estos fármacos (Fábrega et al., 2008).

Desde hace algún tiempo, ha aumentado la preocupación sobre el aumento de resistencia a estos antimicrobianos ya sea en bacterias transmitidas por los alimentos (*Salmonella spp.*, *Campylobacter spp.* y *Escherichia coli*) o en bacterias involucradas en infecciones refractarias y/o nosocomiales en humanos, en las cuales las fluoroquinolonas son el tratamiento de elección (Orden y De La Fuente, 2001).

Aunque generalmente las fluoroquinolonas usadas en medicina veterinaria son diferentes a las disponibles para uso clínico humano, la resistencia a una fluoroquinolona generalmente produce resistencia cruzada a otras fluoroquinolonas, esto quiere decir que fluoroquinolonas diferentes, pero que comparten estructuras químicas básicas, la bacteria se hace resistente a ellas de igual forma (Orden y De La Fuente, 2001).

La resistencia bacteriana a fluoroquinolonas se asocia fundamentalmente a mutaciones en los blancos de acción de estos fármacos, es decir sobre la enzima topoisomerasa II en Gram negativos y la topoisomerasa IV en Gram positivos (Andriole, 2005).

Uno de los mecanismos de resistencia se asocia a mutaciones en los genes de las enzimas, esto produce un cambio en la secuencia de los aminoácidos que codifican las subunidades de cada enzima. Estas mutaciones ocurren en los genes *gyrA* de la topoisomerasa II en bacterias Gram negativas y en el gen *parC* en la topoisomerasa IV en bacterias Gram positivas. Estas mutaciones se encuentran en una región concreta
denominada QRDR (región determinante de la resistencia a quinolonas), lo cual altera la afinidad de la quinolona por la enzima.

Además se describe resistencia asociada a alteraciones en la membrana plasmática que reducen la acumulación de la droga en el interior de la célula bacteriana. Esto ocurre por alteración de las porinas, o por una acelerada salida de la droga mediada por bombas de eflujo dependientes de energía (Fábrega et al., 2008).

En el año 1998 se reportó la presencia de un aislado multiresistente de Klebsiella pneumoniae aislada de orina que contenía un plásmido que aumentaba la resistencia a ciprofloxacino y ácido nalidixico en E.Coli y otras bacterias Gram negativas (Fábrega et al., 2008). La resistencia asociada a la presencia de plásmidos se debe a que presentan un gen (qnr) de resistencia frente a las quinolonas (Jacoby, 2005). La proteína Qnr es capaz de unirse y proteger a la ADN girasa y la topoisomerasa IV del efecto de las quinolonas. Aunque la resistencia mediada por plásmidos genera bajos niveles de resistencia, su presencia facilita la selección de mutaciones de alta resistencia. Además los plásmidos pueden transferirse horizontalmente, lo que implica que puede transferir resistencia a otras bacterias tanto patógenas como no patógenas (Jacoby, 2005).

El desarrollo de resistencia a estos antimicrobianos ha generado un gran debate sobre el uso de estos fármacos en animales de producción, esto sobre todo por la amenaza a la salud pública, causada por el riesgo de transferencia de bacterias zoonóticas resistentes (Salmonella spp., Campylobacter spp. y Escherichia coli), de genes de resistencia que podrían traspasarse tanto a bacterias patógenas o no patógenas del tracto gastrointestinal humano, generando la disminución en la eficacia terapéutica en el tratamiento de infecciones en medicina humana (Orden y De La Fuente, 2001).

Regulaciones internacionales sobre la resistencia antimicrobiana

El riesgo de la resistencia bacteriana y la posibilidad que los productos de origen animal tengan residuos de estos fármacos que pueden resultar nocivos a la salud de las personas, ha determinado que desde finales de la década de 1990, distintas organizaciones a nivel mundial entreguen pautas y recomendaciones sobre el uso de estos fármacos en animales de producción.
Al respecto, en 1998 la Organización Mundial de la Salud (OMS, 1998) convocó a una reunión sobre el impacto en la salud humana del uso de quinolonas en animales de producción, en la cual se recomendó determinar de la forma más precisa posible el uso de fluroquinolonas en medicina veterinaria y mejorar las evidencias epidemiológicas sobre cómo se desarrolla la resistencia bacteriana en humanos y animales. También se planteó poner énfasis en el uso adecuado de antimicrobianos y establecer estrategias para maximizar el beneficio terapéutico y minimizar la resistencia bacteriana (Orden y De La Fuente, 2001).

Por otro lado la Organización Mundial de Comercio (OMC), estableció un acuerdo entre los países miembros sobre la aplicación de Medidas Sanitarias y Fitosanitarias. En dicho acuerdo, si bien es cierto la OMC autoriza a los países a establecer sus propias reglamentaciones, alienta a los gobiernos a que armonicen sus medidas, recomendando que se utilicen normas y directrices internacionales elaboradas por la Comisión Mixta FAO/OMS (JECFA) y Codex Alimentarius, cuando existan (San Martín, 2001).

Otra medida tomada por la OMS fue la publicación “Impacto en medicina humana por el uso de antimicrobianos en animales de producción”, en la cual se recomienda la descontinuación del uso de los antimicrobianos como promotores de crecimiento, recomendación que también hizo el Instituto de Medicina de los Estados Unidos de América en el año 2003 (Fábrega et al., 2008).

En el año 2001 la OMS publicó un artículo llamado “Estrategia global para contener la resistencia bacteriana “, en la cual recomienda un enfoque multisectorial para el problema (OMS, 2007).

En el año 2004, en la 2ª Conferencia Mundial de Mejoramiento de la Medicina, se habló de la resistencia bacteriana generada por el uso de antimicrobianos en animales de producción y se hizo la recomendación específica de desarrollar sistemas de vigilancia y la reglamentación para el control del empleo de antimicrobianos en animales de producción (OMS, 2007).

Reconociendo que la resistencia a los antimicrobianos es un problema multifactorial que requiere un planteamiento multidisciplinario y un enfoque interinstitucional, el Comité Ejecutivo de la Comisión del Codex Alimentarius, en su 53ª sesión en 2001, recomendó que la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), la Organización Internacional de Sanidad Animal (OIE) y la OMS deberían considerar la posibilidad de acoger una reunión conjunta para discutir todas las
cuestiones relacionadas con el uso de antimicrobianos en animales de producción y la resistencia a estos antimicrobianos (OMS, 2007). Como respuesta a esta recomendación, la FAO / OIE / OMS iniciaron el proceso de consulta conjunta sobre el uso de antimicrobianos en animales de producción y la resistencia a estos antibióticos, y a raíz de esta última reunión, en junio de 2006, un Comité Mixto FAO / OIE / OMS de expertos se reunió para hablar sobre los antimicrobianos, su uso en la acuicultura y la resistencia a los antimicrobianos (OMS, 2007).

El Comité de Expertos para la Selección y Uso de Medicamentos Esenciales en Medicina Humana de la OMS, incorporó el concepto de antibióticos críticamente importantes, de manera que los miembros lo entiendan como “la identificación de antibióticos que no se deben utilizar para uso no humano”.

En el año 2007 se hizo la 2ª Reunión de Expertos de la OMS sobre antimicrobianos de importancia crítica para la medicina humana, en la cual se actualizó la lista de antibióticos en los diferentes criterios, reconociéndose como urgente la situación de las fluroquinolonas de 3ª y 4ª generación además de otros antibióticos (OMS, 2007).

En el caso de la “Food and Drug Administration” de los Estados Unidos de América (FDA), en 1994 un grupo de expertos recomendaron que el uso de fluroquinolonas en animales de producción fuera permitido, siempre y cuando se controlara el uso inadecuado y el desarrollo de resistencia (Orden y De La Fuente, 2001).

En 1997, la FDA de los Estados Unidos de América prohibió el uso extraetiqueta de fluroquinolonas debido al desarrollo de resistencia bacteriana. En el año 2005 la FDA de los Estados Unidos de América, en el documento Nº 2000N-1571, prohibió el uso de enrofloxacin en pollos y pavos, por la elevada resistencia que presentaban algunas cepas de Campylobacter spp. a esta droga (FDA,2005).

La OIE, también ha hecho esfuerzos en el tema de la resistencia bacteriana. Se creó el Código Sanitario para los Animales Terrestres denominado Código Terrestre, su objetivo es garantizar la seguridad sanitaria del comercio internacional de animales terrestres (mamíferos, aves y abejas) y productos de animales terrestres e impedir la instauración de barreras sanitarias injustificadas, a través de normas y recomendaciones hechas por expertos.

En el año 2003, se desarrollaron tres capítulos para el Código Terrestre, sobre la problemática de la resistencia bacteriana. En los años 2006/2007, se publicó una lista de antimicrobianos de importancia en medicina veterinaria (OIE, 2008).
En Japón, también existe preocupación por la resistencia bacteriana a las fluoroquinolonas, el gobierno ha impuesto 3 restricciones para el uso de estos fármacos:
1-Sólo son prescritas cuando los antimicrobianos de primera elección son inefectivos.
2-Son administrados sólo por, o bajo la supervisión de un médico veterinario.
3-El tratamiento con fluoroquinolonas está delimitado a un tiempo de 5 días (Orden y De La Fuente, 2001).

Chile no está exento de la problemática de la resistencia bacteriana. Se ha observado resistencia frente a estos fármacos en cepas de bacilos Gram negativos obtenidos de pacientes de hospitales chilenos (De la fuente et al., 2007). En la medicina veterinaria también se han encontrado cepas de Salmonella spp. aisladas de pollos Broiler, aves de postura y huevos (San Martín et al., 2005; Lapierre et al., 2008; San Martín et al., 2008).

Residuos de quinolonas y fluoroquinolonas en alimentos de origen animal y sus riesgos en la salud humana

La administración de antimicrobianos en la terapéutica de animales de producción, puede dejar residuos de estos fármacos en los productos destinados a consumo humano si no se respetan los períodos de carencia (Van Hoof et al., 2005; Hassouan et al., 2007).

Existe abundante información sobre los efectos adversos de las quinolonas en humanos. Dentro de ellos podemos mencionar alteraciones al crecimiento y desarrollo, por lo cual se restringió su uso en medicina pediátrica. A nivel del sistema gastrointestinal, se describe nauseas, vómitos y diarrea, efectos en el sistema nervioso central confusión, alteraciones del sueño, mareos, siendo poco frecuente la neurotoxicidad. También son descritos efectos a nivel hepático y cardiaco. Reacciones de hipersensibilidad como eritema, prurito, urticaria y rush cutáneo son raramente descritas. Las quinolonas que se acumulan en la piel, pueden producir fototoxicidad en pacientes expuestos a elevada radiación solar. Además se recomienda no usarlas en el período de lactancia, ya que algunas quinolonas son excretadas vía leche (Andriole, 2005; Van Bambeke et al., 2005).

Debido a estos efectos adversos a la salud humana, variadas entidades intergubernamentales a nivel mundial han demostrado su preocupación, y han hecho un esfuerzo por minimizar los peligros a la salud pública, a través de acuerdos y medidas, que
buscan reglamentar el uso de las fluoroquinolonas tanto en medicina humana como veterinaria.

Límites Máximos Residuales y Límite Mínimo de Funcionamiento Exigido

En 1995 el *Codex Alimentarius* estableció el concepto de Límites Máximos Residuales (LMRs) para todos los fármacos, definiéndolos como "la concentración máxima de residuos resultantes del uso de un medicamento que está bajo un rango admisible en un producto destinado al consumo humano, expresado en mg/kg o µg/kg".

En la Unión Europa la "European Agency for the Evaluation of medicinal Products" (EMEA), específicamente el "Committee for Veterinary Medicinal Products" (CVMP) fijó los LMRs para dichos fármacos; en el año 2002 se establecieron los más recientes (Europa. EMEA, 2002).

A nivel nacional, en el año 1999, el Ministerio de Salud fijó los LMRs para fármacos de uso veterinario (Chile. Ministerio de Salud, 1999).

Los LMRs establecidos para flumequina en Europa, Chile y Japón se señalan en el Cuadro 1.

Cuadro 1: LMRs para flumequina en tejidos de pollos Broiler

<table>
<thead>
<tr>
<th>Fármaco</th>
<th>LMR Unión Europea</th>
<th>LMR Chile</th>
<th>LMR Japón</th>
<th>Tejido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flumequina</td>
<td>400 µg/Kg.</td>
<td>500 µg/Kg.</td>
<td>500 µg/Kg.</td>
<td>Músculo</td>
</tr>
<tr>
<td></td>
<td>250 µg/Kg.</td>
<td>1000 µg/Kg.</td>
<td>1000 µg/Kg.</td>
<td>Piel y grasa</td>
</tr>
<tr>
<td></td>
<td>800 µg/Kg.</td>
<td>1000 µg/Kg.</td>
<td>500 µg/Kg.</td>
<td>Hígado</td>
</tr>
<tr>
<td></td>
<td>1000 µg/Kg.</td>
<td>3000 µg/Kg.</td>
<td>3000 µg/Kg.</td>
<td>Riñón</td>
</tr>
</tbody>
</table>

La Unión Europea, en el año 2002, estableció el concepto de Límite Mínimo de Funcionamiento Exigido o MRPL, que se utiliza en el caso de fármacos a los que no se les
ha establecido un LMR, debido a que su uso no está permitido en animales de producción (Europa, 2002).

El objetivo de todas las organizaciones intergubernamentales preocupadas de la vigilancia de residuos de medicamentos veterinarios en productos de origen animal, destinados a consumo humano, es la inocuidad de los mismos, protegiendo de esta manera la salud de las personas. El Codex Alimentarius define la inocuidad como "la garantía de que los alimentos no causarán daño al consumidor cuando se preparen y / o consuman de acuerdo con el uso a que se destinan". En términos de residuos de fármacos, esta definición requiere el uso prudente de éstos en nuestra profesión. Así en el Código Sanitario de Animales Terrestres de la OIE, se habla del uso prudente y responsable de antimicrobianos en medicina veterinaria (OIE, 2008).

Monitoreo de residuos a nivel nacional

El programa de control de residuos de medicamentos veterinarios es llevado a cabo por el Servicio Agrícola Ganadero (SAG), organismo dependiente del Ministerio de Agricultura, Con el objeto de dar cumplimiento a las exigencias de los mercados internacionales y contar con una información esquemática de carácter anual sobre la presencia de residuos en poblaciones animales. Este programa permite evaluar las tendencias de los residuos e identificar los sectores de la industria pecuaria en donde se detecten problemas de residuos y en donde sea necesario realizar medidas correctivas. Se inició en 1987 en carnes de ovinos y liebres, en el año 1999 se implementó en carnes de pollos y cerdos, durante el año 2000 se estableció en carnes de pavos y en miel. A mediados del año 2002 se incluyeron en el Programa las carnes de bovinos, y durante el 2005 los productos lácteos. Este sistema complementa otros Programas realizados en el área de inocuidad de alimentos dentro del Servicio; como son Planteles Bajo Certificación Oficial (PABCO) y Sistema de Aseguramiento de Calidad (SAG, 2009).

El objetivo de los programas de monitoreo de residuos de fármacos veterinarios es la inocuidad de los productos pecuarios; para esto se debe verificar que en estos productos se encuentren en norma en cuanto a los LMRs, según sea el destino de esos productos.
La utilización de los LMRs permite la evaluación de los períodos de carencia. "El período de carencia es el tiempo que transcurre desde que se aplica la última dosis de tratamiento de un fármaco, hasta que los niveles de residuos de la droga están por debajo de los correspondientes LMR en todos los tejidos del animal" (CVMP, 1996). De esta forma los períodos de carencia son específicos para cada especie animal y tejido, dependiendo además de la dosis del fármaco, duración de la terapia y de su formulación. Esta última afecta los parámetros farmacocinéticos, principalmente la velocidad y magnitud de absorción y el tiempo de eliminación, esto debido a los distintos excipientes contenidos en las diferentes presentaciones comerciales de un fármaco, que producen una entrega diferencial de la droga a los distintos tejidos, y por lo tanto cambiando los parámetros farmacocinéticos (KuKanich et al., 2005).

Metodología analítica

Para poder definir el período de carencia de un fármaco, es necesario el uso de una adecuada metodología analítica. El Codex Alimentarius (1995) señala que los laboratorios analíticos deben disponer de métodos de análisis que puedan detectar, cuantificar e identificar todos los residuos de medicamentos veterinarios en concentraciones inferiores a los LMRs, con el fin de garantizar el cumplimiento de los requisitos relativos a la inocuidad alimentaria.

Previo al análisis de las muestras, la metodología analítica debe ser validada con el fin de que los resultados sean demostrables y comparables. Esto se logra con una serie de pruebas estadísticas que demuestren la confiabilidad del método. Los parámetros a definir en una validación son la especificidad, sensibilidad, límite de detección, límite de cuantificación, recuperación, precisión repetitividad y robustez (Europa, 2002).

Para el caso de residuos de quinolonas y fluroquinolonas, las metodologías analíticas de elección son la Cromatografía Liquida de Alto Rendimiento (HPLC), con detección de fluorescencia (Hernández Arteseros et al., 2002).

En los últimos años, la Cromatografía Liquida de Alto Rendimiento asociada a Espectrometría de Masa o HPLC MS/MS ha permitido mejorar los límites de detección de estos fármacos. Al respecto, al utilizar HPLC con detector de fluorescencia, las concentraciones mínimas detectables se encuentran en un rango de 1 a 10 \(\mu \text{g/kg} \), en
cambio la HPLC MS/MS logra mejores niveles de detección, (Hernández Arteseros et al., 2002).

Flumequina en la avicultura nacional

En la industria avícola nacional se utiliza flumequina principalmente en enfermedades producidas por *E. coli, Salmonella spp.* y *Pasteurella spp.* Existen 6 presentaciones comerciales de distintos laboratorios, donde para las distintas presentaciones comerciales de flumequina disponibles, el Registro de Medicamentos Veterinarios (SAG) definió el mismo periodo de carencia que corresponde a 10 días.

Esto podría no ser correcto, si es que en la determinación de los períodos de carencia no se consideró las diferencias en las formulaciones ya que, como se expuso anteriormente, éstas pueden alterar los parámetros farmacocinéticos y podría llevar a la existencia de residuos ilegales de forma inadvertida por los productores.

Adicionalmente como ya se mencionó, para el establecimiento de los períodos de carencia, se consideran los LMRs, siendo los establecidos a nivel nacional de menor exigencia que otros países.

De acuerdo a lo señalado, los períodos de carencia establecidos en nuestro país deben asegurar que los niveles de residuos presentes en los productos de origen animal estén de acuerdo a las normativas nacionales e internacionales en el caso de productos de exportación; fundamentando esto último en el hecho que actualmente Chile se ha ido consolidando como país exportador.

Por lo tanto, es necesario revisar si los períodos de carencia establecidos por el SAG cumplen con las exigencias. Para este fin, se debe utilizar una metodología analítica que permita identificar, cuantificar y confirmar la presencia de residuos de flumequina en los músculos e hígados de pollo Broiler. En este trabajo se utilizó la Cromatografía Líquida asociada a Espectrometría de Masa, la cual cumple con los requerimientos expuestos y, de esta manera, estimar los periodos de carencia de una forma más precisa y fiable.
HIPÓTESIS

Debido a que las presentaciones comerciales de flumequina, pueden mostrar diferencias en sus características farmacocinéticas, los períodos de carencia de estas presentaciones pueden diferir entre sí.

OBJETIVO GENERAL

Definir los períodos de carencia de 3 presentaciones comerciales de flumequina disponibles a nivel nacional y de uso en pollos Broiler.

OBJETIVOS ESPECÍFICOS

1. Validar una metodología analítica por Cromatografía Líquida de Alto Rendimiento asociada a espectrometría Masa/Masa para la detección de residuos de flumequina en músculo e hígado de pollos Broiler de acuerdo a recomendaciones de normativas internacionales.
2. Determinar los períodos de carencia de 3 presentaciones comerciales de flumequina, en relación a los LMR descritos a nivel nacional e internacional.
MATERIALES Y MÉTODOS

Objetivo 1: Validar una metodología analítica por Cromatografía Líquida de Alto Rendimiento asociada a espectrometría Masa/Masa para la detección de residuos de flumequina en músculo e hígado de pollos Broiler de acuerdo a recomendaciones de normativas internacionales.

El método fue validado en músculo e hígado de pollos Broiler según las recomendaciones Europeas (Europa, 2002)

Animales y matriz de trabajo

Se obtuvieron 20 muestras blanco de músculo e hígado a partir de pollos Broiler que no habían recibido terapia antimicrobiana. Con este fin, las aves fueron criadas desde un día de edad con agua y alimento ad libitum, libres de antimicrobianos. Estos animales se mantuvieron en las dependencias del Departamento de Patología Animal de la Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile. Fueron sacrificados a partir de los 24 días de edad siguiendo los preceptos de bienestar animal de la Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile. Las muestras obtenidas corresponden a músculo proveniente de las extremidades inferiores (tuto) y del músculo pectoral (pechuga), incluyendo grasa y piel en proporciones naturales. Las muestras fueron etiquetadas y refrigeradas en bolsas plásticas, hasta el momento de su análisis.

Reactivos y estándares

Se utilizó estándar puro de Flumequina (Sigma®), con el cual se preparó una solución de 1 mg/ml de concentración a partir de la cual se prepararon diluciones para fortificar muestras blanco. Los reactivos que se utilizaron fueron; amoníaco en solución 25% (Merck®, Darmstadt, Alemania), Acetonitrilo (Fisher scientific®, New Jersey, Estados Unidos de América), Diclorometano (Fisher scientific®, New Jersey, Estados Unidos de América). Todos los reactivos son grado HPLC de alta pureza.
Preparación de las muestras y procedimiento analítico

De cada animal faenado se obtuvieron muestras de músculos e hígados las que se sometieron a un proceso de extracción.

Se prepararon soluciones madres de 1mg/ml de las soluciones estándar de flumequina, y a partir de éstas se prepararon soluciones de trabajo para enriquecer las muestras de músculo blanco, en un rango de 1 a 10 μg/kg.

El procedimiento de extracción del analito se basó en aquellos desarrollados por Hassouan et al (2007) y Van Hoof et al (2005). Cuatro gramos de tejido o matriz de trabajo homogenizados, se pusieron en tubos de centrífuga y fueron extraídos con amonio 25% solución y acetonitrilo. Luego de ser centrifugadas a 4186 g por 10 minutos y sonicadas por 3 minutos, la fase líquida fue extraída con diclorometano y las muestras nuevamente fueron centrifugadas a 4186 g por 10 minutos; la fase superior, fue transferida en un tubo eppendorf y centrifugada a 8372 g por 10 minutos. La fase superior fue transferida en un tubo de vidrio y fue evaporada bajo flujo de nitrógeno a 40+/−2 ºC.

Las muestras fueron reconstituidas con 150 μl de una solución de metanol con 0,1% de ácido trifluoroacético y agua con 0,1% de ácido trifluoroacético en una proporción de 25:75 respectivamente. El residuo obtenido fue filtrado a través de membranas Millex-GV de 0,22 μm. Se inyectaron 15 μl de las muestras reconstituidas en el sistema Cromatográfico.

Sistema Cromatográfico y Condiciones Cromatográficas

Se utilizó Cromatografía Líquida acoplada a un Espectrómetro de Masa Triple Cuadrupolo API 4000 (Applied Biosystems/MDS Sciex, Concord, Ontario, Canadá). La ionización de flumequina se realizó con las siguientes condiciones: Gas cortina (N2) a 10 psi, fuente de gases 1 y 2 a 40 psi, temperatura de 450ºC, ion spray a 5000 V, gas de colisión a 4psi. Para flumequina se identificó el ión 262.2 como precursor y los iones 202.2, 244.2 y 126.2 como transición, de los cuales el ion 202.2 se utilizó en nuestros estudios por ser el que tenía un área cromatográfica más grande y con menos
interferencia, con respecto a los otros dos iones. Los análisis cuantitativos y confirmatorios que monitorean la transición entre los iones precursores y de transición, se realizaron utilizando el modo Monitoreo de Múltiples Reacciones (MRM). Para el registro de la información, se utilizó un Software Analyst Versión 1.4.1. (Applied Biosystems/MDS Sciex).

Parámetros de validación

Se validó una técnica confirmatoria en la identificación y cuantificación de flumequina en músculo e hígado de pollo Broiler en un rango de concentraciones de 1 a 10 μg/kg (ppb).

El método analítico fue validado siguiendo las recomendaciones de la directiva 2002/657/CE de la Unión Europea, la norma ISO 11843 y las recomendaciones del Codex Alimentarius. Se aplicaron los siguientes parámetros:

1.**- Identificación de los Componentes**

 Análisis de los iones:

 Se analizaron soluciones de droga pura de flumequina para identificar y comprobar los iones padres y de transición de la droga en estudio. Se comparó la intensidad relativa de los iones de transición luego de inyectar droga pura a 1 μg/kg con la intensidad relativa de éstos en una muestra fortificada a 1 μg/kg.

 Tiempo de retención del analito:

 Se analizaron las drogas puras para evaluar los tiempos de retención de cada droga. Se analizaron 6 drogas puras (3 drogas puras a 1 μg/kg y 3 drogas puras a 10 μg/kg) y se calculó el promedio del tiempo y la desviación estándar (DS) para cada droga.
2.- Especificidad

Es la capacidad del método de diferenciar entre el analito (sustancia en estudio) que se está midiendo y otras sustancias. Para observar la especificidad del método se analizaron 20 muestras blancos de músculo de pollos Broiler para verificar posibles interferencias en la región de interés en la cual se espera que se encuentre el analito en relación al tiempo de retención.

3.- Recuperación

La recuperación se calculó comparando curvas de droga pura con curvas de fortificación, y se calculó el porcentaje de droga que se recupera luego del procedimiento de extracción de las muestras.

El porcentaje de recuperación se calculó mediante la siguiente ecuación

\[
\text{Porcentaje de recuperación} = 100 \times \frac{\text{Área del fortificado}}{\text{Área de la Droga Pura}}
\]

Los valores de recuperación obtenidos se aceptaron cuando éstos se encontraron entre los señalados en la directiva 2002/657/CE.

4.- Precisión

Se analizaron 6 curvas enriquecidas a 1, 4 y 10 μg/kg, que fueron realizadas por diferentes analistas y en distintos días. Se calculó la concentración detectada con una curva promedio a partir de las 6 curvas realizadas. Además, se calculó el promedio, la desviación estándar y coeficiente de variación en % (CV %), para cada concentración. Se verificó que las linealidades de cada curva tuvieran una correlación \(r\) > 0,95.

5.- Repetibilidad

Se fortificaron 18 muestras blanco de músculo y se fortificaron de la siguiente forma:
- 6 muestras a 1 μg/kg.
- 6 muestras a 4 μg/kg.
- 6 muestras a 10 μg/kg.

Se calculó:

a) La dispersión de la señal para cada concentración (expresada en área).
b) Se cuantificó con una curva realizada a partir del promedio de las 6 curvas analizadas.
c) Se calculó el promedio, la Desviación estándar y CV (%) para cada concentración.

Se aceptó los valores de repetibilidad cuando el CV de cada concentración medida, está en un rango de valores correspondientes a la mitad o igual al CV de la Precisión.

6.- Límite de decisión o detección (CCα)

Se definió el límite para determinar la ausencia de flumequina, donde el valor obtenido para el CCα es el límite en el cual y a partir del cual se puede concluir con una probabilidad de error α (falso positivo) que una muestra no es conforme o positiva.

Se calculó con 6 curvas de calibración, cada una con 5 puntos de enriquecimiento: 1, 2, 4, 8 y 10 μg/kg.

- Cada curva se analizó por separado calculando la ecuación de regresión (se aceptó la curva cuando r > 0,95).
- Se calculó la pendiente para cada curva y se obtuvo el promedio de las pendientes.
- Para cada curva se extrapoló él intercepto en el eje Y (en área).
- Luego se calcularon los promedios y desviaciones estándar de los interceptos (en áreas)
- Posteriormente se calculó el CCα (en área) aplicando la siguiente fórmula:

\[CCα \text{ área} = \text{Promedio de los interceptos} + 2,33 \text{ veces la DS de los interceptos}. \]
• El resultado del CCₐ obtenido en área se transformó a concentración por medio de la siguiente fórmula:

\[
CC\alpha \text{ concentración} = CC\alpha \text{ área} - (\text{promedio de los interceptos})
\]

Promedio de las pendientes

7.- **Capacidad de detección (CCβ)**

Es la concentración mínima en que se puede detectar muestras contaminadas con una certeza estadística de 1 − β, donde el valor obtenido para el CCβ es el contenido mínimo de la sustancia que puede ser detectado, identificado o cuantificado con una posibilidad de error β.

Se enriquecieron 20 muestras blancos, con una concentración equivalente al CCₐ, y se realizó además una curva de calibración (que se aceptó ya que tuvo un r > 0,95).

• Se calculó los Promedios y la Desviación estándar de las áreas obtenidas en las muestras.
• Posteriormente se calculó el CCβ (en área) aplicando la siguiente fórmula:

\[
CC\beta \text{ área} = \text{Límite de detección CC}+ 1,64 \text{ veces la Desviación estándar de las áreas obtenidas.}
\]

• El resultado obtenido para la capacidad de detección CCβ en área fue transformado a concentración por medio de la siguiente fórmula:

\[
CC\beta \text{ concentración} = CC\beta \text{ área} - (\text{intercepto curva de calibración})
\]

Pendiente de la curva de calibración

8.- **Robustez**

Es la susceptibilidad de un método analítico a los cambios de las condiciones experimentales. Se seleccionaron de 3 factores que pueden influir en el resultado final.
• Homogenizar la muestra con acetonitrilo y amoniaco en forma simultánea o separada.
• Centrifugar a 4186 g por 10 minutos o a 3348 g por 10 minutos.
• Secar a 40ºC o a 60ºC.

La robustez fue calculada de la siguiente manera:

• Mediante Método de Youden se realizó un diseño factorial fraccional incompleto para detectar las interacciones entre los factores seleccionados, según las recomendaciones Europeas (Europa, 2002).
• Se realizó el experimento de acuerdo a la configuración señalada por el método de Youden a nivel del límite más bajo de la curva de calibración.
• Junto con el experimento se realizó una curva de calibración a 5 niveles, para cuantificar los experimentos.

Se realizaron distintas cartas de trabajo en base a las modificaciones del Método de Youden:
- Carta A: reactivos juntos; 3348 g por 10min; secado a 60ºC.
- Carta B: reactivos separados; 3348 g por 10min; secado a 60ºC.
- Carta C: reactivos juntos; 4186 g por 10min; secado a 60ºC.
- Carta D: reactivos separados; 4186 g por 10min; secado a 60ºC.
- Carta E: reactivos juntos; 3348 g por 10min; secado a 40ºC.
- Carta F: reactivos separados; 3348 g por 10min; secado a 40ºC.
- Carta G: reactivos juntos; 4186 g por 10min; secado a 40ºC.
- Carta H: reactivos separados; 4186 g por 10min; secado a 40ºC.

Mediante la comparación de las medias se pudo identificar cuál es el factor que más afecta a la robustez del método.

Cuando la desviación estándar de la robustez es significativamente menor que la desviación estándar de la Precisión en el punto más bajo de la curva se puede interpretar como que el método es lo suficientemente robusto.
Objetivo 2: Determinar los períodos de carencia de 3 presentaciones comerciales de flumequina, en relación a los LMR descritos a nivel nacional e internacional.

Animales de Experimentación:

Se utilizaron 390 pollos Broiler genética Ross 308, de 1 día de edad. Se criaron en Baterías (Petersime ®) con piso de malla de alambre, comederos y bebederos dispuestos para el consumo ad libitum de alimento y agua. Estas baterías estuvieron ubicadas en el galpón experimental de la Unidad de Patología Aviar, con dispositivos que controlaron la temperatura ambiental, ventilación e iluminación (natural y artificial). Las condiciones de manejo de las aves se efectuaron de acuerdo a los preceptos del Bienestar animal, sancionados por el Comité de Ética de la Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile.

Dietas

Las aves fueron alimentadas con dietas elaboradas en base a recomendaciones de requerimientos nutricionales dadas por el National Research Council (NRC, 1994) según los requerimientos de la línea genética. Los insumos fueron comprados a una fábrica, y la mezcla de la dieta se realizó manualmente en las dependencias del Departamento de Fomento de la Producción Animal de la Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile. La dieta se basó en maíz, afrecho de soya, afrecho de trigo, oleína, y gluten de maíz.

Grupos experimentales

A los 19 días de edad se formaron 4 grupos, correspondiendo a 3 grupos experimentales y un grupo control. A cada grupo experimental se le administró una formulación de flumequina (Grupo A flumequina 10 % polvo oral; Grupo B flumequina 80 % polvo oral; Grupo C flumequina 20% solución).
Administración del fármaco

Las aves fueron tratadas en forma individual y se les administró una dosis de 24 mg/kg p.v cada 24 horas, dosis terapéutica recomendada según estudios de Anadón et al. 2007. El tratamiento se realizó durante cinco días consecutivos y se administró a través de una sonda naso gástrica para asegurar la ingesta completa de la dosis. A los animales del grupo control se les administró agua como placebo para descartar variaciones experimentales por manejo.

Sacrificio de los animales y obtención de las muestras de experimentación

A partir del día 24 de edad y hasta el día 42 de edad, diariamente seis animales de cada grupo experimental y dos del grupo control fueron sacrificados por dislocación cervical (de acuerdo a la normativa de Bienestar Animal vigente) previo ayuno de 12 horas. Las muestras de músculo e hígado fueron guardadas en bolsas plásticas rotuladas con el grupo correspondiente y el día de sacrificio. Las muestras fueron mantenidas a -20 ± 5 ºc, hasta su análisis cromatográfico.

Análisis de las muestras

Las muestras fueron analizadas por el método cromatográfico previamente validado, la cuantificación se realizó utilizando curvas de calibración con muestras fortificadas a 5 concentraciones de flumequina. Las curvas fueron aceptadas cuando el coeficiente de correlación del análisis de regresión lineal es igual o superior a 0.95.
Evaluación del Período de Carencia

Para calcular el período de carencia, se consideró la fase final de eliminación del fármaco. Los resultados se llevaron a una gráfica en escala semilogarítmica de concentración versus tiempo. Se realizó un análisis de regresión lineal considerando un nivel de confianza del 95%. A partir de esta gráfica se definió el momento (días) en el que las concentraciones de flumequina se encontrarán por debajo de los LMRs establecidos por la Comunidad Europea, Japón y Chile, para cada formulación y en cada tejido estudiado.
RESULTADOS

1. Objetivo: Validar una metodología analítica por Cromatografía Líquida de Alto Rendimiento asociada a espectrometría Masa/Masa para la detección de residuos de flumequina en músculo e hígado de pollos Broiler de acuerdo a recomendaciones de normativas internacionales.

Los resultados de los parámetros de validación determinados de acuerdo a la Directiva 2002/657/CE de la Comunidad Europea fueron los siguientes:

1. **Identificación de los Componentes:**

 El análisis se realizó por HPLC MS/MS, y los iones fueron:

 Para flumequina se identificó el ión 262.2 como precursor y los iones 202.2, 244.2 y 126.2 como de transición.

 Tiempo de retención del analito:

 El promedio del tiempo de retención para flumequina fue de 15,85 ±0,54 minutos.

2. **Especificidad:**

 En 20 muestras blancos de músculo de pollos broiler no se observaron interferencias en los tiempos de retención de flumequina.

3. **Recuperación:**

 Los datos de recuperación obtenidos para flumequina en músculo de pollos Broiler se presentan en el Cuadro 2.
Cuadro 2. Porcentaje de Recuperación de flumequina en músculos de pollos Broiler analizado por HPLC MS/MS.

<table>
<thead>
<tr>
<th>Concentración de Fortificación (µg/Kg)</th>
<th>Concentración de flumequina cuantificada (µg/Kg)</th>
<th>Muestra Fortificada (µg/Kg)</th>
<th>% Recuperación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,49</td>
<td>1,43</td>
<td>95,8</td>
</tr>
<tr>
<td>1</td>
<td>1,41</td>
<td>1,22</td>
<td>86,2</td>
</tr>
<tr>
<td>1</td>
<td>1,31</td>
<td>1,34</td>
<td>102,7</td>
</tr>
<tr>
<td>1</td>
<td>1,29</td>
<td>0,97</td>
<td>75,7</td>
</tr>
<tr>
<td>1</td>
<td>0,95</td>
<td>0,63</td>
<td>66,8</td>
</tr>
<tr>
<td>1</td>
<td>1,53</td>
<td>1,78</td>
<td>116,3</td>
</tr>
<tr>
<td>1</td>
<td>0,98</td>
<td>0,84</td>
<td>85,8</td>
</tr>
<tr>
<td>1</td>
<td>1,32</td>
<td>1,26</td>
<td>95,7</td>
</tr>
<tr>
<td>1</td>
<td>1,46</td>
<td>1,32</td>
<td>90,4</td>
</tr>
<tr>
<td>1</td>
<td>1,29</td>
<td>1,27</td>
<td>97,8</td>
</tr>
<tr>
<td>Promedio</td>
<td>1,30</td>
<td>1,21</td>
<td>92,6</td>
</tr>
<tr>
<td>Ds.</td>
<td>0,19</td>
<td>0,32</td>
<td></td>
</tr>
</tbody>
</table>

El rango de recuperación fue desde 66,8 % hasta 116,3 %, aceptado según lo establecido por la Directiva 2002/657/CE (Europa, 2002).

4. Precisión (Reproducibilidad intralaboratorio):

El método demostró ser preciso ya que el CV (%) fue menor al 20%. Los resultados obtenidos se muestran en el Cuadro 3.
Cuadro 3. Precisión o reproducibilidad intralaboratorio de flumequina en músculos de pollos Broiler tratados con flumequina, analizada por HPLC MS/MS.

<table>
<thead>
<tr>
<th>Concentración de Fortificación (μg/kg)</th>
<th>Concentración Cuantificada de flumequina (μg/kg)</th>
<th>Promedio</th>
<th>DS*</th>
<th>CV%**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1,0</td>
<td>0,8</td>
<td>1,0</td>
<td>1,1</td>
</tr>
<tr>
<td>2</td>
<td>2,0</td>
<td>2,3</td>
<td>2,0</td>
<td>1,8</td>
</tr>
<tr>
<td>4</td>
<td>4,0</td>
<td>3,9</td>
<td>4,0</td>
<td>4,1</td>
</tr>
</tbody>
</table>

* Desviación estándar
** Coeficiente de variación

5. Repetibilidad:

La repetibilidad fue adecuada ya que el CV de cada concentración medida, se encontró dentro del rango de valores correspondientes al CV de la Precisión.

Los datos obtenidos se muestran a continuación en el Cuadro 4.

Cuadro 4. Repetibilidad de flumequina en músculo de pollos Broiler tratados con flumequina, analizada por HPLC MS/MS.

<table>
<thead>
<tr>
<th>Concentración de Fortificación (μg/kg)</th>
<th>Concentración Cuantificada de flumequina (μg/kg)</th>
<th>Promedio</th>
<th>DS*</th>
<th>CV%**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0,9</td>
<td>1,0</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>2</td>
<td>2,2</td>
<td>2</td>
<td>1,9</td>
<td>1,8</td>
</tr>
<tr>
<td>4</td>
<td>3,9</td>
<td>4</td>
<td>4,0</td>
<td>4,1</td>
</tr>
</tbody>
</table>

* Desviación estándar
** Coeficiente de variación
6. Límite de Decisión \(CC_\alpha \) y Capacidad de detección \(CC_\beta \):

Los datos de \(CC_\alpha \) y \(CC_\beta \) para flumequina en músculo de pollos broiler analizados por HPLC MS/MS se presentan en el Cuadro 5.

Cuadro 5. \(CC_\alpha \) y \(CC_\beta \) para flumequina en músculo de pollos broiler.

<table>
<thead>
<tr>
<th>Droga</th>
<th>Matriz</th>
<th>(CC_\alpha) ((\mu g/\text{kg}))</th>
<th>(CC_\beta) ((\mu g/\text{kg}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flumequina</td>
<td>músculo</td>
<td>1,39</td>
<td>2,04</td>
</tr>
</tbody>
</table>

De acuerdo a los valores obtenidos para el \(CC_\alpha \), el valor para flumequina fue de 1,39 \(\mu g/\text{kg} \) informándose 1,5 \(\mu g/\text{kg} \), valor límite a partir del cual se puede concluir con una probabilidad de error \(\alpha \) (1%) que una muestra no es conforme. El valor del \(CC_\beta \) para flumequina fue de 2,04 \(\mu g/\text{kg} \), informándose como 2 \(\mu g/\text{kg} \), contenido mínimo de la sustancia que puede ser detectado, identificado o cuantificado con una posibilidad de error \(\beta \) (5%).

8. Robustez

El método analítico seleccionado fue robusto ya que las D.S. calculadas para flumequina, luego de introducir modificaciones en el método, fueron menores que la D.S de la precisión. La D.S. obtenida fue de 0,059 \(\mu g/\text{kg} \) menor que la D.S. de la repetitividad (0,14 \(\mu g/\text{g} \)). Los factores que más afectaron la robustez fue el secado bajo flujo de nitrógeno y la centrifugación.
Con los resultados de este objetivo se puede concluir que de acuerdo a los parámetros ensayados y calculados, el método analítico para HPLC MS/MS seleccionado cumple con las condiciones de validación según las recomendaciones de la Decisión 2002/657/CE de las Comunidades Europeas como método confirmatorio y cuantitativo.

2 Objetivo: Determinar los períodos de carencia de 3 presentaciones comerciales de flumequina, en relación a los LMR descritos a nivel nacional e internacional.

Las concentraciones obtenidas de flumequina en músculos e hígados de pollos Broiler, para las diferentes formulaciones se presentan en el Cuadro 6.

Con los resultados de las concentraciones de flumequina en los tejidos en estudio, se construyó un gráfico tiempo versus concentración en escala semilogarítmica. En la Figura 1 se presenta el análisis de regresión lineal de flumequina 10% (Panel A), 20% (Panel B) y 80% (Panel C), respectivamente.

Para las tres concentraciones de flumequina analizadas, independiente del LMR considerado en músculo de pollos Broiler, los períodos de carencia no varían en una misma formulación. Así, para el caso de flumequina al 10% (panel A), considerando el LMR de 400 o 500 μg /kg, los períodos de carencia calculados son de 1.66 y 1.26 días; ya que este valor debe aproximarse al día siguiente, el período de carencia estimado es de 2 días. Una situación similar ocurre al analizar los valores obtenidos para flumequina 20% (Figura 1, Panel B). En el caso de flumequina 80% (Panel C), el periodo de carencia estimado es de 1 día, pero no difiere al considerar los diferentes LMR (400 o 500 μg /kg).

De la misma manera, en la Figura 2 se presenta el análisis de regresión lineal de flumequina para cada formulación, cuantificado en hígados obtenidos de las mismas aves. En el caso de los periodos de carencia para estas formulaciones, si existe variación dentro de una misma formulación dependiendo del LMR considerado. El período de carencia calculado para flumequina 10% (Figura 2, Panel A) fue de 2,10, 1,61 y 1,11 días cuando se consideraron los LMR 500, 800 y 1000 μg/kg, respectivamente, determinando un período de carencia estimado de 3 días para un LMR de 500 μg/kg y de 2 días para los LMR de 800 y 1000 μg/kg. Para el caso de flumequina 20% (Panel B) el período de
carencia calculado fue de 1.54, 1.26 y 0.84 días cuando se consideraron los LMR 500, 800 y 1000 μg/kg, respectivamente, determinando un período de carencia estimado de 2 días para los LMR de 500 y 800 μg/kg y de 1 día para el LMR 1000 μg/kg. Para flumequina 80% (Panel C) el período de carencia calculado fue de 1.78, 1.07 y 0.85 días cuando se consideraron los LMR 500, 800 y 1000 μg/kg respectivamente, determinando un período de carencia estimado de 2 días para los LMR de 500 y 800 μg/kg y de 1 día para el LMR 1000 μg/kg.

Un resumen con los periodos de carencia para cada formulación y su tejido se presentan en los Cuadros 7 y 8 para músculo e hígado respectivamente.
Cuadro 6. Concentraciones de flumequina en músculo e hígado de pollos Broiler tratados con 24 mg/kg/pv analizados por HPLC MS/MS durante los días postratamiento.

<table>
<thead>
<tr>
<th>Días post tratamiento</th>
<th>Concentraciones de flumequina en músculo (µg/kg)</th>
<th>Concentraciones de flumequina en hígado (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>1</td>
<td>274.4</td>
<td>175.8</td>
</tr>
<tr>
<td>1</td>
<td>170.7</td>
<td>191.4</td>
</tr>
<tr>
<td>1</td>
<td>175.4</td>
<td>219.8</td>
</tr>
<tr>
<td>1</td>
<td>243.2</td>
<td>135.4</td>
</tr>
<tr>
<td>1</td>
<td>193.6</td>
<td>183.4</td>
</tr>
<tr>
<td>1</td>
<td>226.8</td>
<td>198.4</td>
</tr>
<tr>
<td>2</td>
<td>53.4</td>
<td>43.8</td>
</tr>
<tr>
<td>2</td>
<td>65.2</td>
<td>45.6</td>
</tr>
<tr>
<td>2</td>
<td>64.1</td>
<td>36.1</td>
</tr>
<tr>
<td>2</td>
<td>84.3</td>
<td>41.8</td>
</tr>
<tr>
<td>2</td>
<td>66.2</td>
<td>43.1</td>
</tr>
<tr>
<td>2</td>
<td>72.2</td>
<td>51.4</td>
</tr>
<tr>
<td>3</td>
<td>27.0</td>
<td>22.8</td>
</tr>
<tr>
<td>3</td>
<td>21.5</td>
<td>16.6</td>
</tr>
<tr>
<td>3</td>
<td>32.5</td>
<td>18.5</td>
</tr>
<tr>
<td>3</td>
<td>15.5</td>
<td>13.7</td>
</tr>
<tr>
<td>3</td>
<td>21.2</td>
<td>19.3</td>
</tr>
<tr>
<td>3</td>
<td>24.3</td>
<td>19.2</td>
</tr>
<tr>
<td>4</td>
<td>5.4</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>3.7</td>
<td>8.4</td>
</tr>
<tr>
<td>4</td>
<td>5.6</td>
<td>13.6</td>
</tr>
<tr>
<td>4</td>
<td>9.1</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>4.8</td>
<td>16.8</td>
</tr>
<tr>
<td>4</td>
<td>11.9</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>6.2</td>
<td>4.6</td>
</tr>
<tr>
<td>5</td>
<td>1.1</td>
<td>6.3</td>
</tr>
<tr>
<td>5</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>5</td>
<td>2.4</td>
<td>3.8</td>
</tr>
<tr>
<td>5</td>
<td>1.7</td>
<td>3.7</td>
</tr>
<tr>
<td>5</td>
<td>6.1</td>
<td>3.0</td>
</tr>
<tr>
<td>6</td>
<td>2.8</td>
<td>5.4</td>
</tr>
<tr>
<td>6</td>
<td>5.6</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>1.9</td>
<td>7.0</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
<td>9.6</td>
</tr>
<tr>
<td>6</td>
<td>6.1</td>
<td>5.3</td>
</tr>
<tr>
<td>6</td>
<td>7.6</td>
<td>5.8</td>
</tr>
</tbody>
</table>

ND: No Detectado; CCα: 1.5 µg/kg; CCβ: 2 µg/kg.
Figura 1: Análisis de regresión lineal de flumequina en músculo de pollos Broiler tratados con 24 mg/kg pv de flumequina. Panel A: flumequina 10% \((r=0.853) \); Panel B: flumequina 20% \((r=-0.853) \); Panel C: flumequina 80% \((r=0.853) \). \textbf{a}: LMR 500 µg/kg; \textbf{b}: 400 µg/kg; \textbf{c}: línea de tendencia; \textbf{d}: línea con el 95% de confianza.
Figura 2: Análisis de regresión lineal de flumequina en hígado de pollos Broiler tratados con 24 mg/kg pv de flumequina. Panel A: flumequina 10% ($r = -0.853$); Panel B: flumequina 20% ($r = -0.827$); Panel C: flumequina 80% ($r = -0.886$). a: LMR 1000 μg/kg; b: 800 μg/kg; c: LMR 500 μg/kg. d: línea de tendencia; e: línea con el 95% de confianza.
Con los datos obtenidos en el análisis de regresión lineal podemos estimar los períodos de carencia en días, para músculos de pollos Broiler tratados con diferentes formulaciones de flumequina. Dichos datos se muestran en el Cuadro 7.

Cuadro 7. Períodos de carencia en músculos de pollos Broiler, para diferentes formulaciones comerciales de flumequina, según LMR.

<table>
<thead>
<tr>
<th>Formulaciones comerciales</th>
<th>Período de Carencia (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400 (µg/kg)</td>
</tr>
<tr>
<td>10 %</td>
<td>2</td>
</tr>
<tr>
<td>20 %</td>
<td>2</td>
</tr>
<tr>
<td>80 %</td>
<td>1</td>
</tr>
</tbody>
</table>

El período de carencia en el caso de los músculos para las formulaciones al 10 y 20% fue de 2 días según los LMRs estimados. En la formulación al 80% el periodo de carencia fue de 1 día para esta formulación.

Las concentraciones más altas, en general se encontraron en la formulación al 10 %. Existen diferencias en los períodos de carencia entre las distintas formulaciones, no así en una misma formulación considerando los diferentes LMR.
Con los datos obtenidos en el análisis de regresión lineal podemos estimar los períodos de carencia en días, para hígados de pollos Broiler tratados con diferentes formulaciones de flumequina. Dichos datos se muestran en el cuadro 8.

Cuadro 8. Períodos de carencia en hígados de pollos Broiler, para diferentes formulaciones comerciales de flumequina, según los diferentes LMRs.

<table>
<thead>
<tr>
<th>Formulaciones comerciales</th>
<th>Período de carencia (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 (μg/kg)</td>
</tr>
<tr>
<td>10 %</td>
<td>3</td>
</tr>
<tr>
<td>20 %</td>
<td>2</td>
</tr>
<tr>
<td>80 %</td>
<td>2</td>
</tr>
</tbody>
</table>

En el caso de las muestras de hígado las concentraciones encontradas el primer día de análisis para las formulaciones de 10 % y 20% superaron los 400 μg/Kg, donde nuevamente las mayores concentraciones se observaron en la formulación al 10%. Las concentraciones obtenidas en hígado independiente de la formulación fueron más altas durante todo el experimento.
DISCUSIÓN

La validación de la metodología analítica para la determinación de residuos de flumequina en músculos e hígados de pollos Broiler, se realizó de acuerdo a las recomendaciones de la Directiva 2002/657 de la Comunidad Europea. Es así que esta metodología podría ser utilizada en los futuros programas de control de residuos de estos antimicrobianos en músculos e hígados de pollos Broiler en Chile.

La técnica usada corresponde a la Cromatografía Liquida asociada a Espectrometría de Masa, técnica recomendada por la Comunidad Europea por tener un carácter confirmatorio por sus características de alta especificidad y sensibilidad.

También se logró estimar los períodos de carencia según CVMP 1996, para 3 distintas formulaciones comerciales de flumequina existentes en nuestro mercado y usadas en avicultura.

Según los resultados obtenidos para músculo e hígado de pollos Broiler y por cada formulación, podemos decir que el período de carencia que estima el SAG, de 10 días para todas las formulaciones comerciales de flumequina usadas en avicultura en nuestro país, cumple con los LMRs exigidos tanto a nivel nacional como internacional.

En el estudio propiamente tal, se encontró que las concentraciones fueron altas los primeros días, corroborando lo expuesto por diferentes autores sobre las características farmacocinéticas de las fluoroquinolonas como es su alta biodisponibilidad cuando es administrada vía oral y alta distribución en tejidos (Andriole, 2005; Orden y De La Fuente, 2001; Turnidge, 1999).

La presentación comercial de flumequina al 10%, tanto en músculos como hígados presenta mayores concentraciones por un tiempo más prolongado, y por lo tanto mayor período de carencia. Esto quiere decir que la diferencia de esta formulación en cuanto a excipientes, con respecto a las otras formulaciones, produce diferencias en los parámetros farmacocinéticos lo que lleva a tener una cinética de eliminación diferente y por lo tanto hace variar el período de carencia.

Así también durante todo el estudio se vio que existía diferencia en la acumulación de la droga en los tejidos en estudio, así se encontró una concentración mayor en los hígados, esto puede estar asociado a los fenómenos de biotransformación y posterior eliminación del fármaco (Andriole, 2005; Orden y De La Fuente, 2001; Turnidge, 1999).
Según nuestro estudio, pudimos corroborar que existen diferencias en las depleciones entre las diferentes presentaciones comerciales de flumequina y por ende diferencias en los períodos de carencia. Además todas las aves usadas en el estudio eran de la misma línea genética, misma edad y fueron mantenidas bajo las mismas condiciones, por lo tanto las variaciones observadas en el estudio podemos atribuirlas a las diferencias en los excipientes de las distintas formulaciones comerciales.

Todo esto es confirmado con lo expuesto en la literatura, con respecto a que los períodos de carencia son específicos para cada especie animal y tejido, dependiendo además de la dosis del fármaco, duración de la terapia y de su formulación. Esta última en especial afecta los parámetros farmacocinéticos, principalmente la velocidad y magnitud de absorción y el tiempo de eliminación (KuKanich et al., 2005).

En relación a los resultados obtenidos, el período de carencia estimado por el SAG estaría siendo sobrestimado, ya que según este estudio, los períodos de carencia estimados para músculos de pollos Broiler y según las diferentes formulaciones estudiadas fluctúan entre 1 y 2 días y para hígados fluctúan entre 1 a 3 días, dependiendo de la formulación y LMR considerado.

Se encontró diferencias en los períodos de carencia calculados entre los diferentes tejidos y dentro de un mismo tejido blanco (músculo o hígado) según las diferentes formulaciones comerciales y los diferentes LMR considerados.

Resultados similares mostraron el estudio de Anadón et al. 2007, en los cuales administrando la misma concentración de flumequina utilizada en nuestro estudio y considerando sólo el LMR de la Unión Europea para músculos de pollos Broiler, también llegaron a una estimación del periodo de carencia de 2 días.

La diferencia de tiempo en días, entre el período de carencia estimado por el SAG y los calculados en este estudio, corresponde a días en los cuales hay que alimentar a las aves y no se pueden faenar. En términos generales, corresponden entre 7 a 9 días, esto en términos económicos implica un gasto importante por parte de los productores, en cuanto no pueden faenar a las aves durante estos días. Esto cobra importancia siendo que la alimentación es el principal componente de los costos variables en producción animal.

Es por esto que creemos que es necesario el uso de una metodología analítica como la Cromatografía Liquida asociada a Espectrometría de Masa, que nos permita evaluar la presencia de residuos de flumequina de manera precisa y confirmatoria para
poder así estimar los períodos de carencia para cada formulación comercial existente en el mercado.

De esta forma estaríamos cumpliendo con el objetivo principal que es resguardar la inocuidad alimentaria para así proteger la salud pública de los consumidores, tanto a nivel nacional como a nivel internacional.

De igual forma la estimación correcta y precisa de los períodos de carencia, previene a los productores de hacer gastos innecesarios en su empresa y así ser más eficientes en el uso de sus insumos, mejorar el costo de producción y aumentar así las utilidades.
CONCLUSIONES

1.- El método validado para la detección de flumequina en músculos e hígados de pollos Broiler, cumple con los criterios de validación establecidos por la Directiva 2002/657 de la Comunidad Europea.

2.- La técnica usada corresponde a la Cromatografía Liquida asociada a Espectrometría de Masa, técnica recomendada por la Comunidad Europea por tener un carácter confirmatorio por sus características de alta especificidad y sensibilidad, debería ser de carácter obligatoria en los futuros programas de control de residuos de antimicrobianos en Chile.

3.- Se logró estudiar la depleción de los residuos de flumequina en músculos e hígados de pollos Broiler. En este estudio se vio una gran acumulación inicial de la droga, primeros dos días, para luego pasar a una curva descendente de la fase de eliminación final, que toma varios días dependiendo del órgano blanco y la formulación estudiada.

4.- Se logró confirmar que existen diferencias entre las diferentes formulaciones comerciales de flumequina.

5.- Se logró estimar los períodos de carencia según EMEA/CVMP 1996, para 3 distintas formulaciones comerciales de flumequina existentes en nuestro mercado y usadas en avicultura.

5.- Según los resultados de la determinación de los períodos de carencia se logró concluir que los períodos de carencia estimados por el SAG, organismo encargado de tal tarea, estarían sobrestimados, recomendándose revisar su modelo de trabajo para cumplir de mejor manera con las exigencias actuales y con los diferentes criterios usados en la estimación de los períodos de carencia.
BIBLIOGRAFÍA

1. **A.P.A. Asociación de productores avícolas de Chile A.G.** 2009. http://www.apa.cl [consulta 05/04/09].

27. **San Martín, B.** 2001. Residuos químicos en los alimentos de origen animal: un análisis global de la situación mundial y nacional. http://www.tecnovet.uchile.cl/CDA/tecnovet_articulo/0,1409,SCID%253D9590%2526ISID%253D467,00.html [consulta 20-04-2009].

