Insulin requires normal expression and signaling of insulin receptor A to reverse gestational diabetes-reduced adenosine transport in human umbilical vein endothelium

ARTICLE in THE FASEB JOURNAL · OCTOBER 2014
Impact Factor: 5.48 · DOI: 10.1096/fj.14-254219

12 AUTHORS, INCLUDING:

Marcelo Farias
Pontifical Catholic University of Chile
45 PUBLICATIONS 368 CITATIONS

Pablo Arroyo Zúñiga
Pontifical Catholic University of Chile
13 PUBLICATIONS 45 CITATIONS

Enrique Guzman-Gutierrez
San Sebastian University, Concepción, Chile
31 PUBLICATIONS 170 CITATIONS

Andrea Leiva
Pontifical Catholic University of Chile
44 PUBLICATIONS 252 CITATIONS
Insulin requires normal expression and signaling of insulin receptor A to reverse gestational diabetes-reduced adenosine transport in human umbilical vein endothelium

Francisco Westermeier,*† Carlos Salomón,*‡ Marcelo Farias,* Pablo Arroyo,* Bárbara Fuenzalida,* Tamara Sáez,* Rocío Salsoso,* Carlos Sanhueza,* Enrique Guzmán-Gutiérrez,*§ Fabián Pardo,* Andrea Leiva,* and Luis Sobrevia*‡,*†

*Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; †Advanced Center for Chronic Diseases (ACCDCIS), Faculty of Chemical & Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile; ‡University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia; §Faculty of Health Sciences, Universidad San Sebastián, Concepción, Chile; and †Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain.

Abstract

Reduced adenosine uptake via human equilibrative nucleoside transporter 1 (hENT1) in human umbilical vein endothelial cells (HUVECs) from gestational diabetes mellitus (GDM) is reversed by insulin by restoring hENT1 expression. Insulin receptors A (IR-A) and B (IR-B) are expressed in HUVECs, and GDM results in higher IR-A mRNA expression vs. cells from normal pregnancies. We studied whether the reversal of GDM effects on transport by insulin depends on restoration of IR-A expression. We specifically measured hENT1 expression [mRNA, protein abundance, SLC29A1 (for hENT1) promoter activity] and activity (adenosine transport kinetics) and the role of IR-A/IR-B expression and signaling [total and phosphorylated 42 and 44 kDa mitogen-activated protein kinases (p44/42MAPK) and Akt] in IR-A, IR-B, and IR-A/B knockdown HUVECs from normal (n = 33) or GDM (n = 33) pregnancies. GDM increases IR-A/IR-B mRNA expression (1.8-fold) and p44/42MAPK:Akt activity (2.7-fold) ratios. Insulin reversed GDM-reduced hENT1 expression and maximal transport capacity (Vmax/Km), and GDM-increased IR-A/IR-B mRNA expression and p44/42MAPK:Akt activity ratios to values in normal pregnancies. Insulin’s effect was abolished in IR-A or IR-A/B knockdown cells. Thus, insulin requires normal IR-A expression and p44/42MAPK:Akt signaling to restore GDM-reduced hENT1 expression and activity in HUVECs. This could be a protective mechanism for the placental macrovascular endothelial dysfunction seen in GDM.—Westermeier, F., Salomón, C., Farias, M., Arroyo, P., Fuenzalida, B., Sáez, T., Salsoso, R., Sanhueza, C., Guzmán-Gutiérrez, E., Pardo, F., Leiva, A., Sobrevia, L. Insulin requires normal expression and signaling of insulin receptor A to reverse gestational diabetes-reduced adenosine transport in human umbilical vein endothelium.

FASEBJ. 29, 000–000 (2015). www.fasebj.org

Key Words: endothelial dysfunction; human placenta; insulin signaling; nucleoside membrane transport

Insulin is characterized by glucose intolerance with an onset or first recognition during pregnancy (1) leading to adverse maternal and neonatal outcomes (2). In addition to defective placental insulin signaling (3–6), high plasma endogenous nucleoside adenosine has been reported in human umbilical veins (5–7) from GDM pregnancies. Even though increased endogenous nucleoside adenosine can result from increased transplacental transport of this nucleoside, it also may occur due to reduced umbilical vein endothelium adenosine uptake (5, 6). Adenosine dilates human umbilical vein rings via activation of adenosine receptors in HUVECs (5, 8). Because HUVECs lack

Abbreviations: β2AR, β2-adrenergic receptor; β1-IR, insulin receptor B-subunit; BMI, body mass index; GDM, gestational diabetes mellitus; hENT1, human equilibrative nucleoside transporter 1; HOMA-β, homeostasis model assessment for β cell function; HOMA-IR, homeostasis model assessment for insulin resistance; HOMA-IS, homeostasis model assessment for insulin sensitivity; hPMEC, human placental microvascular endothelial cells; HUVEC, human umbilical vein endothelial cells; IR-A, insulin receptor A; IR-B, insulin receptor B; MDT1, myotonic dystrophy type 1; NBTI, S-(4-nitrobenzyl)-6-thio-inosine; OGTT, oral glucose tolerance test; p42/44MAPK, 42 and 44 kDa mitogen-activated protein kinases; SLC29A1, solute carrier family 29 (equilibrative nucleoside transporter) member 1

1 Correspondence: Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago 8330024, Chile. E-mail: sobrevia@med.puc.cl
doi: 10.1096/fj.14-254219
This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.
extracellular adenosine deaminase activity to metabolize adenosine, maintenance of physiologic extracellular adenosine is achieved chiefly from endothelial uptake (9, 10). Thus, adenosine transport by HUVECs is crucial for regulating adenosine biologic activity (11). We previously reported that HUVECs from GDM pregnancies have lower expression and activity of hENT1 (5, 12), an Na+-independent membrane transporter highly selective for nucleosides (13). GDM-associated reduction in hENT1 expression and activity leads to extracellular adenosine accumulation, resulting in A2A adenosine receptor-dependent increases in eNOS and 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk) activity (14, 15).

Insulin restores GDM-associated reductions in hENT1 expression and activity in HUVECs (5); however, involvement of insulin receptors (IRs) and downstream associated cell signaling mechanisms remain unclear (16). Two IR isoforms generated by alternative splicing of exon 11 differing in the absence (IR-A) or presence (IR-B) of 12 amino acids at the α-subunit C-terminal has been identified (16–18). Insulin activates IR-A and IR-B in major insulin target tissues (16), including HUVECs (5) and human placenta microvascular endothelium (hPMEC) (6). Because IR-A or IR-B activation mediates either metabolic or mitogenic effects via protein kinase B/Akt (Akt) or p42/44mapk signaling pathways, respectively (6, 19), preferential expression of these IRs may change insulin sensitivity and cell responsiveness in HUVECs (9). Interestingly, whether IR-A and IR-B differential expression and activation change in HUVECs from GDM, and whether these potential changes are modulated by insulin in this cell type, are unknown (9). Thus, we hypothesized that IR-A and/or IR-B differential activation by insulin and their downstream signaling via p42/44mapk and Akt, respectively, result in reversal of GDM-associated reductions in hENT1-adenosine transport in HUVECs. Our data confirm this possibility, which may explain a crucial mechanism for maintaining physiologic fetal adenosine in GDM pregnancies.

MATERIALS AND METHODS

Study groups and human umbilical cords

Patients with basal glycemia <5 mM (<90 mg/dl, 8–9 h from last feeding) and >7.9 mM (>140 mg/dl 2 h after an oral glucose tolerance test (OGTT), 75 g glucose, measured between 24 and 28 wk of gestation) were diagnosed with gestational diabetes and subjected to dietary treatment with (1500 kcal/d and a maximum of 200 g per day carbohydrates; Table 1) (1). None of the patients diagnosed with GDM were previously diagnosed with GDM. Glycosylated hemoglobin A1c was measured with HPLC, and glucose was measured with a hexokinase end-point method. Plasma insulin was measured by radioimmunoassay and homeostasis model assessment for insulin resistance (HOMA-IR) or sensitivity (HOMA-β) and β-cell function (HOMA-β) (20, 21) were estimated as indicated in Table 1.

Umbilical cords were collected immediately after delivery from 33 full-term normal or 33 full-term GDM pregnancies from the public Universidad Católica Clínica Hospital in Santiago, Chile. The investigation conforms to the principles outlined in the Declaration of Helsinki. Ethics Committee approval from the Faculty of Medicine of the Pontificia Universidad Católica de Chile and patient written, informed consent were obtained 12–24 h before delivery. Sections of umbilical cords (100–120 mm length) were transferred into sterile 200 ml PBS solution [130 mM NaCl, 2.7 mM KCl, 0.8 mM Na2HPO4, 1.4 mM KH2PO4 (pH 7.4, 4°C)] to the laboratory and used for isolation of HUVECs from 2 to 6 h after delivery.

Cell culture

Confluent HUVEC primary cultures (37°C, 5% CO2) were isolated by collagenase digestion (0.25 mg/ml Collagenase Type II from Clostridium histolyticum, Boehringer, Mannheim, Germany) as previously described (5) and were exposed to insulin (0.001–10 nM, 8 h) in medium 199 (M199; Gibco Life Technologies, Carlsbad, CA, USA) containing 5 mM t-glucose, 10% newborn calf serum (NBCS), 10% fetal calf serum (FCS), 3.2 mM L-glutamine, and 100 U/ml penicillin-streptomycin [primary culture medium (PCM)] (8), in the absence or presence of 10 μM PD-98059 (Calbiochem, La Jolla, CA, USA) or 30 nM wortmannin (Sigma-Aldrich, Atlanta, GA, USA). Experiments were done in confluent cells at passages 0 to 3 in culture. Meanwhile, freshly isolated uncultured cells were used for hENT1-adenosine transport assay and protein measurements. Cell viability was estimated with Trypan blue exclusion (8) values exceeding 97% for all culture passages. Cells were cultured in PCM containing 1% NBCS and 1% FCS for 24 h before performing the experiments (5, 8).

Adenosine transport

Total (overall) adenosine transport (i.e., hENT1 + hENT2-mediated) was measured for increasing adenosine concentrations (0.15–500 μM) in the absence or presence of 1 μM S-(4-nitrobenzyl)-6-thio-inosine (NBTI; ENT1 inhibitor), 2 mM hypoxanthine (ENT2 substrate), or both as described (5, 6). The difference between total transport in the absence of NBTI or hypoxanthine and transport measured in the presence of 1 μM NBTI and 2 mM hypoxanthine was defined as ENT1-mediated transport, as previously described in HUVECs (5, 12). The remaining uptake activity detected in the presence of NBTI and 2 mM hypoxanthine (i.e., NBTI/hypoxanthine-insensitive uptake) was ≤3% of total uptake of adenosine and unaltered over the entire range of adenosine concentrations used in this study for cells from both pregnancy types in the absence or presence of insulin.

Adenosine measurements with HPLC

Adenosine was measured with HPLC in whole brachial venous blood taken from 6 different women between 6 and 12 h before delivery and whole umbilical blood (vein + arteries) from the corresponding infants (i.e., maternal-infant pairs) at birth, as described elsewhere (5, 6). Deproteinized samples were derivatized and stored until use for HPLC analysis (Isco HPLC system; Chemical Research Data Management System, Lincoln, NE, USA) (5, 6). Pearson correlation coefficient for a standard line of standard adenosine solution was >0.999 (range 2.996–439 nM), and the recovery of plasma adenosine was 83.1 ± 1.1% (n = 6) (5, 6).

Reverse transcription and quantitative RT-PCR

Total RNA aliquots were reversed-transcribed into cDNA and subjected to real-time RT-PCR in an LightCycler rapid thermal
TABLE 1. Clinical characteristics of women with normal or GDM pregnancies and newborns

<table>
<thead>
<tr>
<th>Variables</th>
<th>Normal (n = 33)</th>
<th>GDM (n = 33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (y)</td>
<td>27 ± 4.6 (18–36)</td>
<td>30 ± 4.3 (18–38)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>159 ± 7.7 (147–177)</td>
<td>157 ± 6.1 (147–170)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>65 ± 10 (54–77)</td>
<td>63 ± 10 (45–70)</td>
</tr>
<tr>
<td>24–28 wg</td>
<td>68 ± 2.1 (54–92)</td>
<td>64 ± 1.4 (45–86)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26 ± 1.9 (22–28)</td>
<td>25 ± 3.0 (20–28)</td>
</tr>
<tr>
<td>38–40 wg</td>
<td>26 ± 0.23 (22–29)</td>
<td>25 ± 0.37 (19–29)</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>102 ± 5 (99–106)</td>
<td>104 ± 4 (99–109)</td>
</tr>
<tr>
<td>Glycylated hemoglobin A₁c</td>
<td>107 ± 7 (108–110)</td>
<td>112 ± 6 (105–113)</td>
</tr>
<tr>
<td>24–28 wg (% of total) [mmol/mol]</td>
<td>4.2 ± 0.32 (3.2–5.0)</td>
<td>4.4 ± 0.15 (4.2–5.0)</td>
</tr>
<tr>
<td>38–40 wg (% of total) [mmol/mol]</td>
<td>4.0 ± 0.7 (3.2–5.1)</td>
<td>5.7 ± 0.29* (5.3–6.2)</td>
</tr>
<tr>
<td>Newborn variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (female/male)</td>
<td>18/15</td>
<td>19/14</td>
</tr>
<tr>
<td>Gestational age (wk)</td>
<td>38.6 ± 1.0 (37–40)</td>
<td>38 ± 1.2 (37–40)</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>3254 ± 0.4 (2600–4000)</td>
<td>3613 ± 0.44* (2920–4850)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>50 ± 1.6 (46–53)</td>
<td>49 ± 2.3 (43–55)</td>
</tr>
<tr>
<td>Ponderal index (g/cm² × 100)</td>
<td>2.6 ± 0.25 (2.1–3.5)</td>
<td>2.7 ± 0.27 (2.2–3.4)</td>
</tr>
<tr>
<td>Large for gestational age (%)</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Umbilical blood glucose (mM)</td>
<td>3.7 ± 0.5 (3.1–4.4)</td>
<td>4.4 ± 0.5 (3.9–4.7)</td>
</tr>
<tr>
<td>Umbilical insulin (µU/ml)</td>
<td>6.0 ± 0.6 (5.1–7.3)</td>
<td>11.1 ± 0.5* (8.4–13.4)</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.03 ± 0.08 (0.80–1.26)</td>
<td>1.59 ± 0.28* (1.02–2.73)</td>
</tr>
<tr>
<td>HOMA-β (%)</td>
<td>97.5 ± 7.6 (79.3–125.2)</td>
<td>62.8 ± 11.0* (36.6–98.0)</td>
</tr>
<tr>
<td>HOMA-IS (%)</td>
<td>110 ± 8.0 (70–450)</td>
<td>142 ± 25.5* (128–255)</td>
</tr>
<tr>
<td>Brachial blood adenosine (nM)*</td>
<td>189 ± 35 (110–276)</td>
<td>255 ± 56 (121–289)</td>
</tr>
</tbody>
</table>

Note: Values are for paired samples from 6 mothers and their children. *P < 0.05 vs. values in normal. †P < 0.05 vs. values at 24–28 wg in normal or GDM.

HOMA-IR was calculated from \(\text{IR} = \frac{\text{Insulin}}{(22.5 \times e^(-\ln(\text{Glucose}))} \) where insulin is in microunits per ml (µU/ml) and glucose is basal glycemia in millimoles (mM) as described elsewhere (20). Insulin sensitivity (IS) was derived from these values by \(B = (1/IR) \times 100 \) (expressed in %). Additionally, HOMA-β (β-cell function, expressed in %) was estimated from HOMA-β = 20 × (Insulin/(Glucose × 3.5)) as described elsewhere (20, 21). Values are mean ± sd (range), wg, weeks of gestation. OGTT was measured between 24 and 28 wg. *Values are for paired samples from 6 mothers and their children. *P < 0.05 vs. values in normal. †P < 0.05 vs. values at 24–28 wg in normal or GDM.

IR β-subunit immunoprecipitation and Western blot

Total protein was obtained from cells washed (×2) with ice-cold PBS and harvested in 100 µl of lysis buffer [63.7 mM Tris/ HCl (pH 6.8), 10% glycerol, 2% sodium dodecylsulfate, 1 mM sodium orthovanadate, 50 mg/ml leupeptin, 5% 2-mercaptoethanol] as described elsewhere (5, 6). Lysed proteins were sonicated (6 cycles, 5 s, 100 W, 4°C) and separated by centrifugation (12,000 g, 15 min, 4°C). Supernatant containing 500–1000 µg protein contained in 1000 µL lysis buffer were incubated (overnight, 4°C) with monoclonal mouse anti-IR-subunit (β-IR) antibody (1: 5000; Sigma-Aldrich). Protein A/G plus IgG-agarose beads (KPL; Kirkegaard & Perry Laboratories, Incorporated, Baltimore, MD, USA) were added and the mixture was kept at 4°C for 1 h under gentle shaking. After washing (×6) with lysis buffer, the beads were pelleted (1000 g, 30 s), resuspended in 50 µl sample buffer [375 mM Tris-HCl (pH 6.8), 12% sodium dodecyl sulfate, 60% glycerol, 300 mM dithiothreitol, 0.06% bromophenol blue], and boiled for 5 min (23). The β-IR immunoprecipitate (100 µg) was used for calculating gene expression data with the 2^\(-\DeltaΔCt\) method (22).
diluted in sample buffer was separated by polyacrylamide gel (10%) electrophoresis (PAGE), transferred to Immobilon-P polyvinylidene difluoride membranes (BioRad Laboratories, Hertfordshire, United Kingdom), blocked (5% low-fat milk) in Tris-buffered saline Tween 20 solution (TBS-T) and incubated (1 h) in TBS-T/0.2% bovine serum albumin. The β-IR immunoprecipitates from normal or GDM pregnancies were then probed in parallel on the same membrane and with primary monoclonal rabbit anti-β-IR phosphorylated at tyrosine (130)- (Tyr)310; 1:1000 dilution, 1 h, 4°C; Cell Signaling, Danvers, MA, USA). Proteins were probed with enhanced chemiluminescence (5 min film exposure) and quantified with densitometry.

Western blot proteins (70 µg) separated by PAGE (10%) were probed with primary polyclonal goat anti-hENT1 (1:1000), anti- and total phosphorylated p42/44MAPK (1:1000; Cell Signaling, or anti-β-IR (1:5000) and monoclonal mouse anti-β-actin (1:5000, internal reference; Santa Cruz Biotechnology, Santa Cruz, CA, USA) antibodies, followed by 1 h incubation in TBS-T/0.2% bovine serum albumin (BSA) containing secondary horseradish peroxidase-conjugated goat anti-goat or anti-mouse antibodies (Santa Cruz Biotechnology), as described elsewhere (5, 12). Proteins from cells from normal or GDM pregnancies were assayed on the same immunoblot as described above.

Immunofluorescence microscopy

HUVECs were grown on microscope cover glasses (6 × 10⁵ cells per slide; Sail Brand, Shanghai, China) in PCM to 90% confluence. Cells were cultured in 10% of PCM in the absence or presence of 1 nM insulin (8 h) and then fixed in 4% paraformaldehyde (5 min), rinsed (∼3 ×3) with PBS, permeabilized with 0.2% Triton X-100 (10 min), and blocked (30 min) with PBS/BSA and 0.02% Triton X-100. hENT1 was immunolocalized by incubating with primary monoclonal rabbit anti-hENT1 (1:30; Santa Cruz Biotechnology, Santa Cruz, CA, USA) antibodies, overnight at 4°C in PBS containing 5% BSA (PBS/BSA). Incubated cells were then washed (∼3×) with PBS/BSA, followed by incubation (1 h, 22°C) with the secondary antibody Alexa Fluor 568 goat anti-rabbit IgG (H+L; Life Technologies) and 0.02% Triton X-100. hENT1 was immunolocalized by incubating with primary monoclonal rabbit anti-hENT1 (1:30; Spring Bioscience, Pleasanton, CA, USA) overnight at 4°C in PBS containing 5% BSA (PBS/BSA). Incubated cells were then washed (∼3×) with PBS/BSA, followed by incubation (1 h, 22°C) with the secondary antibody Alexa Fluor 568 goat anti-rabbit IgG (H+L; Life Technologies) and 0.02% Triton X-100. HUVECs yield from 1 single placenta were not enough to proceed with the experiments using a commercial kit (ViralBind Adenovirus Purification Kit, Cell Biolabs, San Diego, CA, USA). Cells at 50–60% confluence were seeded 24 h before adenoviral infection. Viral stocks were diluted to reach the desired multiplicity of infection (MOI) in serum-free medium and added to the cell monolayer (Supplemental Fig. 1). Noninfected (hereafter referred to as “nontransduced”) cells were cultivated with serum-free medium for 8 h. Then, the infective medium was changed to complete culture medium, and cells were incubated for 2 or more days under standard culture conditions. Isolation of total RNA and protein and functional assays were then performed as described previously.

hENT1 promoter cloning

Genomic DNA was isolated using the Wizard SV Genomic DNA Purification System (Promega, Madison, WI, USA). The sequences (~3198 and ~1670 bp from the ATG translation start codon of SLC29A1 gene (GenBank: AF955970) were PCR-amplified using Elongase Enzyme System (Invitrogen, Carlsbad, CA, USA) and cloned into the pG3L-basic reporter system (12). The pG3L-hENT1 reporter constructs generated were pG3L-hENT1−3198 and pG3L-hENT1−1670. For transient transfections, cells in suspension (3 × 10⁶ cells/ml) were mixed with pG3L-hENT1 reporter constructs, pG3L-Basic (empty pG3L vector), pG3L-Control [simian virus 40 promoter (SV40) pG3L vector], or the internal transfection control vector pRL-TK expressing Renilla luciferase (Promega). Cells were electroporated (300 V, 700 µF, 5-10 ms; Gene Pulser II System, BioRad, Hercules, CA, USA) and cultured in M199 containing 2% fetal calf serum for 48 h before performing the experiments (12). Firefly and Renilla luciferase activity was measured using a Dual-Luciferase Reporter Assay System (Promega) in a Sirius luminometer (Berthold Detection System, Oak Ridge, TN, USA) (3, 12).

IR isoforms suppression

To suppress IR-A and IR-B expression, an adenoviral-based small interfering RNA (siRNA) delivering system (pSilencer adeno 1.0-CMV System Kit; Ambion, Austin, TX, USA) was used (6). Complementary oligonucleotides for IR-A and IR-B encoding for an siRNA hairpin targeting human IRs (GenBank: NM_001079817.1 for IR-A and NM_000208.2 for IR-B) were the following: IR-A sense 5′-GTTTCTGCTCCACGCGGATCTTTCAAGAGAA-GATGGCCTGGGAGACACAA3′, IR-A antisense 5′-CAAAAAGCAGGGGTCCGGATAGGCTCAGTGGA3′, IR-B sense 5′-CGGGATGCGTGAAGCCTTTAAGGCTTCATCA-AGGCTCTACGGATCCAGCAG3′, IR-B antisense 5′-CTCCCTATGAGGCTTAACTAGCCTTAACTCAGCAG3′. These oligonucleotides were designed following the General Design Guidelines provided by Ambion/Applied Biosystems (http://www.lifetechologies.com/clix/home/references/ambion-tech-support/rnai-sirna/general-articles/-sirna-design-guidelines.html). The designed sequences were compared with potential target sites to the human genome database (using BLAST: www.ncbi.nlm.nih.gov/BLAST) discarding target sequences containing 16 or more contiguous base pairs of homology to other coding sequences and siRNAs with >30% G/C content. The siRNA sequences providing at least 50% reduction in target mRNA levels were annealed and cloned into a pShuttle vector. The pShuttle-IR-A, pShuttle-IR-B siRNA, and the adenoviral LacZ backbone were linearized and transfected into HEK-293 cells to generate cells knockdown for IR-A (referred to as 3198IR-A cells) or IR-B (referred to as 1670IR-B cells) or both (referred to as 3198/1670IR-B cells). The negative control pShuttle vector (encoding a scramble siRNA sequence not found in human, mouse, or rat genome databases) was used to generate the negative control adenovirus. A positive siGAPDH provided by the kit was also used to generate an Ad-siGAPDH.

Recombinant adenoviral vectors were expanded by serial infection of HEK-293 cells, harvested by a three freeze-thaw procedure, and used to infect HUVECs (6). Adenoviral particles were purified and quantified before experiments using a commercial kit (ViralBind Adenovirus Purification Kit, Cell Biolabs, San Diego, CA, USA). Cells at 50–60% confluence were seeded 24 h before adenoviral infection. Viral stocks were diluted to reach the desired multiplicity of infection (MOI) in serum-free medium and added to the cell monolayer (Supplemental Fig. 1). Noninfected (hereafter referred to as “nontransduced”) cells were incubated with serum-free medium for 8 h. Then, the infective medium was changed to complete culture medium, and cells were incubated for 2 or more days under standard culture conditions. Isolation of total RNA and protein and functional assays were then performed as described previously.

Statistical analyses

Values are means ± SEM or SD, with n = 33 different cell cultures (2–4 replicates) from normal or GDM pregnancies. Because the HUVECs yield from 1 single placenta were not enough to proceed with all experimental strategies included in this study, the reported n value is variable and corresponds to paired cell cultures from normal and GDM pregnancies. Data reported here describe a normal standard distribution. Comparisons between 2 or more groups were performed with the Student’s unpaired t test or ANOVA, respectively. Followed by post hoc analyses performed using a multiple-comparison Bonferroni correction test. Statistical software GraphPad Instat 3.0b and Graphpad Prism 6.0d (GraphPad Software Incorporated, San Diego, CA, USA) were used for data analysis. P < 0.05 was considered statistically significant.
RESULTS

Patients and newborns

Normal or GDM pregnancies were singleton, and pregnant women were normotensive and nonsmoking, did not consume alcohol or drugs, and were without intrauterine infection or any other medical or obstetric complication (Table 1). Newborns from GDM pregnancies were large for gestational age and heavier at birth, with higher umbilical vein insulin and HOMA-IR but lower HOMA-IS compared with newborns from normal pregnancies. Maternal blood adenosine was similar between normal and GDM pregnancies at birth; however, adenosine in whole umbilical blood was higher (3.9 ± 0.5-fold) in GDM compared with normal pregnancies (Table 1).

IR isoforms, adenosine transport, and β-IR expression

IR-A mRNA was higher than IR-B mRNA level in HUVECs from normal or GDM pregnancies (Fig. 1A). Insulin reversed the increase of IR-A mRNA level in cells from GDM to values similar to normal pregnancies. This effect was abolished either in KD IR-A, KD IR-B, or KD IR-A/B cells from normal or GDM pregnancies. IRs mRNA level was largely reduced in KD IR-A and KD IR-B cells (Supplemental Fig. 1).

Figure 1. Insulin requires IR-A expression to restore GDM-reduced hENT1-adenosine transport. A) IR-A or -B mRNA level compared with 28S rRNA (internal reference) in HUVEC from normal or GDM pregnancies, in the absence (-Insulin) or presence (+Insulin) of insulin (1 nM, 8 h) in nontransduced (-) or transduced (+) cells with adenovirus containing siRNA against IRA (KD IRA) or -B (KD IR-B). Values are normalized to 1 in IRA mRNA in cells from normal pregnancies. B) Adenosine transport via hENT1 as in A. C) Western blot for total β-IR (nonphosphorylated + phosphorylated forms; total β-IR) and β-actin (internal reference) protein abundance in the absence of insulin in cells as in A. Lower panel: Total β-IR:β-actin ratio densitometries normalized to 1 in nontransduced cells from normal. D) Western blot for total β-IR or phosphorylated β-IR (P-β-IR) in response to insulin (8 h) in nontransduced, KD IRA, or KD IR-B cells. Lower panels: P-β-IR:total β-IR protein abundance ratio densitometries normalized to 1 in nontransduced cells from normal. A) *P < 0.05 vs. all other values. B) **P < 0.01 vs. nontransduced cells from normal in −Insulin. C) *P < 0.04 vs. all other corresponding values. D) **P < 0.05 vs. corresponding values in KD IRA or KD IRA/B cells. D) *P < 0.05 vs. corresponding values in 0 or 0.1 nM insulin. **P < 0.05 vs. corresponding values in nontransduced or KD IR-B cells. Values are mean ± SEM (n = 18–21).
In addition, \(^{K_D}\)IR-A or \(^{K_D}\)IR-B cells had lower IR-A or IR-B mRNA levels and IR-B or IR-A mRNA level was not changed, respectively. Similar results occurred in cells after culture for different periods of time (passages 0, 1, 2, or 3) (Supplemental Fig. 2).

hENT1-adenosine transport was lower in GDM cells compared with normal pregnancies, and insulin reduced hENT1-adenosine transport in normal pregnancies but restored the GDM-associated transport reduction to values in normal pregnancies. The effect of insulin was blocked in \(^{K_D}\)IR-A or \(^{K_D}\)IR-B cells but not in \(^{K_D}\)IR-A/B cells. In the absence of insulin, hENT1-adenosine uptake was unaltered in \(^{K_D}\)IR-A, \(^{K_D}\)IR-B, or \(^{K_D}\)IR-A/B cells from normal or GDM pregnancies.

Total \(\beta\)-IR subunit protein in cells expressing IR-A and IR-B was lower for GDM compared with normal pregnancies (Fig. 1C). A larger reduction was seen for total \(\beta\)-IR subunit protein in \(^{K_D}\)IR-B compared with \(^{K_D}\)IR-A cells, and it was almost abolished in \(^{K_D}\)IR-A/B cells both from normal or GDM pregnancies. Insulin increased Tyr1361 phosphorylation of the \(\beta\)-IR subunit (P-\(\beta\)-IR) increasing the P-\(\beta\)-IR:total \(\beta\)-IR ratio and reaching similar maximal values with comparable \((P<0.05)\) half-maximal stimulatory effects.
TABLE 2. Effect of GDM and IRs isofoms involvement on hENT1-mediated adenosine transport

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>GDM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{max} (pmol/µg protein per second)</td>
<td>K_m (µM)</td>
</tr>
<tr>
<td>Nontransduced cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2.82 ± 0.17</td>
<td>43 ± 9</td>
</tr>
<tr>
<td>PD-98059</td>
<td>2.79 ± 0.10</td>
<td>43 ± 5</td>
</tr>
<tr>
<td>Wortmannin</td>
<td>2.93 ± 0.18</td>
<td>37 ± 7</td>
</tr>
<tr>
<td>PD-98059 + wortmannin</td>
<td>2.85 ± 0.12</td>
<td>49 ± 7</td>
</tr>
<tr>
<td>Insulin</td>
<td>1.19 ± 0.05*</td>
<td>35 ± 5</td>
</tr>
<tr>
<td>Insulin + PD-98059</td>
<td>2.99 ± 0.20</td>
<td>44 ± 9</td>
</tr>
<tr>
<td>Insulin + wortmannin</td>
<td>2.79 ± 0.24</td>
<td>36 ± 9</td>
</tr>
<tr>
<td>Insulin + PD-98059 + wortmannin</td>
<td>3.14 ± 0.14</td>
<td>43 ± 7</td>
</tr>
</tbody>
</table>

KD IR-A cells

Control	2.62 ± 0.08	46 ± 5	0.057 ± 0.005	44 ± 9
PD-98059	2.41 ± 0.28	38 ± 19	0.063 ± 0.009	45 ± 18
Wortmannin	2.63 ± 0.13	37 ± 8	0.071 ± 0.009	44 ± 17
Insulin	1.87 ± 0.18*	46 ± 9	0.041 ± 0.004*	0.026 ± 0.003*
Insulin + PD-98059	2.33 ± 0.16	45 ± 12	0.052 ± 0.008	42 ± 14
Insulin + wortmannin	2.74 ± 0.24	40 ± 15	0.069 ± 0.005	35 ± 18

KD IR-B cells

Control	2.53 ± 0.23	48 ± 9	0.053 ± 0.004	49 ± 5
PD-98059	2.49 ± 0.28	37 ± 7	0.067 ± 0.007	38 ± 17
Wortmannin	2.55 ± 0.23	40 ± 15	0.064 ± 0.007	35 ± 16
Insulin	1.30 ± 0.13*	47 ± 8	0.028 ± 0.003*	0.078 ± 0.007*
Insulin + PD-98059	2.76 ± 0.21	50 ± 15	0.055 ± 0.009	38 ± 15
Insulin + wortmannin	2.61 ± 0.19	36 ± 11	0.073 ± 0.009	43 ± 15

KD IR-A/B cells

Control	2.63 ± 0.14	48 ± 8	0.055 ± 0.004	40 ± 4
Insulin	2.49 ± 0.21	47 ± 7	0.053 ± 0.005	39 ± 9

V_{max}/K_m in nontransduced cells from normal (SC$_{50}$ = 0.12 ± 0.03 nM) and GDM (SC$_{50}$ = 0.11 ± 0.02 nM) pregnancies (Fig. 1D). The maximal effect of insulin on P-β-IR-total β-IR ratio was lower ($P < 0.04$) in KD IR-A compared with nontransduced cells in normal and GDM pregnancies. However, SC$_{50}$ for insulin’s effect in KD IR-A cells from normal pregnancies was higher (SC$_{50}$ = 0.99 ± 0.02 nM, $P < 0.05$) compared with cells from GDM pregnancies (SC$_{50}$ = 0.55 ± 0.02 nM). Maximal increases in the P-β-IR: total β-IR ratio and SC$_{50}$ values were unaltered ($P > 0.05$) in KD IR-B cells from normal (SC$_{50}$ = 0.35 ± 0.04 nM) and GDM (SC$_{50}$ = 0.21 ± 0.02 nM) pregnancies and were similar to values in nontransduced cells from normal or GDM pregnancies.

Kinetics of hENT1-adenosine transport and hENT1 expression

hENT1-adenosine transport was saturable in cells from normal and GDM pregnancies (Fig. 2A). A lower V_{max} and V_{max}/K_m for hENT1-adenosine, transport was seen in nontransduced cells from GDM compared with normal pregnancies, an effect blocked by insulin (Table 2). Similar results were found for hENT1-adenosine transport in KD IR-A or KD IR-B cells in normal and GDM pregnancies in the absence of insulin. However, insulin re-establishment of the V_{max}/K_m for hENT1-adenosine transport in nontransduced cells was blocked in KD IR-A, but not in KD IR-B cells from GDM pregnancies. Additional assays show that GDM’s effect on hENT1-adenosine transport persisted in KD IR-A/B cells (Table 2).

hENT1 protein was lower in cells from GDM compared with normal pregnancies and in KD IR-A or KD IR-B cells in the absence of insulin (Fig. 2B). Insulin restored hENT1 protein in cells from GDM, an effect abolished in KD IR-A, but not in KD IR-B cells. The reduction in hENT1 protein caused by insulin was partially reversed in KD IR-A or KD IR-B cells from normal pregnancies. $hENT1$ mRNA level had similar patterns with respect to protein in normal and GDM pregnancies in the absence of insulin (Fig. 2C). However, insulin-reduced $hENT1$ mRNA level in cells from normal pregnancies and restoration of $hENT1$ mRNA level by insulin in GDM pregnancies was lower in KD IR-A or KD IR-B cells. In assays using freshly isolated cells from normal and GDM pregnancies exposed to insulin, hENT1 protein (Supplemental Fig. 4) was not significantly different from data obtained in cells at passage 3.

Immunocytochemical assays show that hENT1 protein was located mainly at the cell border in cells from normal pregnancies but predominantly at intracellular structures.
in cells from GDM pregnancies (Fig. 3). Incubation of cells with insulin reduced the fluorescent signal at the cell border for hENT1 in normal pregnancies; however, hENT1 fluorescence was higher at the cell border in GDM pregnancies.

SLC29A1 promoter transcriptional activity

SLC29A1 promoter luciferase activity in the absence of insulin was similar in cells from normal pregnancies transfected with pGL3-hENT1-3198 or pGL3-hENT1-1670 constructs (Fig. 4A). However, pGL3-hENT1-3198 promoter luciferase activity in GDM was lower compared with pGL3-hENT1-1670 construct promoter activity in cells from GDM and from normal pregnancies in the absence of insulin. Cells from normal pregnancies had less pGL3-hENT1-3198 reporter activity in response to insulin; however, insulin restored reporter activity in GDM to values in normal cells from nonpregnancy without insulin. Insulin’s effect was partially reduced in KI-RA or KI-RB cells but blocked in KI-RA/B cells in normal or GDM pregnancies. The fraction of insulin’s effect on pGL3-hENT1-3198 reporter activity requiring IR-A or IR-A/IR-B expression was higher in GDM compared with normal pregnancies (Fig. 4B). However, the IR-B expression requirement for insulin’s effect on this construct was similar in normal and GDM pregnancies. In addition, the fraction of insulin’s effect requiring expression of IR-A, IR-B, or IR-A/IR-B on pGL3-hENT1-1670 reporter activity was unaltered by GDM (Fig. 4C).

Involvement of p42/44mapk and Akt on hENT1-adenosine transport

GDM-associated reduction in hENT1-adenosine transport was blocked by PD-98059 (MAPK kinase inhibitor) or PD-98059 + wortmannin (PI3K inhibitor) but not by wortmannin in nontransduced cells in the absence of insulin (Table 2). However, neither PD-98059 nor wortmannin altered transport in nontransduced cells from normal pregnancies in the absence of insulin. Insulin-restored hENT1-adenosine transport was unaltered by PD-98059 and/or wortmannin in nontransduced cells from GDM. However, these inhibitors blocked insulin inhibition of hENT1-adenosine transport in cells from normal pregnancies. These events coincided with increased p42/44mapk phosphorylation in nontransduced cells in the absence of insulin from GDM compared with normal pregnancies (Fig. 5A). Insulin increased p42/44mapk phosphorylation in cells from normal pregnancies but reduced p42/44mapk phosphorylation in cells from GDM. However, these inhibitors blocked insulin in nontransduced cells from GDM compared with normal pregnancies (Table 2). However, in the presence of PD-98059 but not wortmannin insulin recovered hENT1-adenosine transport. In KI-RB cells from GDM pregnancies, the effect of insulin and inhibitors was similar to nontransduced cells from GDM. Insulin’s increase in p42/44mapk phosphorylation was lower in KI-RB cells from normal pregnancies but p42/44mapk phosphorylation was unaltered in these cells in the absence of insulin (Fig. 5C). Reduction in the p42/44mapk phosphorylation caused by insulin in GDM pregnancies was blocked in KI-RB, but not in KI-RB cells. Akt phosphorylation was similarly increased by insulin in cells from normal or GDM pregnancies, an effect blocked in KI-RB but not in KI-RB cells (Fig. 5D).

DISCUSSION

Adenosine transport occurs mainly via hENT1 in HUVECs (5, 12, 24, 25). We reported lower hENT1 expression and Vmax/ Km for adenosine transport in HUVECs from GDM compared with normal pregnancies (5, 25), a phenomenon restored by insulin (5). These results are complemented
by findings showing that hENT1 protein preferentially locates at the plasma membrane in HUVECs from normal pregnancies, but it is mainly intracellular in cells from GDM (confirming previous observations in these cell types) (26), and that these effects are reversed by insulin in fetal endothelial cells from diabetic mothers. HUVECs (5) and hPMECs (6) express at least 2 IRs (i.e., IR-A, preferentially expressed in the placenta and other fetal tissues, and IR-B, preferentially expressed in adult tissues) (19). Insulin reverses diminished hENT2-adenosine transport caused by GDM requiring both IR-A and IR-B expression in hPMECs (6). However, IR-A overexpression could result in lower hENT1 expression and V_{max}/K_m in HUVECs from GDM because the benefit of insulin on hENT1-adenosine transport was absent in $\text{KD}_{\text{IR-A}}$ cells. These observations are similar to reports of preferential IR-A expression in skeletal muscle fibers of patients with myotonic dystrophy types 1 (MDT1) and 2 (MDT2) and in ovarian (29), breast (30), colon (31), or thyroid (32) cancer patients. However, because HUVECs from normal or GDM pregnancies were cultured in the presence of 2% sera (final insulin concentration 0.02 nM) compared with 0.04 or 0.07 nM insulin, respectively, in the umbilical vein blood, we cannot rule out the possibility that response to exogenous insulin was due to insulin deprivation in vitro. Interestingly, the insulin concentration required to correct alterations of adenosine transport and IRs phosphorylation in HUVECs from GDM was 2.9-fold the circulating insulin in umbilical vein blood in GDM. Thus, even when fetal insulinemia in GDM is higher than in normal pregnancies, this condition is not enough to restore HUVEC function. These data agree with findings in hPMEC from GDM (6) and suggest a potential chronic

Figure 4. Insulin restores SLC29A1 promoter activity via IR-A in GDM. A) Luciferase reporter activity was measured in cells transfected with SLC29A1 promoter truncations pGL3-hENT1$^{\text{3198}}$ and pGL3-hENT1$^{\text{1670}}$ (see Materials and Methods) that were transduced with adenovirus containing siRNA against IR isoform A ($\text{KD}_{\text{IR-A}}$), B ($\text{KD}_{\text{IR-B}}$), or both ($\text{KD}_{\text{IR-A/B}}$), from normal or GDM pregnancies. Control are nontransduced cells. Assays were in the absence (–Insulin) or presence (+Insulin) of insulin (1 nM, 8 h). B) Fraction of change (Δ) in reporter activity caused by insulin in nontransduced vs. $\text{KD}_{\text{IR-A}}$, $\text{KD}_{\text{IR-B}}$, or $\text{KD}_{\text{IR-A/B}}$ cells transfected with pGL3-hENT1$^{\text{3198}}$. C) As in B for cells transfected with pGL3-hENT1$^{\text{1670}}$. A) $P < 0.05$ and $P < 0.05$ vs. corresponding values for pGL3-hENT1$^{\text{3198}}$ in +Insulin in cells from normal or GDM pregnancies. B) *$P < 0.05$ vs. corresponding values in cells from normal pregnancies. Values are mean \pm SEM ($n = 12$).
insulin resistance of HUVECs from GDM such that they require more insulin to normalize signaling. Because maternal blood adenosine was similar in GDM and normal pregnancies but umbilical cord blood adenosine was higher in GDM compared with normal pregnancies (5, 6), higher adenosine newborn blood at birth is not likely due to an increased transplacental transfer. The latter is supported by findings showing that GDM associates with unaltered maximal [3H]NBTI-specific binding in human syncytiotrophoblast apical membrane vesicles (33). However, we cannot rule out the possibility of an increased adenosine mother-to-fetus transfer in the human placenta in GDM pregnancies to explain increased umbilical vein blood adenosine in GDM (10).

Figure 5. Insulin causes differential activation of p44/42 and Akt in GDM and requires IRA expression to reduce p44/42 phosphorylation level in GDM. A) Western blot for total (p44/42) or phosphorylated (P-p44/42) p44/42 in HUVEC from normal or GDM pregnancies in the absence (−) or presence (+) of insulin (1 nM, 8 h) or PD-98059 (10 μM, 8 h). β-Actin is internal reference. Lower panel: P-p44/42:total p44/42 ratio densitometries. B) Western blot for total (Akt) or phosphorylated (P-Akt) Akt in the absence or presence of insulin or wortmannin (30 nM) as in A. Lower panel: P-Akt:total Akt ratio densitometries. C) Western blot for total p44/42 or P-p44/42 in nontransduced (−) or transduced (+) cells with adenovirus containing siRNA against IRs isoform A (KD-IR-A) or B (KD-IR-B), in the absence (−Insulin) or presence (+Insulin) of insulin as in A. Lower panel: P-p44/42:total p44/42 ratio densitometries. D) Western blot for total Akt or P-Akt as in C. Lower panel: P-Akt:total Akt ratio densitometries. A) *P < 0.04 and †P < 0.03 vs. all other corresponding values. B) *P < 0.03 and †P < 0.05 vs. all other corresponding values. C) *P < 0.04 vs. corresponding values in normal, †P < 0.04 vs. all other values in normal, ‡P < 0.05 vs. corresponding values in normal in −Insulin. D) *P < 0.02 vs. all other corresponding values except for KD-IR-A in +Insulin. †P < 0.05 vs. corresponding values in KD-IR-A in +Insulin. Values are mean ± SEM (n = 12).
IR-A and IR-B expression are required for the effect of insulin on adenosine transport in HUVECs from normal pregnancies, thus they equally signal via IR-A and IR-B to maintain an equilibrium for a mitogenic/metabolic phenotype (p42/44mapk/Akt activity \~1), as in hPMECs (6). However, because IR-A is overexpressed, a preferential mitogenic (p42/44mapk/Akt activity \~1) instead of a metabolic (p42/44mapk/Akt activity < 1) phenotype is feasible in HUVECs from GDM. Interestingly, IR-A overexpression is reported in diseases featuring severe insulin resistance, including MDT1 (27, 28). HOMA-IR in human newborns from GDM pregnancies (HOMA-IR \~2.8) (6, 34) is similar to our data. GDM-increased HOMA-IR could cause abnormal hENT1-adenosine transport due to lower insulin sensitivity in HUVECs from GDM and this is in agreement with reported positive correlations for maternal and fetal insulin resistance in GDM (6, 34). However, we cannot rule out the possibility that GDM-associated alterations may result from a potential prebirth insulin resistant state. Although total β-IR protein abundance in GDM was lower compared with normal pregnancies, IRs activation appears to be unaltered by GDM because insulin-increased β-IR phosphorylation (i.e., activation) was similar in both cell types. However, because Sc\textsubscript{50} for insulin as an activator of β-IR in \(^{\text{IR-A}}\) cells from normal pregnancies was \~1.8-fold that in \(^{\text{IR-B}}\) cells from GDM pregnancies and because insulin reversed IRA expression in cells from GDM to more normal values in the absence of insulin, normal IRA expression is required for a proper insulin-increased β-IR phosphorylation in HUVECs. Because HOMA-IR values for newborns from GDM was \~2.4-fold greater than normal pregnancies, newborn insulin resistance might result from higher IRA expression. IRA and IR-B differential involvement for insulin response is not a generalized finding for fetal macrovascular endothelium because insulin modulation of hENT2-adenosine transport requires IRA and IR-B expression in hPMECs from GDM (6).

Reduction of HOMA-IR could be due to a crosstalk of these signaling pathways, a phenomenon that could also be the case in normal pregnancies because insulin-reduced hENT1-adenosine transport was blocked by PD-98059 or wortmannin. When

Figure 6. Insulin effect on hENT1-adenosine transport in HUVEC from GDM. Under basal conditions (Basal), HUVEC from GDM exhibit increased expression of IRA (IRA) isoform compared with normal pregnancies. This phenomenon leads to increased p42/44mapk resulting in lower SLC29A1 gene promoter activity and lower expression (mRNA and protein) of hENT1. Thus, lower adenosine uptake and extracellular accumulation of this nucleoside is seen in this cell type. In the presence of insulin, IRA expression level is restored, a phenomenon resulting in normal p42/44mapk activation and subsequent restoration of SLC29A1 promoter activity and hENT1 expression and availability at the plasma membrane. As a result of the changes caused by insulin, a restoration of hENT1-mediated adenosine transport leads to physiologic (normal) extracellular levels of adenosine. Thus, HUVEC from GDM exhibiting a mitogenic-like phenotype (GDM phenotype) are reversed to a metabolic-like phenotype (normal phenotype) by insulin.
IR-A expression was restored in HUVECs from GDM, insulin’s effect on transport was abolished but because only PD-98059 restored insulin’s effect in this cell type; a basal, non-IR-A-dependent p42/44mapk activation, mimicking the GDM phenotype with normal IR-A expression, persisted. This was restricted to GDM because insulin’s effect on transport in KdIR-A from normal pregnancies was reversed by PD-98059 or wortmannin, thus involving both p42/44mapk and PI3K/Akt pathways in this cell type. Because insulin effect was still present in KdIR-B cells or in the presence of wortmannin, insulin response did not involve PI3K/Akt in GDM. The latter is paralleled by results showing that hENT1-adenosine transport was unaltered in KdIR-B or by wortmannin. On the contrary, in KdIR-B cells from normal pregnancies, p42/44mapk and PI3K/Akt pathway involvement is likely.

In summary, we report that HUVECs from GDM pregnancies are functionally altered due to differential IR expression. HUVECs from GDM have a predominantly mitogenic phenotype due to IR-A overexpression, compared with a predominant metabolic phenotype in normal pregnancies. Insulin reverses these alterations via lower p42/44mapk but not Akt cell signaling (Fig. 6). Insulin restores SLC29A1 expression and hENT1 transport activity. We propose that insulin’s effect on hENT1-adenosine transport is due to normalization of IR-A expression in HUVECs from GDM, requiring a normal, but not totally abolished, expression of this IR form to secure insulin activation of HUVEC metabolism. This phenomenon could be of clinical relevance for vascular hemodynamics of the fetoplacental circulation under conditions of insulin resistance such as GDM (5, 6, 34). Insulin’s response by the placental vasculature may differ depending on the IR isoform preferentially activated. Because umbilical veins from GDM pregnancies have a tonic dilation higher than in normal pregnancies, perhaps due to increased circulating adenosine (5), and even when systemic fetal adenosine is unknown (10), these results may help strategize treatment of patients’ course with GDM pregnancies, securing the well-being of the growing fetus in this disease.

The authors thank Mrs. Amparo Pacheco and Mrs. Ninosa Munoz from the Cellular and Molecular Physiology Laboratory (CMLP) at Division of Obstetrics and Gynaecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, for excellent technical and secretarial assistance, respectively, and the personnel of the Hospital Clínico Pontificia Universidad Católica de Chile labor ward for the supply of placentas. This study was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 1110977, 11110059, 3105516, 3105583, 3140532), Santiago, Chile; Programa de Investigación Interdisciplinario (PIA) from Comisión Nacional de Investigación en Ciencia y Tecnología (CONICYT Anillos ACT-73); and International NETWORK program (CONICYT 150102). T.S. holds a CONICYT Ph.D. (Santiago, Chile) fellowship. R.S. is recipient of a Faculty of Medicine, Pontificia Universidad Católica de Chile-Ph.D. fellowship. The authors declare no conflicts of interest.

REFERENCES

Received for publication April 10, 2014. Accepted for publication September 4, 2014.