
Computer Physics Communications 187 (2015) 55–71
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Parallel family trees for transfer matrices in the Potts model
Cristobal A. Navarro a,b,∗, Fabrizio Canfora b, Nancy Hitschfeld a, Gonzalo Navarro a

a Department of Computer Science, Universidad de Chile, Santiago, Chile
b Centro de Estudios Científicos (CECs), Valdivia, Chile

a r t i c l e i n f o

Article history:
Received 21 January 2014
Received in revised form
9 September 2014
Accepted 10 October 2014
Available online 18 October 2014

Keywords:
Potts model
Deletion–contraction
Parallel computing
Transfer matrix
Strip lattices

a b s t r a c t

The computational cost of transfer matrix methods for the Potts model is related to the question in how
many ways can two layers of a lattice be connected? Answering the question leads to the generation of a
combinatorial set of lattice configurations. This set defines the configuration space of the problem, and
the smaller it is, the faster the transfer matrix can be computed. The configuration space of generic (q, v)
transfer matrix methods for strips is in the order of the Catalan numbers, which grows asymptotically
as O(4m) where m is the width of the strip. Other transfer matrix methods with a smaller configuration
space indeed exist but they make assumptions on the temperature, number of spin states, or restrict the
structure of the lattice. In this paperwe propose a parallel algorithm that uses a sub-Catalan configuration
space of O(3m) to build the generic (q, v) transfer matrix in a compressed form. The improvement is
achieved by grouping the original set of Catalan configurations into a forest of family trees, in such a way
that the solution to the problem is now computed by solving the root node of each family. As a result, the
algorithmbecomes exponentially faster than the Catalan approachwhile still highly parallel. The resulting
matrix is stored in a compressed form using O(3m

× 4m) of space, making numerical evaluation and
decompression to be faster than evaluating thematrix in itsO(4m

×4m)uncompressed form. Experimental
results for different sizes of strip lattices show that the parallel family trees (PFT) strategy indeed runs
exponentially faster than the Catalan Parallel Method (CPM), especially when dealing with dense transfer
matrices. In terms of parallel performance,we report strong-scaling speedups of up to 5.7×when running
on an 8-core shared memory machine and 28× for a 32-core cluster. The best balance of speedup and
efficiency for the multi-core machine was achieved when using p = 4 processors, while for the cluster
scenario it was in the range p ∈ [8, 10]. Because of the parallel capabilities of the algorithm, a large-scale
execution of the parallel family trees strategy in a supercomputer could contribute to the study of wider
strip lattices.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Potts model [1] has been widely used to study physical
phenomena of spin lattices such as phase transitions [2] in the
thermodynamical equilibrium. Lattices such as square, triangular,
honeycomb and kagome are of high interest and are being studied
frequently [3–6]. When the number of possible spin states is set
to q = 2, the Potts model becomes the classic Ising model [7],
which was solved by Onsager [8] for the infinite-volume limit on
a torus. For higher values of q the problem becomes much harder
and no solution has been found yet. Nevertheless, it is of interest
to study the problem in the form of a strip lattice. Hopefully, the
study of sufficiently wide strips could contribute at understanding

∗ Corresponding author at: Department of Computer Science, Universidad de
Chile, Santiago, Chile.

E-mail address: crinavar@dcc.uchile.cl (C.A. Navarro).

http://dx.doi.org/10.1016/j.cpc.2014.10.011
0010-4655/© 2014 Elsevier B.V. All rights reserved.
the physical properties of such complex systems under different
boundary conditions.

An effective technique for obtaining the partition function of
strip lattices is to compute its transfermatrix, denotedM . The trans-
fer matrix technique allows the study of strips that repeat their
lattice structure along one of its dimensions. M can be computed
symbolically or numerically (fully or partial) evaluated on (q, v).
When there is enoughdisk space,we find that it ismore convenient
to compute M using polynomials on (q, v). Indeed, computing M
with general (q, v) has an impact on performance and memory,
but it gives the advantage that M will not have to be re-computed
many timeswhen doing numerical sweeps for q and v. Another ad-
vantage is that from the general (q, v) transfermatrix one can gen-
eratemany partially evaluated instances of the transfermatrix that
can be used later for numerical sweeps on the remaining parame-
ter. For limited computational resources, generatingM partially or
fully evaluated is a practical choice.

http://dx.doi.org/10.1016/j.cpc.2014.10.011
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2014.10.011&domain=pdf
mailto:crinavar@dcc.uchile.cl
http://dx.doi.org/10.1016/j.cpc.2014.10.011

56 C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71
If the strip lattice represents an infinite band, then analysis
can be performed by computing the eigenvalues of M . If the strip
lattice is finite, then a initial condition vector Z⃗1 is needed. In that
case, boundary conditions have to be specified. Typical boundary
conditions are free, periodic, cylindrical and cyclic. M and Z⃗1
together form a partition function vector Z⃗ based on the following
recursion:

Z⃗(n) = MZ⃗(n− 1) = Z⃗ = Mn−1Z⃗1. (1)

Computing the powers of Mn−1 is done in a numerical context,
otherwise memory usage would become intractable. When Mn−1

is computed, the first element of Z⃗ becomes the partition function
of the strip lattice.

This work focuses on the process of buildingM , which is an NP-
hard problem [9] where exponential cost algorithms are involved
in the process, with the width m as the exponent. There are
different approaches for building M: (1) In the spin representation
approach, an integer value is chosen for q and the transfer matrix
T is obtained by combining the different spin configurations in the
graph layer. Under this approach, the size of M becomes q|V | ×
q|V |, where |V | is the number of spins in the layer of the strip. A
more detailed explanation on the spin representation approach is
available in the first of the six works by Salas, Sokal and Jacobsen
series of papers [10]. (2) One can also obtain M as a product
of sparse matrices of asymptotic size O(4m) [11], one per edge
and practically linear in the number of edges, where M is not
constructed explicitly but only its action on a given vector of
states. (3) Alternatively one can compute M with a generic (q, v)
method where the configuration space grows proportional to the
Catalan numbers [12] or asymptotically as O(4m), leading to a
matrix of sizeO(4m

×4m). Indeed there are other strategies that can
achieve smaller transfer matrices [13–15], but they assume special
properties for the lattice, work only for finite graphs or need to fix
the values of v and/or q in order to take any advantage. We believe
it is worth studying what are the possibilities for algorithmic
improvements in the generic (q, v) Catalan based approach since
it is a general method applicable to any planar strip.

In the light of these aspects just mentioned, we ask question 1:
Is there a generic (q, v) method that can compute the transfer matrix
for any planar strip lattice, using a sub-Catalan configuration space?.
From our research we have found that: a hierarchical symmetry
exists among elements of the configuration space that define the
transfer matrix. This symmetry is revealed when first applying
deletion–contraction to certain edges of the strip layer. If this
symmetry is used so that the configuration space is re-organized
as a forest of hierarchical families, then a parallel computation only
on the root nodes is sufficient for generating a compressed transfer
matrix. When exploiting this symmetry, the configuration space
is reduced from O(4m) to O(3m), which is an improvement to the
actual bound on general transfer matrix methods for strips. This
result allows us to answer positively to question 1.

With the evolution of computer architectures towards a higher
amount of cores [16,17], parallel computing is not anymore limited
to clusters or super-computing;workstations can also provide high
performance for solving physical problems [18]. It is in this last
category where most of the scientific community lies, therefore
parallel implementations for multi-core machines are the ones
to have the largest impact on the community. Considering how
technology is changing, we ask question 2: Can transfer matrix
methods work in parallel for modern multi-core architectures and
scale their performance efficiently as more processors are used?Given
the amount of data-parallelism on the number of root nodes, the
performance of the algorithm scales efficiently as more processors
are used. Results on a multi-core 8-core machine show a speed-
up of 5.7× is achieved when using p = 8 processors, and
an efficiency of 95% is achieved when using p = 4. Results on
a 32-core cluster confirm that the implementation can scale in
a distributed scenario, achieving a speedup of 28× when using
p = 32 processors and an efficiency of over 90% for the full range
p ∈ [1, 32] when dealing with large square strips. We can also
confirm that a compressed transfer matrix not only saves data
space in comparison to the original one, but it is also faster to
load considering that it must be first evaluated for any practical
usage. In the case of cluster performance, a dynamic scheduler is
mandatory in order to bypass potential performance valleys that
are caused by the combination of unbalanced work and a static
scheduler. Again, this result allows a positive answer for question 2.

The paper is organized as follows: Section 2 covers prelimi-
nary concepts of the Potts model, Section 3 describes related work.
Sections 4 and 5 explain the algorithm and the additional opti-
mizations. Section 6 provides details about the implementation
while in Section 7 we present detailed results for running time,
speedup, efficiency and knee, using different amount of processors.
We also compare performance against the Catalan Parallel Method
(CPM) [19]. Section 8 is devoted to the validation of the algorithm
by computing some physical results; from limiting curves to en-
ergy and specific heat, and comparing them to the results obtained
by other authors. Section 9 discusses our main results and con-
cludes the impact of our work.

2. Preliminaries

Let G = (V , E) be a lattice with |V | vertices, |E| edges and si be
the state of a spin of Gwith si ∈ [1..q] and i ∈ [1, |V |]. The partition
function Z(G, q, β) is defined as

Z(G, q, β) =

r

e−βh(Gr) (2)

where β = 1
KBT

, KB is the Boltzmann constant, T the temperature
and h(Gr) is the energy of the lattice at a given state Gr .1 The
Potts model [1] defines the energy of a state Gr with the following
Hamiltonian:

h(Gr) = −J

⟨i,j⟩∈Gr

δsi,sj (3)

where ⟨i, j⟩ corresponds to the nearest neighbor edge from vertex
vi to vj, r ∈ [1..q|V |], J is the interaction energy (J < 0 for anti-
ferromagnetic and J > 0 for ferromagnetic) and δsi,sj corresponds to
the Kronecker delta evaluated at the pair of spins ⟨i, j⟩ with states
si, sj and expressed as

δsi,sj =

1 if si = sj
0 if si ≠ sj.

(4)

As the lattice becomes larger in the number of vertices and edges,
the computation of Eq. (2) becomes rapidly intractable with an
exponential cost of Θ(q|V |). In practice, one can use equivalent
methods that, while still exponential, in practice run faster than
the original definition.

The deletion–contraction method [20], or DC method, was
initially used to compute the Tutte polynomial [21] and was then
extended to the Potts model after a relation of duality was found
between the two (see [22,23]). DC re-defines Z(..) as the following
recursive equation:

Z(G, q, v) = Z(G− e, q, v)+ vZ(G/e, q, v) (5)

where G − e is the deletion operation, G/e is the contraction
operation and the auxiliary variable v = e−βJ

− 1 makes Z(..) a

1 A state Gr is a distribution of spin values on the lattice. It can be seen as the
graph Gwith a specific combination of spin values on the vertices.

C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71 57
Fig. 1. The strip structure for the square and kagome lattices, both with a width (vertical) ofm = 6.
polynomial. There are three special cases where DC can perform a
recursive step with linear cost:

Z(G, q, v) =

(q+ v)Z(G/e, q, v); if {e} is a spike.
(1+ v)Z(G− e, q, v); if {e} is a loop.
q|V |; if E = {∅}.

(6)

The computational complexity of DC has a direct upper bound of
O(2|E|). When |E| ≫ |V | a tighter bound is known based on the
Fibonacci sequence complexity [20]; O((1+

√
5

2)|V |+|E|). In general,
the time complexity of DC can be written as

T (G) = min

O(2|E|),O

1+
√
5

2

|V |+|E|
. (7)

A strip lattice is a bidimensional graph G = (V , E) that repeats
its pattern at least along one dimension. It can be built as the con-
catenation of layers K1, K2, . . . , Kn sharing their boundary vertices
and edges. Fig. 1 illustrates how the notion of strip lattice applies
to the case of the square and kagome lattices. The transfer matrix,
denoted M , takes advantage of the repeating nature of the lattice,
allowing the study of very long graphs. In the limit of infinite length
the free energy per site becomes:

f =
1
nK

ln λ+ (8)

where nK is the number of non-shared vertices per layer and λ+
is the dominant eigenvalue of M with nontrivial coefficient asso-
ciated. The dimension of M grows proportional to a combinato-
rial function Γ (m), which depends on the size of the base (i.e., the
width of G(V , E)) and it represents the different ways in which two
layers can connect by combining spin states and identifications. The
set of configurations generated by the base corresponds to the con-
figuration space of the problem. The computational cost of a trans-
fer matrix method comes from two sources; (1) the size of the
configuration space and (2) the cost of the local algorithm. The se-
quence generated by Γ (m) corresponds to the size of the config-
uration space of the problem and, as mentioned earlier, it defines
the size of M . The local algorithm is in charge of computing the
partition functions for each element of the configuration space.

3. Related works

The transfer matrix methods were introduced by Derrida et al.
in 1980 [24] as an approach to study percolation and phenomeno-
logical re-normalization. In 1982, Baxter used transfer matrix
techniques in his seminal works as a tool for solving statistical
mechanics problems [25]. Salas, Sokal and Jacobsen have greatly
contributedwith a series of results, plus an additional unnumbered
one that follows the same line, in which they study the physics
of square and triangular strip lattices through the transfer matrix
technique [10,26–29,13,30]. In those works, the authors use dif-
ferent types of algorithmic optimizations for the construction of
M based on the symmetries available. Different scenarios are con-
sidered along the works, such as the zero temperature (chromatic
polynomial) case, ferromagnetic and antiferromagnetic cases, and
different boundary conditions such as free, periodic, cylindrical and
a special boundary condition that consists of adding two extra ver-
tices on the sides of the strip. Some of the contributions made in
these works include the use of non-nearest neighbors partitions
for v = −1, sparse matrix factorization, algebraic input from the
representation of the Temperley–Lieb algebra, symmetries for dif-
ferent boundary conditions and the computation of the limiting
curves or partition function zeros for the different boundary con-
ditions up to m ≤ 13. State of the art works on the square lattice
normally study strips in the range 3 ≤ m ≤ 13. For the case of the
square lattice with free boundary conditions, Salas et al. achieved
m = 12 using v = −1 [29]. It should be noted that if v ≠ −1 and
free boundary conditions are used, then the configuration space is
the one proportional to the Catalan numbers and the problem be-
comes computationally harder to handle. The problem of the ma-
trix size has also been improved by algebraic techniques [14] in the
spin representation, reducing the matrix size when working with
q = 2 and q = 3. The authors studied the square and triangu-
lar strips with layers of up to r = 11 spins, which is equivalent
to a square strip of width m ≈ 5. Jacobsen et al. have studied the
q-state Potts model for q = 4 cos2(π/p) being a Beraha number
with p > 2 and integer [28]. In the work, the authors study strips
of widths in the range m ∈ [2, 6]. The relevance of their work is
that theymanage to compute the partition function using the RSOS
representation. Álvarez et al. [31] have reported exact results for
the kagome strip of width m = 5 using the generic (q, v) Cata-
lan based transfer matrix technique. In contrast to these related
works, we are interested in exploring a general (q, v) method that
can allow the study of strips in the state of the art range for free
boundary conditions using generic (q, v). For simplicity, we will
restrict our physical results just to the computation and validation
of the limiting curves using free boundary conditions in order to
stay within the scope of our work, but not restrict the proposed
strategy to these conditions.

More general methods for computing the exact partition func-
tion of a lattice have also been proposed [32,15,33]. Bedini
et al. [15] proposed a transfer matrix method for computing the
partition function of arbitrary graphs using a tree-decomposed
transfer matrix technique. For arbitrary graphs, they mean any
type of finite graph; i.e., random or regular planar/non-planar
graphs. In their work, the authors obtain a sub-exponential com-
plexity when processing random planar graphs. Their algorithm
is considered the best so far for arbitrary graphs and the authors
manage to achieve results for regular lattices of up to 18 × 18
sites. If the tree-decomposed transfer matrix method is applied
to a strip, the configuration space to explore becomes the same
as the traditional transfer matrix methods for strips, i.e., the tree-
width becomes the width of the strip and the cost is proportional
to the Catalan number of the tree-width. The work is closely re-
lated to another result by Jacobsen in which large regular lattices
of up to 20 × 21 sites were studied [11] by using a sparse trans-
fer matrix method based on the product of sparse matrices, of di-
mension 3m for v = −1 and 4m for v ≠ −1. The work of

58 C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71
Fig. 2. Example data structure for a square lattice of widthm = 3.
Haggard et al. [34] is considered to have the best implementa-
tion of a deletion–contraction technique for the computation of
the Tutte polynomial for any arbitrary graph (the Tutte polyno-
mial is the dual of the partition function [22]). Their algorithm re-
duces the computation tree in the presence of loops, multi-edges,
cycles and biconnected graphs (as one-step reductions). By using
a cache, some computations can be reused (i.e., sub-graphs that
are isomorphic to the ones stored in the cache do not need to be
computed again). An alternative algorithm to Haggard et al. was
proposed by Björklund et al. [35] which achieves exponential time
only in the number of vertices; O(2nnO(1)) with n = |V |. Asymp-
totically their method is better than deletion–contraction consid-
ering that many interesting lattices havemore edges than vertices.
However, Haggard et al. [34] have stated that thememory usage of
Björklund’s method is too high for practical use. These techniques,
which are more general than the ones from the beginning of this
section, cannot be directly compared against the classic transfer
matrix approach, nevertheless they still needed to be mentioned
as part of the related work background. General techniques com-
pute the transfer matrix efficiently for arbitrary graphs, but do not
take advantage of the regular graph structure when it is available.
On the other hand, classic transfer matrix methods for strips in-
deed take advantage of the regular graph structure but for arbitrary
graphs are not so efficient because for each layer there is a new
non-sparse transfer matrix to be computed. Both strategies play
an important role in the study of spin lattices. In our case, we fo-
cus on strips with regular graph structure, therefore our approach
should be considered as a classic transfer matrix method.

Research on transfer matrices for strip lattices in the Potts
model have not reported experimental results on the parallel per-
formance, except for a prior work of the authors [19] that consists
of a parallel method for computing general (q, v) transfer matrices
using the Catalan approach, which will be named the Catalan Par-
allel Method (CPM) for the ease of referencing it later on. The CPM
method was successfully used to study new widths of the kagome
strip [31] with generic (q, v). The present work is a substantial im-
provement from CPM.

4. Algorithm overview

4.1. Data structure

The definition of G from Section 2 (see Fig. 1) will be used in
this section to explain the input data structure needed by the algo-
rithm. Since the graph is a strip lattice, only layer Kn of the graph
G is explicitly needed. The following naming scheme is now in-
troduced for distinguishing two types of boundary vertices in the
layer: shared vertices and external vertices. For convention, shared
vertices are indexed top-down from 0 to m − 1 and correspond to
the left-most ones of Kn, which are being shared with layer Kn−1.
External vertices are the right-most ones of Kn and are indexed
bottom-up from |V |−m to |V |−1. Fig. 2 illustrates the data struc-
ture for an square strip ofm = 3.
Fig. 3. The configuration space for a square lattice of widthm = 3.

4.2. DC-based transfer matrix computation

When using (q, v) polynomials, the configuration space of
generic q transfermatrixmethods turns out to be the set of all non-
crossing partitions on a sequence of m serially connected vertices.
The size of this configuration space is defined by the Catalan
numbers:

Γ (m) = Cm =
1

m+ 1

2m
m

=

(2m)!

(m+ 1)!m!
=

m
k=2

m+ k
k

. (9)

We will first explain how the transfer matrix can be built from
partial DC repetitions and then proceed to the parallel family trees
strategy.

At this pointwe introduce two terminologies that are important
for the rest of the section; initial configurations and terminal config-
urations. These configurations define a combinatorial sequence of
identifications2 on the external and shared vertices of layerKn. Initial
configurations, denoted σi with i ∈ [0..Cm − 1], define a combina-
torial sequence of identifications just on the external vertices of Kn.
The terminal configurations, denoted ϕj with j ∈ [0..Cm− 1], define
a combinatorial sequence of identifications just on the shared ver-
tices of Kn. Initial configurations generate terminal ones, through
the DC method.

The case of σ1 is the basic case and matches Kn. That is, σ1 is
the initial configurationwhere no identifications are applied to the
external vertices of Kn. It is equivalent as saying that σ1 is the empty
partition of the Catalan set. Similarly, ϕ1 corresponds to the base
case where no shared vertices are identified. In other words, ϕ1 is
the empty configuration for the Catalan set on the shared vertices
of Kn. For illustration, Fig. 3 shows the configuration space for the
square lattice of widthm = 3:

In order to compute the transfer matrix M (row by row), one
must apply Cm partial DCs, each time to a different initial config-
uration σi. Each one of the Cm partial DC applications generates a
row of M in the form of partial partition functions on (q, v), dis-
tributed into a maximum of Cm terminal configurations. By partial
DC we mean to perform DC on the layer, with the corresponding
initial configuration σi applied, but stopping the recursion branches
whenever they meet and edge that connects two shared vertices.
The stop condition on the recursion branches is needed otherwise
one would be processing vertices and edges of the next layer of
the strip, breaking the idea of a transfer matrix. For the example of
Fig. 2 with m = 3, the partial DC is applied to σ1, σ2, σ3, σ4 and σ5
from Fig. 3.

2 For identification we mean a pair of vertices that actually represent a single
vertex (they are identified). Graphically, it is represented by a crossed curved
connecting the pair of vertices.

C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71 59
Fig. 4. Terminal configurations generated from a partial DC on a square strip of
widthm = 3.

An example of a partial DC for the example of m = 3 is illus-
trated in Fig. 4 for the case when computing the first row. The pro-
cess is analogous for the other four rows ofM (i.e.,σ2,σ3,σ4 andσ5).

Once a recursion branch has been stopped, partial partition
functions zi,j(q, v) appear associated to remnants of the graph
layer. Remnants are parts of the graph layer that cannot be com-
puted (i.e, edges connecting shared vertices) and they match one of
the Cm possible terminal configurations that can exist. For some ini-
tial configurations, not all terminal configurationsmay be generated
from a single DC, but only a subset of them.

A terminal configuration ϕj contains a unique sequence of planar
identifications on the shared vertices that is useful to differentiate
one from another. We use the term key to denote such sequences
since they allow fast search and modification in a hash table.
Proper construction of keys are achieved by using a simple algebra
that defines how multiple identifications on shared vertices are
combined. A key of n identifications is denoted as Π = πx1,y1 +

πx2,y2 + · · · + πxn,yn . The following properties hold true for keys:

πa,b = πb,a (10)
πa,b + πc,d = πc,d + πa,b (11)
πa,b + πb,c = πa,b,c . (12)

Properties (10) and (11) allow the application of a lexicographi-
cal order on the keys, while property (12) allows to combine them
using transitivity. There are important differences when compar-
ing this algebra to the partition algebras studied by Halverson and
Ram [36], specially because the former ismuch simpler and defines
operations on a single layer of points, while the latter defines a dif-
ferent set of operations for a partition monoid that is represented
as a graph of two layers of points. Nevertheless, we can still find a
relationwith the number of partitions in the case of the planar sub-
monoid Pk, which is C2k for two layers of length k, and the number
of keys for a single layer of lengthm, which is Cm.

Using Stirling’s approximation, we have that Cm ≈
4m

m3/2√π
,

which is consistent with the upper bound:

Cm =
1

m+ 1

2m
m

≤

2m
m

≤ 4m. (13)

Dutton and Brigham proved in 1986 that the Stirling approx-
imation of the Catalan numbers is in fact already a valid up-
per bound [37]. In addition, they obtain tighter lower and upper
bounds for the Catalan numbers. The cost of the DC-based transfer
matrix method is the product of the cost of the partial DC and the
size of the configuration space Cm.

So far, the worst case running time of the algorithm for com-
putingM is:

T (G(V , E),m) = O

Γ (m) · DC(Kn)

= O

4m
·min

2|E
′
|,

1+
√
5

2

|V ′|+|E′|
. (14)
Fig. 5. When DC is forced to start on the external edges, the recursion is divided
into two phases.

In the following sub-section, we show how a finer analysis can
lead to a smaller configuration space of Γ (m) = O(3m) for com-
puting a compressed transfer matrixM .

4.3. Family trees strategy

It is possible to reduce the Catalan configuration space by
exploiting a symmetry present in the deletion–contraction (DC)
method, resulting in an exponentially faster algorithm. Basically,
the idea is the following: if the DC procedure is forced to act first
on certain external edges of the layer, and act later on the rest of the
graph, then symmetries appear between nodes of the recursion tree
and other initial configurations. Exploiting such symmetry allows
one to groupmany Catalan configurations into families of configu-
rations, where a single DC procedure applied to the root node of a
family contributes to the solution of the whole family.

Forcing DC to start on the external edges results in a recursion
tree composed of two phases; (1) a perfect binary tree (PBT) of
height h = m − 1 − b and (2) several sub-trees tj with j ∈ [1..2h

]

(see Fig. 5).
Variable b is the number of external edges that sit in between

an identification πij where at least one of its vertices is i or j. These
b edges are left for phase (2) because they do not produce the sym-
metries needed for the family trees strategy. Each node of the PBT
of phase (1) that comes from a contraction produces a unique al-
gebraic symmetry to one of the configurations found in the orig-
inal Catalan set. The configuration of a contracted node from the
recursion tree is denoted χi and the symmetric correspondence is
χi ←→ σi. All χi configurations that share the same PBT, together
form a family tree. Following the example of the square strip with
m = 3, its configuration space would be grouped into two fam-
ily trees (see Fig. 6); {σ1, σ2, σ3, σ4} and {σ5}, being σ1 and σ5 their
root configurations, respectively.

The solution of a configuration, namely ⟨σi⟩, is defined in terms
of its symmetric χi found in the PBT:

⟨σi⟩ = (1+ v)c
2d−1
k=0

vb(k)
⟨χ k

i ⟩. (15)

Variable d denotes the number of deletions (i.e., holes in the ex-
ternal layer) and variable c the contractions accumulated along its
path, both starting from the root. The (1 + v)c coefficient corre-
sponds to the expression for the c loops that are present in the
external layer of σi, but are missing in χi. For the example of the
square strip of widthm = 3, c = 0, 1, 1, 2, 0 forχ1, χ2, χ3, χ4, χ5,
respectively. Function b(k) counts the number of non-zero bits of
k and the expression χ k

i is the application of the binary mask k just
on the holes of χi. The mask works as follows: if bit kj = 1, with
j ∈ [0..d− 1], then the jth hole is filled with an edge, otherwise it
is left as a hole.

60 C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71
Fig. 6. An example of the perfect binary tree and subtrees form = 3.
Fig. 7. An example of how χ3 , with d = 1, builds the solution of σ3 with the help
of χ4 .

When d = 0,χi represents exactly the starting point of an even-
tual solution ⟨σi⟩, algebraically symmetric in (1+v)c . When d > 0,
χi is no longer the starting point of ⟨σi⟩, but instead it is the left-
most node in an eventual recursion tree of the solution ⟨σi⟩, at level
d. In order to compute ⟨σi⟩, 2d

− 1 variations of χi are needed to
build themissing steps and eventually reachσi in a bottom-upway.
An important property of the variations of χi is that they actually
correspond to other family members within the PBT that will be
eventually solved too. This means that there is no need to compute
these variations, instead one has to make the correct relations be-
tween the different family members. We propose a hash map of
the type (χi, r[]) so that for each χi, represented by its unique key,
there is an array of related configurations r[] that need ⟨χi⟩. Each
time a contracted configuration is reached in the PBT, Eq. (15) is
applied and 2d

− 1 relations are inserted in the hash map. Fig. 7 il-
lustrates the example of the strip of widthm = 3 when processing
χ3; it needs χ4 in order to build the solution ⟨σ3⟩.

The solution for each family member ⟨χi⟩ can be written in
terms of the solutions of the 2h subtrees. A convenientway for stor-
ing the solution for awhole family is towrite a systemof equations,
using a linear combination of the 2h sub-trees. A vc coefficient is
included, where c is the amount of contractions found in the path
from the familiar to the sub-tree. For the example of the strip of
m = 3, the solution for the family of σ1 is:

⟨σ1⟩ = ⟨χ1⟩ = ⟨t11 ⟩ + v⟨t12 ⟩ + v⟨t13 ⟩ + v2
⟨t14 ⟩, (16)
⟨σ2⟩ = (1+ v)⟨χ2⟩ = (1+ v)[⟨t13 ⟩ + v⟨t14 ⟩] (17)

⟨σ3⟩ = (1+ v)[⟨χ3⟩ + v⟨χ4⟩] = (1+ v)[⟨t12 ⟩ + v⟨t14 ⟩] (18)

⟨σ4⟩ = (1+ v)2⟨χ4⟩ = (1+ v)2⟨t14 ⟩. (19)

Note how ⟨σ3⟩ includes ⟨χ4⟩, as shown in Fig. 7. The solution for
the family of σ5 is:

⟨σ5⟩ = ⟨χ5⟩ = ⟨t51 ⟩. (20)

These equations, plus the solutions of the sub-trees, conform the
compressed transfer matrix for the example strip of width m = 3.
It is important to mention that the sub-trees are stored only once
and the system of equations use indices to the sub-trees.

Given how DC works, identification can only occur on pairs of
vertices that are neighbors. This aspect of DC allows us to establish
a formal definition for a family.

Definition 1. A family is a set of configurations in which for any
chosen pair σi and σj of the set, the difference of their correspond-
ing keys Π i and Π j is Π i−j

= πx1,x1+1 + πx2,x2+1 + · · · + πxn,xn+1.

In other words, the difference between σi and σj must only consist
of identifications of length l = 1. Configurations that differ at least
by one identification of length l > 1 belong to a different family.
Each family is identified by its root configuration, therefore it is
important to know which configurations are root and which are
not.

Definition 2. A root configuration is an instance of Kn where its
key Π = πx1,y1 + πx2,y2 + · · · + πxn,yn satisfies |xi − yi| > 1 for
i ∈ [1..n].

That is, a root configuration is one that does not have identifica-
tions of length l = 1. The number of root configurations will be
denoted ∆m as a function of the width m. We formulate the fol-
lowing expression for ∆m, based on Definition 2 and using the in-
clusion–exclusion principle:

∆m =

m−1
k=0

(−1)k

m− 1

k

Cm−k. (21)

Theorem 1. The amount of root configurations is upper bounded as
∆m = O(3m).

C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71 61
Fig. 8. Examples of regular simplexes drawn on the plane.
Proof. Using (13) into (21) leads to the following bound:

∆m =

m−1
k=0

(−1)k

m− 1

k

Cm−k ≤

m−1
k=0

m− 1

k

(−1)k4m−k

= 4
m−1
k=0

m− 1

k

(−1)k4m−1−k (22)

= 4(4− 1)m−1 (23)

= O(3m). (24)

Step (23) is obtained by using the Binomial formulawith x = 4 and
y = −1. �

The number of root configurations∆m corresponds to the num-
ber of non-crossing non-nearest-neighbor partitions (nc-nnn). The
number of nc-nnn can also be counted with the Motzkin number
evaluated atm− 1; ∆m = Mm−1, whereMm is:

Mm =

⌊m/2⌋
j=0

m
2j

Cj. (25)

The asymptotic number of nc-nnn partitions has been previously
studied by Chang et al. in [38] by using the asymptotic behavior of
Mm:

Mm =
33/2

2
√

π m3/2
3m

1+ O(m−1)

. (26)

Although the asymptotic bound was already obtained in two ear-
lier works [38,13] in the context of nc-nnn partitions, the proof
of Theorem 1 still remains interesting as a short and alternative
way to establish the O(3m) upper bound coming from an inclu-
sion–exclusion formulation that has not considered the Motzkin
numbers.

4.3.1. Upper bound for relating k-hole familiars
Counting the amount of family relations within a DC procedure

allows one to precise an upper bound on the number of accesses
made to the hashmap. For each DC application, the cost of relating
family members is defined as:

g(h) =
h−1
k=0

c(k, h)r(k) (27)

where r(k) = 2k
− 1 is the cost of performing the relations for a

k-hole configuration. Function c(k, h) counts the number of k-hole
configurations, which is a subset of the total number of familiars.
Since familiars can only be contracted nodes within the PBT, the
size of a family is 2h−1. A direct upper bound can be computed
assuming the worst case for r(k):

g(h) < (2m
− 1)

h−1
k=0

c(k, h) ≤ (2m
− 1)2h < 4m

= O(4m). (28)
A tighter upper bound is possible when c(k, h) is analyzed more
carefully. The following pattern can be found when counting the
number of k-hole configurations.
c(0, h) = h (29)

c(1, h) = 1+ 2+ · · · + h− 1 (30)

c(2, h) = (1)+ (1+ 2)+ · · · + (1+ 2+ 3+ · · · + h− 2) (31)

c(3, h) =

(1)

+

(1)+ (1+ 2)

+ · · · +

(1)+ (1+ 2)

+ · · · + (1+ 2+ 3+ · · · + h− 3)

. (32)

The recursion for c(k, h) is:

c(k, h) =
h−k
i=0

c ′(k− 1, i), 1 ≤ k ≤ h− 1 & c(0, h) = h (33)

c ′(k, h) =
h

i=0

c ′(k− 1, i), 1 ≤ k ≤ h− 1 & c ′(0, h) = h. (34)

Function c(k, h) is equivalent to counting the number of k-faces
in a regular (h − 1)-simplex [39]. A regular (h − 1)-simplex is a
(h − 1)-dimensional polytope that is the convex hull of h vertices
in a regular spatial distribution. A regular simplex can also be seen
as the generalization of the notion of a triangle or a tetrahedron, for
an arbitrary dimension. A regular (h− 1)-simplex can be drawn in
the plane by placing h vertices inscribed in a circle, with all pairs
connected (see Fig. 8).

The number of k-faces in a (h− 1)-simplex [40] is defined as:

c(k, h) =

h
k+ 1

. (35)

Using (35) in (27), we have that

g(h) =
h−1
k=0

h

k+ 1

(2k
− 1). (36)

Theorem 2. The cost of relating all configurations within a PBT is
upper bounded as g(m− 1) = 1

6 (3
m
− 3 · 2m

+ 3) = O(3m).

Proof. For simplicity, we will assume that every DC application
processes the default initial configuration. This configuration is
the one that spans the largest family, hence the worst case where
b = 0, that is h = m− 1.

g(h) ≤ g(m− 1) =
m−2
k=0

m− 1
k+ 1

(2k
− 1)

=

m−2
k=0

m− 1
k+ 1

2k
−

m−2
k=0

m− 1
k+ 1

. (37)

Both summations obey the following form:
m−2
k=0

m− 1
k+ 1

ak =

1
a

m−1
k=1

m− 1

k

ak

=
1
a

−1+

m−1
k=0

m− 1

k

ak

. (38)

62 C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71
Fig. 9. Foster’s four step strategy for achieving parallel family trees, for two processors.
Using the Binomial theorem for the summation, we get

1
a

−1+

m−1
k=0

m− 1

k

ak

=

(a+ 1)m−1 − 1
a

. (39)

Using a = 2 and a = 1 leads to the first and second terms of
Eq. (37)

g(h) ≤ g(m− 1) =
3m−1
− 1

3
−

2m−1
− 1

2

=
1
6
(3m
− 3 · 2m

+ 3) = O(3m). � (40)

4.3.2. Running time of the family trees strategy
The asymptotic sequential running time of the family trees

algorithm applied to a layer K(V ′, E ′) of a strip lattice is:

T (m, K(V ′, E ′)) = ∆m

DC + g(m− 1)

(41)

= O

3m

min

2|E
′
|,

1+
√
5

2

|V ′|+|E′|
+ 3m

. (42)

The extra cost provided by g(m−1) does not incur in too much
extra computation compared to the cost of DC itself, where the
amount of edges of K(V ′, E ′) must at least double the amount of
edges in the boundary, that is E ′ ≥ 2(m−1). Additionally, g(m−1)
is considering the worst case for each root configuration where
h = m − 1. In practice, all configurations, except for the default
one, will have h < m− b− 1 with b > 0.

4.3.3. Parallel family trees
By default, the algorithm does not know the ∆m different root

configurations except for σ1 which is given as part of the input of
the strip lattice and is the one that triggers the computation. Under
this scheme, the configuration space would have to be explored
incrementally, each time adding a sub-set of configurations from
the terminal configurations found from a DC application. This is
indeed a problem for parallelization because the data-parallel
elements are being discovered sequentially, limiting the efficiency
and scalability of a parallel computation. In order to solve this
problem, we use a recursive generator g(A[][], s,H, S), that with
the help of a hash table H , generates all the ∆m configurations
before hand and stores them in an array S. A[][] is an auxiliary
array that stores the intermediate auxiliary subsequences and s is
the accumulated sequence of identifications. Before the first call to
g(A[][], s,H, S), A = [[0, 1, 2, . . . ,m− 1]], s is null and H as well
as S are empty. g(A[][], s,H, S) is defined as:
g(A[][],s,H,S){
if(!add_sequence(s,H,S))

return;
for(int k=0; k<A.size(); k++){

for(int j=2; j<A[k].size(); j++){
for(int i=0; i<j-1; i++){

if(can_identify(A[k],i,j)){
cA = copy(A);
cs = copy(s);
identify(cA,i,j,k,cs);
divide(cA,i,j,k);
g(cA,cs,H,S);

}}}}}

Basically, g(..) performs a recursive partition of the domain A. If
|j− i| ≤ 3 then no further identifications can be carried on, other-
wise the identification would be of length l = 1 and the generated
configuration would not be a root configuration. Similarly, for the
top and bottom parts if |j− i| ≤ 2 then no more identifications are
possible. Each time a new identification i, j is added, the resulting
configuration is checked in the hash table. If it is a new configu-
ration, then it is added, else it is discarded as well as all further
recursion computations continuing from that point. By using this
approach we ensure that redundant recursion branches are never
computed. Once g(..) has finished, S becomes the array of all pos-
sible configurations and H the hash that maps configurations to
indices.

Parallel family trees are achieved by first generating all root
configurationswith g(..), followed by the parallel computation of p
family trees simultaneously, using p processors and a total of∆m/p
family trees per processor. The initial key needed by each processor
pi is obtained by reading in parallel from S[pi], assuming the PRAM-
CREW model. Once the key is obtained, it is applied to the external
vertices of its own local copy of the base layer σ1. Foster’s four-step
strategy [41] describes the design process of a parallel algorithm;
partitioning, communication, agglomeration, mapping. The design
steps for the parallel family trees is illustrated in Fig. 9.

The work for each processor pi is divided in the following steps:
(1) pick one root configuration key from S[], (2) apply it to its local
copy of the Kσ1 layer, (3) perform the DC procedure, (4) write the
results into non-volatile memory, i.e., sub-tree results as well as
the linear equations into disk, and (5) go to step (1) if there are
still root configurations remaining. For step (3), familiars of a root
configuration are detected at runtimewithin the PBT by computing
its key, each time the recursion comes from a contraction. When
the beginning of a sub-tree is reached, no more familiars are
guaranteed to be found on what is left of the recursion, therefore
the algorithm can proceed to compute the whole sub-tree without
needing to check for the existence of familiars. The solution of
a sub-tree ti is a vector of expressions zi,j(q, v) that associates a
j index to a terminal configuration ϕj within the sub-tree ti. The

C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71 63
Fig. 10. Serial and parallel paths.
hash-mapH from the generator becomes useful for searching with
average cost O(1) the index j of a terminal configuration ϕj. Also, H
ensures that all vectors are consistent with the order established
in the generator and in the transfer matrix.

The 2m−1 sub-tree vectors and the coefficients for the set of
equations provide the solution for a whole family. Both of these
results are saved locally for each processor. This output format
based on sub-trees and coefficients makes the matrix compressed
in the same proportion of the improvement in the running time.

The asymptotic running time for the parallel family trees algo-
rithm using p processors is:

T (m) = O

3m

p

DC + g(k,m)

(43)

= O

3m

p

min

2|E
′
|,

1+
√
5

2

|V ′|+|E′|
+ 3m

. (44)

Further computations for achieving physical results require
decompression of the matrix, leading to a matrix of Catalan
dimensions again. In practice, large symbolic matrices need first to
be evaluated before doing any analysis. If the numerical evaluation
is performed before decompressing the matrix, then the process
is much faster than first decompressing and then evaluating, even
faster than evaluating an uncompressed transfer matrix on (q, v).
Numerical evaluation has the potential to be exponentially faster
as a consequence of the parallel family trees compression, which is
in the same order of the running time improvement.

The analysis of the algorithm has been made for the case of
free boundary conditions but it is not restricted to it. For different
boundary conditions such as cylindrical, full periodic or cyclic,
the parallel family trees can be still applied following the same
principle, while taking advantage of additional symmetries like
the dihedral group in the cylindrical case. The rest of the paper
assumes free boundary conditions unless we explicitly mention
the contrary.

For the case of a finite strip, the initial conditions vector Z⃗1 is
computed by applying DC to each one of the Cm terminal configura-
tions:

Z⃗1 = (DC(ϕ1),DC(ϕ2), . . . ,DC(ϕCm)). (45)

The computation of Z⃗1 has very little impact on the overall cost of
the algorithm and practically costs O(mCm) in time because a ter-
minal configuration contains mostly spikes and/or loops, which are
linear in cost for DC.

5. Algorithm improvements

5.1. Serial and parallel paths

The DC contraction procedure can be improved for graphs that
present serial or parallel paths between two endpoints va and vb, as
shown in Fig. 10.

A serial path, denoted s, is a set of edges e1, e2, . . . , en that
connect sequentially n−1 vertices between va and vb. It is possible
to process a serial path of n edges in one recursion step by using the
following expression;

Z(K , q, v) =

(q+ v)n − vn

q

Z(K−s, q, v)+ vnZ(K/s, q, v). (46)

A parallel path p is a set of edges e1, e2, . . . , en that redundantly
connect va and vb. It is possible to process a parallel path of n edges
in one recursion step by using the following expression;

Z(K , q, v) = Z(K−p, q, v)+

(1+ v)n − 1

Z(K/p, q, v). (47)

5.2. Axial symmetry

One practical optimization is to detect the lattice’s reflection
symmetry when computing the root configurations as well as the
Catalan configurations. When detecting reflection symmetry, the
size of the configuration space is decreased for all symmetric pairs
of configurations, no matter if it is initial, terminal or root. As the
width of the strip lattice increases, the number of symmetric states
increases too, leading to configuration spaces almost half the size
of the original. We establish reflection symmetry between two
configurationsϕa andϕb with keysπa1,...,an andπb1,...,bn respectively
in the following way:

πa1,...,an = πb1,...,bn ⇔ ai = (m− 1)− bn−i+1. (48)

Exploiting this symmetry results in a matrix size C s
m:

C s
m =

Cm

2
+

m!
2⌊m2 ⌋!

. (49)

For large values ofm, C s
m ≈

Cm
2 .

For the case of root configurations, Chang et al. [38] proved that
the number of non-crossing non nearest-neighbor partitions under
reflection symmetry, which we denote ∆s

m, is:

∆s
m =

1
2
Mm−1 +

(m′ − 1)!
2

⌊m′/2⌋
j=0

m′ − j
(j!)2(m′ − 2j)!

(50)

where m′ =

m+1
2

. The expression was also obtained by Salas

and Sokal [13] for studying the square lattice symmetries when
v = −1. Whenm→∞we have:

∆s
m ∼

√
3

4
√

π m−3/2
3m

1+ O(m−1)

. (51)

Table 1 shows how the amount of Catalan and root configura-
tions increase for non-symmetric and symmetric lattices up tom =
14. If cylindrical boundary conditions are used, then the reflection
symmetry can be replaced by the symmetry of the dihedral group
which further reduces the size of the matrix. For this manuscript
we limit our work to the case of free boundary conditions.

6. Implementation

We tried two implementations for the parallel family trees par-
allel algorithm; one using OpenMP [42] and the other one using

64 C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71
Table 1
Number of Catalan and root configurations under non-symmetric and symmetric
cases.

m Cm C s
m ∆m ∆s

m

1 1 1 1 1
2 2 2 1 1
3 5 4 2 2
4 14 10 4 3
5 42 26 9 7
6 132 76 21 13
7 429 232 51 32
8 1,430 750 127 70
9 4,862 2,494 323 179

10 16,796 8,524 835 435
11 58,786 29,624 2,188 1,142
12 208,012 104,468 5,798 2,947
13 742,900 372,308 15,511 7,889
14 2,674,440 1,338,936 41,835 21,051

MPI [43]. We observed that the MPI implementation achieved
better performance in the multi-core scenario and allows paral-
lel computation in a distributed scenario. For this, we decided
to continue the research with the MPI implementation for both
multi-core and distributed scenarios. Basic mathematical opera-
tions on symbolic expressions are handled through the GiNaC C++
library [44]. Parallel execution of the algorithm receives two pa-
rameters; the number of processors p and the block size B, which is
the amount of consecutive jobs per process. When the paralleliza-
tion is unbalanced, the value of B plays an important role for effi-
ciently distributing work to all processors. In our implementation
we make each process to generate its own H lookup table and S
array. This small sacrifice in memory leads to better performance
than if H and S were shared among all processes. There are mainly
three reasonswhy the replication approach is better than the shar-
ing approach: (1) caches will not have to deal with consistency of
shared data, (2) there is no sending/receiving of data structures and
(3) the allocation of the replicated data is correctly placed onmem-
ory modules when working under a NUMA architecture. The last
claim is true because on NUMA systems memory allocations on a
given process are automatically placed in its fastest location ac-
cording to the NUMA topology between memory and CPU cores. It
is responsibility of the OS (or make manual mapping) to stick the
process to the same processor throughout the entire computation.

The implementation writes each row to a persistent secondary
memory (i.e., HDD or SSD) as soon as it is computed. Each proces-
sor does this with its own file, therefore the matrix is fragmented
into p files. In practice, a fragmented matrix is not a problem at all,
because numerical evaluation is needed before using the matrix
in its full form. Furthermore, a fragmented matrix allows paral-
lel numerical evaluation. The implementation of the parallel fam-
ily trees algorithm is available at http://dcc.uchile.cl/∼crinavar/
downloads.html for public use.

7. Performance results

We have realized performance tests for the parallel transfer
matrix method implemented with MPI for both shared and
distributed memory scenarios. The experimental design consists
of measuring the main performance metrics (i.e., running time,
speedup, efficiency, knee) of the implementation by computing the
compressed transfer matrix several times, each time varying the
number of processors p. We also compute the improvement factor
with respect to previous work [19]. The experiments are divided
into two categories; (1) multi-core and (2) cluster. For each case,
we measure performance with two strip lattices; (1) square and
(2) kagome, respectively (see Fig. 11).

Explicit algebraic expressions for the sparse-matrix factoriza-
tion ofM for all the Archimedean lattices (which include the square
and kagome lattices) have been computed by Jacobsen [45], on fi-
nite lattice regions of up to |E| = 882 edges. The approach taken by
the sparse-matrix differs from the standard transfer matrix tech-
nique, since the former processes a whole finite lattice region,
using one sparse matrix computation per edge, while the latter
computes a dense TM for each different graph layer of widthm.

Note: PFT refers to the actual Parallel Family Trees strategy and
PCM to the Parallel Catalan Method from [19].

7.1. Multi-core results

The machine used for the multi-core performance tests has an
8-core CPU AMD FX-8350 at 4.0 GHz, 8 GB of RAM and uses the
openMPI implementation of the MPI standard [43].

7.1.1. Square strip lattice test
For the square lattice, we measure performance for 9 different

strip widths in the range m ∈ [2, 10]. For each width, we mea-
sure 8 average execution times, one for each value of p ∈ [1, 8]. As
a whole, we perform a total of 72 average measurements for the
square test. The standard error for each average execution time is
below 5%. Different block sizes where tested, giving no significant
difference on performance. For this reason, we kept a block size
of B = 1. The other performance measures include speedup, ef-
ficiency and the knee3 [46]. In this case we took advantage of the
reflection symmetry for all sizes ofm.

Fig. 12 shows all four performance measures for the square lat-
tice. From the results, we observe that the running time grows at an
exponential ratewhich is compatiblewith the upper bound in (44),
assuming that the cost of DC had a little impact on the algorithm.
Indeed it is possible for DC to have a little impact, considering that
algorithmic improvements are linear and they occur with more or
less frequency depending on the edge selection order [34] and the
lattice structure. For the speedup, there is improved performance
for every value of p as long asm > 4. Form ≤ 4, the problem is not
large enough to justify parallel computation, hence the overhead
from MPI makes the implementation perform poorly and some-
times even worse than the sequential version. The plot of the ex-
ecution times confirms this behavior since the curves cross each
other for in the transition from m = 3 to m = 4. The maximum
speedup obtained was 5.7 when using p = 8 processors. From the
lower left plot we can see that efficiency decreases as p increases,
which is expected in every parallel implementation. What is im-
portant is that for large enough problems (i.e., m > 6), efficiency
is over 62% for all p. For the case of p = 4, we report at least 95%
of efficiency, which is close to perfect linear speedup. For m ≤ 6,
the implementation is not so efficient because the amount of com-
putation involved is not enough to keep all cores working at full
capacity. The knee is useful for finding the optimal value of p for a
balance between efficiency and computing time. It is called knee
because the hint for the optimal value of p is located in the knee of
the curve (thought as a leg), that is, its lower right part. In order to
know the value of p suggested by the knee, one has to count the po-
sition of the closest point to the knee region, in reverse order. Our
results of the knee form > 6 show that the best balance of perfor-
mance and efficiency is achievedwith p = 4 (form ≤ 6, the knee is
not effective since therewas no speedup in the first place). In other
words, while p = 8 is faster, it is not as efficient as with p = 4.

7.1.2. Kagome strip lattice test
For the test of the kagome lattice, we used 6 different strip

widths in the range m ∈ [2, 7]. For each width, we measured 8
average execution times, one for each value of p ∈ [1, 8]. As a

3 In the knee, point counting is in reverse order.

http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html

C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71 65
Fig. 11. The square and kagome lattices used for measuring performance.
Fig. 12. Multi-core running time, speedup, efficiency and knee for the square strip test.
whole, we performed a total of 48 measurements for the kagome
test. The standard error for each average execution time is below
5%. Additional performance measures such as speedup, efficiency
and knee have also been computed. Different values of block size
were tested, achieving noticeable differences on performance as
B changed. We found by experimentation that B = 1 makes the
work assignment slightly more balanced. In this test we can only
use lattice axial symmetry for m = 2, 4, 6, 8, For this reason
we decided to run the whole kagome benchmark without axial
symmetry in order to maintain a coherence between odd and even
values ofm.

Fig. 13 shows the performance results for the kagome strip test.
From the results we have that the parallel performance is still scal-
able even for dense layers; the maximum speedup is over 4.7 for
p = 8 on the largest problems. When m > 5, the efficiency of the
parallel implementation is approximately over 60% for all values of
p. In this test the knee is harder to identify, however for the largest
problems one can see a small curve that suggests p = 4 which is
in fact 90% efficient when solving large problems.

7.2. Cluster results

The cluster used for the tests has a total four nodes; each one
with 32 GB RAM and two quad-core processors Xeon 5500 2.26
GHz. The full systems offers a total of 32 processing cores and
128 GB RAM. The network is Ethernet gigabit centralized and the
implementation of MPI is openMPI.

7.2.1. Square results
For the test of the square strip lattice in the cluster environment,

we tested 9 different stripwidths in the rangem ∈ [2, 10]. For each
width, we measure 32 average execution times, one for each value
of p ∈ [1, 32]. This process is repeated for both static and dynamic
scheduling. The standard error for each average execution time is
below 5%. For the dynamic scheduler we have chosen a block size
value of B = 1. This value of B produces the highest amount of
communication between the worker processes and the scheduler,
hence the most dynamic scenario. Advantage of axial symmetry
has also been taken.

Fig. 14 shows the performance measures of the running time,
speedup, efficiency and the knee [46] for the cluster environment.
Note that for each color (size), the solid and dashed lines represent
static and dynamic scheduling, respectively.

From the results we observe that the reduction of the running
time becomes effective starting from problems of size m ≥ 6.
Speedup has an overall linear behavior for the full range p ∈ [1, 32]
which tells good scalability. Interestingly, near p = 4 there is a re-
gion of super-linear speedup [47] that occurs only for sizesm = 6, 8.
For p > 10, super-linear speedup vanishes for all problem sizes. In
the cluster environment, the behavior between static (solid lines)

66 C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71
Fig. 13. Multi-core running time, speedup, efficiency and knee for the kagome strip test.
Fig. 14. Cluster running time, speedup, efficiency and the knee for the square strip test.
and dynamic scheduling (dashed lines) is notorious; the former be-
haves irregularly producing several performance valleys, while the
latter behaves regularly, gives higher performance and produces
close to zero performance valleys. The maximum speedup achieved
is approximately 28× for p = 32, being superior in the dynamic
case by a small margin. The efficiency of the parallel algorithm
stays above 90% for the largest case of m = 10. Again, dynamic
scheduler proves to be much more efficient than the static one
when m > 6, and overall the algorithm is over 70% efficient for
large enough problems, that is m ≥ 8. The knee suggests that
p ∈ [8, 10] gives the best balance of running time and efficiency
wheneverm ≥ 8.
7.2.2. Kagome results
For the test of the kagome strip lattice in the cluster environ-

ment, we tested 5 different strip widths in the range m ∈ [3, 7].
For each width, we measure 32 average execution times, one for
each value of p ∈ [1, 32]. This process is repeated for both static
and dynamic scheduling. The standard error for each average exe-
cution time is below5%. For the dynamic schedulerwehave chosen
a block size value of B = 1, same as in the square cluster test.

Fig. 15 shows the performance measures of running time,
speedup, efficiency and the knee [46] for the cluster environment.
Note that for each color (size), the solid and dashed lines represent
static and dynamic scheduling, respectively.

C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71 67
Fig. 15. Cluster running time, speedup, efficiency and knee for the kagome strip test.
The results show that the reduction of the running time be-
comes effective in a cluster as long asm ≥ 6. In this case, speedup
is closer to a logarithmic curve rather than a linear one. It is inter-
esting to note that speedup gets stuck at specific values for sizes
m = 4, 5, 6. The reason why is because the size of the configura-
tion space is not large enough for cluster execution; ∆m ≤ 32 for
m = 4, 5, 6. In fact, the values of p where speedup starts to get
stuck actually match the values found for ∆4, ∆5, ∆6 in Table 1.
This phenomenon is totally normal in cluster or supercomputer en-
vironments,where the amount ofwork needed to reach full system
occupancy is not always provided by the problem input. In order
for speedup to take off, the configuration space must be equal or
greater than the amount of processors available in the system.

There is a notorious difference in performance between static
and dynamic scheduling. With dynamic scheduling, the perfor-
mance valleys are practically non-existent, giving amuchmore sta-
ble parallel performance for the full range of p. Efficiency is not
as good as in the square test; the largest problem is solved with
an efficiency over 55%, while the others reach below 50% at some
point of p. Dynamic scheduling proves to be in average more ef-
ficient than static scheduling, by-passing the performance valleys.
The Knee curve suggests a value p ≈ 8 for a good balance between
running time and efficiency.

7.3. Impact of DC on algorithm performance

We observed from the results that the running time of PFT ap-
plied to the kagome strip is slower than in the square strip. DCmay
cost too much in layers with a dense number of edges if optimiza-
tions do not occur too frequently. For the square lattice layer, we
canwrite the DCworst case cost asO(22m)−O(opt) = O(4m

−opt)
which is one of the fastest cases we can find, and optimizations,
namely O(opt), appear without too much effort. If we multiply
this cost by the configuration space we have that the upper bound
for the time to compute the transfer matrix of the square strip is
O(3m

× (4m
− opt)) = O(12m

− 3m
· opt), which is a notorious

improvement with respect to the O(16m) bound with the standard
Catalan technique, even if no DC optimizations occur. Now for the
kagomewe can write the DC worst case cost as O(26m)−O(opt) =
O(64m
− opt) which would cost O(3m

× (64m
− opt)) = O(192m

−

3m
· opt) in time when computing the matrix. For dense layers the

performance depends on how good the optimizations are and how
frequently one can make them appear for a specific strip type. In
our case the optimizations for kagome did not occur as frequent as
in the square case because we programmed the heuristics in a very
general way, nevertheless the method still managed to perform at
least two times faster than the Catalan approach. It should be pos-
sible to make DC becomemore aware of the kagome structure and
make it to generate the maximum number of optimization oppor-
tunities, as mentioned in the work of Haggard et al. [34].

7.4. Performance on wider strips

We ran the PFT method to compute general (q, v) transfer ma-
trices on square strips at m = {11, 12, 13} and kagome strips at
m = {8, 9}, using free boundary conditions and all the 32 proces-
sors we had available. For the square strip, the computation of the
TM took ∼5.5 min for width m = 11, ∼46 min for width m = 12
and∼6.7 h for width m = 13. For the kagome strip, the computa-
tion of the TM took between 11 and 12 h at width m = 8 and ∼3
months atwidthm = 9. These resultswere not included in the per-
formance plots because it would have required excessive amount
of time to benchmark for all values of p, specially for p = 1 where
the computation is sequential. For the kagome strip we consider
that we have reached the limit of tractability and wider kagome
stripswould become intractable4 with our hardware resources. For
the square strip, we believe it is still possible to go further with
our hardware resources, possibly up to m = 14 or in the best sce-
nario m = 15 before reaching intractability. Moreover, if cylindri-
cal boundary conditions are used, then it should be possible to go
further beyond by using the symmetry of the dihedral group.

An important aspect of having a parallel solution is that if
enough processors are used, that is p = ∆m, then the time for
computing the transfer matrix becomes proportional to the depth

4 We consider that a problem becomes intractable when the time it takes to
be solved is in the order of years for a given computer. It is possible that a faster
computer can handle the problem, making it tractable.

68 C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71
Fig. 16. Comparison between Parallel Family Trees (PFT) and the Catalan Parallel Method (CPM).
of the largest directed-acyclic graph (DAG) of computation, which
would correspond to the time required to solve the deepest fam-
ily. The DAG concept allows to know what to expect when hav-
ing more processors (i.e., a supercomputer) and gives insights on
the limits of computation regarding parallelism. If we apply the
DAG concept to our results, we have that the time needed to com-
pute the TM for the square strip would have been less than 5 s for
m = 11 using p = 1142 processors, less than 10 s for m = 12
using p = 2947 processors and less than 5 min for m = 13 using
p = 7889 processors. Analogous for kagome; the time needed to
compute the TM would have been between 2 and 3 h for m = 8
using p = 70 processors and ∼1 week for m = 9 using p = 323
processors. As we mentioned earlier, DC heuristics that are aware
of the kagome structure should improve the performance further.
The transfermatrices achieved in this work are available at http://
dcc.uchile.cl/∼crinavar/downloads.html for public use.

7.5. Comparison with related work

In this subsection we compare the Parallel Family Trees (PFT)
strategy against the Catalan Parallel Method (CPM) [19] by using
the following metrics: (1) running time (2) matrix evaluation time
and (3) matrix space. Fig. 16 shows the results.

The first aspect to note from the running time results is that
there is an non-linear improvement with respect to CPM that is
independent of the amount of processors used. This improvement
corresponds to the asymptotic reduction from O(4m) to O(3m) in
configuration space. The improvement is less clear in the kagome
strip test, but we expect that it should manifest when exploring
larger sizes of m or when using better heuristics for the DC op-
timizations. For the space metric, we observe that the size of the
compressedmatrices is indeed smaller than in the CPMcase.More-
over, for the square strip the amount of compression increases
non-linearly as we expected from the theoretical bound. For the
kagome test, the compression factor stabilizes at approximately
1.5. We believe that the reason why kagome compression stays
fixed is because the kagome matrix is more sparse than in the
square case, making themethod to group zero-elements instead of
large polynomials, reducing the compression factor from the max-
imum possible if the matrix was dense. For the results of Matrix
evaluation, we observe that evaluation and decompression on a
PFT-matrix is faster than just evaluation on a CPM-matrix. The im-
provement seems to be a consequence of the compression factor
achieved previously, since the behavior is similar.

7.6. Dynamic scheduler and block size

The role of the block size under dynamic scheduling can be
viewed as the amount of staticness induced to the program. A
value of B = 1 means a fully dynamic scheduler, while a value
of B = ⌈n/p⌉ means a fully static scheduler. Given that the dy-
namic scheduler of our implementation communicates via 1-byte
messages, it is safe to use B as long as the network is sufficiently
fast and dedicated to the cluster, like in our case. In a limited and
shared network environment, one could consider exploring the
range 1 < B < ⌈n/p⌉ until a good local minimum is found.

7.7. Axial symmetry

When using axial symmetry, we observed an extra improve-
ment in performance of up to 2× for the largest values of m. This
improvement applies to both sequential and parallel execution.
The size of the transfer matrix is improved under axial symmetry,
in the best caseswe achieved almost half the dimension of the orig-
inal matrix, which in practice translates into up to 1/4 of the space
of the original non-symmetric matrix. Lattices as the kagome will
only have certain values of m where it is axial symmetric. In the
other cases, one must perform a non-symmetric computation.

8. Validation

In this section we present some physical results we have com-
puted for different widths of the square strip using free boundary
conditions, as away to validate the correctness of the parallel family
trees method by comparing the curves with the ones from related
works.

The first set of results are shown in Fig. 17. In the graphics
we present the limiting curves on the complex q-plane for differ-
ent values of the temperature-like parameter; v = {−1.0,−0.5,
−0.1}, at different strip widths in the rangem ∈ [2, 8]. The curves

http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html
http://dcc.uchile.cl/~crinavar/downloads.html

C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71 69
Fig. 17. Limiting curves on the complex q-plane for v = {−1.0,−0.5,−0.1}. In each graphic there are seven limiting curves with different colors, each one corresponding
to a different strip width. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
were obtained by using the direct-search approach method which
consists of scanning the complex domain in small discrete steps,
and checking on each discrete location the condition |λ1| = |λ2|

where λ1 and λ2 are the first and second dominant eigenvalues,
respectively. If the condition is true, then the pair (x, y) is a point
of the curve, where x and y are the real and imaginary parts of q, re-
spectively. Due to numerical precision limits, we allowed 1% of nu-
merical error for accepting the condition |λ1| = |λ2|. For the case of
v = 0.5we allowed up to 4% of error for drawing the limiting curve
at sizem = 8. The curves forv = −1 agreewith the ones presented
by Salas et al. in Fig. 21 of Ref. [10]. The curves for v = −0.5 and
v = −0.1, although grouped in a different way, agree with the re-
sult obtained by Chang et al. from Figs. 2, 3, 4 of Ref. [38]. Limiting
curves for 6 ≤ m ≤ 8 did not appear in the cited work.

For the next set of physical resultswe are interested in fixing the
qparameter at values q = {2, 3, 4} and compute the dimensionless
reduced internal energy Er aswell as the reduced function CH of the
specific heat C , for different strip widths in the range m ∈ [2, 8].
The dimensionless reduced internal energy is defined as

Er = −
E
J
= (v + 1)

∂ f
∂v

(52)

where f is the free energy density as defined in Eq. (8), J the
coupling constant which is J > 0 for the ferromagnetic case (0 <
v < ∞) and J < 0 for the antiferromagnetic case (−1 < v < 0).
The specific heat is defined as

C =
∂E
∂T
= kBK 2(v + 1)

∂ f
∂v
+ (v + 1)

∂2f
∂v2

(53)

and CH uses the reduced form

CH =
C

kBK
. (54)

The results are presented in Fig. 18, where each row presents the
results for a given q value. The curves for 2 ≤ m ≤ 5 agree with
the ones presented by Chang et al. [38]. Results for 6 ≤ m ≤ 8 did
not appear in the cited work.

Although the computation of new physical curves for wider
strips is indeed possible, it would require more time with our
resources, or amuch larger cluster than ours for faster results. Nev-
ertheless, our present results already show that with the PFT strat-
egy known results are obtained faster than with CPM. We would
like to remind the reader that the focus of this work is on the algo-
rithmic improvements and the possibilities to compute the general
(q, v) transfer matrix for strips, using a configuration space that is
asymptotically O(3m).
9. Discussion

Wehavepresented aparallel strategy for computing the general
(q, v) transfer matrix of strip lattices in the Potts model. Our
main result is the asymptotic reduction of the configuration space,
from O(4m) to O(3m), by re-organizing the problem domain as
parallel family trees (PFT). Using this strategy, the transfer matrix
can now be computed by just processing the root configurations,
which are O(3m) in number. Computation of the family trees
can be performed completely in parallel because family trees
are independent from each other, and the configuration space is
generated a priori, removing any potential time-dependence. We
have compared the experimental results of PFT and indeed it runs
exponentially faster than the Catalan Parallel Method (CPM) [19],
both in sequential and parallel execution.

The resulting matrix of PFT is a compressed structure based on
systems of linear equations. Numerical evaluation on the matrix,
including decompression time, is actually faster than numerical
evaluation using the CPM method, by a factor that is proportional
to the improvement wemeasured for running time. Therefore, it is
not only faster to generate thematrix using PFT, but it is also faster
to use it later for extracting the physical information.

Multi-core results have shown that PFT benefits from shared-
memory parallelism, achieving amaximum of 5.7× of speedup for
the square strip test when using p = 8 processors. At p = 4, the
efficiency of the implementation is still over 95%, which is worth
mentioning. By plotting the knee curve, we have managed to con-
firm that choosing p = 4 is in fact a wise decision for a balance of
speed and efficiency. In the Multi-core scenario, a dynamic sched-
uler did not produce a beneficial change in performance, therefore
static scheduling still remains convenient.

For the cluster results, we achieved up to 28× of speedup us-
ing p = 32 for the square strip tests, with an efficiency above
90% for a strip of width m = 10 (largest one). For the kagome
strip test, efficiency stayed above 55% for a strip of m ≥ 7 and the
maximum value of speedup reached was close to 20×when using
p = 31. A small super-linear speedup region emerged near p = 4
when solving square strips of sizes m = 6, 8, giving an efficiency
of up to 120%. We believe that this is just a particular fortunate
event, possibly produced by the reduction of cache misses, which
is causedwhenpartitioneddata fits entirely in cache. In general,we
do not expect super-linear behavior since we are measuring fixed-
size speedupwhich is upper bounded as Sp ≤ p [48]. The knee curve
suggests that p ∈ [8, 10] produces a good balance between speed
and efficiency. An important result in cluster execution is that dy-
namic scheduling is mandatory in order to achieve a performance
curve that will not fall into performance valleys, as static scheduling

70 C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71
Fig. 18. Plots for reduced internal energy Er and reduced specific heat CH for q = {2, 3, 4}.
did. On average, dynamic scheduling achieves considerable higher
performance than static scheduling.

One of the goals of this work was to present an algorithmic
improvement that is implicitly parallel and scalable. For this, we
introduced a preprocessing step that generates all possible root
configurations and Catalan configurations, which are critical for
processing the family trees in parallel. This step takes a small
amount of time compared to the whole problem. Other technical
improvements had been introduced, some of them being already
known in the literature [34]; (1) fast computation of serial and
parallel paths of the graph, (2) exploiting axial symmetry, (3) a
set of algebra rules for making consistent keys in all leaf nodes
and (4) a hash table for accessing column values of the transfer
matrix. In particular, when taking advantage of axial symmetry,
the implementation achieved extra improvement of up to 2× in
performance, using almost a quarter of the matrix space used in a
non-symmetric computation.

In order to achieve a scalable parallel implementation, some
small data structures were replicated among processors while
some other data structures per processor were created within the
corresponding worker process context, not in any master process.
This allocation strategy results in faster cache performance and
brings up the possibility to scale better under NUMA architectures.
It is not a problem to store the matrix fragmented into many files
as long as the matrix is in its symbolic form. In practice, it is first
necessary to evaluate the matrix on q and v before doing any
further numerical analysis. Therefore, the fragmented parts can be
evaluated at runtime as they become read. This evaluation can also
be done in parallel.

The only technical restriction of the parallel family trees strategy
in order to work is that vertices of the left and right boundaries of
the layer need to be connected sequentially. This restriction is not a
problem, because any planar strip lattice can be rotated so that the
restriction is satisfied. Additionally, PFT allows any graph structure
along the vertical direction, that is, one can study strips where its
Ki layer is composed by a sequence of different tiles.

In the kagome tests, the performance results were not as good
as we expected, because the number of edges in the layer is much
higher than in the square case, making DC to take a considerable
amount of time for each configuration. We believe that the
dependence of DC on the number of edges in the layer is a sensible
aspect for the PFT algorithm, and an extrapolation of this situation
would suggest that the largest Archimedean lattices could bemuch
harder to the point of being intractable. However, it is important

C.A. Navarro et al. / Computer Physics Communications 187 (2015) 55–71 71
to consider that DC can significantly improve its performance if
the heuristics are improved so that they choose the best sequence
of edges based on the connectivity of the graph layer [34]. These
heuristics, combined with the linear-cost optimizations, can make
the PFTmethodmore resistant to the number of edges in the layer.
Furthermore, if more processors are used to the point that p = ∆m,
then the time for computing the TM will be much lower than in
our case with p = 32, and will correspond to the time taken to
solve the deepest DAG of computation. For this reason, we expect
that an execution on a large cluster or supercomputer could allow
the computation of transfer matrices of strips wider than what has
been reached before.

Acknowledgments

Special thanks to Pedro D. Álvarez for his explanations and use-
ful advice on the computation of the limiting curves. The authors
would like to thank CONICYT for sponsoring the Ph.D. program of
Cristóbal A. Navarro, folio No. 21100750. This work was partially
supported by the FONDECYT projects No. 1120495, No. 1120352
and the Millennium Nucleus Information and Coordination in Net-
works ICM/FIC P10-024F.

References

[1] R.B. Potts, Some generalized order–disorder transformation, in: Transforma-
tions, Proceedings of the Cambridge Philosophical Society, vol. 48, 1952, pp.
106–109.

[2] H.W.J. Blöte, R.H. Swendsen, First-order phase transitions and the three-state
Potts model, Phys. Rev. Lett. 43 (1979) 799–802.

[3] S.-C. Chang, R. Shrock, Exact Potts model partition functions on strips of the
honeycomb lattice, Physica A 296 (1–2) (2000) 48.

[4] R. Shrock, S.-H. Tsai, Exact partition functions for Potts antiferromagnets on
cyclic lattice strips, Physica A 275 (1999) 27.

[5] S.-C. Chang, J. Salas, R. Shrock, Exact Potts model partition functions on wider
arbitrary-length strips of the square lattice, Journal of Statistical Physics 107
(5–6) (2002) 1207–1253.

[6] S.-C. Chang, J.L. Jacobsen, J. Salas, R. Shrock, Exact Potts model partition
functions for strips of the triangular lattice, Physica A 286 (1–2) (2002) 59.

[7] E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Physik 31 (1) (1925)
253–258.

[8] L. Onsager, The effects of shape on the interaction of colloidal particles, Ann.
New York Acad. Sci. 51 (4) (1949) 627–659.

[9] G.J.Woeginger, Exact algorithms forNP-hard problems: a survey, in: Combina-
torial Optimization—eureka, you shrink!, Springer-Verlag New York, Inc., New
York, NY, USA, 2003, pp. 185–207.

[10] J. Salas, A. Sokal, Transfer matrices and partition-function zeros for antiferro-
magnetic Potts models. I. General theory and square-lattice chromatic poly-
nomial, J. Stat. Phys. 104 (3–4) (2001) 609–699.

[11] J.L. Jacobsen, Bulk, surface and corner free-energy series for the chromatic
polynomial on the square and triangular lattices, J. Phys. A 43 (31) (2010)
315002.

[12] S.-C. Chang, R. Shrock, Structure of the partition function and transfermatrices
for the Potts model in a magnetic field on lattice strips, J. Stat. Phys. 137 (4)
(2009) 667–699.

[13] J. Salas, A. Sokal, Transfer matrices and partition-function zeros for antiferro-
magnetic Potts models VI. square lattice with extra-vertex boundary condi-
tions, J. Stat. Phys. 144 (5) (2011) 1028–1122.

[14] M. Ghaemi, G.A. Parsafar, Size reduction of the transfer matrix of two-
dimensional Ising and Potts models, 2 4.

[15] A. Bedini, J.L. Jacobsen, A tree-decomposed transfer matrix for computing
exact Potts model partition functions for arbitrary graphs, with applications
to planar graph colourings, J. Phys. A 43 (38) (2010) 385001.

[16] G. Blake, R.G. Dreslinski, T. Mudge, A survey of multicore processors, IEEE
Signal Process. Mag. 26 (6) (2009) 26–37.

[17] R. Duncan, A survey of parallel computer architectures, Computer 23 (2) (1990)
5–16.

[18] C.A. Navarro, N. Hitschfeld-Kahler, L. Mateu, A survey on parallel computing
and its applications in data-parallel problems using GPU architectures,
Commun. Comput. Phys. 15 (2014) 285–329.
[19] C.A. Navarro, N. Hitschfeld, F. Canfora, Multi-core computation of transfer
matrices for strip lattices in the potts model, in: 15th IEEE International
Conference on High Performance Computing and Communications & 2013
IEEE International Conference on Embedded and Ubiquitous Computing,
HPCC/EUC 2013, Zhangjiajie, China, November 13–15, 2013, pp. 125–134.

[20] H.S.Wilf, Algorithms and Complexity, second ed., A. K. Peters, Ltd., Natick, MA,
USA, 2002.

[21] W.T. Tutte, A contribution to the theory of chromatic polynomials, J. Math. 6
(1954) 80–91.

[22] D. Welsh, C. Merino, The Potts model and the tutte polynomial, J. Math. Phys.
43 (2000) 1127–1149.

[23] A.D. Sokal, The multivariate tutte polynomial (alias Potts model) for graphs
and matroids, Surv. Combin. 327 (2005) 173–226.

[24] B. Derrida, J. Vannimenus, Transfer-matrix approach to percolation and
phenomenological renormalization, J. Phys. Lett. 41 (20) (1980) 473–476.

[25] R. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press,
1982.

[26] J. Jacobsen, J. Salas, Transfer matrices and partition-function zeros for
antiferromagnetic Potts models. II. Extended results for square-lattice
chromatic polynomial, J. Stat. Phys. 104 (3–4) (2001) 701–723.

[27] J. Jacobsen, J. Salas, A. Sokal, Transfer matrices and partition-function zeros for
antiferromagnetic Potts models. III. Triangular-lattice chromatic polynomial,
J. Stat. Phys. 112 (5–6) (2003) 921–1017.

[28] J. Jacobsen, J. Salas, Transfer matrices and partition-function zeros for
antiferromagnetic Potts models: IV. Chromatic polynomial with cyclic
boundary conditions, J. Stat. Phys. 122 (4) (2006) 705–760.

[29] J. Salas, A.D. Sokal, Transfer matrices and partition-function zeros for
antiferromagnetic Potts models. V. Further results for the square-lattice
chromatic polynomial, J. Stat. Phys. 135 (2) (2009) 279–373.

[30] J. Jacobsen, J. Salas, Phase diagram of the chromatic polynomial on a torus,
Nuclear Physics B 783 (3) (2007) 238–296.

[31] P. Álvarez, F. Canfora, S. Reyes, S. Riquelme, Potts model on recursive lattices:
some new exact results, Eur. Phys. J. B 85 (3) (2012) 1–13.

[32] A.K. Hartmann, Partition function of two- and three-dimensional Potts
ferromagnets for arbitrary values of q > 0, Phys. Rev. Lett. 94 (2005) 050601.

[33] R. Shrock, Exact Potts model partition functions on ladder graphs, Physica A
283 (3–4) (2000) 73.

[34] G. Haggard, D.J. Pearce, G. Royle, Computing tutte polynomials, ACM Trans.
Math. Software 37 (2010) 24:1–24:17.

[35] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Computing the tutte polynomial
in vertex-exponential time, in: 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2008, October 25–28, 2008, Philadelphia, PA, USA,
2008, pp. 677–686.

[36] T. Halverson, A. Ram, Partition algebras, European J. Combin. 26 (6) (2005)
869–921.

[37] R.D. Dutton, R.C. Brigham, Computationally efficient bounds for the catalan
numbers, European J. Combin. 7 (3) (1986) 211–213.

[38] S.-C. Chang, J. Salas, R. Shrock, Exact Potts model partition functions for strips
of the square lattice, J. Stat. Phys. 107 (5–6) (2002) 1207–1253.

[39] H.S.M. Coxeter, Regular Polytopes, Courier Dover Publications, 1973.
[40] M. Henk, J. Richter-Gebert, G.M. Ziegler, Basic properties of convex polytopes,

in: Handbook of Discrete and Computational Geometry, CRC Press, Inc., Boca
Raton, FL, USA, 1997, pp. 243–270.

[41] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[42] B. Chapman, G. Jost, R.V.D. Pas, Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and Engineering Computation), The MIT
Press, 2007.

[43] M.P. Forum, Mpi: AMessage-passing Interface Standard, Tech. Rep., Knoxville,
TN, USA, 1994.

[44] C. Bauer, A. Frink, R. Kreckel, Introduction to the ginac framework for symbolic
computation within the C++ programming language, J. Symbolic. Comput. 33
(1) (2002) 1–12.

[45] J.L. Jacobsen, High-precision percolation thresholds and Potts-model critical
manifolds from graph polynomials, J. Phys. A 47 (13) (2014) 135001.
http://stacks.iop.org/1751-8121/47/i=13/a=135001.

[46] D.L. Eager, J. Zahorjan, E.D. Lazowska, Speedup versus efficiency in parallel
systems, IEEE Trans. Comput. 38 (3) (1989) 408–423.

[47] B.Wilkinson, C.M. Allen, Parallel Programming, PrenticeHall New Jersey, 1999,
p. 7.

[48] J.L. Gustafson, Fixed time, tiered memory, and superlinear speedup, in:
Proceedings of the Fifth Distributed Memory Computing Conference, DMCC5,
1990, pp. 1255–1260.

http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref2
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref3
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref4
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref5
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref6
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref7
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref8
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref9
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref10
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref11
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref12
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref13
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref15
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref16
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref17
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref18
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref20
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref21
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref22
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref23
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref24
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref25
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref26
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref27
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref28
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref29
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref30
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref31
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref32
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref33
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref34
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref36
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref37
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref38
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref39
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref40
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref41
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref42
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref43
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref44
http://stacks.iop.org/1751-8121/47/i=13/a=135001
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref46
http://refhub.elsevier.com/S0010-4655(14)00346-4/sbref47

	Parallel family trees for transfer matrices in the Potts model
	Introduction
	Preliminaries
	Related works
	Algorithm overview
	Data structure
	DC-based transfer matrix computation
	Family trees strategy
	Upper bound for relating k -hole familiars
	Running time of the family trees strategy
	Parallel family trees

	Algorithm improvements
	Serial and parallel paths
	Axial symmetry

	Implementation
	Performance results
	Multi-core results
	Square strip lattice test
	Kagome strip lattice test

	Cluster results
	Square results
	Kagome results

	Impact of DC on algorithm performance
	Performance on wider strips
	Comparison with related work
	Dynamic scheduler and block size
	Axial symmetry

	Validation
	Discussion
	Acknowledgments
	References

