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Abstract 

SYSTEMS BIOLOGY AND CHEMOINFORMATICS METHODS FOR BIOMINING AND 
SYSTEMS METABOLIC ENGINEERING APPLICATIONS 

In the first chapter, this thesis aims to demonstrate the great potential of 
Constraint-Based Reconstruction and Analysis (COBRA) methods for studying and 
predicting specific phenotypes in the bacterium Acidithiobacillus ferrooxidans. A 
genome-scale metabolic reconstruction of Acidithiobacillus ferrooxidans ATCC 23270 
(iMC507) is presented and characterized. iMC507 is validated for aerobic 
chemolithoautotrophic conditions by fixating carbon dioxide and using three different 
electron donors: ferrous ion, tetrathionate and thiosulfate. Furthermore, the model is 
utilized for (i) quantitatively studying and analyzing key reactions and pathways involved 
in the electron transfer metabolism, (ii) describing the central carbon metabolism and (iii) 
for evaluating the potential to couple the production of extracellular polymeric 
substances through knock-outs. The second chapter work outlines the effort towards 
advancing the field of systems metabolic engineering by using COBRA methods in 
conjunction with chemoinformatic approaches to metabolically engineer the bacterium 
Escherichia coli.  A complete strain design workflow integrating synthetic pathway 
prediction with growth-coupled designs for the production of non-native compounds in a 
target organism of interest is outlined. The generated enabling technology is a 
computational pipeline including chemoinformatics, bioinformatics, constraint-based 
modeling, and GEMs to aid in the process of metabolic engineering of microbes for 
industrial bioprocessing purposes. A retrosynthetic based pathway predictor algorithm 
containing a novel integration with GEMs and reaction promiscuity analysis is developed 
and demonstrated. Specifically, the production potential of 20 industrially-relevant 
chemicals in E. coli and feasible designs for production strains generation is outlined. A 
comprehensive mapping from E. coli’s native metabolome to commodity chemicals that 
are 4 reactions or less away from a natural metabolite is performed. Sets of metabolic 
interventions, specifically knock-outs and knock-ins that coupled the target chemical 
production to growth rate were determined. In the third chapter, in order to aid the field 
of cancer metabolism, potential biomarkers were determined through gain of function 
oncometabolites predictions.  Based on a chemoinformatic approach in conjunction with 
the global human metabolic network Recon 2, a workflow for predicting potential 
oncometabolites is constructed. Starting from a list of mutated enzymes genes, 
described as GoF mutations, a range of promiscuous catalytic activities are inferred. In 
total 24 chemical substructures of oncometabolites resulting from the GoF analysis are 
predicted. 
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Profesor Guía: Juan A. Asenjo de Leuze 

Resumen 

MÉTODOS DE BIOLOGÍA DE SISTEMAS Y QUIMIOINFORMÁTICOS APLICADOS 
EN EL ÁREA DE BIOMINERÍA E INGENIERÍA METABÓLICA 

En el primer capítulo de esta tesis, se demostró el potencial que tienen los 
método COBRA, “Constraint-Based Reconstruction and Analysis” en ingles, para el 
estudio y la predicción de fenotipos experimentales en la bacteria Acidithiobacillus 
ferrooxidans ATCC 23270. Para esto se reconstruyó el primer modelo a escala 
genómica de A. ferrooxidans (iMC507). El modelo se validó utilizando dióxido de 
carbono como única fuente de carbono bajo tres distintas condiciones de crecimiento 
aeróbico-quimiolitoautótrofico dependiendo el dador final electrones (estos son: ion 
ferroso, tetrationato y tiosulfato). Junto con lo anterior se estudió de forma cuantitativa y 
analizaron las reacciones y vías metabólicas asociadas a la cadena de transporte de 
electrones y el metabolismo central. Además,  se evaluó el potencial de producción de 
sustancias poliméricas extracelulares acopladas al crecimiento a través de knock-outs. 
En el segundo capítulo se esboza el trabajo enfocado al desarrollo del campo de 
“Systems Metabolic Engineering” a través de la utilización de métodos COBRA junto 
con herramientas quimioinformáticas para diseñar de forma insilico la bacteria 
Escherichia coli. Se desarrolló un flujo de trabajo, integrando la predicción de vías 
metabólicas sintéticas junto con el diseño computacional de cepas capaces de asociar 
la producción de un determinado compuesto al crecimiento. La tecnología desarrollada 
involucra una serie de herramientas computacionales asociadas a los campos de 
investigación en quimioinformática, bioinformática, métodos COBRA y modelos a escala 
genómica. Específicamente, se desarrolló y valido un algoritmo de predicción de vías 
metabólicas basado en reglas de reacción restrosintéticas junto con un análisis de 
promiscuidad de reacciones. El flujo de trabajo se aplicó de forma exhaustiva en E. coli 
para estudiar la factibilidad de producir  20 compuestos químicos (en su mayoría no 
nativos a la cepa) relevantes para la industria. De acuerdo a lo anterior se determinó el 
conjunto de intervenciones metabólicas, tales como knock-ins y knock-outs, necesarios 
para la producción asociada al crecimiento de los compuestos químicos seleccionados. 
En el tercer capítulo, con el fin de expandir el campo de estudio asociado al 
metabolismo del cáncer, se determinaron una serie de biomarcadores a través de la 
predicción de oncometabolitos debido a mutaciones enzimáticas GoF (“Gain-of-
Function” en inglés). El flujo de trabajo utilizado se basa principalmente en la utilización 
de herramientas quimioinformáticas enfocadas al modelo a escala genómica humano 
Recon 2. Una serie de actividades catalíticas promiscuas se infirieron  a partir de un 
conjunto de genes mutados asociados a enzimas previamente catalogadas como 
mutaciones GoF. Basados en el análisis anterior,  se determinaron 24 potenciales 
subestructuras de oncometabolitos capaces de funcionar como biomarcadores. 
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Para Manuela 
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Epigraph 

Hope lies in dreams, in imagination and in the courage of those 

who dare to make dreams into reality 

 

Jonas Salk
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Introduction 
 

Constraint-Based Reconstruction and Analysis (COBRA) modeling, a systems 

biology emerging field of research, enables to utilize high-throughput experimental data 

and quantitatively computational analysis to study and predict metabolic phenotypes. 

The “cornerstone” of this method is represented by the genome-scale model (GEM) that 

is built systematically using genome annotation, “omics” data sets and legacy 

knowledge. Genes, proteins, reactions and metabolites that participate in the 

metabolism are identified, categorized and systematically interconnected, enabling a 

mechanistic description of metabolic physiology. A GEM combined with constraints-

based methods can be used to formulate mechanistic predictions of metabolic 

physiology that can be used in a prospective manner to elucidate new biological 

knowledge and understanding, as well as design and engineer the cellular metabolism 

(Feist et al. 2009; Orth et al. 2011). Several workflows have been implemented to 

predict metabolic phenotypes, by integrating high-throughput data sets with COBRA 

methods. These recent successes have considerable implications in the fields of 

microbial evolution, interaction networks, genetic engineering and drug discovery 

(Bordbar et al. 2014b). In this work three different aspects, in the context of COBRA 

methods and approaches, have been explored. 

First, in Chapter 1 attention to the gram-negative, highly acidophilic, 

chemolithoautotrophic γ-proteobacterium Acidithiobacillus ferrooxidans was drawn. This 

organism typically grows at an external pH 2 or lower using the oxidation of ferrous ions 

by oxygen, producing ferric ions and water, while fixing carbon dioxide from the 

environment. It can also obtain energy by the oxidation of reduced inorganic sulfur 

compounds (RISCs), hydrogen and formate. A. ferrooxidans is of great interest for 

biomining and environmental applications, as they can process mineral ores by 

alleviating the negative environmental consequences derived from the mining 

processes. Based on the complete genome sequence of A. ferrooxidans (Valdes et al. 

2008), several studies have provided insights into its physiological properties, including 

the most relevant metabolisms (Esparza et al. 2010; Ferguson and Ingledew 2008; 
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Osorio et al. 2013; Valdes, Pedroso, Quatrini, Dodson, Tettelin, Blake, Eisen and 

Holmes 2008). However, from this knowledge it is not possible to neither predict nor 

quantitatively describe the physiological outcome from the annotated sequence alone. 

Nevertheless, only small scale metabolic models for A. ferrooxidans (Hold et al. 2009; 

Sepúlveda et al. 2011), have been proven successful on describing the main aspects of 

his metabolism. However these models lack the ability of capturing the complex 

physiological characteristic, behavior and metabolic capabilities of the cell as a whole 

integrated system. In order to overcome this difficulty and fully explore metabolic 

genotype-phenotype relationships, implementation of constraint-based reconstruction 

and analysis (COBRA) methods for A. ferrooxidans are needed. In this work, a GEM is 

reconstructed, validated and analyzed to better understand key metabolic capabilities of 

A. ferrooxidans ATCC 23270. A systematic workflow for the elucidation of proton 

translocation stoichiometry of key enzymes based on physiological data is implemented 

under three different aerobic chemolithoautotrophic conditions (i.e., by using ferrous ion, 

tetrathionate and thiosulfate as electron donors). Transfer electron and central carbon 

metabolism is characterized and studied. Furthermore, in order to determine the 

potential production of extracellular polymeric substances (EPS) in A. ferrooxidans, a 

retrospective model drive analysis was performed. 

Second, in Chapter 2, a systematic workflow  to evaluate the production potential 

of 20 industrially relevant chemicals (Assary and Broadbelt 2011; Curran and Alper 

2012; Fischer et al. 2008; Lee et al. 2012; Paster et al. 2003; Werpy et al. 2004; Zeng 

and Sabra 2011) in E. coli, by integrating a combination of computational methods and 

developing a new pathway prediction algorithm, GEM-Path (Genome-scale Model 

Pathway Predictor) is implemented. Computational approaches for the prediction of non-

native pathways exist, but are limited in their design and scope. Different approaches 

have been implemented for pathway prediction (Arita 2000; Carbonell et al. 2011; Cho 

et al. 2010; Dale et al. 2010; Greene et al. 1999; Hatzimanikatis et al. 2005; Heath et al. 

2010; Hou et al. 2003; McShan et al. 2003; Pharkya et al. 2004), where increasing 

attention has been focused mainly on retrosynthetic algorithms (Carbonell, Planson, 

Fichera and Faulon 2011; Cho, Yun, Park, Lee and Park 2010; Henry et al. 2010; Yim et 

al. 2011) based on Biochemical Reaction Operators (BROs). In these analyses, BROs 
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are used to go from a target compound to a predefined set of metabolites in an iterative 

backward search. In summary, all of these methods shared basically the same workflow, 

first calculating all structurally possible pathways and then scoring them using different 

kinds of metrics. During the synthetic pathway calculation, these algorithms 

unnecessarily expand the reaction space, generating all possible pathways that link a 

specific metabolite to a final specific product without performing pathway integration with 

content known to exist in a given production host. Furthermore, previous algorithms do 

not integrate the bioprocessing condition-specific cofactor usage/generation, substrate 

usage, strain/oxygenation conditions, and related energy balances during the 

computation of pathways. In order to address these problems, we developed GEM-Path, 

by integrating retrosynthetic algorithms based on BROs and filtering procedures with 

GEMs at each iteration step. Furthermore, a novel reaction promiscuity analysis is 

introduced, which is based on known reaction substrate similarities.  These two features 

distinguish GEM-Path from other computational approaches. Once a synthetic pathway 

is successfully established, additional approaches can be taken to further engineer the 

host strain and synthetic pathways for enhanced production of a desired chemical. 

Adaptive laboratory evolution together with COBRA methods and organism-specific 

models have proven successful for the calculation of wild type E. coli optimal growth 

rates (Ibarra et al. 2002), native E. coli metabolite production through knock-outs (Fong 

et al. 2005), and for non-native E. coli metabolite production through heterologous 

pathway incorporation and knock-outs implementations (Yim, Haselbeck, Niu, Pujol-

Baxley, Burgard, Boldt, Khandurina, Trawick, Osterhout, Stephen, Estadilla, Teisan, 

Schreyer, Andrae, Yang, Lee, Burk and Van Dien 2011). Furthermore, the use of 

adaptive laboratory evolution together with growth-coupled knock-outs design, allows to 

select for strains with higher target compound production rates by coupling them to the 

selection for faster growth (Portnoy et al. 2011). Here, we integrate each of the predicted 

pathways under several different substrates/strain/oxygenation conditions with growth-

coupled designs generated through reaction knock-outs by utilizing the RobustKnock 

(Tepper and Shlomi 2010) and GDLS algorithms (Lun et al. 2009). Finally, in order to 

characterize E. coli’s potential production landscape for the studied compounds and for 

designs implementation purposes, a productivity analysis for maximum theoretical yield 

and maximum theoretical growth-coupled yield was performed. 
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And third, in Chapter 3, in order to aid the development of cancer diagnosis, 

prognosis, and biomarkers identification a chemoinformatic approach is implemented for 

oncometabolite predictions. The metabolic state coined as “aerobic glycolysis” (Warburg 

et al. 1924), which has been described as a passive response causing a malignant 

transformation (Hanahan and Weinberg 2011), is being challenged by recent 

discoveries. Studies have been proved that altered metabolism by itself can be a driver 

for oncogenesis (Letouze et al. 2013; Lu et al. 2012a; Xiao et al. 2012; Xu et al. 2011; 

Yang et al. 2012b). Specifically, characterized isocitrate dehydrogenase (IDH1, IDH2) 

mutations have established a new paradigm in cancer development in that the 

heterozygous point mutations confer a new metabolic enzymatic activity that produce an 

oncometabolite (e.g. 2-hydroxyglutarate (2-HG), from α-ketoglutarate(α-KG)). In fact, 2-

HG shows a 100-fold increase concentration in glioma and acute myeloid leukemia’s 

(AML) patients with IDH1 or IDH2 missense mutations. This increased concentration of 

2-HG competitively inhibits α-ketoglutarate binding to histone demethylases, thus 

blocking differentiation of cells (Lu, Ward, Kapoor, Rohle, Turcan, Abdel-Wahab, 

Edwards, Khanin, Figueroa, Melnick, Wellen, O'Rourke, Berger, Chan, Levine, 

Mellinghoff and Thompson 2012a; Xu, Yang, Liu, Yang, Wang, Kim, Ito, Yang, Xiao, Liu, 

Jiang, Liu, Zhang, Wang, Frye, Zhang, Xu, Lei, Guan, Zhao and Xiong 2011). Recently, 

the COBRA approach has been proven successful in addressing heterogeneity in cancer by 

integrating experimental data with the GEMs to tailor the models to the unique gene 

expression profiles of general cancer tissue, and even individual cell lines and tumors. This 

enables to study the cancer metabolism and simulate tumor phenotypes from a genome 

wide perspective (Lewis and Abdel-Haleem 2013). Based on genetic mutation information 

on a massive scale collected from more than 1,700 cancer genomes into context-

specific GEMs of metabolism for nine cancer types, Nam et al., 2014 (Nam et al. 2014) 

determined 6 different mutated metabolic enzymatic genes for GoF analysis, which 

presented missense mutations similar to those presented in the IDH case. According to 

the latter, in this work, a chemoinformatic based workflow is generated for predicting 

potential oncometabolites chemical structures due to GoF mutation. 
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Chapter 1  
 

Genome-scale reconstruction of the acidophilic 
chemolithoautotrophic bacterium Acidithiobacillus 
ferrooxidans and a model-driven analysis of carbon 
fixation, electron transfer metabolism and extracellular 
polymeric substances production. 
 
 

1.1 Abstract 

Acidithiobacillus ferrooxidans is a gram-negative, highly acidophilic, 

chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 or 

lower using the oxidation of ferrous ions by oxygen, producing ferric ions and water, 

while fixing carbon dioxide from the environment. It can also obtain energy by the 

oxidation of reduced inorganic sulfur compounds (RISCs), hydrogen and formate. A. 

ferrooxidans is of great interest for biomining and environmental applications, as it can 

process mineral ores and alleviate the negative environmental consequences derived 

from the mining processes. In this study, the first genome-scale metabolic reconstruction 

of A. ferrooxidans ATCC 23270 was generated (iMC507). Based on the annotated 

genome and available biochemical data, a total of 587 metabolic and 

transport/exchange reactions, 507 genes and 573 unique metabolites organized in over 

42 subsystems were incorporated into the model. Based on a new genetic algorithm, an 

approach that integrates flux balance analysis (FBA), chemiosmotic theory, and 

physiological data was used to estimate proton translocation stoichiometry and 

maintenance parameters under aerobic chemolithoautotrophic conditions using thee 
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different electron donors (specifically for ferrous ion, tetrathionate and thiosulfate). The 

robustness of the metabolism with respect to reaction deletions using FBA was 

evaluated. Approximately 68 % of all possible single reaction deletions would be lethal 

for the organism. Detailed electron transfer flux distributions during 

chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were 

determined and reported. Furthermore, a metabolic carbon dioxide transport outside the 

cell was suggested to alleviate the network rigidity in the carbon metabolism. Finally, 

134 growth-coupled designs were calculated that enables EPS production. Two 

enzymes (i.e. MDH and FUM in the TCA cycle) were found to be predominantly involved 

in the metabolism disruption for EPS growth–coupled production. The reconstruction 

serves as a knowledgebase for summarizing and categorizing the information currently 

available for A. ferrooxidans and enables the understanding and engineering of 

Acidithiobacillus and similar species from a comprehensive model-driven perspective. 

1.2 Introduction  

The mining industry is a major force in the world economy, occupying a primary 

position at the start of the resource supply chain, supporting 14.4 % of the world’s total 

economy, while using less than 1 % of the global surface area (CIA 2011). Production 

patterns are driven by consumption, which continues to rise in middle- to high- income 

countries, and is reaching unprecedented levels in low-income countries, whose 

appetite for the world’s minerals reflects their rapid development (Fischer-Kowalski and 

Swilling 2011). However, extraction and processing are associated with a number of 

sustainable development challenges, including economic, environmental and social 

issues. For example, poor waste management practice, one of the most conspicuous 

features of the global mineral industry, can result in severe and long-term environmental 

and social consequences. Furthermore, it can also impose costs on mining companies 

by eroding share value, increasing the risks of temporary or permanent shut down, 

exposure to compensation, fines and litigation costs, lost future opportunities and 

increased remediation and monitoring (Franks et al. 2011). 

A way to alleviate the negative consequences of mining is through the application 

of microbial processes, referred generically as “biomining”. Almost without exception, 
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microbial extraction procedures are more environmentally friendly. They do not require 

the high amounts of energy used during roasting or smelting and do not produce sulfur 

dioxide or other environmentally harmful gaseous emissions. Furthermore, mine tailings 

and wastes produced from physicochemical processes when exposed to rain and air 

may be biologically leached, producing unwanted acid and metal pollution. Tailings and 

wastes from biomining operations are less chemically active, and the biological activity 

they can support is reduced by at least the extent to which they have already been 

bioleached. From an economical point of view, biomining has a clear advantage in the 

extraction and recovery of precious and base metals from low-grade ores, where many 

metals are not economically recoverable by non-biological methods (Rawlings 2002) 

(ores of copper, nickel, cobalt, zinc and uranium). At least 20 % of the copper produced 

worldwide comes from bioleaching (Rawlings and Johnson 2007). 

There exist two major microbial mediated processes in biomining. The first is 

bioleaching, basically a strategy for metal recovery, whose underlying mechanism is the 

oxidation of metallic and/or sulfuric compounds by either enzymatic or mediated 

chemical oxidation caused by the catabolism of microorganisms. Depending on the 

mineral, chemical attack is by a combination of ferric iron and acid (protons), whereas 

the role of the microorganisms is to generate the ferric iron and acid. The second 

process is called biooxidation. This strategy applies mainly to the recovery of gold from 

difficult-to-treat arsenopyrites ores and concentrates. The aim is to use biooxidation to 

decompose the mineral matrix and expose entrapped gold (Rawlings et al. 2003). These 

processes are mediated by a consortium of Gram-negative bacteria (Acidithiobacillus, 

Leptospirillum, Sulfobacillus, Acidimicrobium) and archaeal genus (Ferroplasma, 

Sulfolobulus and Metallosphaers). There are many factors that affect the microbial 

composition of ores, such as, the type of mineral to be treated, the temperature, and the 

type of reactor used. Furthermore, industrial applications use both mixed populations 

(Ishigaki et al. 2005) as well as isolated cultures (Falco et al. 2003; Sand et al. 1992). 

One of the most important, and by far the best characterized member of the 

biomining microbial consortia is Acidithiobacillus ferrooxidans (Brandl 2008; Edwards 

1990; Ingledew 1982; Rawlings 2002). Formerly known as Thiobacillus ferrooxidans, it is 

a gram-negative, highly acidophilic, chemolithoautotrophic γ-proteobacterium 



 

8 
 

(Rohwerder et al. 2003). Beyond its biomining capabilities, A. ferrooxidans offers 

exceptional opportunities to study life under extremely challenging conditions. It typically 

grows at an external pH of 2 or lower using the oxidation of ferrous ions (fe2) by oxygen 

(o2), producing ferric ions (fe3) and water (h2o), while fixing carbon dioxide (co2) from 

the environment. It can also obtain energy by the oxidation of reduced inorganic sulfur 

compounds (RISCs), hydrogen (Drobner et al. 1990), and formate (Pronk et al. 1991). 

Furthermore, A. ferrooxidans has the potential to drive respiration by directly transferring 

electrons from electrodes to the microorganism (Carbajosa et al. 2010; Li et al. 2010). 

Due to the lack of well-developed systems for genetic manipulations, the study and 

exploration of the molecular biology and physiology of A. ferrooxidans has proven to be 

deficient. In terms on how the whole system behaves, different aspects of metabolism, 

such as, iron oxidation, co2 uptake and fixation, and the anaerobic metabolism of sulfur-

coupled iron reduction remain little described. Furthermore, this organism has often 

proved to be source of much confusion, because it requires understanding of the 

consequences of both growing at very acidic external pH and of using a relatively weak 

reductant (ferrous iron) as the sole source of electrons for respiration (Ferguson and 

Ingledew 2008). Several aspects regarding its energetic metabolism remain scarcely 

described in quantitative terms, such as, how it balances the use of iron as both a 

micronutrient and as a required energy source. Also, how proton-driven membrane 

transport and energy processes function in the face of a proton motive force across the 

inner membrane that is several orders of magnitude higher, and how the large pH 

gradient is maintained across the cytoplasmic membrane of A. ferrooxidans (Ferguson 

and Ingledew 2008).  

Based on the complete genome sequence of A. ferrooxidans (Valdes, Pedroso, 

Quatrini, Dodson, Tettelin, Blake, Eisen and Holmes 2008), several studies have 

provided insights into its physiological properties, including the most relevant 

metabolisms (Esparza, Cardenas, Bowien, Jedlicki and Holmes 2010; Ferguson and 

Ingledew 2008; Osorio, Mangold, Denis, Nancucheo, Esparza, Johnson, Bonnefoy, 

Dopson and Holmes 2013; Valdes, Pedroso, Quatrini, Dodson, Tettelin, Blake, Eisen 

and Holmes 2008). However, from this knowledge it is not possible to either predict or 

quantitatively describe the physiological outcome from the annotated sequence alone. 
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Nevertheless, only small scale metabolic models for A. ferrooxidans (Hold, Andrews and 

Asenjo 2009; Sepúlveda, Cortéz, Abarca, Valdecantos, Iglesias and Roa 2011), have 

been proven successful on describing the main aspects of its metabolism. However, 

these models lack the ability to capture the complex physiological characteristics, 

behavior and metabolic capabilities of the cell as a whole integrated system. In order to 

overcome this difficulty and fully explore metabolic genotype-phenotype relationships, 

implementation of constraint-based reconstruction and analysis (COBRA) methods for 

A. ferrooxidans was employed. The “cornerstone” of this method is represented by the 

genome-scale network reconstruction (GENRE) (Thiele and Palsson 2010) that is built 

systematically using genome annotation, “omics” data sets and legacy knowledge. 

Genes, proteins, reactions and metabolites that participate in the metabolism are 

identified, categorized and systematically interconnected, enabling a mechanistic 

description of metabolic physiology.  

 
Figure 1-1: General workflow to generate, validate and further retrospective analysis of iMC507. (A) the workflow detailing the 
iterative model building procedure used to generate iMC507. The reconstruction process was initiated based on the annotated 
genome generated by PathoLogic. Manual curation and reconstruction was performed by using the Insilico Biotechnology software 
aided by the KEGG and MetaCyc databases. Publications and literature sources were used to refine the network content, assigning 
a specific confidence score to each reaction. The reconstructed network in conjunction with the BOF, were used to formulate a 
minimum medium for the three different metabolism studied. B) Proton translocation for 8 different membrane reaction and GAM 
stoichiometry were estimated using a genetic algorithm. Experimental data for growth under three different electron donors and FBA 
was used to decipher the model parameters that best represent cell behavior. Based on these results the iMC507 network was 
validated with physiological data for growth under ferrous ion, tetrathionate and thiosulfate. C) To study the most relevant aspects of 
the electron transfer metabolism and carbon fixation, a retrospective model analysis was performed by using iMC507. Further 
analysis on EPS secretion potential for growth-coupled production through knock-outs was performed. 

A GENRE combined with constraints-based methods can be used to formulate 

mechanistic predictions of metabolic physiology that can be used in a prospective 

manner to elucidate new biological knowledge and understanding, as well as design and 

engineer the cellular metabolism (McCloskey et al. 2013). Several workflows have been 
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implemented to predict metabolic phenotypes, by integrating high-throughput data sets 

with COBRA methods (Bordbar, Monk, King and Palsson 2014b). In this work, a 

GENRE was reconstructed, validated and analyzed to better understand key metabolic 

capabilities of A. ferrooxidans ATCC 23270 (see Figure 1-1). A systematic workflow for 

the elucidation of proton translocation stoichiometry of key enzymes based on 

physiological data was implemented under three different aerobic chemolithoautotrophic 

conditions (i.e., by using ferrous ion, tetrathionate and thiosulfate as electron donors). 

The electron transport system and central carbon metabolism was characterized and 

studied. Furthermore, in order to determine the potential production of extracellular 

polymeric substances (EPS) in A. ferrooxidans, a retrospective model-driven analysis 

was performed. 

1.3 Materials and Methods 

1.3.1 Network reconstruction process 

The reconstruction software Insilico Discovery™, version 3.3 (Insilico 

Biotechnology AG, Stuttgart, Germany), was used to build and curate the first draft of 

the A. ferrooxidans genome-scale network. First, the specific Pathway/Genome 

Database (PGDB) for A. ferrooxidans ATCC 23270, version 14.1, was downloaded from 

BioCyc (Caspi et al. 2012), where based on the annotated genome sequence the 

PathoLogic program (Dale, Popescu and Karp 2010; Karp et al. 2010) automatically 

infer metabolic pathways, assign enzymes to reactions they catalyzed, and infer 

transport reactions among others capabilities. The draft genome accounts for 3217 

protein-coding genes, of which 64% were assigned a putative function(Valdes, Pedroso, 

Quatrini, Dodson, Tettelin, Blake, Eisen and Holmes 2008). Next, in order to connect the 

database with the reconstruction platform, four different files were generated by Insilico 

Biotechnology AG (Stuttgart, Germany) from the original A. ferrooxidans ATCC 23270 

PGDB. The generated files specify different kinds of metabolic interaction levels, such 

as, metabolites, reactions, genes and operons. At the beginning, most gene-protein-

reaction (GPR) association assignments were made from the annotated genome and 

the model was reconstructed on a pathway basis manually. In general, the 

reconstruction process was implemented to minimize the number of grouped, or lumped, 
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reactions in the network reconstruction. During the manual curation process online 

database, e. g., KEGG (Kanehisa et al. 2006), MetaCyc (Caspi, Altman, Dreher, 

Fulcher, Subhraveti, Keseler, Kothari, Krummenacker, Latendresse, Mueller, Ong, 

Paley, Pujar, Shearer, Travers, Weerasinghe, Zhang and Karp 2012) and BRENDA 

(Schomburg et al. 2002), were extensively used. The ORFs that encode the included 

proteins were integrated into the GPRs associations for the reactions in which they 

participate. GPR associations were also determined directly from biochemical evidence 

presented in journal publications and reviews. Transport reactions were added to the 

network from the genome annotation or from physiological data. All reactions added into 

the model were both elementally and charged balanced. Reaction reversibility was 

determined from thermodynamic considerations. Confidence scores were assigned for 

each reaction, based on the available evidence for its presence in the model (Thiele and 

Palsson 2010). Biochemically characterized enzymes received a confidence score of 4. 

If genetic knockout information or physiological evidence was available, a score of 3 was 

assigned. A score of 2 was assigned to reactions for which indirect evidence or 

sequence homology information was available. During gap-filling and evaluation of the 

network functionality some reactions were added with a confidence score of 1. 

1.3.2 Generation of the Biomass Objective Function (BOF) 

In order to simulate a cell that strives to maximize biomass production from 

available media substrates, a detailed and precise biomass reaction is needed for 

realistic metabolic network analysis. The BOF is a linear equation consisting of the 

fractional molar amounts of metabolites that constitute the dry weight content of the cell 

along with a growth associated maintenance (GAM) reaction to account for 

nonmetabolic growth activity (e.g., energy required for macromolecular synthesis), 

represented in the BOF as ATP hydrolysis reaction. Aside from the BOF, a non-growth 

associated maintenance (NGAM) reaction (i.e. an independent ATP hydrolysis reaction) 

was used as an energy “drain” on the system during the linear programming 

calculations, and accounts for nongrowth cellular activities (e.g., turgor pressure). The A. 

ferrooxidans BOF was formulated according to the procedures described elsewhere 

(Thiele and Palsson 2010). Biosynthetic macromolecule fractional content was obtained 

from experimentally reported values when possible, if not, the corresponding fractional 
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content was estimated as reported in iAF1260 (Feist et al. 2007). Experimental values 

for proteins (60 %) (Kuenen 1979) and inorganic ions (0.3 %) (Sublette 1988) were 

found in literature. Assuming a linear behavior between genome size and DNA cell 

fractional content in different organisms, the corresponding DNA fractional content for A. 

ferrooxidans was estimated from a correlation specified in Table 1-1. RNA fractional 

content was estimated according to the genome composition (see Table A1-2). 

Glycogen, murein, LPS, phospholipids and the soluble pool fractional content was 

estimated according to iAF1260. 

Table 1-1: DNA fractional content and A. ferrooxidans estimation from different species 

Specie Genome size[bp] Genome 
size[Mbp] 

 mg 
DNA/mg 

DW 

Escherichia coli K-12 3 4639221 4.6 0.03 
Mannheimia succiniciproducens 
4 2314078 2.3 0.03 

Salmonella typhimurium 5 4951371 5.0 0.04 

Shewanella oneidensis 6 5102455 5.1 0.05 

Vibrio vulnificus 7 3281945 3.3 0.03 
Corynebacterium glutamicum 
ATCC 13032 8 3282708 3.3 0.01 

    Acidithiobacillus ferrooxidans 
ATCC 23270 9 2982397 2.982397 0.023 

 

The relative fraction of amino acids was obtained from previous studies (Sublette 

1988). The nucleotide content for DNA and RNA was estimated based on the genome 

composition. The relative fraction of fatty acids (Mykytczuk et al. 2010), phospholipids 

(Shively and Benson 1967), LPS (Mayer et al. 1989)  and Inorganic Ions (Sublette 1988) 

was taken from experimental data reported for Acidithiobacillus. EPS production was 

modeled as a biomass independent reaction. Fractional content of precursor was 

obtained from experimental results (Harneit et al. 2006). The GAM reaction 

stoichiometry and the NGAM flux were estimated by using a genetic algorithm and 

previously reported experimental results. A detailed description of the iMC507’s biomass 

reactions is depicted in Table A1-1. 
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1.3.3 Modeling Simulations 

In order to mathematically represent the reconstructed metabolic network, a 

stoichiometric matrix (Smxn) was generated, where m is the number of metabolites and n 

is the number of reactions. Each entry Sij, represents the stoichiometric coefficient for 

the corresponding ith metabolite in the jth reaction. More details can be found elsewhere 

(Thiele and Palsson 2010). Flux Balance Analysis (FBA) (Orth et al. 2010) was utilized 

for predicting growth and analyzing the reaction flux (vj) through the metabolic network. 

Based on the stoichiometry matrix, a linear programming (LP) problem is solved by 

maximizing the BOF reaction (vBOF) under steady-state criteria. Additionally, reactions 

are constrainted by setting an upper (ub) and lower bound (lb), which define the 

maximum and minimum allowable flux of the reactions. The general LP problem can be 

represented as: 

max  𝑣𝐵𝐵𝐵 

 

𝑠. 𝑡.       �𝑆𝑖𝑖𝑣𝑖 = 0                          ∀𝑖 ∈ 𝑀
𝑖∈𝑁

 

 

       𝑙𝑙𝑖  ≤  𝑣𝑖  ≤  𝑢𝑙𝑖                                   ∀𝑗 ∈ 𝑁 

 

𝑀 ∶= 𝑆𝑆𝑡 𝑜𝑜 𝑚𝑆𝑡𝑚𝑙𝑜𝑙𝑖𝑡𝑆𝑠 𝑖𝑖 𝑡ℎ𝑆 𝑖𝑆𝑡𝑛𝑜𝑛𝑛 

𝑁 ∶= 𝑆𝑆𝑡 𝑜𝑜 𝑛𝑆𝑚𝑟𝑡𝑖𝑜𝑖𝑠 𝑖𝑖 𝑡ℎ𝑆 𝑖𝑆𝑡𝑛𝑜𝑛𝑛 

For reversible reactions and for reactions containing metabolites present in the 

extracellular space the lb and ub constraints were set to -1000 and 1000, respectively. 

For irreversible reactions and reactions containing metabolites that are not in the 

medium, meaning that the metabolite could leave the cell but not enter the system, lb 

and ub constraints were set to 0 and 1000 respectively. Based on the inorganic electron 

donor, three different A. ferrooxidans’s aerobic chemolithoautotrophic metabolisms were 

studied. Specifically for ferrous ion, tetrathionate and thiosulfate, by using as a unique 

carbon source carbonic acid (h2co3). Flux variability analysis (FVA) was used to find the 

minimum and maximum flux for reactions in the network, while maintaining a predefined 
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flux state of the network. More details about the FVA method can be found elsewhere 

(Mahadevan and Schilling 2003). In this work, FVA was used to find the minimum and 

maximum flux through each reaction while supporting 100 % of the maximal growth rate. 

Linear programing calculations were performed using Insilico Discovery™, version 3.3 

(Insilico Biotechnology AG, Stuttgart, Germany) and the MATLAB® version 8.1.0.604 

(The MathWorks Inc., Natick, MA) linked to the COBRA Toolbox 2.0 (Schellenberger et 

al. 2011). The linear programing package GUROBI version 5.5.0 (Gurobi Otimization 

Inc., Houston, TX) was used as a solver. 

1.3.4 Minimal medium formulation 

A synthetic minimal medium was determined based on the biomass composition 

specifically determined in the BOF. Biomass constituent were grouped in two different 

sets. The first group correspond to inorganic ions. By assuming that inorganic ions do 

not impose a growth restriction, the corresponding exchange reactions were allowed to 

freely enter and leave the network by setting lb and ub to -1000 and 1000, respectively. 

For carbon based biomass constituents, a manual gap filling procedure was performed. 

Biomass components were sequentially added to the BOF individually and further FBA 

was performed for BOF maximization. If the optimization leads to a positive flux through 

the biomass reaction, a subsequent component was added to the BOF and simulation 

was re-ran. For optimizations resulted in no flux through the biomass reaction, the 

network was updated by adding the needed reactions able to sustain growth. This 

process was repeated until all biomass constituents were added to the BOF. Simulations 

were performed under aerobic chemolithoautotrophic conditions (external oxygen 

reaction exchange lb and ub were set to -1000 and 1000) and using h2co3 as a unique 

carbon source for the three major electron donors: fe2, tetrathionate (ttton) and 

thiosulfate (tsul). In order to avoid operation of the rusticianin complex for tetrathionate 

and thiosulfate simulations, CYT2 reaction bounds were set to 0. GAM and NGAM were 

not considered for the gap filling procedure and determination of minimal media. Three 

different minimal synthetic media were generated according to the specific electron 

donor related to the corresponding metabolism. Metabolism specific simulations were 

performed by using the previously determined media conditions, which define A. 

ferrooxidans aerobic chemolithoautotrophic growth, using 3 three different electron 
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donors. The metabolisms studied were abbreviated based according to the specific 

electron donor: specifically for aerobic ferrous ion (FIM), tetrathionate (TTM) and 

thiosulfate (TSM) metabolism 

1.3.5 Genetic Algorithm for proton translocation stoichiometry estimation and 
sensitivity analysis 

The proton translocation stoichiometry for ATPS5rpp, NADHI, CYTAA32, 

CYTAA31, CYTRED, CYTBC1, CYTBO3, CYTBD (see Figure 1-8), the GAM reaction 

stoichiometry and NGAM flux were estimated based on the analysis outlined in Figure 

1-1. A genetic algorithm was implemented in order to adjust the model parameters 

based on previously reported experimental results (Boon 1996; Eccleston and Kelly 

1978; Hold, Andrews and Asenjo 2009) using three different electron donors (i.e. fe2, 

ttton, and tsul) under aerobic chemolithoautotrophic metabolic conditions. In total 20 

different experimental points specifying the growth rate, h2co3 uptake rate, o2 uptake 

rate (only for FIM), and the corresponding final electron donor (fe2, ttton or tsul) were 

used for simulations (see Table 1-2, Table 1-3 and Table 1-4). For the proton 

translocation reactions, upper and lower bounds on the number of allowable protons 

able to cross the periplasmic membrane were estimated.  

These bounds were estimated based on Mitchell’s chemiosmotic theory and also 

obtained from experimental data (Cox et al. 1979) (see  

Table 1-5, Table 1-6 and  

Table 1-7 for more details and specific calculations) . Bounds on GAM were set 

according to reasonable reported values regarding similar analysis. Furthermore, to 

reduce the number of unknown variables , the NGAM was set as 2.5% of the GAM 

(Feist et al. 2006). In order to initialize the genetic algorithm, first, 20 different 

metabolism-specific models were generated by setting the corresponding metabolism 

constraints and the specific experimental h2co3 uptake rate. Second, the corresponding 

reaction to evaluate, and initial values for proton translocation and GAM reactions 

stoichiometry were set for each one of the 20 models. Initial parameter lower and upper 

bounds for genetic algorithm initialization were set randomly inbetween the 
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corresponding minimum lower and maximum upper allowable bound space. Third, 

genetic algorithm performed variables were defined, such as: crossover function, 

mutation function and stopping criteria. After models and genetic algorithm initialization, 

the algorithm started. 

Table 1-2: ferrous ion experimental data obtain from (Boon 1996) 

µ [h-1] fe2 uptake rate 
[mmol*gDW-1*h-1] 

o2 uptake rate 
[mmol*gDW-1*h-1] 

co2 consumption rate 
[mmol*gDW-1*h-1] 

0.09 297 65.0 3.9 
0.08 277 58.4 3.4 
0.06 204 48.7 2.3 
0.05 172 43.8 2.0 
0.04 160 39.0 1.9 
0.04 147 33.1 1.6 
0.03 115 27.3 1.3 
0.02 79 17.5 0.6 
0.01 50 12.9 0.4 

 

Table 1-3: Tetrathionate experimental data obtain from (Eccleston and Kelly 1978) 

µ [h-1] s4o6 uptake rate 
[mmol*gDW-1*h-1] 

co2 consumption rate 
[mmol*gDW-1*h-1] 

0.02 2.6 0.720 

0.029 3.5 1.044 

0.037 4.2 1.332 

0.041 4.45 1.476 

0.063 6 2.268 
 

Table 1-4: Thiosulfate experimental data obtain from (Eccleston and Kelly 1978) 

µ [h-1] s2o3 uptake rate 
[mmol*gDW-1*h-1] 

co2 consumption rate 
[mmol*gDW-1*h-1] 

0.026 4.5 0.94 

0.039 6.7 1.40 

0.051 7.6 1.84 

0.065 9.25 2.34 

0.079 11 2.84 

0.125 15.6 4.50 
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Table 1-5: Half reaction (reduction) potential value involved in A. ferrooxidans electron 
transfer membrane reactions 

F [kj*mol-1*V-1] = 96.485 ΔG 
Half reaction (reduction) [mV] [kJ/mol] 

2H+ + 0.5 O2 + 2 e-    -> h2o 1120 108 
2 fe3 + 2 e- -> 2 fe2 770 74 

adp + pi + h -> atp + h2o 466 45 
etpcycAox + 2 e-  -> etpcycArd 285 27 

q8 + 2 h +  2 e-  -> q8h2  110 11 
s4o6

-2 + 2 e-  -> 2 s2o3
-2 80 8 

nad + 2 h + 2 e-  -> nadh + h -320 -31 
 

For each round, FBA was utilized for optimizing growth and quantitative 

phenotypic evaluation. Fitness was calculated by comparing FBA predictions with 

previously reported experimental results, specifically for o2, fe2, ttton and tsul uptake 

rate and growth rate, for each one of the 20 models. The coefficient of determination 

(R2) was evaluated for each dataset (R2Set1 (fe2), R2Set2 (ttton) and R2Set3 (tsul)), 

and the average (R2m) was used for fitness evaluation. The objective function for the 

genetic algorithm was the minimization of (1-R2m). MATLAB® version 8.1.0.604 (The 

MathWorks Inc., Natick, MA) genetic algorithm was used for all simulations. Once proton 

translocation, GAM and NGAM stoichiometry were estimated, a metabolism specific 

sensitivity analysis for each estimated variable was performed. For each metabolism, 

the estimated parameters were independently varied from the optimal values. According 

to the variation, FBA was used to calculate the corresponding R2Set1, R2Set2 and 

R2Set3 deviation, observed from the FBA predictions and experimental results. 

Table 1-6: Thermodynamically calculated min and max bounds of potential proton translocation reactions involved 
in A. ferrooxidans electron transfer membrane reactions, based on (Cox, Nicholls and Ingledew 1979) 

   
ATPS5rpp CYTAA31 NADHI CYTBC1 CYTAA32 CYTRED CYTBD CYTBO3 

pH Gradient External 
pH 

ΔμH+ 
[mV] 

nH+/ 
nATPmin 

nH+/2e-
max 

nH+/2e-
min 

nH+/2e-
min 

nH+/2e-
max 

nH+/2e-
max 

nH+/2e-
max nH+/2e-max 

-5.35 0.94 261 1.8 1.3 1.65 2.53 3.20 0.67 3.87 3.87 

-4.41 1.97 258 1.8 1.4 1.67 2.56 3.24 0.68 3.92 3.92 

-3.53 2.93 235 2.0 1.5 1.83 2.81 3.56 0.75 4.30 4.30 

-2.59 3.95 170 2.7 2.1 2.53 3.89 4.92 1.03 5.95 5.95 

-0.72 6.00 131 3.6 2.7 3.29 5.05 6.39 1.34 7.73 7.73 

0.22 7.03 98 4.8 3.6 4.39 6.73 8.52 1.79 10.30 10.30 

1.08 7.96 94 5.0 3.7 4.59 7.04 8.91 1.87 10.78 10.78 
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Table 1-7: Proton translocation lower and upper bound used for genetic algorithm parameter estimation. 

   

xnTh bounds pH 
2 

 
reaction name reaction formula 

ΔEh 
[mV] 

lb ub x0 

ATPS5rpp18 pi[c] + adp[c] + x1Th[p] -> h2o[c] + atp[c] + x1Th[c] 466 
 3.3 18 

 5.0 
18 

4.15 

CYTAA31 2 fe2[e] + 0.5 o2[c]  + 2 h[c] + x2Th[c]  -> 2 fe3[e] + h2o[c] + x2Th[p] 
350 0.0 1.4 ‡ 

0.7 

NADHI† nad[c] + q8h2[c] + x3Th[p]  -> h[c] + nadh[c] + q8[c] + x3Th[c] 
-430 1.7 ‡ 5.0 

3.35 

CYTBC1 2 fe2[e] + q8[c] + 2 h[c] + x4Th[p] -> 2 fe3[e] + q8h2[c] + x4Th[c]  
-660 2.6 ‡ 5.0 

3.8 

CYTAA32 0.5 o2[c] + etpcycArd[p] + x5Th[c]  -> h2o[c] + etpcycAox[p] + 
x5Th[p]  835 0.0 3.2 ‡ 

1.6 

CYTRED q8h2[c] + etpcycAox[p] + x6Th[c]  ->  q8[c] + etpcycArd[p] +x6Th[p]  
-175 0.0 0.7 ‡ 

2.85 

CYTBD q8h2[c] + 0.5 o2[c] + x7Th[c] -> h2o[c] + q8[c] + x7Th[p] 
1010 0.0 3.9 ‡ 

1.95 

CYTBO3 q8h2[c] + 0.5 o2[c] + x8Th[c] -> h2o[c] + q8[c] + x8Th[p] 
1010 0.0 3.9 ‡ 

1.95 

GAM Afe_biomass_mc506_WT_139p0M 

 
0.0 140.0 

70 

NGAM 
h2o[c] + atp[c]  -> h[c] + pi[c] + adp[c]   0.0 4.0 

2 

NGAM was estimated as 2.5% of GAM(Feist, Scholten, Palsson, Brockman and Ideker 2006). Translocated protons and 
thermodynamically determined bound were denoted as xnTh and ‡, respectively. ATP synthase (ATPS5rpp) bounds were set 
according to previous work(Ferguson and Ingledew 2008).  

 

1.3.6 Reaction essentiality analysis 

Reaction essentiality analysis was performed for FIM, TTM and TSM. The 

analysis consists of the sequential independent reaction removal from the model, 

followed by FBA simulations for growth maximization. For each simulation the h2co3 

uptake rate was set to 2.34 mmol/gDW/h. Reactions were removed by setting the 

corresponding lb and ub to 0. Simulations predicting growth rates higher than 0, were 

defined as non-lethal reaction knock-outs. Lethal knock-outs were clustered in terms of 

subsystems and further analysis was performed.  

1.3.7 Reaction knock-down simulations 

Reaction knock-down simulations were performed only for aerobic 

chemolithoautotrophic FIM. The h2co3 uptake rate for each simulation was set to 2 

mmol/gDW/h. fe2 and o2 were freely allowed to enter and leave the cell. In order to 

analyze the growth-rate and EPS production due to metabolic co2 production and 

independent reaction flux constriction, 12 different simulations were calculated for each 

of the reactions in the model. Those conditions where defined by two parameters. First, 

each reaction was allowed to proceed by constraining the optimal flux at 0 %, 25 %, 50 
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%, 75 % and 100 %. When constraining reaction flux at 0%, all reactions were freely 

allowed to proceed according to the corresponding directionality. On the contrary, 

reaction fluxes constrained at 100 %, mean a knock-out. The others constraining 

percentages represent the knock-down ratio from the optimum. Additionally, a co2 

transport was incorporated and constrained in the same manner. By constraining this 

transport reaction, metabolically produced co2 was allowed to leave the cell at 0 %, 50 

% and 100 %. FBA was used to maximize BOF, and for each reaction and condition, the 

corresponding growth rate and EPS production rate were saved. 

1.3.8 Reaction knock-out simulations 

EPS production in A. ferrooxidans is crucial for the bioleaching process. It has 

been demonstrated that EPS activation in A. ferrooxidans, significantly increases the 

pyrite bioleaching capacity (Gehrke et al. 1998). EPS aids the process, by mediating the 

bacterial adhesion to the sulfide mineral surface. And by concentrating ferric ion in the 

mineral-microorganism interface by complexation with uronic acids or the EPS residues, 

allowing the oxidative attack on the sulfur to take place (Sand and Gehrke 2006). Based 

on the genome-scale reconstruction, model-driven growth-coupled designs through 

reactions knock-outs for EPS production were calculated. This growth-coupled designs 

could be difficult to achieve and may require multiple knock-outs. A number of 

algorithms, such as OptKnock (Burgard et al. 2003), OptGene (Patil et al. 2005), 

RobustKnock (Tepper and Shlomi 2010), and GDLS (Lun, Rockwell, Guido, Baym, 

Kelner, Berger, Galagan and Church 2009), have been proposed for designing 

production strains through gene knock-outs. Still, the search for knock-out phenotypes is 

computationally extensive, since the solution of one or more mixed-integer linear 

problems (MILP) are involved. This means that the time taken to solve MILPs arising 

from network reconstructions becomes prohibitive. Instead of formulating a MILP, an 

exhaustive search over all single, double, and triple knockout mutants was performed.  

A major benefit of this strategy is that it finds all growth-coupled designs instead of a 

single mutant returned by most of the MILP based algorithms. Reaction knock-out 

simulations were performed only for aerobic chemolithoautotrophic ferrous ion 

metabolism. The h2co3 uptake rate for each simulation was set to 2.34 mmol/gDW/h. 

fe2 and o2 were freely allowed to enter and leave the cell. Furthermore, a metabolic co2 
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transport reaction step was added to the model. Single, double and triple knock-outs 

were simulated. First, in order to decrease the number of simulations, a subset of 

reactions was determined. Specifically, all non-lethal reactions were taken into account 

for the simulations. In total 180 reactions were used for this analysis. Second, from this 

subset of reactions, all possible combination knock-outs for single, double, and triple 

deletions were determined. Third, for each deletion combination, FBA was used to 

optimize growth. Finally, in order to obtain EPS production associated to growth, knock-

out combinations associated with phenotypes able to grow and simultaneously produced 

EPS were saved. Knock-out reactions were simulated by setting the ub and lb to 0. 

1.4 Results and Discussions 

The results are presented in according to Figure 1-1. First, a description on the 

content added to create the genome-scale A. ferrooxidans metabolic reconstruction and 

further conversion into a computational model is described. Second, by using a genetic 

algorithm in conjunction with experimental data, the GENRE was validated and proton 

translocation stoichiometry for key metabolic reactions was estimated. Third, a 

retrospective model-driven analysis describing A. ferrooxidans key metabolic capabilities 

and potential applications for EPS production was studied. 

1.4.1 Acidithiobacillus ferrooxidans ATCC 23270 genome-scale metabolic 
network reconstruction and unique metabolic capabilities 

A genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270, 

iMC507, was generated by performing a bottom-up reconstruction approach (Figure 

1-1A). Based on the annotated genome, an automated database was generated for 

further curation and integration of the available genomic and biochemical data. The final 

reconstruction captures all major known metabolic pathways and contained 507 genes, 

587 metabolic and transport reactions, and 573 nonunique metabolites, which were 

distributed over 42 subsytems and three different cellular compartments: extracellular, 

periplasm and cytoplasm. In general, the reconstruction accounts for 16 %, 69 %, and 

92 % of the initial automated database genes, reactions, and metabolites respectively. 

Reactions were subdivided into 13 high-level functional categories based on the major 
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metabolic roles of the cell. Figure 1-2 shows the reaction, gene and metabolite 

reconstruction content in terms of the function categories. The largest number of 

reactions was involved in the biosynthesis of amino acids, cofactors and prosthetic 

groups (Figure 1-2A). In total, 79 % of the reactions have a GPR association (Figure 

1-2A). The high number of transport reactions with no gene assignments, points to the 

fact that further work is needed to characterize the biochemical foundations involved in 

the transport of molecules in A. ferrooxidans. As shown in Figure 1-2B, almost all genes 

were specific for each functional category. In the case of metabolites, this is completely 

the opposite (Figure 1-2C), showing that almost all metabolites are shared among the 

different functional categories. 

 

Figure 1-2: Properties of iMC507. (A) The number of reactions in each functional category.  Non gene associated reactions are 
shown by the shaded portion of each bar. (B) The number of independent genes with associated reactions in each category are 
indicated by the lighter portion at each bar. The solid portions correspond to the number of genes unique to each category (i.e. 
associated only with reactions in one category). (C) The number of independent metabolites with associated reactions in each 
category are indicated by the lighter portion at each bar. The solid portions correspond to the number of metabolites unique to each 
category (i.e. associated only with reactions in one category). 
 

Since A. ferrooxidans has the ability to grow under extremely low pH and on 

sources of electrons that yield scarcely sufficient energy for ATP synthesis and other 

endergonic processes vital for the cell (Ferguson and Ingledew 2008), a detailed 

characterization of the electron and hydrogen transfer pathways through all three 

cellular compartments was crucial for enabling the systems analysis of the energetic 

processes and understanding it’s unique capabilities. An extensive effort was made to 

construct the most reliable model that exceeds previously published work in detail and 

coverage (Hold, Andrews and Asenjo 2009). Together with reconstructing the main 

carbon and precursor metabolism for biomass, the reconstruction process was focused 

on describing the energy metabolism regarding three different electron donors: ferrous 

ion (FIM), tetrathionate (TTM) and thiosulfate (TSM). All major metabolic subsystems 
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are outlined in Figure 1-3, specifying the reaction name and the corresponding gene 

association. For FIM, the reconstruction includes the flow of electrons from the oxidation 

of fe2 by Cyc2 (CYT) to reduce o2 via the aa3 complex (CYTAA31, downhill pathways), 

and to reduce nad via the bc1/quinone/nadh complex working in reverse (CYTBC1 and 

NADHI, uphill pathway). The switch point between the downhill and the uphill flow was 

represented at the level of the rusticyanin complex, where CyA1(CYTA2) and 

Cyc1(CYT1) diverge the electron flux through the uphill and downhill pathways, 

respectively (Quatrini et al. 2009). For the uphill pathway, individual reactions for the 

rusticyanin complex (CYT1, CYT2, and CYTA2), cytochrome oxidase bc1 (CYTBC1), 

cytochrome c oxidase (CYTAA31) and a ubiquinone nadh dehydrogenase (NADHI). 

Reactions CYTBC1 and NADHI, in the uphill pathway, were modeled as being 

energetically driven by the proton motive force (Bruscella et al. 2007; Levican et al. 

2002). Nevertheless, no specific proton translocation stoichiometry was found. For 

reaction CYTAA31, in the downhill pathway, discrepancies arise when trying to 

determine whether this reaction translocates , protons from the cytoplasm into the 

periplasmic space (Ferguson and Ingledew 2008). For this, CYAA31 was modeled as if 

it were actually translocating protons through the membrane. In order to computationally 

estimate the missing proton translocation stoichiometry, a genetic algorithm was 

implemented (see Methods). Reduced inorganic sulfur compound (RISC) metabolism is 

of great importance for biohydrometallurgical technologies. Biologically relevant RISCs 

are sulfide, polysulfides, elemental sulfur, sulfite, thiosulfate and polythionates, such as 

tri-, tertra-, and pentathionate. All of these species are finally oxidized to sulfate, being 

responsible for lowering the pH value in their habitats (Rohwerder and Sand 2007).  

Since RICSs exist in multiple oxidation steps, from -2 to +6, many relevant enzymes, 

reactions steps and intermediates remain undiscovered and unconnected (Quatrini, 

Appia-Ayme, Denis, Jedlicki, Holmes and Bonnefoy 2009).  With the aim of 

characterizing already identified RISC oxidation pathways, individual reactions for 

elemental sulfur, tetrathionate and thiosulfate metabolism were incorporated into the 

model. Additionally, computational model validation for TTM and TSM was performed. 

RISC oxidation was modeled by incorporating the so-called Sox system. Reaction 

compartmentalization was based on previously reported work (Chi et al. 2007; Quatrini, 

Appia-Ayme, Denis, Jedlicki, Holmes and Bonnefoy 2009). Elemental sulfur was 
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proposed to be oxidized by a dioxygenase (SULDO) (Rohwerder and Sand 2003). The 

product of SULDO is sulfite, which is further oxidized to sulfate by a sulfite cytochrome c 

reductase (SCCR). Sulfate can be exported outside the cell by SO4tex. 

The reduced cytochrome c (CycA2) is further oxidized by the cytochrome oxidase 

CYTAA32 (Chi, Valenzuela, Beard, Mackey, Shabanowitz, Hunt and Jerez 2007), which 

is different from the ferrous ion metabolism oxidase. Thiosulfate and tetrathionate 

metabolism were proposed to work as a cycle (Beard et al. 2011), where tetrathionate 

hydrolase converts tetrathionate to thiosulfate (4THASE1 or 4THASE2) (Kanao et al. 

2007; Kikumoto et al. 2013). Then, by using a thiosulfate quinone oxidoreduxtase 

(TSQOC), thiosulfate is regenerated to tetrathionate and contributs to the quinone pool 

(Quatrini, Appia-Ayme, Denis, Jedlicki, Holmes and Bonnefoy 2009). TSQOC represents 

a switch point where electrons are diverged i) in the form of reduced ubiquinone (q8h2) 

to NADHI for nadh generation, described as the “RISC uphill pathway”, and ii) for o2 

reduction and generation of proton motif force via two different electron transfer systems 

through the “RISC downhill pathway”. The first system is formed by a quinone 

dependent bc1 complex (CYTRED) catalyzing cytochrome c (CycA2) reduction. Further, 

CycA2 is oxidized by the cytochrome oxidase CYTAA32 which catalyzes direct o2 

reduction into water. The second system able to directly reduce o2 into water might be 

accomplished by two different cytochrome oxidases, CYTBD or CYTBO2 (Quatrini, 

Appia-Ayme, Denis, Jedlicki, Holmes and Bonnefoy 2009). Using the implemented 

genetic algorithm, proton translocation reaction stoichiometry for CYTAA32, CYTRED 

and CYTBO3 was determined. Results are shown in the following section.  

The first step of co2 consumption in A. ferrooxidans was modeled according to 

co2 aqueous equilibrium. When atmospheric co2 is dissolved in water, three different 

major molecular species are formed: carbonic acid (h2co3), bicarbonate (hco3) and 

carbonate (co3) (Valdés et al. 2010). Below pH 4 the only specie is h2co3, and at pH 6.5 

the predominant specie is hco3. Since A. ferrooxidans periplasmic pH is equal to 2 and 

cytoplasmic pH equal to 6.5, the transport reaction (HCO3tpp) that moves dissolved co2 

through the periplasmic membrane was modeled by simulating the chemical h2co3 

conversion to hco3 due to the pH aqueous equilibrium. Once hco3 enters the cell, a 

carbonic anhydrase (HCO3E) is used to generate co2 which is fixed via the Calvin Cycle 
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(Gale and Beck 1967; Valdes et al. 2003) using energy and reducing power derived 

from the oxidation of RISCs and ferrous ions.  

A key reaction in the Calvin Cycle was the ribulose-bisphosphate 

carboxylase/oxygenase (abbreviated RUBISCO in the reconstruction), which enables 

co2 incorporation into the chemolithoautotrophic metabolism (Esparza, Cardenas, 

Bowien, Jedlicki and Holmes 2010), connecting the Calvin Cycle with the 

Glycolysis/Gluconeogenesis pathway. In order to feed RUBISCO and ensure rapid 

conversion of cytosolic hco3 to co2 at concentrations that support optimal RUBISCO 

activity, a carbonic anhydrase (HCO3E in the model) that catalyzes the reversible 

hydration of co2 was added to the model. Fixed carbon through RUBISCO can be 

channeled for glycogen biosynthesis and to provide precursors for anabolic reaction. In 

total 90 % of all reactions in the central carbon metabolism (TCA, Calvin Cycle, Pentose 

Phosphate, Glycolysis/Gluconeogenesis, pyruvate, glyoxylate and anaplerotic 

metabolism) were associated with at least one GPR association. The TCA cycle was 

modeled as incomplete(Valdes, Pedroso, Quatrini, Dodson, Tettelin, Blake, Eisen and 

Holmes 2008), as has been previously described in a number of obligate autotrophic 

bacteria and archaea(Wood et al. 2004). Nevertheless, these pathways were 

incorporated based only on genome annotation (i.e. confidence score equal to 2), 

meaning that further biochemical characterization is needed. EPS production, for 

mediating bacterial attachment, was modeled in the same way the as BOF reaction. The 

EPS reaction is a linear equation consisting of the fractional molar amounts of 

metabolites that constitute the EPS, which have been proposed to be formed via the 

Leloir pathway (Barreto et al. 2005; Harneit, Göksel, Kock, Klock, Gehrke and Sand 

2006). Specifically, eight out of ten reactions labeled as EPS biosynthesis, were linked 

with at least one GPR association. 
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Figure 1-3: Schematic representation of the main metabolic pathways of Acidithiobacillus ferrooxidans ATCC 23270 metabolism. 
Continuous line depicts one reaction, which is associated with relevant information such as enzyme name abbreviation, gene ID and 
E. C. number; dashed line indicates that more than one reaction are involved in the pathway. Hyphen (-) indicates a 
consecutive series of genes (e.g. AFE_0001-3 means AFE_0001 and AFE_0002 and AFE_0003). Logical operators were used: ^ 
indicates "AND"; v indicates "OR". Each color represents one pathway. In the cytoplasm: Red = Glycolisis/Gluconeogenesis; ligth 
blue = Pentose Phosphate Pathway; orange = incomplete Citric Acid Cycle; blue = Aminoacid Biosynthesis; brown = Chorismate 
Biosynthesis; purple = Alternate Carbon Metabolism; yellow = Membrane Lipid Metabolism/Fatty acid biosynthesis; pink = 
Nucleotide Salvage Pathway/Purine and Pyrimidine Biosynthesis; light green = Glycogen Metabolism; green = Cysteine 
Metabolism/Sulfur Metabolism. In the membranes/periplasm: green = Oxidative Phosphorylation; dark red = Hydrogen and Formate 
Utilization; ligth blue = Sulfur Metabolism. Top-left cycle = Calvin-Benson-Bassham Cycle. OM = Outer membrane; IM = Internal 
membrane. Compounds 3-oxoacyl-ACP, R-3-hydroxyacyl-ACP, 2-trans-enoyl-ACP, Fatty acyl-ACP and Lipids are generic 
intermediates in the fatty acids biosynthesis pathway. 
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Table 1-8: Total amount of reactions and reactions with GPRs associations organized by subsystems 

Sub Systems Nr of 
Reactions 

Reactions 
with Gene 

Associations 

Reactions 
with No 

Gene 
Associations 

Sulfur Metabolism 14 7 7 

Arginine and Proline Metabolism 18 15 3 
Threonine and Lysine Metabolism 13 13 0 
Tyrosine, Tryptophan, and Phenylalanine 
Metabolism 18 18 0 
Histidine Metabolism 11 11 0 
Valine, Leucine, and Isoleucine Metabolism 16 14 2 
Methionine Metabolism 17 13 4 
Alanine and Aspartate Metabolism 3 3 0 
Cysteine Metabolism 7 7 0 
Glutamate Metabolism 2 2 0 
Glycine and Serine Metabolism 5 5 0 
Glutathione Metabolism 1 0 1 
Nitrogen fixation 1 1 0 
Aminoacid and related molecules 112 102 10 

Folate Metabolism 7 3 4 
Cofactor and Prosthetic Group Biosynthesis 111 90 21 
Nucleotide Salvage Pathway 47 29 18 
EPS biosynthesis 10 8 2 
Glycerophospholipid Metabolism 12 9 3 
Lipopolysaccharide Biosynthesis 24 19 5 
Citric Acid Cycle 9 9 0 
Calvin-Benson-Bassham Cycle 16 15 1 
Pentose Phosphate Pathway 5 5 0 
Glycolysis/Gluconeogenesis 11 10 1 
Pyruvate Metabolism 2 2 0 
Glyoxylate Metabolism 2 0 2 
Anaplerotic Reactions 3 2 1 
Central Carbon Metabolism 48 43 5 
Membrane Lipid Metabolism 23 21 2 
Cell Envelope Biosynthesis 74 72 2 
Oxidative Phosphorylation 14 13 1 

Transport, Inner Membrane 23 12 11 
Polyphosphate Storage 2 0 2 
Exchange 29 0 29 
Transport, Outer Membrane Porin 25 0 25 
Transport 79 12 67 
Purine and Pyrimidine Biosynthesis 23 23 0 

Glycogen Metabolism 8 5 3 
Hydrogen and Formate Utilization 3 3 0 
Alternate Carbon Metabolism 11 5 6 
Unassigned 2 0 2 
Other Functions 24 13 11 

TOTAL 615 461 154 

The number of essential reactions for growth under aerobic FIM, TSM and TTM 

was determined using FBA (see Methods). The results of such calculations are 

presented in Figure 1-4. These results have to be interpreted with caution, since 

calculations were based on the assumption that all enzymes are expressed. 

Transcriptomics or proteomic data would considerably improve the results by 

constraining the internal fluxes.  Approximately 68% of all possible single reaction 

deletions would be lethal for the organism under aerobic FIM, TTM and TSM. In general, 
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when comparing the percentage of knock-out reactions non-essential for growth, for all 

studied subsystems, no considerable fluctuations were observed under FIM, TSM, and 

TTM.  

 

Figure 1-4: Reaction essentiality analysis. For each studied metabolism, ferrous ion (orange), tetrathionate (yellow), and thiosulfate 
(green) the percentage of knock-out reactions non-essential for growth in various subsystems were plotted. Specific associations 
with carbon and energy (black lines), and aminoacid related molecules (red lines) metabolism were specified. 

The only substantial difference between these three metabolisms on reaction 

essentiality was observed for oxidative phosphorylation and sulfur metabolism, where in 

both cases the number of knock-out reactions being non-essential for growth was higher 

for TSM and TTM compared to FIM. Besides, higher percentage of knock-out reactions 

non-essential for growth are associated to Carbon and Energy metabolism compared to 

Amino acid and related molecules metabolism. This shows how flexible the Carbon and 

Energy metabolism and how rigid for Amino acid and related molecules metabolism are 

in A. ferrooxidans due to knock-out perturbations. 

In general, iMC507 represents a database of current biochemical, genetic and 

genomic knowledge about A. ferrooxidans. Based on the available experimental 

evidence, a confidence score was assigned to each reaction in the metabolic network. 



 

28 
 

On completion, the GENRE had an overall average confidence of 2.02. In fact, 19% of 

all reactions in A. ferrooxidans included in iMC507 have been very well or well-studied, 

while 58% were fundamentally based on the genome annotation and 18% of all 

reactions reflects that no evidence is available, but the reaction is required for modeling. 

Future research efforts should be directed towards this latter group, which is described 

in Figure 1-5. 

1.4.2 GEM proton translocation stoichiometry estimation and network validation 

Genome-scale reconstructions need to be validated by assessing their ability to 

compute physiological states(Thiele and Palsson 2010). iMC507 was validated by 

comparing growth predictions with experimental values (see Supplementary Table 5). A 

genetic algorithm able to estimate several model parameters (such as proton 

translocation for 8 different periplasmic proteins and GAM stoichiometry), which 

minimizes the error between growth predictions and experimental values was 

implemented (see Methods). The genetic algorithm simultaneously fitted FBA 

predictions with experimental results for chemolithoautotrophic aerobic FIM, TTM and 

TSM conditions. Proton translocation stoichiometry for ATPS5rpp, CYTAA31, NADHI, 

CYTBC1, CYTAA32, CYTRED, CYTBO3 and CYTBD and, GAM stoichiometry, were 

determined by performing three different genetic algorithm based simulations. Since 

CYTBO3 and CYTBD are the same reaction (but with different GPR association), and in 

order to decrease prediction uncertainties, only CYTBO3 was used for all analysis and 

to further extrapolate the results to CYTBD. 

First, for all studied reactions proton translocation stoichiometry variables were 

fed into the genetic algorithm for parameter estimation. A total of 100 simulations were 

performed and statistical results showing each parameter mean, standard deviation and 

violin plots are shown in Figure 1-6. According to the results, for reactions ATPS5rpp, 

CYTAA31, NADHI and CYTBC1, the smallest proton translocation stoichiometry 

standard deviation from the set was determined (approximately in the order of 

hundredths).  A particular characteristic of this subset of reactions is that all reactions 

are involved in FIM. While for reactions involved in the RISC’s, such as, CYTAA32, 

CYTRED and CYTBO3/CYTBD, standard deviations were in the order of tenths. An 
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R2m equal to 0.92 was calculated, meaning that each simulation was run until an 

acceptable numerical completion. A detailed analysis on the RISCs electron transfer 

metabolism showed that reactions CYTAA32 and CYTRED in conjunction performed the 

same function as CYTBO3. 

 
Figure 1-5: Comprehensive categorization of current available information for A. ferrooxidans. Subsystems and the number of 
reaction in each one of them are listed. Colors represent the percentage of reactions in the corresponding subsystem, organized by 
confidence score.  The confidence score was assigned to each reaction in the model on scale from 1 to 4. A score of 4 was assigned 
when experimental, gene product function and biochemical reaction evidence are available; 3 represents physiological, genetic or 
proteomic evidence; 2 correspond only to genome annotation evidence for a gene product and its reaction(s) association; and a 
score of 1 shows that no evidence is available, but the reaction is required for modeling porpoises.   
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This network characteristic generates higher variability on the predictions when 

trying to estimate the parameters during the genetic algorithm procedure, by adding 

more degrees of freedom to the minimization problem. In order to accurately determine 

these proton translocation reaction stoichiometry, each system (i.e. CYTRED/CYTAA32 

and CYTBO3) was independently studied. Based on the latter, the second genetic 

algorithm based simulation was performed similarly to the first one, excluding CYTBO3 

and CYTBD from the analysis. Similarly, the third genetic algorithm based simulation 

was performed excluding CYTRED and CYTAA32 from the analysis and reincorporating 

the CYTBO3/CYTBD function. From these results, more accurate predictions for 

CYTRED, CYTAA32 and CYTBO3 were determined, by considerably decreasing the 

proton translocation stoichiometry standard deviation on the predictions. Furthermore, 

for the second and third simulations, no considerable changes in the parameters mean 

and standard deviation for reactions ATPS5rpp, CYTAA31, NADHI and CYTBC1 were 

observed. 

Based on the previous analysis, proton translocation stoichiometry for ATPS5rpp, 

CYTAA31, NADHI, CYTBC1, CYTAA32, CYTRED, CYTBO3 and CYTBD was set to 5, 

0, 5, 5, 1.3, 0.5, 1.8 and 1.8 respectively. GAM stoichiometry was set to 139 and NGAM 

to 3.48. Based on this solution, for all 7 adjusted curves (Figure 1-7, B and C), an R2m 

equal to 0.92 was calculated. Under the simulated conditions, iMC507 exhibited a 

growth rate, oxygen uptake rate and the corresponding electron donor uptake rate 

practically identical to the experimental results. This result shows the predictive potential 

and preciseness of COBRA methods for simulation of cellular outcomes by using 

additional constraints. In order to analyze the predicted proton translocation and GAM 

stoichiometry sensitivity on the specific R2Set (1:fe2, 2:ttton and 3:tsul), independent 

perturbations were imposed for each parameter as a factor from the local optimal 

solution and a further R2Set was calculated by using FBA. 
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Figure 1-6: Genetic algorithm based analysis output summary. Proton translocation and GAM stoichiometry violin plots, mean (red 
cross), median (yellow square) and standard deviation for each fitted parameter in the corresponding reaction were plotted and 
tabulated. Furthermore, R2m calculations were incorporated. Results were given for three different genetic algorithm based 
simulations. 1) All parameters were fed into the model for computational estimation according to methods. Then 2) and 3) were 
executed similar to 1), but in these cases CYTBO3 and CYRED/CYTAA32 were excluded from the genetic algorithm based 
estimation, respectively. In total each simulation was run 100 times. Initial values for lower and upper bounds proton translocation 
and GAM reactions stoichiometry were set randomly inbetween the corresponding minimum lower and maximum upper allowable 
bound space.   

R2Set variations were represented as a violin plot along the y-axe. The highest 

calculated R2Set for each studied parameter was reported and represented as red lines. 

Since CYTAA31 proton translocation stoichiometry was calculated as 0, variations were 

performed not as a factor from the optimal solution, but instead the direct proton 
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translocation value corresponding to the y-axis was set for overall R2Set sensitivity 

analysis (Figure 1-7D). The most sensitive and constrained reaction in the metabolism is 

ATPS5rpp. Under FIM (Figure 1-7D), when setting the proton translocation and GAM 

stoichiometry to 0 in the y-axis, no significant changes in the overall R2 were observed 

for NADHI, CYTBC1, CYTBD/CYTBO3 and GAM. Furthermore for these reactions, 

when increasing the parameters by approximately 100 % (factor equal to 2), no 

considerable decrease in the R2 was observed. Specifically for reactions NADHI and 

CYTBC1, when increasing the number of translocated protons, FBA predictions shows 

an increase in reaction CYTAA31 flux, thus calculating ferrous ion and oxygen uptake 

rates greater than the experimental results, displacing the R2Set ratio to 0 (see Figure 

1-8 for flux  visualization). For reaction CYTBD/CYTBO3, proton translocation was 

modeled leaving the cytoplasm. When the proton translocation stoichiometry is 

increased, FBA predicts that less oxygen and ferrous ions are needed to balance the 

cytoplasmic hydrogen in reaction CYTAA31. When GAM is increased, FBA predicted 

that ATP synthase (ATPS5rpp) needs to generate more ATP to fulfill the GAM and 

NGAM demand (see Figure 1-8 for flux visualization). Similarly, as the generation of 

ATP by ATPS5rpp is associated with a net flux of protons inside the cell, CYTAA31 

needs to balance the cytoplasmic protons by increasing oxygen and ferrous ion uptake 

rates, deviating the R2Set ratio. Due to the existence of uphill and downhill pathways, 

electrons can be diverted for biomass production (through reaction CYTBC1) and for 

balancing cytoplasmic protons (through reaction CYTAA31).  For TTM and TSM the 

same kind of behavior regarding R2Set deviations and cytoplasmic proton balance was 

observed. But, different reactions were involved in the process. Electrons for biomass 

production are taken by the NADHI reaction, and electrons for balancing the cytoplasmic 

protons are used in CYTBD/CYTBO3 or CYTAA32 reactions. It is worthwhile drawing 

attention to the fact that for TSM (Figure 1-7F), better solutions for proton translocation 

and GAM stoichiometry values, compared to TTM (Figure 1-7E) were found, specifically 

for ATPS5rpp, NADHI, CYTAA32, CYTRED, and GAM. This is shown by the 

displacement of the maximum R2Set value from the line equal to 1 (no changes from 

the local optimum). Furthermore, TSM showed more degrees of freedom in comparison 

to TTM, since R2Set solutions might be achieved at higher perturbations. 
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Figure 1-7: Parameter estimation and validation of the carbon fixation and electron donor pathways results. Based on the genetic 
algorithm model parameter estimation results, three graphs of phenotypic data that demonstrate the model-predicted growth 
conditions on ferrous ion (A), tetrathionate (B) and thiosulfate (C) as electron donors and using oxygen as an electron acceptor, are 
viable for growth conditions. The corresponding R2Set (1:fe2, 2:ttton and 3:tsul) for each predicted/experimental dataset pair are 
shown. A R2Set sensitivity analysis for ferrous ion (D), tetrathionate (E) and thiosulfate (F) metabolism was performed. Proton 
translocation predicted stoichiometry values were varied along the y axe and the corresponding R2Set variation from the optimum 
was calculated and plot for each one of the proton translocated stoichiometry predicted reactions as a violin graph. In this case 
R2Set represent the prediction error for each studied metabolism independently. The maximum calculated R2Set due to parameter 
variations was reported and represented as a red line. 
 

1.4.3 iMC507 model driven analysis of electron transfer metabolism 

The electron transfer metabolism in A. ferrooxidans is mostly distributed in the 

periplasmic membrane. Depending on the electron donor, different reactions might be 

involved in the electron transfer process. Three different electron transfer metabolisms 

were studied; FIM, TTM and TSM. In order to obtain the reaction flux distribution for 

each metabolism, FBA was performed by setting the h2co3 uptake rate at 2 

mmol/gDW/h, and optimizing the BOF. The corresponding electron donor was allowed 

to freely enter the system. In the case of FIM, results indicated (Figure 1-8) that the flow 

of electrons is split at the rusticyanin branch point, which has actually been suggested 

as the balancing point for nadh and ATP requirements in the cell by adjusting the flow of 

electrons(Elbehti et al. 2000). According to Figure 1-8 most of the electron flow from 

ferrous ion goes to oxygen via cytochrome oxidase (CYTAA31) which generates proton 

motive force by consuming hydrogen for the oxygen reduction. Specifically 3 % of the 

electrons goes to the formation of nadh by the CYTBC1 and NADHI reactions. nadh is 

further utilized by GAPD1 (i.e. in the Calvin cycle ) for carbon fixation. This result is 
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consistent with reality, where a previous report (Ferguson and Ingledew 2008) shows 

that less than 5 % of electrons go to NADHI. Furthermore, for simulations under oxygen 

limitation (see Figure A1-2), this behavior remains valid. It has been demonstrated that 

before ferric compounds start precipitating in the form of jarosite, growth on ferrous ion 

tends to increase the culture pH (Qiu et al. 2005; Yarzabal et al. 2004). This ferrous ion 

oxidation might be due to A. ferrooxidans metabolism. In fact, a net inward proton flux 

through the extracellular membrane was calculated. In more detail, predictions show 

that the majority of the inward proton flux into the cytoplasm goes through the ATP 

synthase (ATPS5rpp), specifically 67 % of all protons entering the periplasm. The 

remaining proton flux is mainly distributed in equal amounts between NADHI and 

CYTBC1. In the cytoplasm, approximately 50 % of all incoming protons are used for 

oxygen reduction through CYTAA31 and the rest mainly for anabolic processes. 

Furthermore, as shown in Figure 1-9, growth is only achievable under alkalization 

conditions. FVA analysis also supports this fact (see Figure A1-1, reaction Htex), where 

no proton outward production flux was calculated. 

For TTM and TSM a completely different set of periplasmic membranes for 

transferring electrons into the Calvin cycle and for proton motive force generation were 

found to be active in the metabolic network. Furthermore, similar flux distribution results 

were obtained for both RISCs metabolism. TTM and TSM were outlined in Figure 1-8 

describing the flux distributions in blue and light blue arrows, and discrepancies between 

fluxes solutions were highlighted specifically for TSM in orange. The rest of the flux 

solutions remain the same for both metabolisms. As shown in Figure 1-8 ttton is 

hydrolyzed by tetrathionate hydrolase (4THASE2) generating sulfate (so4) , which is 

excreted by the system, and tsul which is used by the thiosulfate-quinone oxireductase 

complex (TSQOC) to transfer electrons into the quinone pool. The 4THASE2/TSQOC 

cycle plays an important role at the beginning of the electron transfer system by first 

incorporating the electrons coming from tsul into the metabolism, and second 

transferring electrons from water to ttton, recycling the water generated by either 

CYTBO3/CYTBD or CYTRED in conjunction with CYTAA32. Interestingly, discrepancies 

showed that TSM produces less protons and sulfate through reactions Htex and 

SO4tex, specifically 40 % and 13 % less than TTM, respectively. Furthermore, based on 
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a sulfur molar basis, approximately 12 % less sulfur in the form of tsul is needed to 

sustain growth for TSM. This demonstrates that in terms of electron transfer efficiency 

TSM is more efficient than TTM. This is due to the amount of electrons that each 

electron donor is able to give on a sulfur molar basis, where tsul showed twice as many 

of electrons per sulfur. Furthermore, for TTM, water is needed to overcome the electron 

deficiency in order to sustain growth. Specifically for TTM, 70 % of all incoming electrons 

from water goes to TSQCO via thiosulfate, the rest are excreted in the form of sulfate. 

Basically the tetrathionate/thiosulfate/sulfate complex worked as a shuttle electron 

transfer system to deliver electrons from water to the quinone pool. At this point, the rest 

of the network behaves similarly for TSM and TTM, where electrons are diverged 

analogous to the FIM, to a “RISC uphill pathway” through NADHI, and to a “RISC 

downhill pathway” through CYTBO3/CYTBD or CYTRED in conjunction with CYTAA32. 

Due to the existence of a FBA alternate optimum, for the “RISC downhill pathway” 

different cytochrome oxidase combinations might worked as well as CYTBO3/CYTBD. 

By knocking-out the CYBO3/CYTBD reactions, the parallel solution regarding the 

CYTRED/CYTAA32 system was calculated and outlined in Figure 1-8 According to the 

flux distribution results both systems worked similarly. Furthermore, the total amount of 

proton translocation stoichiometry of both systems is the same (i.e. 1.8 protons 

translocating through the periplasmic membrane). Approximately 10 % of all incoming 

electrons from TSQCO go to NADHI. The rest, just like the FIM are used to balance the 

cytoplasmic protons and generate proton motive force through the cytochrome oxidases. 

It is well known that during growth A. ferrooxidans acidifies the media when using RISCs 

compounds as electron donors (Rohwerder and Sand 2007). This fact is represented by 

predicting a flux of protons outside the external membrane through the transport 

reaction Htex under TSM and TTM (Figure 1-8).  
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Figure 1-8: Electron transfer flux distribution predicted for ferrous ion, tetrathionate and thiosulfate metabolism. A flux map 
illustrating the electron transfer metabolism for ferrous ion (FIM), tetrathionate (TTM) and thiosulfate (TSM) metabolism. Reactions 
are specify in capital letters, while metabolites in lowercase letters and yellow circles. Arrows indicate the direction of enzymatic 
activity and the arrow thicknesses are proportional to the flux through each reaction (a thicker arrow has a larger flux). Light blue 
arrows represent the electron flow in the network. Visually undetectable fluxes for being so small were increased by a corresponding 
factor specified next to the corresponding reaction in the map. The diagram shows the energy-conserving ion translocating reactions, 
each labeled with the stoichiometry of the translocated ion. Proton translocation stoichiometry predicted reactions are shown in 
brown. The different colored regions correspond to the tree modeled spaces: cytoplasm (white), periplasm (yellow) and the 
extracellular space. For each network the corresponding standard reduction potential (in mV) associated with a specific 
transformation was specified. The uptake of h2co3 for each simulation was constraint at 2 mmol/gDW/h, and the corresponding 
electron donor was allowed to freely enter the system. FBA was performed for FIM, TTM and TSM. Due to flux similarities results, 
TTM and TSM were plotted together. For TTM, reactions, metabolites and fluxes we potted according to the previous description. In 
the case of TSM, reaction fluxes different from the ones obtain in TTM, were plotted in orange. For TTM and TSM, an additional flux 
distribution, called as parallel solution, was plotted. This solution was obtained when constraining CYTBO3 and CYTBD ub and lb to 
0. 

In a different manner, FVA analysis showed that Htex feasible bounds able to 

sustain grow are within the positive range of the scale (see Figure A1-1), demonstrating 

that in order to sustain growth, the system only has to produce protons, which are 

generated by 4THASE. The same kind of behavior was described in Figure 1-9, where 

growth was only possible under acidification media conditions. 
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Figure 1-9: Effect of proton exchange on predicted growth rate: the proton exchange between the cell and the medium was varied 
from -100 to 60 mmol/gDW/h and the relative growth rate was computed under autotrophic conditions for ferrous ion (black line), 
tetrathionate (green line), and thiosulfate (red line) metabolism. 

 

1.4.4 iMC507 model driven analysis of central carbon metabolism 

Since FIM, TTM and TSM shared similar reactions for central carbon metabolism 

(carbon fixation, Calvin cycle, glycolysis and incomplete TCA), only FIM was studied in 

detail. For this, different FBA simulations were performed to quantitatively describe the 

fluxes involved in central carbon metabolism and study the optimum behavior of iM507 

(Figure 1-10). For this, two different kind of analysis were performed. First, in order to 

decipher the internal flux distribution under different conditions, three different 

simulations were performed. For the first simulation the carbon uptake rate in the form of 

h2co3 was set to -2 mmol/gDW/h, oxygen and ferrous ion uptake rate were left 

unconstrained, and FBA was run to maximize the flux through BOF. Flux distributions 

are shown in Figure 1-10A. It is well known that A. ferrooxidans fixes co2 through the 

Calvin cycle. In order to feed RUBISCO and ensure rapid conversion of cytosolic hco3 

to co2 at concentrations that support optimal RUBISCO activity, a carbonic anhydrase 

(HCO3E in the model) that catalyzes the reversible hydration of co2 converts almost all 

incoming hco3 to co2.  Approximately 95 % of all hco3 goes through HCO3E to the 

RUBISCO reaction in the form of co2. The rest goes directly to fatty acid, arginine and 

proline metabolism. RUBISCO catalyzes the formation of two molecules of 3-

phosphoglyceric acid (3pg) from ribulose biphosphate (rb15bp) and co2. 3pg represents 

the junction point between the Calvin cycle and glycolysis. Specifically, 83 % of all 3pg 

produced is taken by the phosphoglycerate kinase (PGK) to continue the Calvin cycle, 
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whereas the rest goes to glycolysis via phosphoglycerate mutase (PGM1), 

demonstrating that most of the activity is concentrated in the Calvin cycle. Through an 

ATP driven reaction, PGK phosphorylates 3pg to produced 13dpg. 98 % of all ATP is 

produced by ATP synthases and from all ATP  produced approximately 16 % is used by 

PGK and 19 % and 33% is used by BOF and nitrogen fixation through NITF 

correspondingly. Next, using a nad dependent glyceraldehyde-3-phosphate 

dehydrogenase (GAPD1), electrons are incorporated to the metabolism by converting 

13dpg to g3p. Approximately 93 % of all nadh is generated from NADHI, and GAPD1 

uses 67% of all nadh. This reaction could be replaced by a nad dependent 

glyceraldehyde-3-phosphate dehydrogenase (GADP2), which might work as well as 

GAPD1, through the conversion of nadh to nadph by a nad transhydrogenase 

(NADTRHD). This alternate use can be observed from the FVA analysis (see Figure A1-

1), where the GAPD1 range of performance without acting against biomass productions 

starts at 0. This means that, when GAPD1 flux is 0, GAPD2 takes over its function and 

allows the Calvin cycle to work. From this perspective, almost all of the reactions in the 

Calvin cycle need to be actively working in order to sustain growth, with the exception of 

FBA, FBA3, FBP, SBPASE and TALA, which can be taken over by other specific 

reactions or pathways. Same kind of trend can be found throughout glycolysis and the 

TCA cycle, where only MDH and FUM can be taken over by other specific reactions or 

pathways. In order to determine the effect on constraining the ferrous ion uptake rate, a 

second simulation was performed. In this case same the constraints as in the previous 

simulation were applied, but instead of leaving the ferrous ion uptake rate 

unconstrained, it was constrained to -140 mmol/gDW/h (only lower bound). Solutions 

from the second FBA simulation were divided by the solutions obtained in the first 

simulation. The corresponding ratio is outlined in Figure 1-10B. By constraining ferrous 

ion uptake rate, it was not possible for the system to generate the needed reducing 

power in the form of nadh, nor the sufficient ATP to use all the available h2co3, 83 % of 

the available carbon was used to generate biomass. This is shown in Figure 1-10B, 

where almost all reactions showed a decrease of approximately in 83 % compared to 

the first analysis. Discrepancies arose from alternate optimum, where reactions FBA and 

FBP are replaced by a cycle generated by the TALA reaction in conjunction with FBA3 

and SBPASE. In order to analyze the carbon flux through the network, when forcing the 
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system to use all carbon under ferrous ion restriction, a third simulation was performed. 

In this simulation, the same constraints as in the second simulation were applied, but 

instead of setting only the lower bound for the h2co3 uptake rate, the upper bound was 

also constrained to -2 mmol/gDW/h. Solutions from the third FBA simulation were 

divided by the solutions obtained in the first FBA simulation. The corresponding ratio is 

shown in Figure 1-10C. For this simulation the system was not able to generate the 

needed reducing power in the form of nadh, nor the sufficient ATP for generating the 

optimum amount of biomass, instead, just like the previous result only 83 % of the 

available carbon was used to generate biomass. The rest of the carbon was used to 

generate EPS. All the changes observed are related to the production of EPS. In the 

case of PDH and SUCOAS, both reactions showed an increase compared to the first 

solution. This is due to the need of the system to generate precursors for fatty acid 

biosynthesis which enables the EPS production. Furthermore, a considerable increase 

was observed in the Calvin cycle, specifically in the TALA, FBA3 and SBAPSE loop. 

This is due to the need to produce f6p-B, which is also needed for producing the EPS 

precursor. This result shows how rigid the network is in terms of the carbon metabolism. 

Although evidence based on genome annotation indicates the presence of genes coding 

for the production of organic acids in A. ferrooxidans, specifically for a lactate/malate 

dehydrogenase (MDH), an acetyl-CoA synthetase (ACS) and a alcohol dehydrogenase 

(AFE_0697, not included in the model), no convincing experimental evidence regarding 

their production was found. Despite this, and in order to study the effect of carbon 

leaking throughout the cell due to metabolic co2 production, transport reactions allowing 

metabolic co2 transport through the periplasmic (CO2tpp) and extracellular (CO2tex) 

membrane were added. 
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Figure 1-10: Carbon fixation and EPS flux distribution predicted for ferrous ion metabolism. A) This analysis was executed by setting 
the carbon uptake rate (lower bound) in the form of h2co3 to 2 mmol/gDW/h, ferrous ion was left unconstrained, and FBA was run to 
maximize the flux through BOF.  Reactions are specify in capital letters, while metabolites in lowercase letters. Arrows indicate the 
direction of enzymatic activity and the arrow thicknesses are proportional to the flux through each reaction (a thicker arrow has a 
larger flux). B) A FBA flux comparison between flux distributions obtained in A and simulations ran when constraining the ferrous ion 
uptake rate (lower and upper bounds) to -140 mmol/gDW/h. Arrows indicate the direction of enzymatic activity and the arrow 
thicknesses are proportional to the ration between predictions (a thicker arrow shows that flux obtained in A is lower that the 
predicted when constraining ferrous ion uptake rate). C) A FBA flux comparison between flux distributions obtained in A and 
simulations ran when constraining the ferrous ion uptake rate (lower and upper bounds) to -140 mmol/gDW/h and carbon uptake rate 
(lower and upper bound) in the form of h2co3 to 2 mmol/gDW/h. Arrows indicate the direction of enzymatic activity and the arrow 
thicknesses are proportional to the ration between predictions (a thicker arrow shows that flux obtained in A is lower than the 
predicted when constraining ferrous ion and h2co3 uptake rate). D) The results of two different analyses were plotted. i) carbon 
uptake rate in the form of h2co3 was set to 2 mmol/gDW/h (lower bound), ferrous ion was varied between 0 and -140 mmol/gDW/h, 
and FBA was ran to maximize the flux through BOF. And ii), a metabolic co2 transport reaction was added, carbon uptake rate in the 
form of h2co3 was set to 2 mmol/gDW/h (lower and upper bound), ferrous ion was varied between 0 and -140 mmol/gDW/h, and 
FBA was ran to maximize the flux through BOF. Results for specific reactions were outlined. Lines in light blue represent reaction 
flux predictions for growth rate and EPS production. Reactions in black, represents the predicted flux in the oxygen and h2co3 
uptake reactions. And the reaction in purple, represents the discrepancy between prediction i) and ii) (external metabolic co2 
transport reaction flux). Optimality lines for predictions outline in A, B and C were plotted in gray. E) A flux distribution for simulations 
obtained by setting the carbon uptake rate in the form of h2co3 to 2 mmol/gDW/h (lower and upper bound), varying the ferrous ion 
uptake rate between 0 and -140 mmol/gDW/h, and running FBA to maximize the flux through BOF were outlined. 

As mention previously, the second analysis was performed in order to study the 

system evolution in terms of carbon uptake, biomass, EPS and co2 production due to 

ferrous ion restriction. To study and compare different metabolic scenarios, three 

different simulations were performed (Figure 1-10D-E). The first simulation was 

performed by setting the carbon uptake rate in the form of h2co3 to -2 mmol/gDW/h 

(only lower bound), the co2 production rate was constraint to 0 (lower and upper 

bounds), oxygen uptake rate was left unconstraint, ferrous ion was varied between 0 

and -200 mmol/gDW/h, and FBA was run to maximize the flux through BOF. The second 

simulation was performed in the same manner, but constraining the h2co3 uptake rate in 

both bounds, forcing the system to metabolize all of the carbon. The third simulation was 

performed identical to the second one, but this time metabolic co2 was allowed to leave 

the cell. Results from these simulations are shown in Figure 1-10D-E. For the first 
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simulation, results are specifically plotted in Figure 1-10D. Since only the h2co3 lower 

bound was set, the cell was freely allowed to metabolize the necessary amount of h2co3 

to produce biomass, and not diverge fluxes towards EPS production. The specific 

amount of h2co3 consumed was highly constrained by the ferrous ion uptake rate, which 

delivers the electrons necessary for proton motive force, ATP and nadh generation. This 

is shown in Figure 1-10D, where the h2co3 uptake rate increases along the permissible 

ferrous ion uptake rate (x-axe). All carbon goes directly to biomass, reaching the 

optimum at approximately a ferrous ion uptake rate of -170 mmol/gDW/h (optimality line 

2). This point represent the FBA flux distribution result used to plot Figure 1-10A, and 

the point described by the optimality line 2 (ferrous ion uptake rate constraint to -140 

mmol/gDW/h) represents the flux distribution ratio plot in Figure 1-10B. Oxygen uptake 

rate continues to increase after reaching the optimum growth. This was to neutralize the 

incoming proton from ferrous ion and produce water from oxygen and protons by 

CYTAA31. When constraining lower and upper bounds in h2co3 uptake rate, the 

minimum ferrous ion flux necessary to sustain growth was approximately -120 

mmol/gDW/h. Furthermore, EPS production associated to growth was determined. 

While ferrous ion uptake rate increases, EPS production decreases and biomass 

increases reaching its optimum when no EPS production was observed (optimality line 2 

in Figure 1-10E). The point described by the optimality line 2 (ferrous ion uptake rate 

constraint to -140 mmol/gDW/h) represents the flux distribution ratio plot in Figure 

1-10C. According to the third simulation, by not constraining metabolic co2 transport 

outside the cell, the same results are obtained as in the first simulation. Discrepancies 

arose in h2co3 consumption and metabolic co2 evolution (purple line in Figure 1-10D). 

In this case h2co3 uptake was always to -2 mmol/gDW/h, and co2 decreases until 

reaching the optimum growth, where the cell uses all h2co3 for biomass production. No 

EPS production was observed, since from an energetic point of view, EPS precursors 

are harder or energetically more expensive to produce compared to metabolic co2. This 

suggests that there might be some carbon losses due to metabolic co2 production 

during cell growth, depending the ferrous ion availability. 
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1.4.5 EPS production potential analysis 

As mentioned in the previous section, due to network rigidity in terms of carbon 

metabolism, and in order to study the effect of carbon leaking through the cell due to 

metabolic co2 on EPS production, transport reactions allowing the metabolic co2 

transport through the periplasmic (CO2tpp) and extracellular (CO2tex) membrane were 

added to iMC507. Two different analyses were performed. First, using FBA, a graph 

describing the effect of external metabolic co2 transport addition and the individual 

reaction knock-down on the predicted growth rate and EPS production was generated 

(Figure 1-11). When reactions were not constrained to a certain percentage (i.e. knock-

down = 0 %), no effect on the growth rate nor on the EPS production was observed. 

This result was expected, since the system was left to freely take all ferrous ions and 

oxygen are needed. Also, no co2 production was associated and all carbon was utilized 

for biomass production. When constraining reactions to 25 % of its optimum value (i.e. 

knock-down = 25 %) and closing the metabolic co2 transport, several knock-down 

reactions showed that when perturbing them EPS production appears and growth rate 

diminishes. This perturbation directly affects the carbon and energy metabolism by 

diminishing the growth rate and forcing the system to produce EPS. For cases when 

metabolic co2 was allowed to leave the cell 50 % and 100 % from its optimum, EPS 

production decays up to 0, showing the preference of the cell to produce co2 instead of 

EPS, as mentioned before.  Nevertheless, two reactions (i.e. MDH and FUM) regardless 

of co2 transport activation, were able to disrupt the system for the production of EPS. It 

also can be appreciated that the greater the knock-down for the reactions, the higher the 

EPS production is (i.e. moving from the bottom to the top). When reactions were 

constrained to 100 % (i.e. knock-down = 0 %), this means that no flux was allowed to 

pass through the reactions, simulating a single reaction knock-out for all reactions in the 

network. As shown in Figure 1-11, some reaction knock-outs were lethal for the cell 

where no growth rate and EPS production were calculated. This behavior happened 

regardless of the co2 transport. As mentioned before 2 different single reaction knock-

outs were consistent in all of the simulated conditions, where biomass was produced 

while producing EPS. This reaction knock-out allows the insilico design of A. 

ferrooxidans strains for growth-coupled EPS production, which is crucial for increasing 
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the bioleaching capacity. A subset of reactions exist, that when knocked-down higher 

EPS production is achievable. By inspecting their corresponding subsystems 

association, it appears that the majority of them are related to electron transfer 

metabolism. 

 

Figure 1-11: Knock-down and external metabolic co2 transport effect on growth rate and EPS production. A graph describing the 
external metabolic co2 transport and the individual reaction knock-down effect on the predicted growth rate and EPS production is 
outlined. Simulations were executed by adding an external co2 transport and constraining it in 0, 50 and 100% from the maximum 
capacity (x-axe), all reactions in the model were constraint between 0, 25, 50, 75 and 100% from their optimum capacities (y-axe). 
For each simulation the carbon uptake rate in the form of h2co3 was set to 2 mmol/gDW/h, oxygen and ferrous ion uptake rate were 
left unconstrained, and FBA was ran to maximize the flux through BOF. For each one of the simulations, growth rate (red bars) and 
EPS (light blue bars) were plotted. In each sub-graph the corresponding biomass and EPS production rate was plotted for each one 
of the reactions (x-axe) in the model. 
 

Furthermore, an analysis on the EPS growth-coupled potential for additional 

double and triple knock-outs was evaluated. Results from this analysis are shown in 

Figure 1-12. A total of 134 growth-coupled designs were calculated (see Table A1-3). 

Two of them correspond to single knock-outs, 12 to double knock-outs and the rest to 

triple knock outs. Out of the 134 growth-coupled designs 4 different production 

envelopes were identified, which described the Pareto frontier in the EPS flux vs. the 

biomass flux plane. The four different regions were plotted in Figure 1-12A. 

Approximately 72 % of all the calculated designs correspond to region 2 (blue). Most of 

the knock-out designs in region 2 correspond to triple knock-outs (Figure 1-12B). Region 

3 shows the higher theoretical EPS achievable flux, a total of 12 designs were 
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calculated, where all of them correspond to triple knock-outs. In all of the calculated 

designs two different reactions were always found, either fumarase (FUM) or malate 

dehydrogenase (MDH), which described the production enveloped in region 1. Actually, 

each of them was found independently 67 times among all designs (see Figure 1-12C), 

representing the reactions with more instances among all growth-coupled designs 

reactions. Despite the latter, the subsystem with more reaction instances in growth-

coupled designs is the Nucleotide Salvage Pathway (see Figure 1-12D), which does not 

contain MDH and FUM that are part of the citric acid cycle. 

 

Figure 1-12: Growth-coupled EPS production strain design results. A) A graph that shows the production envelopes for different KO 
combinations that were calculated during the analysis. The EPS production rate is shown in the y-axe and the growth rate is given on 
the x-axe. 4 different production envelopes were characterized and described in different colors. B) A bar plot describing the number 
of growth coupled designs associated with the each characterized region. For each region the information about the number of 
knock-outs reactions associated with the corresponding growth coupled designs was incorporated. C) A bar plot showing the number 
of instances that each reaction in the y-axe was found in all growth coupled designs. Bar colors represents the subsystem 
associated with the corresponding reaction. D) A pie chart descrying the mayor subsystems associated with the predicted knock-out 
reactions.  

 

1.5 Conclusions 

A fundamental goal in biology is to understand and predict the genotype-

phenotype relationships in the cell. COBRA methods organize biochemical, genetic and 

genomic knowledge into a mathematical framework which enables the quantitatively 

description of metabolic physiology. In this work, the first genome-scale metabolic 

reconstruction of Acidithiobacillus ferrooxidans ATCC 23270, iMC507 is presented, 

characterized, validated and utilized. The bottom-up metabolic network reconstruction of 

iMC507 represents a comprehensive knowledge base that summarizes and categorizes 

the information currently available for A. ferrooxidans, and serves as a framework for 

computational analysis. Based on experimental evidence and bioenergetics principles, 
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model parameters such as GAM, NGAM and proton translocation stoichiometry of key 

reactions involved in the electron transfer metabolism were predicted. iMC507 was 

validated for aerobic chemolithoautotrophic conditions by fixing co2 and using three 

different electron donors: ferrous ion, tetrathionate and thiosulfate. Based on the 

retrospective model-driven analysis and investigation of the electron transfer and central 

carbon metabolism, i) key electron transfer reaction proton translocation stoichiometry 

were predicted, ii) quantitatively phenotypic description of specific organism key 

properties  (i.e. uphill vs downhill pathway and effect of growth rate due to proton 

exchanged) in the electron transfer metabolism under aerobic growth and using ferrous 

ion, tetrathionate and thiosulfate as electron donors was determined, iii) quantitative 

phenotypic description of central carbon metabolism for aerobic growth and using 

ferrous ion was determined, and iv) based on the knock-down and knock-out analysis, 

several growth-coupled designs able to produce EPS were calculated and evaluated for 

further experimental implementation. 

iMC507 represents the firs genome-scale reconstruction of A. ferrooxidans specie 

and accounts for 507 ORFs (16%) of the current A. ferrooxidans genome annotation. 

iMC507 represent a major advance compared to the small scale metabolic network 

models predecessor, which only account for 62 reaction in the first case(Hold, Andrews 

and Asenjo 2009) and 190 in the second case(Sepúlveda, Cortéz, Abarca, Valdecantos, 

Iglesias and Roa 2011). iMC507 average confidence score was equal to 2.02. This 

means that most of the network content was based on genome annotation. In fact only 

58% of the reactions were based on the genome annotation and 19% of all reactions in 

iMC507 have been very well or well-studied. The next step in the expansion of the A. 

ferrooxidans metabolic network will required research efforts directed to poorly 

described pathways. The current knowledge reflects the traditional use of A. 

ferrooxidans as a chemolithoautotrophic ferrous ion and RISCs oxidation-model 

bacterium, where subsystems such as co2 fixation, sulfur metabolism, oxidative 

phosphorylation, and EPS biosynthesis have been well studied. In contrast, 

metabolisms involved in amino acid fixation, central carbon, transport reactions, among 

others are poorly described and in need of further characterization. Furthermore, in 

order to increase the accuracy and utility of the model, BOF should be reevaluated in 
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future efforts, since some of the precursors were determined based on previous work 

non-related to A. ferrooxidans genome-scale models, specifically iAF1260. According to 

the latter, problems might arise when conditionally essential metabolites are 

inappropriately included in the BOF, leading to false reaction essentiality and growth-

coupled design predictions.  

Since its discovery A. ferrooxidans has been extensively studied under 

chemolithoautotrophic aerobic condition, by using mainly ferrous ion and RISCs 

compounds as electron donors. In this study the proton translocation stoichiometry for 

key enzymes involved in the ferrous ion and RISCs metabolism together with the GAM 

and NGAM values were predicted. Specifically for the CYTAA31 reaction (cytochrome c 

oxidase aa3-type), involved in ferrous ion metabolism, much debate has been generated 

during the years whether it actually translocates protons across the membrane. Based 

on the genetic-algorithm base approach, no proton translocation stoichiometry for this 

reaction was predicted. Furthermore, ATP synthase proton translocation stoichiometry 

was determined, showing how COBRA methods in conjunction with experimental 

phenotypic data can be useful for elucidation of chemiosmotic parameters of the cell. It 

is worthwhile to notice that all of these predictions were performed assuming an external 

pH equal to 2. Since thermodynamic bound on proton translocation stoichiometry 

changes depending on the pH difference between the cytoplasm and the periplasm, 

different results might be obtained when changing the pH conditions. 

A quantitatively phenotypic description of specific organism key properties in the 

electron transfer metabolism (i.e. uphill vs downhill pathway and effect of growth rate 

due to proton exchanged) under aerobic growth and using ferrous ion, tetrathionate and 

thiosulfate as electron donors was determined. For FIM, a complete and accurate 

description of the electron transfer metabolism was performed, showing that most of the 

electrons (i.e. more than 90 %) go to the proton neutralization by o2 reduction into water 

through CYTAA31. The rest of the electrons go directly to the Calvin cycle via the “uphill 

pathway”. Furthermore, media alkalization, a characteristic behavior during ferrous iron 

growth was also predicted. With these results model prediction capacity was validated 

for FIM. More interesting was the study of TTM and TSM, where the TSM efficiency over 

the TTM was quantitatively demonstrated. Furthermore, a “RISC uphill pathway” and a 
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“RISC downhill pathway” were described and quantitatively characterized. Specifically 

the “RISC downhill pathway” is described by two independent systems (i.e. 

CYTBO3/CYTBD and CYTAA32 in conjunction with CYTRED). Attention must be paid in 

future work to elucidate if those pathways actually work independently from each other 

or in parallel. When comparing the “downhill pathway” in FIM and RISC metabolism, 

proton translocations in reactions involved in the RISC metabolism (i.e. 

CYTBO3/CYTBD and CYTAA32 in conjunction with CYTRED) were predicted, no proton 

translocation in CYTAA31 was found. By inspecting the reactions in more detail, in the 

case of RISC metabolism and FIM, protons used for o2 reduction come from cytosolic 

protons integrated through TSQOC and CYTAA31 respectively. According to the latter, 

in order to neutralize the protons in the cytoplasm the “downhill pathway” in FIM and 

RISC metabolism uses the protons to generate water. Furthermore, this process is 

aided by proton translocation through the “RISC downhill pathways” in the RISC 

metabolism. 

In this work the central carbon metabolism was outlined by incorporating three 

major pathways: the Calvin cycle, glycolysis and the incomplete TCA cycle. The junction 

point was determined by 3-phosphoglyceric acid, which connects glycolysis with the 

Calvin cycle. The Calvin cycle showed a higher flux activity compared to the rest of the 

central carbon metabolism, mainly to sustain the co2 fixation through the RUBISCO 

reaction. Approximately 96 % of the carbon flux through the Calvin cycle is used for co2 

fixation, and the rest is used for generating biomass precursors. For these biomass 

precursors the carbon flux is diverged to glycolysis and the Calvin cycle in a 2.5/1 ratio. 

The central carbon metabolism is tightly coupled to the energy metabolism through the 

Calvin cycle, specifically in two reactions, first through the GAPD reaction, where almost 

all nadh is used for anabolic porpoises, and secondly through the PGK reaction, which 

uses 19 % of all ATP produced by the ATP synthase. By constraining the ferrous ion 

uptake rate to suboptimal values and forcing the cell to metabolize all incoming h2co3, a 

decrease in the growth rate, together with an EPS production was observed. This shows 

how rigid the metabolic network is in terms of the carbon metabolism backbone. Thus, in 

order to allow more degrees of freedom, regarding the internal carbon fluxes a metabolic 

co2 transport was hypothesized and incorporated into the metabolic network. Result 
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showed that instead of producing EPS, the system generates co2. Although these 

results are reasonable, no experimental evidence regarding metabolic co2 evolution, or 

small compound secretions (i.e. ethanol, lactate, acetate, etc) has been reported. This 

shows how COBRA methods might aid the process of hypothesis-driven discovery by 

simulating insilico phenotypes candidates for experimental validation.    

EPS production sensitivity was evaluated using two variables. The first was EPS 

production due to individual reaction knock-down. The second variable was the 

presence or absence of a metabolic co2 transport mentioned above. Overall, when no 

metabolic co2 was allowed to leave the cell, by increasing the knock-down strength, a 

subset of perturbed reactions was identified to promote EPS production. Due to the 

network rigidity in terms of carbon metabolism, this result was expected. On the other 

hand, when metabolic co2 was allowed to leave the cell, EPS production was observed 

only when FUM and MDH were perturbed. Furthermore, when these reactions were 

knocked-out, growth coupled EPS production was observed. Evidence regarding the 

incomplete TCA cycle disruption leading to EPS overproduction (Sepúlveda, Cortéz, 

Abarca, Valdecantos, Iglesias and Roa 2011), validates this results since  FUM and 

MDH are reactions present in the incomplete TCA cycle. Growth-coupled production of 

EPS depends on the energy benefit that the cell can obtain through the pathway 

activation related to EPS production. By knocking-out reactions an energy imbalance is 

generated. Growth coupled designs are generated when the cell recovers the imbalance 

by coupling EPS production related pathways to growth. The evaluation of all possible 

single, double and triple knock-outs for growth coupled design was performed. In total 

134 growth-coupled designs were found. In all of the predicted designs either FUM or 

MDH were found to be involved. Additionally reactions related to the Nucleotide salvage 

pathway, pyrimidine metabolism and methionine metabolism were found in double and 

triple knock-outs. Furthermore, growth coupled designs, such as those produced here, 

provide an extra tool for metabolic engineers by allowing the use of selection pressure to 

achieve a desired production state. Nevertheless, due to the lack of genetic tools that 

allows the knock-out implementation in A. ferrooxidans, it is not possible to implement 

the design experimentally yet. Still, competitive inhibition might be used in order to 



 

49 
 

disrupt the metabolism as utilized elsewhere (Sepúlveda, Cortéz, Abarca, Valdecantos, 

Iglesias and Roa 2011). 

As the field of constraint based modeling and analysis continues to expand by 

incorporating different cellular processes and interactions into the genome-scale space 

(e.g. transcription and translation in Escherichia coli (O'Brien et al. 2013) and 

Thermotoga maritime (Lerman et al. 2012)), iMC507 will serve as a key component for 

the quantitative study of A. ferrooxidans and related organisms by providing an 

extensive map of the cellular metabolism. Furthermore, iMC507 represents a major 

breakthrough for the A. ferrooxidans community, by unifying and describing our 

knowledge of this unique species and providing a computational platform for further 

analysis and hypothesis formulation for environmental and biotechnological applications.
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Chapter 2  
 

Generation of an atlas for commodity chemical 
production in Escherichia coli and a novel pathway 
prediction algorithm, GEM-Path 

 

2.1 Abstract 

The production of 75% of the current drug molecules and 35% of all chemicals 

could be achieved through bioprocessing (Arundel and Sawaya 2009). To accelerate the 

transition from a petroleum-based chemical industry to a sustainable bio-based industry, 

systems metabolic engineering has emerged to computationally design metabolic 

pathways for chemical production. Although algorithms able to provide specific 

metabolic interventions and heterologous production pathways are available, a 

systematic analysis for all possible production routes to commodity chemicals in 

Escherichia coli is lacking. Furthermore, a pathway prediction algorithm that combines 

direct integration of genome-scale models at each step of the search to reduce the 

search space does not exist. Previous work (Feist et al. 2010) performed a model-driven 

evaluation of the growth-coupled production potential for Escherichia coli to produce 

multiple native compounds from different feedstocks. In this study, we extended this 

analysis for non-native compounds by using an integrated approach through 

heterologous pathway integration and growth-coupled metabolite production design. In 

addition to integration with genome-scale model integration, the GEM-Path algorithm 

developed in this work also contains a novel approach to address reaction promiscuity. 

In total, 245 unique synthetic pathways for 20 large volume compounds were predicted. 

Host metabolism with these synthetic pathways was then analyzed for feasible growth-

coupled production and designs could be identified for 1271 of the 6615 conditions 
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evaluated. This study characterizes the potential for E. coli to produce commodity 

chemicals, and outlines a generic strain design workflow to design production strains. 

2.2 Introduction 

The global chemical industry has been driven by petroleum feedstocks for the 

past 100 years, where synthetic organic chemistry played a key role. Today, the global 

chemical market landscape is beginning to change, based on new possibilities for bio-

based product and process development. The renewed interest in industrial 

biotechnology is due to several reasons. First, the increases in petroleum prices 

squeeze commodity chemical production margins, increasing economically 

attractiveness of bio-based processes. Second, there is a strong socio-economic driver 

towards green chemistry and renewable feedstocks (Keasling 2012). Third, due to 

technological developments, the past 20 years has seen the successful demonstration 

of metabolic engineering enabling the generation of microbial strains for the production 

of a wide range of chemical compounds (Atsumi and Liao 2008; Lee, Na, Park, Lee, 

Choi and Lee 2012; Peralta-Yahya et al. 2012). The availability of high-throughput 

technologies, the advances of computational methods, and emergence of genome-scale 

systems analysis to analyze large amount of omics data, has given rise to the concept of 

‘systems metabolic engineering’ (Jang et al. 2012; Lee, Na, Park, Lee, Choi and Lee 

2012; Palsson and Zengler 2010) where the focus has shifted from perturbing individual 

pathways to manipulating the organisms as a whole. Genome-scale models (GEMs) can 

now be used as query platforms to examine new strategies and interventions as they 

contain a parts list of cellular components and their interactions (Feist, Henry, Reed, 

Krummenacker, Joyce, Karp, Broadbelt, Hatzimanikatis and Palsson 2007; Feist, 

Herrgard, Thiele, Reed and Palsson 2009; Orth, Conrad, Na, Lerman, Nam, Feist and 

Palsson 2011). By using constraint-based reconstruction and analysis (COBRA) 

approaches (Schellenberger, Que, Fleming, Thiele, Orth, Feist, Zielinski, Bordbar, 

Lewis, Rahmanian, Kang, Hyduke and Palsson 2011), outcomes of cellular metabolism 

have been predicted successfully for the production of various compounds (Bordbar et 

al. 2014a; Kim et al. 2008; Lee, Na, Park, Lee, Choi and Lee 2012; McCloskey, Palsson 

and Feist 2013; Yim, Haselbeck, Niu, Pujol-Baxley, Burgard, Boldt, Khandurina, 

Trawick, Osterhout, Stephen, Estadilla, Teisan, Schreyer, Andrae, Yang, Lee, Burk and 
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Van Dien 2011). Moreover, model-driven evaluations for the production potential for 

growth-coupled native products in E. coli have been performed (Feist, Zielinski, Orth, 

Schellenberger, Herrgard and Palsson 2010). However, a comprehensive computational 

analysis for the production of valuable non-native E. coli metabolites has not been 

performed. Therefore, we developed a systematic workflow in order to evaluate the 

production potential of 20 industrially relevant chemicals (Assary and Broadbelt 2011; 

Curran and Alper 2012; Fischer, Klein-Marcuschamer and Stephanopoulos 2008; Lee, 

Na, Park, Lee, Choi and Lee 2012; Paster, Pellegrino, Carole, Energetics, U.S. 

Department of Energy and Renewable Energy 2003; Werpy, Petersen, Aden, Bozell, 

Holladay, White, Manheim, Eliot, Lasure and Jones 2004; Zeng and Sabra 2011) in E. 

coli, by integrating a combination of computational methods and developing a new 

pathway prediction algorithm, GEM-Path (Genome-scale Model Pathway Predictor). 

Computational approaches for the prediction of non-native pathways exist, but 

are limited in their design and scope. Different approaches have been implemented for 

pathway prediction (Arita 2000; Carbonell, Planson, Fichera and Faulon 2011; Cho, 

Yun, Park, Lee and Park 2010; Dale, Popescu and Karp 2010; Greene, Judson, 

Langowski and Marchant 1999; Hatzimanikatis, Li, Ionita, Henry, Jankowski and 

Broadbelt 2005; Heath, Bennett and Kavraki 2010; Hou, Wackett and Ellis 2003; 

McShan, Rao and Shah 2003; Pharkya, Burgard and Maranas 2004), where increasing 

attention has been focused mainly on retrosynthetic algorithms (Carbonell, Planson, 

Fichera and Faulon 2011; Cho, Yun, Park, Lee and Park 2010; Henry, Broadbelt and 

Hatzimanikatis 2010; Yim, Haselbeck, Niu, Pujol-Baxley, Burgard, Boldt, Khandurina, 

Trawick, Osterhout, Stephen, Estadilla, Teisan, Schreyer, Andrae, Yang, Lee, Burk and 

Van Dien 2011) based on Biochemical Reaction Operators (BROs). In these analyses, 

BROs are used to go from a target compound to a predefined set of metabolites in an 

iterative backward search. In summary, all of these methods shared basically the same 

workflow, first calculating all structurally possible pathways and then scoring them using 

different kinds of metrics. During the synthetic pathway calculation, these algorithms 

unnecessarily expand the reaction space, generating all possible pathways that link a 

specific metabolite to a final specific product without performing pathway integration with 

content known to exist in a given production host. Furthermore, previous algorithms do 
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not integrate the bioprocessing condition-specific cofactor usage/generation, substrate 

usage, strain/oxygenation conditions, and related energy balances during the 

computation of pathways. In order to address these problems, we developed GEM-Path, 

by integrating retrosynthetic algorithms based on BROs and filtering procedures with 

GEMs at each iteration step. Furthermore, a novel reaction promiscuity analysis is 

introduced, which is based on known reaction substrate similarities.  These two features 

distinguish GEM-Path from other computational approaches. 

Once a synthetic pathway is successfully established, additional approaches can 

be taken to further engineer the host strain and synthetic pathways for enhanced 

production of a desired chemical. Adaptive laboratory evolution together with COBRA 

methods and organism-specific models has proven successful for the calculation of wild 

type E. coli optimal growth rates (Ibarra, Edwards and Palsson 2002), native E. coli 

metabolite production through knock-outs (Fong, Burgard, Herring, Knight, Blattner, 

Maranas and Palsson 2005), and for non-native E. coli metabolite production through 

heterologous pathway incorporation and knock-out implementations (Yim, Haselbeck, 

Niu, Pujol-Baxley, Burgard, Boldt, Khandurina, Trawick, Osterhout, Stephen, Estadilla, 

Teisan, Schreyer, Andrae, Yang, Lee, Burk and Van Dien 2011). Furthermore, the use 

of adaptive laboratory evolution together with growth-coupled knock-outs design, allows 

to select for strains with higher target compound production rates by coupling them to 

the selection for faster growth (Portnoy, Bezdan and Zengler 2011). Here, we integrate 

each of the predicted pathways under several different substrates/strain/oxygenation 

conditions with growth-coupled designs generated through reaction knock-outs by 

utilizing the RobustKnock (Tepper and Shlomi 2010) and GDLS (Lun, Rockwell, Guido, 

Baym, Kelner, Berger, Galagan and Church 2009) algorithms. Finally, in order to 

characterize E. coli’s potential production landscape for the studied compounds and for 

designs implementation purposes, a productivity analysis for maximum theoretical yield 

and maximum theoretical growth-coupled yield was performed. 
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2.3 Materials and Methods 

2.3.1 Model and flux balance analysis 

The metabolic reconstruction of Escherichia coli iJO1366 was utilized as a basis 

for synthetic pathway calculations, yield analysis, and further strain designs. This model 

has been proven to be predictive for computations of growth rates and metabolite 

excretion rates on a range of substrates and genetic conditions (Feist, Henry, Reed, 

Krummenacker, Joyce, Karp, Broadbelt, Hatzimanikatis and Palsson 2007; Orth, 

Conrad, Na, Lerman, Nam, Feist and Palsson 2011). For all phenotype simulation, flux 

balance analysis (FBA) was used. The biomass objective function (BOFcore), 

maintenance energy, and basic constraints were set according to the reported values in 

the reconstruction. FBA used the assumption of steady-state metabolic flux as described 

elsewhere (Orth, Thiele and Palsson 2010). All computations were performed using 

MATLAB® (The Mathworks Inc., Natick, MA, USA) and the COBRA Toolbox 

(Schellenberger, Que, Fleming, Thiele, Orth, Feist, Zielinski, Bordbar, Lewis, 

Rahmanian, Kang, Hyduke and Palsson 2011) software packages with TOMLAB 

(Tomlab Optimization Inc., San Diego, CA, USA) solvers.  

2.3.2 GEM-Path Algorithm: Chemoinformatics tools and techniques 

Throughout the process of synthetic pathway generation, chemoinfomatic tools 

were essential for integrating computational chemical analysis into genome-scale model 

theory. In order to properly handle molecular structures, a range of chemoinfomatic 

techniques were incorporated into the COBRA Toolbox MATLAB® environment. For this 

purpose, in-house methods and functions, which are described below, were developed 

based on ChemAxon (ChemAxon Ltd., Budapest, Hungary) software package libraries. 

Chemical Representation: for compound and reaction representation MDL 

Molfiles (Dalby et al. 1992) were used. A Molfile contains information about the atoms, 

bonds, connectivity, and coordinates of a molecule. The Molfile consists of some header 

information, the connection table containing atom information, then bond connections 

and types, followed by sections for more complex information. 
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SMIRKS & SMARTS: For BRO representation, SMIRKS (James et al. 2004) was 

used as a language for describing generic reactions by using a SMARTS (James, 

Weininger and Delany 2004) representation of the reaction’s substructures. A SMARTS 

pattern may include not only a specification of reaction center but also a specification of 

a local structure that must occur or is necessarily absent based on our best 

understanding of the relevant biochemistry (Silverman 2002). BROs were constructed 

based on the smallest substructure related to the structural change of the main 

substrates and products in the reaction. Based on previous studies (Henry, Broadbelt 

and Hatzimanikatis 2010; Mu et al. 2011; Yim, Haselbeck, Niu, Pujol-Baxley, Burgard, 

Boldt, Khandurina, Trawick, Osterhout, Stephen, Estadilla, Teisan, Schreyer, Andrae, 

Yang, Lee, Burk and Van Dien 2011), a set of 443 irreversible BROs were defined to 

generate novel biochemical reactions and pathways. Approximately 76% of the 

reactions in KEGG (Kanehisa, Goto, Hattori, Aoki-Kinoshita, Itoh, Kawashima, 

Katayama, Araki and Hirakawa 2006) and 72% of the reactions in BRENDA (Curran and 

Alper 2012) involved a transformation captured in this defined BRO set. Furthermore, 

depending on the BROs’s nature, three different types of metabolic transformation were 

defined: i) ‘1-1’ BROs simulate the substrate conversion without including any co-

products and co-substrates in the BRO, ii) ‘2-1’ BROs simulate anabolic conversions, 

merging the substrate with a cosubstrate, and iii) ‘1-2’ BROs simulate catabolic 

conversions, where the substrate breaks into the corresponding product and a co-

product. 2-2 transformations were ignored since they can be represented by a 2-1 

transformation followed by a 1-2 transformation. Co-products and co-substrates were 

selected from E. coli’s metabolome information. This formulation allows a host-specific 

integration at the reaction prediction level. 

Standardization and Mass Balance: since MDL Molfiles might come from different 

sources, a standardization procedure was performed. For each molecular structure, 

stereochemical information was removed and the major protonation form at pH 7 was 

determined. For each reaction, mass balance was performed using previously 

standardized molecular structures. If hydrogen did not reach the balance, reaction 

stoichiometry was corrected. 



 

56 
 

Substrate Fingerprint: Substrates were represented by chemical fingerprints. A 

chemical fingerprint (CFP) is a simple record of the fragments present in a chemical 

structure. The chemical fingerprint (CFP) of a molecule is defined as CFP = (Fi), where 

Fi refers to a molecular fragment with real occurrence in a molecule. Fi is obtained by 

the molecular fragmentation method. Each Fi in the fingerprint is represented in bit string 

where each position of the sequence is represented by ‘1’ or ‘0’ digits, depending on the 

presence or absence of the structural pattern predefined by Fi. Previous studies have 

shown good results by using linear fragments from 5 to 6 bonds (Hu et al. 2012; Latino 

and Aires-de-Sousa 2009). In this study linear fragmentation up to 6 bonds was used. 

Tanimoto Coefficient (TC): The premise of similarity searching is that similar 

structures have similar fingerprints. Here, we used the TC dissimilarity (TCdiss) metric to 

determine how similar two fingerprints were. Values of this metric are non-negative 

numbers. A zero dissimilarity value indicates that the two fingerprints are identical, and 

the larger the value of the dissimilarity coefficient the higher the difference between the 

two structures. In its original form, the Tanimoto metric is a similarity metric (TCsim): 

𝑇𝑠𝑖𝑠 =
𝐵(𝑚&𝑙)

𝐵(𝑚) + 𝐵(𝑙) − 𝐵(𝑚&𝑙)
 

Where a and b are two binary fingerprints, & denotes binary bit-wise and-operator, | 

denotes bit-wise or-operator, and B(x) is the number of 1 bits in any binary fingerprint x: 

𝐵(𝑥) = |{𝑥𝑖 = 1}|𝑥𝑖 ∈ {0,1}; 𝑖 = 1, … … ,𝑖}| = �𝑥𝑖

𝑛

𝑖=1

 

From that it is straightforward to obtain a dissimilarity measure: 

𝑇𝑑𝑖𝑠𝑠 = 1 − 𝑇𝑠𝑖𝑠 

It is worth noting that if the TCdiss between two fingerprints is 0, it means that both 

molecules share the exact same fingerprint.  While this doesn’t mean that both 

molecules are the same, it does mean that both molecules share the same bonds 
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according to the fragmentation process, since the molecular fingerprint only represents 

the presence or absence of a given particular bond pattern. 

Exact topology matching: Molecular graphs consist of nodes and edges, with atoms 

corresponding to the nodes and bonds corresponding to the edges. When we compare 

structures represented as graphs, the graph patterns must match. The type of atoms 

and bonds must be similar during the structural search. In this study, no stereochemical 

information was used for matching compounds, only bond and atom connectivity for 

structural matching was analyzed. A full structure search solution in MolSearch is based 

on a substructure search algorithm (Ullmann's algorithm) combined with various 

heuristics and an additional check to verify that the number of heavy atoms are the 

same in the query and target molecules. 

2.3.3 GEM-Path Algorithm: Databases 

The E. coli metabolome was defined based on the GEM iJO1366. Metabolites 

were extracted from the model and downloaded from PubChem´s (Bolton et al. 2008) 

compound database. Metabolites were saved as molfiles and named after their BiGG 

(Schellenberger et al. 2010) identifier. For reaction existence and reaction promiscuity 

analysis, the BRENDA (Scheer et al. 2011) database file and molecular structure 

molfiles were downloaded. Three digit EC number databases were generated by 

lumping together all reactions with similar third level EC numbers. Each entry in the 

database specifies the corresponding known biochemical reaction formula, the 

corresponding four digit EC number association, reaction-organism association, and 

substrate structure file. In cases where a specific reaction-organism association reported 

affinity for more than one substrate, an entry specifying all substrates was generated. 

For this purpose all reactions were assumed to be reversible and cofactors were not 

assigned as substrates. 

2.3.4 GEM-Path Algorithm: Thermodynamic Analysis 

Thermodynamic analysis was performed by calculating the ∆rG’ (KJ/mol) where 

∆rG’º was estimated based on the group contribution method (Jankowski et al. 2008). 

Intracellular concentrations were defined based on previous studies (Bennett et al. 
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2009). For unknown concentrations, estimations were calculated based on the non-polar 

surface area and compound charge (Bar-Even et al. 2011). 

2.3.5 GEM-Path Algorithm: Promiscuity Analysis 
This analysis takes into account only substrate reaction promiscuity. Based on 

the similarity (TC) of the native and non-native substrates, a reaction promiscuity space 

can be generated and potential promiscuous activities determined depending on the 

distance between the promiscuous space and the metabolite to analyze. Thus, a 

similarity matrix based on the TC was calculated between every possible metabolite that 

the specific reaction-organism association could catalyze; cofactors were excluded from 

the matrix. Then, the reaction promiscuity space was defined by performing multilinear 

regression analysis on the similarity matrix, and an average distance between each 

native metabolite and the space centroid was calculated. By dividing the potential 

promiscuous target substrate distance from the centroid over the average native 

distance from the centroid, the reaction promiscuity score (PS) was calculated. If the 

score was lower than 1.2, the reaction is considered to be promiscuous for the target 

substrate (Figure 2-5). The reaction promiscuity score was tested and validated by using 

E. coli’s promiscuous reaction information from iJO1366 (Figure 2-1 and Figure 2-2). 

 

Figure 2-1: E.  coli iJO1366 reaction promiscuity score analysis. For this analysis promiscuous enzymes reported in E. coli GEM 
iJO1366 (Orth, Conrad, Na, Lerman, Nam, Feist and Palsson 2011) were used (Nam et al. 2012). Only enzyme substrate 
promiscuity was taken into account addressing only the substrates that participate in the same chemical transformation. 
Promiscuous enzymes were tested by analyzing the substrate promiscuity score for each substrate. This was done by leaving one 
substrate out for each enzyme analysis. For comparing molecules and for the similarity matrix construction, two different 
fingerprints were analyzed, A chemical fingerprint (cfp) and B extended-connectivity fingerprint (ecfp). Both diagrams show the 
distribution of the reaction promiscuity score along the x-axis. Red lines represent the lo-logistic curve adjusted to the data. For 
each curve statistical information and parameters regarding the adjusted curve are specified. 
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Figure 2-2: E. coli iJO1366 reaction promiscuity score ROC analysis. In this analysis the promiscuity score sensitivity was 
determined. For different promiscuity score threshold values (between 0 and 10) the promiscuity score was calculated for each 
promiscuous enzyme in E. coli GEM iJO1366 and each compound in the metabolome. Depending on the threshold value, different 
false-positive, true-positive, false-negative and true-negative distributions were obtained. For each threshold value the sensitivity 
and specificity were calculated and plotted. This analysis was performed for two different fingerprints, chemical fingerprints (blue) 
and extended-connectivity fingerprints (red). Thresholds between 1.2 and 2 showed a good agreement between predictions and 
known data. 

 

2.3.6 Theoretical analysis of the production potential in E. coli 

To evaluate the production efficiency of each product under different metabolic 

conditions and to determine the most predominant metabolic subsystems that work as 

precursor sources for product formation, an initial theoretical analysis was performed 

calculating the maximum theoretical yield in E. coli for all predicted pathways. This 

analysis was executed by: i) incorporating the heterologous pathways to the model, ii) 

setting an uptake rate to 120 C-mmol gDW-1h-1 for each carbon source, 20 mmol gDW-

1h-1 O2 (Varma et al. 1993) when specified, iii) setting the reactions CYTBDpp, 

CYTBD2pp, and CYTBO3_4pp to 0 mmol gDW-1h-1 for the ECOM strain (Portnoy et al. 

2008), iv) setting a minimal growth rate to sustain growth as 0.1 h-1 (as set by the 

amount of flux necessary through the BOFcore), and v) using FBA to maximize the flux 

through each of the exchange reactions in the model for the target compound. For each 

predicted pathway, phenotypic results were reported in terms of yield; specific product 

yield (Yp/s) defined as the maximum amount of carbon product that can be generated per 

unit of carbon substrate. 



 

60 
 

𝑌𝑝/𝑠 =  
𝐶𝑝𝑝𝑝𝑑𝑝𝑝𝑝 ∗ 𝑝𝑛𝑜𝑝𝑢𝑟𝑡𝑖𝑜𝑖  𝑛𝑚𝑡𝑆𝑝𝑝𝑝𝑑𝑝𝑝𝑝
𝐶𝑠𝑝𝑠𝑠𝑝𝑝𝑠𝑝𝑠 ∗ 𝑝𝑛𝑜𝑝𝑢𝑟𝑡𝑖𝑜𝑖 𝑛𝑚𝑡𝑆𝑠𝑝𝑠𝑠𝑝𝑝𝑠𝑝𝑠

 �
𝑟𝑚𝑚𝑜𝑙𝑝𝑝𝑝𝑑𝑝𝑝𝑝
𝑟𝑚𝑚𝑜𝑙𝑠𝑝𝑠𝑠𝑝𝑝𝑠𝑝𝑠

� 

Where C is the number of carbons in the substrate and product. This metric provides 

a proper comparison between pathways productivities, since it standardizes the carbon 

consumption for each substrate. 

2.3.7 Strain Design Computations 

Before strain design, the model was preprocessed based on the problem 

formulation described by Feist et al. (Feist, Zielinski, Orth, Schellenberger, Herrgard and 

Palsson 2010). Preprocessing was condition specific and was performed for each 

pathway/substrate/oxygenation combination. The method utilizes six steps in which the 

model was reduced and target reactions were selected for knock-out simulations. By 

reducing the model and constraining the reaction set that could serve as a target for a 

reaction knock-out, computation time was effectively reduced when performing Robust 

Knock and GDLS algorithms. 

RobustKnock and GDLS were implemented in the COBRA Toolbox framework as 

described in their original documentation. First, RobustKnock was utilized to design 

strains of E. coli for each target/substrate/oxygenation combination for a maximum of 2 

and 3 reaction knock-outs. RobustKnock predicts reaction deletion strategies that lead 

to the over-production of compounds of interest by accounting for the presence of 

competing pathways in the network. Specifically, this method extends OptKnock to 

pinpoint specific enzyme-catalyzed reactions that should be removed from a metabolic 

network, such that the production of the desired product becomes an obligatory 

byproduct of biomass formation. The predicted set of reaction knock-outs eliminates all 

competing pathways that may hinder the chemical's production rate, resulting in more 

robust predictions than those obtained with OptKnock. This is achieved by searching for 

a set of reaction knock-outs under which the minimal guaranteed production rate of a 

chemical of interest is maximized, instead of simply assuming that the maximized 

production rate would be achieved by chance, as in OptKnock. The method is based on 

a bi-level max–min optimization problem that is efficiently solved via a transformation to 

a standard mixed-integer linear programming (MILP) problem. If the solution exists, this 
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algorithm finds the global optima set of knock-outs that evaluate the maximum 

achievable yield for a specific target compound. Because of the nature of this algorithm 

and the large amount of combinations to simulate, a search with four knock-outs makes 

the computational time of the simulations intractable. Because of this, GDLS was used 

to evaluate the maximum theoretical yield for four knock-outs. GDLS is a scalable, 

heuristic, algorithmic method that employs an approach based on local search with 

multiple search paths (k=2), that results in an effective, low-complexity search of the 

space of genetic manipulations. Still, solutions found with this method do not assure a 

global optimum. Consumption rate for the main carbon substrate in each simulation was 

set to 120 C-mmol gDW-1h-1. If aerobic conditions were used, an oxygen uptake rate of 

20 mmol gDW-1h-1 was also set. For the ECOM strain reactions CYTBDpp, CYTBD2pp, 

and CYTBO3_4pp were set to 0 mmol gDW-1h-1. 

2.4 Results and Discussion 

A systematic workflow was developed and organized into three phases (Figure 

2-3). First, a synthetic pathway algorithm was developed which integrates GEMs directly 

into computation and industrially relevant target compounds for simulation were defined. 

Second, pathway production capabilities were examined in a number of production 

environments. Each pathway was incorporated into the E. coli GEM and analyzed in 

terms of maximal theoretical yield under different substrate, oxygenation, and strain 

conditions. Third, strain design computations was performed through a maximum yield 

analysis, utilizing the RobustKnock (Tepper and Shlomi 2010) and GDLS (Lun, 

Rockwell, Guido, Baym, Kelner, Berger, Galagan and Church 2009) algorithms . The 

result was a compendium of candidate synthetic pathways leading to 20 large volume 

commodity chemicals and strain designs to couple their production to growth. 
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Figure 2-3: Synthetic Pathway Calculation and strain design pipeline. This workflow outlines the integrated process of synthetic 
pathway prediction (yellow box), constraint-based modeling with the E. coli GEM (blue), and strain design computation with design 
algorithms (pink box). Green boxes represent framework inputs (entry arrows) and general result outputs (exit arrows). From the left, 
target compounds and substrates/strain conditions were defined to generate synthetic pathways. Synthetic pathways were 
calculated by using the developed GEM-Path algorithm integrated with GEM computation. Following GEM-Path, each pathway 
leading to a specific target compound was evaluated for growth-coupled feasibility under previously defined substrate/strain 
conditions. This workflow was used to outline the production routes from a distance of 4 reaction steps from E. coli’s metabolome to 
20 commodity chemicals. 

 

2.4.1 Synthetic pathway prediction algorithm development 

GEM-Path combines and integrates different computational approaches (Table 

A2-1). The motivation for generating this new framework was that no existing tool 

combined a comprehensive search of the biochemical space through reaction operators, 

a thermodynamic analysis of each step, and a filtering of possible reactions at each step 

through integration with a strain-specific GEM. 

2.4.1.1 Biochemical Reaction Operators (BROs) formulation. 

An initial step in the design process was to define the set of Biochemical Reaction 

Operators (BROs) that accurately describes the biochemical reaction space. A total of 

443 BROs were defined (see Methods). For use in GEM-Path , each BRO was assigned 

a specific cofactor use based on the BiGG database (Schellenberger, Park, Conrad and 

Palsson 2010) terminology, and the corresponding third-level EC number.  
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2.4.1.2 Pathway Predictor (GEM-Path) Algorithm 

The pathway predictor algorithm was developed in an iterative manner (Figure 

2-4). The process can be broken down into four major steps: 

Figure 2-4: GEM-Path Algorithm. The 
iterative loop describes the synthetic 
pathway calculation process. Colored 
boxes show process inputs/outputs 
(blue), synthetic reaction generation 
(green), and filtering (red) procedures. 
Furthermore, detailed specifications were 
assigned to each stage (yellow). Starting 
with the target compound, BROs were 
applied and predictor constraints were 
defined. Mass-balanced generated 
reactions were filtered in terms of 
thermodynamic feasibility, reaction 
existence, and potential promiscuous 
activity. Then, productivity analysis was 
performed using FBA. Predicted 
reactions able to theoretically produce 
the target compound were saved and 
non-producing nodes (metabolites) were 
fed again into the algorithm to continue 
the pathway generation up to four 
iterations (reaction steps). 

 

a) Starting from the target metabolite, predictor constraints were set, such as 

maximal pathway length, metabolites to compute at each iteration, a thermodynamic 

threshold, and a reaction promiscuity threshold. 

b) Predefined BROs were applied to the target in a retrosynthetic manner for 

generating the corresponding substrates. After BROs application, the corresponding 

cofactors and third level EC numbers were assigned together with reaction structure 

files for further analysis. All predicted reactions were then checked for mass balance. If 

mass balance was not fulfilled, reactions were discarded from the process. Next, 

predicted metabolites were structurally compared against E. coli’s metabolome. 

Substrate dissimilarities were sorted in terms of the TC (see Methods), and an exact 

match analysis was performed for TCs equal to 0 since this does not necessarily mean 

that the compared molecules are the same. If the predicted metabolite matches any 

compound in the metabolome, FBA was performed in order to validate the potential 

production. 
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c) A thermodynamic analysis was performed by calculating the ∆rG (kJ/mol). Each 

predicted reaction was checked in terms of thermodynamic feasibility for existence of 

further reactions and potential promiscuity analysis. Reactions with ∆rG lower than or 

equal to 25 kJ/mol were defined as feasible reactions and saved to continue the 

checking process. The threshold was set based on estimated variability calculated 

elsewhere (Henry et al. 2007). 

d) As shown in Figure 2-5, in order to determine reaction existence, predicted 

reactions were compared against BRENDA. The database was structured by lumping 

together all reactions with similar third level EC numbers. Each level contains known 

biochemical reactions with the corresponding four digit EC number association, reaction-

organism association, and substrate structure file. The third level EC number 

association for the predicted reaction facilitates the identification of the third level EC 

class BRENDA sub group for substrate comparison. By calculating the TC, predicted 

substrates could be compared against all corresponding substrates present in the 

BRENDA subgroup. The results were sorted and analyzed starting with the most similar 

compound. Dissimilarities equal to 0 were structurally compared by performing an exact 

match comparison (see Methods). If the substrates were structurally similar, reaction 

cofactors were compared. In cases where the predicted reaction matches a reaction in 

BRENDA, a specific reaction–organism association was assigned to the reaction and 

the pathway prediction procedure was continued. Otherwise, a substrate promiscuity 

analysis was performed by considering the reaction-organism association substrate 

information. If the reaction is considered to be promiscuous, the algorithm saves the 

reaction, otherwise, it proceeds by analyzing the potential promiscuity for the next sorted 

substrate. In order to decide whether a reaction might be promiscuous or not, a reaction 

promiscuity score was calculated based on the similarity between the reaction native 

substrate and the predicted substrate (Figure 2-5, step 4). The reaction promiscuity 

score was calculated and analyzed by using E. coli’s promiscuous reaction information 

from iJO1366 (Figure 2-1 and Figure 2-2). Based on the previous analysis, the reaction 

promiscuity score threshold was set to 1.2. 



 

65 
 

 

Figure 2-5: Reaction existence and promiscuity analysis. The first three steps outline the main processes for reaction existence and 
promiscuity analysis, while the forth step shows specifically how the promiscuity analysis was performed. First, for a predicted 
reaction the third level BRENDA EC number database was identified (yellow box). For each reaction in the databases structural 
information regarding substrates, cofactor uses and species were determined. Second, the predicted reaction substrate (green 
circle) was compared to the corresponding third level BRENDA EC number database substrates by calculating the TC. From bottom 
to top, substrate pairs of TCs were sorted in decreasing order. Third, starting from the lowest TC (a1) until a predicted reaction and 
BRENDA reaction association was found (an), an iterative decision making algorithm determines whether the predicted reaction 
exists in BRENDA or there is any reaction in the database able to show promiscuous activity. Fourth, when a specific reaction is sent 
to promiscuous analysis, non-specific substrates (blue circles) for the reaction/species association are assigned according to 
BRENDA databases. By calculating the TC between all of the substrates a reaction promiscuity space was generated. From this 
space, distances from the centroid for each substrates and promiscuity score were calculated. 

After the filtering steps, only the 120 predicted compounds closest to E. coli’s 

metabolome were allowed to continue the algorithm. This process was repeated 4 times, 

which means pathways of a maximal length of 4 were obtained. The GEM-Path 

algorithm overcame the disadvantages of previous methods by not setting a specific 

metabolite source for the target compound formation, instead leaving open the 

possibility to reach any metabolite in the metabolome. Furthermore, structural 

comparison gives the ability to focus on the retrosynthesis direction most similar to the 

corresponding region of the host metabolome. It should be noted that these 

characteristics could be extended to other organisms, predicting synthetic heterologous 

pathways in a host-context specific manner. After completion of this computational 

procedure, the resulting pathways were characterized and used for theoretical yield 

analysis under different strain, oxygenation, and substrate conditions. All of the 

predicted pathways are given in Figure A2-1. Thus, a comprehensive list of feasible 

biochemical pathways leading to the target compound formation was established. 

2.4.2 Description of substrate and product selection 

Important production capabilities of the synthetic pathways predicted by GEM-

Path were assessed using the E. coli GEM. For theoretical yield analysis, three primary 

substrates were evaluated based on the cost and availability of suitable feedstock 

(Sauer et al. 2008; Vickers et al. 2012), E. coli’s metabolic capacity for catalyzing such 

carbon sources, and unique design potential (e.g., glucose and fructose are not unique 
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and are examples of interconverted substrates with little to no cost to the cell, (Feist, 

Zielinski, Orth, Schellenberger, Herrgard and Palsson 2010)). The first two substrates 

were glucose and xylose, five- and six-carbon sugars, present in lignocellulosic 

biomass, representing about 40-50% and 20-30% by dry weight of plant material, 

respectively (Wyman et al. 2005). The use of this type of feedstock is expected to 

increase with the incentive to produce biofuel and bio–based chemicals (Perlack and 

Stokes 2011). The third substrate was glycerol, a three-carbon molecule and a 

byproduct of biodiesel production (Ma and Hanna 1999), whose availability is expected 

to increase in the coming years (Yang et al. 2012a). Additionally, three different starting 

strains and oxygenation conditions were analyzed for each product during the synthetic 

pathway calculations procedure. These are a wild-type strain under aerobic conditions, a 

wild-type strain under anaerobic conditions, and the ‘ECOM’ (E. coli cytochrome oxidase 

mutant) strain under aerobic conditions (Portnoy, Herrgard and Palsson 2008). The 

ECOM strain has the advantage of “aerobic fermentation” as the strain cannot use 

oxygen as a terminal electron acceptor. The list of targeted overproduction metabolites 

included 20 different bulk chemicals with biological production potential and precursors 

for commercially valuable chemical production are shown in Figure 2-6. The selection of 

the 20 target compounds was determined by evaluating reports generated by the US 

Department of Energy (Paster, Pellegrino, Carole, Energetics, U.S. Department of 

Energy and Renewable Energy 2003; Werpy, Petersen, Aden, Bozell, Holladay, White, 

Manheim, Eliot, Lasure and Jones 2004), which includes chemicals that are currently 

being produced on an industrial scale (Zeng and Sabra 2011) and metabolites that are 

described as precursors to or potential target biofuel compounds (Assary and Broadbelt 

2011; Curran and Alper 2012; Fischer, Klein-Marcuschamer and Stephanopoulos 2008; 

Lee, Na, Park, Lee, Choi and Lee 2012). By comparing the target compound list with 

iJO1366 E. coli’s metabolome, 4 out of 20 products were assigned as native and 16 as 

non-native. Synthetic pathways for native products were calculated in order to explore 

the possibility of more productive pathways for their synthesis. 

2.4.3 Predicted pathways and reaction specifications 

The synthetic pathway calculation procedure using GEM-Path was applied to all 

selected target compounds of interest and validated by comparing the output pathways 
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with previous computationally calculated and experimentally implemented pathways. In 

summary, 245 pathways, 221 reactions, and 59 non-native intermediate metabolites 

were calculated after 4 iterations of the algorithm (i.e., a maximal pathway length of 4).  

 

Figure 2-6: Predicted reaction and pathway analysis. For each target compound, the total number of synthetically generated 
reactions (a) and pathways (b) were plotted. ’Promiscuous‘ predicted and ’known‘ reactions are differentiated with yellow and purple 
sub segments, respectively. In the case of pathways, those containing one or more promiscuous reactions and those with no 
promiscuous reactions involved were differentiated by corresponding yellow and purple sub segments. Reaction promiscuity score 
distribution (c) and Known Reaction Fractional Index (KRFI) for each pathway (d) are also shown. A value of 0 for the promiscuity 
score indicates ’known‘ reactions, and a value of 1 for KRFI indicates the predicted pathway is constituted by only ’known‘ reactions. 

In total, 25%, 39%, 28%, and 8% of the pathways were of length 4, 3, 2 and 1, 

respectively. For each product, pathways combining potential promiscuous reactions, 

already known reactions (i.e., in BRENDA), and different co-factor (i.e., using NAD+ or 

NADP+) uses were generated. In total, 44 different precursors from the native E. coli 

metabolome were determined that connected to the synthetic pathways. Furthermore, 



 

68 
 

42 gap-filling reactions interconnecting native E. coli’s metabolites were identified which 

enabled production of a targeted compound. This set includes reactions which may be 

the reverse reaction of a native enzymatic step in the existing network or have 

completely unique chemistry acting on a native metabolite. 

The number of reactions and pathways predicted using GEM-Path varied across 

the 20 target compounds analyzed. For 1,4-butanediol, 1,3-propanediol, 3-

hydroxypropanoate, and acrylic acid, the number of reactions and pathways were the 

highest (Figure 2-6). In total, approximately 51% of all predicted reactions were 

categorized as ‘known’, which means that each predicted reaction has an exact 

biochemical reaction association according to BRENDA (Figure 2-6a purple sub-

segments). Reactions represented by yellow sub-segments in Figure 2-6 correspond to 

predicted biochemical reaction steps assigned as ‘promiscuous’ from the promiscuity 

analysis. Furthermore, for each of these reactions, a potential reaction from BRENDA 

that might carry flux through the synthetic pathway was assigned. The promiscuity score 

distribution is represented in Figure 2-6c. As expected, all 112 ‘known’ reactions were 

represented with a promiscuity index equal to 0 and ‘promiscuous’ reactions were 

distributed around 1. 

A predicted pathway can be either entirely ‘known’ (Figure 2-6b purple sub-

segments), meaning every reaction in the pathway has an exact biochemical reaction 

association according to BRENDA, or partially known, where one or more reactions in 

the pathway were predicted as ‘promiscuous’ (Figure 2-6b yellow subsegments). 

According to the classification in Figure 2-6b, all of the pathways able to generate 1,4-

butanediol, acrylic acid, acrylamide, and 3-hydroxyvalerate in E. coli contain at least one 

promiscuous reaction. In order to analyze the fraction of known reactions present in a 

pathway, we defined the Known Reaction Fractional Index (KRFI) between 0 and 1, 

where 1 means that the pathway has been completely reconstructed from ‘known’ 

reactions and 0 means that it has been completely reconstructed from ‘promiscuous’ 

reactions. Based on the previous definition, 30% of all predicted pathways were entirely 

‘known’. In Figure 2-6 d, entirely ‘known’ pathways are represented with a KRFI equal to 

1, and the rest of the pathways correspond to partially known pathways distributed from 

0 to 1. In total, approximately 40% of the predicted reactions were oxidoreductases, 
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acting on hydroxyl or aldehyde groups with NAD+ or NADP+ acceptors. Carbon-oxygen 

and carbon-carbon lyases correspond to around 20%, and transferases, specifically 

CoA-transferases, were 8% of all of the reactions. This set of generic biochemical 

transformations details the chemical nature of the predicted reactions that most often 

enable the production of the targeted non-native compounds in E. coli (see Table A2-3). 

2.4.4 GEM-Path validation 

In order to validate the proposed algorithm, previous work examining 

computational and experimentally implemented heterologous pathways in E. coli were 

compared to the GEM-Path calculated pathways. According to a bibliographic search, 

14 out of 20 target compounds were found to be referenced and targeted by patents or 

scientific publications. The maximum theoretical yield calculated by GEM-Path for the 

targeted compounds was then compared to production levels from the bibliographic 

search set (Table 2-1). In order to determine the production potential for the novel 

pathway calculated using GEM-Path, a maximum theoretical production comparison 

was performed for experimentally and computationally reported pathways (Table 2-1). 

The analysis was performed by calculating the target production ratio between the 

highest flux carrying novel pathways predicted by GEM-Path over the experimentally 

and computationally reported pathways. Simulations were run under aerobic and 

anaerobic conditions, by using glucose, xylose, and glycerol as a carbon source. Values 

over 1 indicated that GEM-Path’s novel pathways have higher production potential than 

already referenced pathways. Considerable improvements over experimentally 

implemented pathways were found in the GEM-Path set, specifically under anaerobic 

conditions, for 1,4-butanediol, 1,3-propanediol, isopropanol, and 3-hydroxybutyrate on 

various substrates. Distinct, but equal yield pathways were calculated for 1,3-

propanediol and 1-butanol. In addition, already known implemented pathways for 1-

propanol, 2-phenylethanol, 2,3-propanediol, 2,3-butanediol, 3-methyl-butanol, 2-methyl-

butanol, and 4-hydroxybutyrate were found (Table 2-1).  These findings revealed that 

GEM-Path calculated pathways contained experimentally-implemented pathways found 

in the literature screen and that the selected reaction rules were able to represent the 

known biochemistry and serve as validation of the approach. 
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Table 2-1: Comparison of GEM-Path predictions to previously identified pathways from literature 

Target  

Compound 

Experimental 
 

Computational 
 

anaerobic  aerobic 
Ref. 

 anaerobic  aerobic 
Ref. 

gluc xyl glyc  gluc xyl glyc  gluc xyl glyc  gluc xyl glyc 

1,4-butanediol 1.3 1.3 1.3  1.1 1.1 1.1 

(Yim, Haselbeck, Niu, 

Pujol-Baxley, Burgard, 

Boldt, Khandurina, 

Trawick, Osterhout, 

Stephen, Estadilla, 

Teisan, Schreyer, 

Andrae, Yang, Lee, 

Burk and Van Dien 

2011) 

 1.3 1.3 1.3  1.1 1.1 1.1 

(Yim, 

Haselbeck, 

Niu, Pujol-

Baxley, 

Burgard, 

Boldt, 

Khandurina, 

Trawick, 

Osterhout, 

Stephen, 

Estadilla, 

Teisan, 

Schreyer, 

Andrae, 

Yang, Lee, 

Burk and 

Van Dien 

2011) 

1,3-propanediol 1.2 1.3 1  1 1 1 

(Laffend et al. 1997; 

Nagarajan and 

Nakamura 1998; Tang 

et al. 2009; Zeng and 

Sabra 2011) 

 --- --- ---  --- --- --- --- 

3-hydroxypropanoate 1 1 1  1 1 1 
(Lynch 2011; Suthers 

and Cameron 2005; 

Wang et al. 2012) 

 1 1 1  1 1 1 

(Henry, 

Broadbelt 

and 

Hatzimanika

tis 2010) 

1-propanol 1 0.9 0.9  1 1 1 
(Pharkya 2011; Shen 

and Liao 2008; Shen 

and Liao 2013) 

 2.4 2.8 3.3  1.2 1.2 1.1 

(Cho, Yun, 

Park, Lee 

and Park 

2010) 

1-butanol 1 1 1  1 1 1 

(Atsumi et al. 2008; 

Bramucci et al. 2008; 

Lee and Park 2008; 

Shen et al. 2011) 

 1 1 1  1 1 1 

(Cho, Yun, 

Park, Lee 

and Park 

2010) 

isopropanol 1.2 1.2 1.9  1 1 1.1 
(Hanai et al. 2007; 

Jojima et al. 2008; 

Pharkya 2011) 

 --- --- ---  --- --- --- --- 

isobutanol 0.8 0.7 0.8  1 1 1 (Atsumi et al. 2010; 

Trinh 2012) 
 0.8 0.7 0.8  1 1 1 

(Cho, Yun, 

Park, Lee 

and Park 

2010) 

3-hydroxybutyrate 1.2 1.2 1.5  1 1 1 
(Tseng et al. 2009; 

Valentin and Dennis 

1997) 

 --- --- ---  --- --- --- --- 

2-phenylethanol 0.9 0.9 0.9  1 1 1 (Hwang et al. 2009; 

Koma et al. 2012) 
 0.9 0.9 0.9  1 1 1 

(Cho, Yun, 

Park, Lee 

and Park 

2010) 
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2,3-propanediol 1 1 1  1 1 1 
(Altaras and Cameron 

1999; Soucaille et al. 

2008) 

 --- --- ---  --- --- --- --- 

2,3-butanediol 1 1 1  1 1 1 (Ji et al. 2011; Lu et al. 

2012b; Yan et al. 2009) 
 --- --- ---  --- --- --- --- 

3-methyl-1-butanol 1 1 1  1 1 1 (Connor et al. 2010)  1 1 1  1 1 1 

(Cho, Yun, 

Park, Lee 

and Park 

2010) 

2-methyl-1-butanol 1 1 1  1 1 1 (Cann and Liao 2008)  1 1 1  1 1 1 

(Cho, Yun, 

Park, Lee 

and Park 

2010) 

4-hydroxybutyrate 1 1 1  1 1 1 (Zhou et al. 2012)  --- --- ---  --- --- --- --- 

For each target compound, the maximum theoretical productivity ratio between novel pathways generated by GEM-Path and 
experimentally implemented or computationally generated pathways is shown. Empty spaces (---) indicate that no referenced 
pathways for the corresponding target compound were found. 

For the synthetic design of biochemical pathways, much attention has been 

focused on BRO-based computational tools (Medema et al. 2012). As such, the 

pathways predicted from GEM-Path were compared against computationally-predicted 

pathways from three different BRO based algorithms; BioPath for the production of 1,4-

butanediol (Yim, Haselbeck, Niu, Pujol-Baxley, Burgard, Boldt, Khandurina, Trawick, 

Osterhout, Stephen, Estadilla, Teisan, Schreyer, Andrae, Yang, Lee, Burk and Van Dien 

2011), BNICE for the production of 3-hydroxypropanoate (Hatzimanikatis, Li, Ionita, 

Henry, Jankowski and Broadbelt 2005), and the one developed by Cho et al., for the 

production of several alcohols (Cho, Yun, Park, Lee and Park 2010).  

The first comparison was for the synthetic pathway prediction of 1,4-butanediol by 

using the BioPath algorithm. When analyzing individual reactions, 91% off all reactions 

were able to be predicted by GEM-Path independently. Furthermore, through FBA 

analysis, novel pathways generated with GEM-Path were able to achieve higher 

theoretical productivity compared to BioPath reported pathways. Specifically for 

pathways 13 and 14 (see 1,4-butanediol pathways map in Supplemental Figure 9), 

under aerobic condition and using glucose, xylose, and glycerol, a 10% theoretical 

productivity increase over BioPath predicted pathway was calculated. Moreover, by 

using the same substrates under anaerobic conditions, an approximately 30% increase 

over BioPath predicted pathways was calculated. The second case studied was for the 

synthetic pathway prediction of 3-hydroxypropanoate by using the BNICE algorithm. 
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This framework is able to produce all thermodynamically feasible pathways from a 

source metabolite to a target compound. In this case, GEM-Path was able to generate 

11% of all predicted pathways by this algorithm, and 87% of all reactions. This result 

was expected since both algorithms share similar BROs. By applying the reaction 

existence and promiscuity analysis based on BRENDA, GEM-Path was able to constrain 

the predicted pathways by reporting only a feasible subset of pathways. According to 

FBA simulations, novel pathways generated with GEM-Path were able to achieve the 

same maximum theoretical production rates compared to BNICE generated pathways, 

specifically for pathways 12, 13, and 3 (see 3-hydroxypropanoate pathways map in 

Supplemental Figure 9). When using xylose and glucose as substrates, production rates 

were 76% higher than glycerol. Under aerobic conditions, no substantial increments in 

theoretical production rates between GEM-Path and previously generated BNICE 

pathways were identified.  Finally, the third case analyzed after the synthetic pathway 

generation was Cho, et. al. Here, the author introduces a novel scoring algorithm in 

order to extract the most feasible pathways. The framework was validated for the 

production of 1-propanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, isobutanol, 

and 2-phenylethanol from a variety of 2-ketoacids. When comparing the results between 

GEM-Path and Cho’s predictions for each product, the same pathways were found for 

each case. Still, according to the simulations, none of the remaining pathways predicted 

by GEM-Path were able to achieve the production rates of pathways previously 

generated by Cho´s algorithm. Pathway and reaction prediction discrepancies were due 

to the filtering procedure, specifically during the promiscuity analysis, where only the 

most promising reactions were allowed to constitute a pathway in GEM-Path. However, 

of note is that the vast majority of reactions predicted in the referenced work was also 

predicted with GEM-Path. Specifically, GEM-Path was able to simulate 92% and 32% of 

all reactions and pathways, respectively. Furthermore, discrepancies arose due to a lack 

of connectivity between the host metabolic network and the predicted synthetic 

pathways in the referenced work and also from the predefined pathway length which 

allowed a maximum pathway length of four. A number of differences can be the result of 

the GEM-Path algorithm immediately stopping the search through each branch when it 

reaches the metabolome; the three other algorithms mentioned above do not have this 

stipulation. 
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When comparing GEM-Path with other computational tools (see Table A2-1), its 

most characteristic features are its capability to shrink the biochemical reaction solution 

space by calculating the closest pathways to the metabolome and its ability to select 

mechanistically-feasible reactions from BRENDA. These properties rely on the 

integration of the promiscuity analysis and GEMS into the reaction prediction algorithm. 

Furthermore, GEM-Path is able to systematically integrate physiological conditions (e.g., 

carbon source and oxygenation) into the pathway generation procedure, allowing for the 

consideration of the active content in a given condition and not reactions or nodes that 

cannot be reached in a desired media condition. Furthermore, when comparing GEM-

Path to previous tools, it shows a wider predictive capacity as it, i) takes into account 

more cofactors, ii) does not constrain the search to only one compound source, instead 

every metabolite in the metabolome might work as a source, and iii) allows generation of 

anabolic and catabolic reactions. Nevertheless, some solutions might be hindered as not 

all nodes (i.e., predicted compounds) were allowed to continue through the prediction 

algorithm when compared to the E. coli metabolome. However, GEM integration into 

GEM-Path allows the algorithm to find more than one precursor present in the metabolic 

network without constraining the search to only one compound. 

2.4.5 Theoretical Yield analysis of the production potential in E. coli 

The production potential landscape in E. coli was outlined by calculating and 

plotting the maximum theoretical yield for each target compound in terms of carbon 

moles captured (i.e., C-mol). Simulations were performed by combining all predicted 

pathways with the corresponding substrate utilization and oxygenation conditions (see 

Methods). In total, 2205 flux balance analysis (FBA) combinations were calculated 

(Figure 2-7). Maximum theoretical yields (Figure 2-8a-c) and the corresponding 

pathways were tabulated for each target compound (Table 2-2). 

Results were grouped together based on strain and oxygenation conditions and a 

yield interval was applied to plot the number of pathways for different substrates (Figure 

2-8a-c). Furthermore, in order to determine the most efficient subsystem for product 

formation, results were clustered in terms of yield and E. coli’s precursor metabolic 



 

74 
 

subsystems (Figure 2-8d). Overall, the average yields for WT/aerobic, ECOM/aerobic, 

and WT/anaerobic were 0.68, 0.53, and 0.38, respectively. 

 

Figure 2-7: Theoretical maximal yield. The circumference is divided in 20 different segments. Each one of them corresponds to a 
specific target compound. The yield is represented along the radius, where the center and the perimeter represent yields equal to 0 
and 1 respectively. The theoretical maximal yield for different strain/substrate conditions was plotted for each target compound. 
Colored points represent the strain condition for wild type/aerobic (red), ECOM/aerobic (blue), and wild type/anaerobic (green). The 
shape defines a specific substrate use for xylose (+), glycerol (*) and glucose (o). The pink box shows a schematic representation of 
the production envelope and describes the points that were represented in the diagram, specifically the maximum theoretical yield at 
0.1 growth rate. 

By defining the ECOM/aerobic condition as an intermediate state of aerobiosis 

between WT/aerobic and WT/anaerobic, a correlation between the aerobiosis state of 

the cell and the production potential can be drawn. As shown in Figure 2-8a-c, a 

pronounced displacement of maximum theoretical yield distributions towards lower 

yields is directly correlated with the extent of anaerobiosis. This trend is also shown in 
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Figure 2-8d, where a gradual shift from lower anaerobic yield to higher aerobic yields 

can be visualized. Furthermore, this pattern is shown together with a preference for 

glycerol as a substrate under aerobic conditions and for glucose under anaerobic 

conditions. Pathways near central carbon metabolism subsystems are able to achieve 

higher yields (Figure 2-8d). The specific analysis for each strain / oxygenation condition 

was described below. 

2.4.5.1 Wild type aerobic 

For wild type E. coli under aerobic condition, 77% of the 2205 simulations were 

greater than 0.6 C-mol Product/C-mol Substrate (Figure 2-8a) and the overall average 

yield was 0.68. All products can potentially be made from either glucose, xylose, or 

glycerol under aerobic conditions. Glycerol is found to be the most efficient substrate for 

aerobic production. The average yields were identical for glucose and xylose (aprox. 

0.66) and 11% higher on glycerol. For maximum theoretical yield (Table 2-1) the same 

trend as describe above was identified for most of the products, where glycerol was 

found to be the most efficient substrate. 3-hydroxypropanoate, acrylic acid, and 

acrylamide, were shown to be generated at similar yields under any of the three 

predefined substrates. Furthermore, these compounds showed one of the highest yields 

of the list, together with 1,3 propanediol, 1,4 butanediol, 2-keto-isovaleric acid, 2-keto-

valeric acid, 3-hydroxyvalerate, 2-keto-butanoic acid, 3-hydroxybytyrate and 2-

phenylethanol, where the maximum production potential was achieved using glycerol as 

a substrate (Table 2-2). 

2.4.5.2 ECOM aerobic 

Compared to the wild type aerobic, the ECOM strain shows a shift in the 

simulation distribution pattern (Figure 2-8b), where 69% of all the simulations are 

between 0.4 and 0.8. For higher yields, glycerol is the most efficient substrate. By 

examining the average yields, glycerol was only about 4% higher than glucose, and 

glucose 5% higher than xylose. 3-hydroxypropanoate, acrylic acid, acrylamide, 2-keto-

isovaleric acid and 2-keto-valeric acid yields were found to be higher than 0.8 with any 
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substrate. With the exception of 2-ketobutanoic acid, 3-hydroxyvalerate and 4-

hydroxybutyrate, all products archive the highest yield by using glycerol as a substrate. 

Table 2-2: Targeted compounds and theoretical maximum yield analysis  

Target Compound 
Native or 

non-native 

No. of 

carbons 

No. of 

computed 

pathways 

No. of unique 

reactions in each 

pathway 

 aerobic  

(C-mol Yield / pathway ID) 

 
aerobic ECOM 

(C-mol Yield/ pathway ID) 

 
Anaerobic 

(C-mol Yield/ pathway ID) 

 gluc xyl glyc  gluc xyl glyc  gluc xyl glyc 

1,4-butanediol non-native 4 44 21  70 / 13 69 / 13 82 / 13  70 / 13 66 / 13 78 / 13  70 / 13 66 / 13 78 / 14 

1,3-propanediol non-native 3 41 26  69 / 16 69 / 14 84 / 7  57 / 14 54 / 16 79 / 34  57 / 16 52 / 16 79 / 7 

3-hydroxypropanoate native 3 25 33  96 / 12 96 / 13 97 / 3  96 / 12 96 / 13 97 / 12  96 / 12 96 / 13 71 / 12 

acrilic acid non-native 3 23 33  96 / 2 96 / 2 97 / 1  96 / 2 96 / 2 97 / 2  96 / 1 96 / 2 71 / 1 

1-propanol non-native 3 19 12  64 / 3 64 / 2 75 / 3  64 / 1 64 / 2 75 / 1  64 / 3 64 / 4 75 / 1 

1-butanol non-native 4 18 11  64 / 5 64 / 15 75 / 10  64 / 4 64 / 4 75 / 10  64 / 11 64 / 5 75 / 5 

isopropanol non-native 3 14 8  63 / 4 62 / 4 72 / 1  61 / 3 59 / 3 63 / 4  58 /3 56 / 3 54 / 1 

isobutanol non-native 4 13 16  64 / 2 64 / 1 74 / 1  64 / 2 64 / 1 72 / 1  64 / 1 64 / 1 66 / 1 

acrylamide non-native 3 10 15  96 / 3 96 / 3 97 / 3  96 / 3 96 / 3 97 / 3  96 / 3 96 / 2 71 / 2 

3-hydroxybutyrate non-native 4 9 8  83 / 5 82 / 1 93 / 5  79 / 2 77 / 1 82 / 1  73 / 2 68 / 1 49 / 1 

2-phenylethanol non-native 8 5 7  73 / 9 73 / 9 83 / 9  47 / 1 44 / 2 50 / 6  36 / 5 31 / 1 36 / 6 

2-keto-butanoic acid native 4 5 6  94 / 1 93 / 1 97 / 1  84 / 1 78 / 1 80 / 1  84 / 1 78 / 1 69 / 1 

2,3-propanediol non-native 3 4 4  68 / 1 68 / 1 79 / 2  55 / 1 51 / 1 56 / 2  55 / 1 51 / 1 40 / 1 

2-keto-isovaleric acid native 5 3 3  86 / 3 85 / 3 97 / 3  84 / 3 82 / 3 90 / 3  79 / 3 69 / 3 49 / 3 

3-hydroxyvalerate non-native 5 3 6  75 / 2 74 / 2 85 / 2  54 / 2 51 / 2 49 / 2  44 / 2 38 / 2 27 / 2 

2,3-butanediol non-native 4 2 3  70 / 1 69 / 1 79 / 1  70 / 1 68 / 1 74 / 1  69 / 1 66 / 1 53 / 1 

3-methyl-1-butanol non-native 5 2 3  62 / 1 61 / 1 70 / 1  58 / 1 57 / 1 60 / 1  49 / 1 43 / 1 53 / 1 

2 -methyl-1-butanol non-native 5 2 3  60 / 1 59 / 1 70 / 1  42 / 1 39 / 1 50 / 1  36 / 1 31 / 1 36 / 1 

4-hydroxybutyrate native 4 2 2  78 / 1 77 / 1 88 / 1  64 / 1 58 / 1 45 / 1  44 / 1 39 / 1 26 / 1 

2-keto-valeric acid non-native 5 1 1  88 / 1 88 / 1 97 / 1  88 / 1 87 / 1 92 / 1  88 / 1 87 / 1 70 / 1 

For each target compound, maximum theoretical yields (C-mol) were reported for different strain and substrate conditions. Shown next to the yield is the 
corresponding pathway ID shown in Figure A2-1. 

2.4.5.3 Wild type anaerobic 

Two different kinds of shift from aerobic to anaerobic, passing through aerobic 

ECOM conditions were identified (Figure 2-8c). As shown for the ECOM strain, the first 

shift shows a displacement of the overall simulation towards lower yields. Approximately 
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74% of the simulations were between 0 and 0.6. And the second shift, regarding 

substrate preference, shows a direct association between the use of glucose as a 

substrate and higher yields, compared with previous analysis where glycerol was 

associated with higher yields. Specifically, in this case glucose was 9% higher than 

xylose, and xylose 4% higher than glycerol. The highest yields under anaerobic 

conditions were achieved for 3-hydroxypropanoate, acrylic acid, and acrylamide, by 

indiscriminately using glucose or xylose as a substrate. The highest yields for 1,3-

propanediol, 1,4-butandeiol, 1-propanol, 1-butanol and isopropanol were generated on 

glycerol. 

 

Figure 2-8: Theoretical maximal yield distribution for different strain/substrate conditions and subsystems. FBA was performed for 
each predicted pathway and strain/substrate condition using the E. coli  GEM. At each yield interval, the number of pathways was 
plotted for each specific substrate: glucose (green), xylose (yellow), and glycerol (blue). This analysis was performed for wild 
type/aerobic (a), ECOM/aerobic (b), and wild type/anaerobic (c). In total, 2205 simulations were performed. (d) The subsystem form 
which each precursor metabolite were from were determined by analyzing the reaction that connects the network with the 
corresponding synthetic pathway. The yield average was calculated for each precursor subsytem and clustered by each strain / 
substrate condition.  
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2.4.6 Strain Design 

Utilizing the synthetic pathways identified for each target compound, strain design 

simulations were performed to determine if reaction knock-outs could increase 

production. The predicted synthetic pathways were independently incorporated into the 

E. coli GEM and further model preprocessing was executed according to a previously 

developed approach (Feist, Zielinski, Orth, Schellenberger, Herrgard and Palsson 

2010). Growth-coupled designs, which couple the optimal production of biomass and 

energy generation to the production of the compound of interest, were chosen as 

objectives for the strain design performed here. A combination of the RobustKnock 

(Tepper and Shlomi 2010) and the GDLS (Lun, Rockwell, Guido, Baym, Kelner, Berger, 

Galagan and Church 2009) algorithms with the conditioned model of iJO1366 (Orth, 

Conrad, Na, Lerman, Nam, Feist and Palsson 2011) was used. First, RobustKnock was 

utilized to design strains of E. coli for each target/substrate/oxygenation combination for 

a maximum of two and three reaction knock-outs allowed. GDLS was used in order to 

decrease computational time and to evaluate the maximum theoretical growth-coupled 

yield for four knock-outs. 

All reactions which were identified in the strain design process for elimination 

were collected and analyzed (seeTable A2-4). Growth-coupled designs could be found 

for 1271 different target/substrate/oxygenation/knock-out combinations (Campodonico et 

al. 2014). Overall, this number was 19% out of the 6615 possible conditions examined. 

The results of the design analysis are given in Table 2-3. Result landscapes of 

maximum growth-coupled yield for each target compound are shown in Figure 2-10. 

Overall, production could be growth-coupled in 75% of the targeted compounds and 

43% of all predicted pathways. Targets which could not be growth-coupled were 2,3-

propanediol, 3-methyl-1-butanol, 2-methyl-1-butanol, 4-hydroxybutytare, and 2-

phenylethanol. In total, 84 different reaction knock-outs were identified across all 

selected target reactions, some of them participating more frequently in strain designs. 

Pyruvate formate lyase and ATP synthase occurred 12 times more often than the 

average 44 knock-outs per reaction in all designs (1271). Pyruvate kinase occurred 7.4 

times more and acetate kinase, pyruvate dehydrogenase, triose-phosphate isomerase, 

glucose-6-phosphate isomerase, ribulose 5-phosphate 3-epirase, glutamate 
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dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase occurred 

approximately 2.8 times more often than the average. As stated earlier (Feist, Zielinski, 

Orth, Schellenberger, Herrgard and Palsson 2010), this uneven distribution of reaction 

knock-out occurrences suggests that certain reactions are critical for diverting carbon 

flux. 

 

Figure 2-9: Growth-Coupled Venn Diagram sorted by number of knock-outs. Shown in the plot is a Venn diagram of instances of 
overlapping designs found for each oxygen condition / substrate / predicted pathway combination. For example, there were 261 
conditions where a strain design was determined for the same conditions with 2, 3, or 4 reaction knock-outs. In theory, the 2 
knock-out designs should be a subset of the 3 knock-out designs, however, algorithm run time likely prevented this from occurring 
in all instances. The same could be said for 3 knock-out designs being a subset of 4 knock-out designs. If one were to run the 
algorithm longer for each condition, this property may be achieved. 

Approximately 8% of all designs were above a molar yield for carbon of 0.6, and 

this corresponded to designs for 9 out of 20 targeted compounds. When comparing 

different oxygenation conditions, most of the designs were calculated under wild 

type/anaerobic conditions (40%), followed by wild type/aerobic (33%), and 

ECOM/aerobic (23%). The highest average yield for all possible designs was calculated 

for wild type/anaerobic as being approximately 17% and 91% higher than the 

ECOM/aerobic and wild type aerobic, respectively. The predominant substrate for 

growth-coupled designs was glycerol (40%), then xylose (32%), and glucose (28%). The 

average growth-coupled yield distribution follows a similar trend where glycerol was 21% 

and 56% higher than xylose and glucose, respectively. According to the previous study 
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(Feist, Zielinski, Orth, Schellenberger, Herrgard and Palsson 2010), the larger the 

number of allowable knock-outs for a given target compound, the greater the maximum 

achievable yield. This trend was observed when comparing RobustKnock for two and 

three knock-out designs, where the average maximum growth-coupled yield was 21% 

higher for three versus two knock-outs. 

 

Figure 2-10: Analysis of predicted yields for identified strain designs. The circumference of the plot is divided into 20 different 
segments, each corresponding to a specific target compound. The yield is represented along the radius, where the center and the 
perimeter represent C-mol yields equal to 0 and 1, respectively. Two different kinds of results are plotted in this diagram. First, the 
theoretical maximal growth-coupled yield for different knock-out and strain/substrate combinations were plotted for each target 
compound. Colored points represent the strain condition for wild type/aerobic (red), ECOM/aerobic (blue), and wild type/anaerobic 
(green). The shape defines a specific substrate use for xylose (+), glycerol (*), and glucose (o). The second set of results 
corresponds to the average maximal theoretical yield (black line) for each compound (each compound can have multiple predicted 
pathways) with the corresponding standard deviation (brown line) added to this mean. These values were calculated from the 
theoretical yield analysis, where all the simulations regarding strain/substrate conditions were taken into account. Finally, the highest 
maximal theoretical yield value is represented by the red line. 
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When comparing GDLS strain designs for four knock-outs to RobustKnock strain 

designs for three knock-outs, 37% of all designs were able to achieve higher C-mol yield 

when allowing four knock outs. Furthermore, for 9% of all designs, GDLS was able to 

find a growth-coupled design when RobustKnock could not (see Figure 2-9). However, 

when comparing GDLS output for four knock-outs to RobustKnock for 3 knock-outs, no 

increase in the average maximum achievable yield was observed (i.e., for 519 3-KO 

designs, the average C-mol yield was 0.35 whereas for 352 4-KO designs, the average 

yield was 0.34). This can be because the GDLS algorithm is not guaranteed to find an 

optimal solution (Lun, Rockwell, Guido, Baym, Kelner, Berger, Galagan and Church 

2009), but this value could increase given a longer run time or different starting 

parameters. 

 

Figure 2-11: A pathway map of synthetic pathways identified in high yield growth-coupled designs. The top 20 growth-coupled 
pathways carrying high fluxes for product formation are shown. Reactions are represented by arrows. The color specifies whether 
the reaction is predicted as promiscuous (red) or known (green). Compounds might be E. coli´s native metabolite (yellow), nonnative 
intermediate (grey), or a target compound (light blue). Each reaction has a two digit index which is specified in Table A2-2. 
Compound abbreviations are: 3hppl: 3-hydroxypropanal, acryl: acrylic acid, prpncoa: propenoyl-CoA, ppdal: propanedial, aa: 
acrylamide, btoh: 1-butanol, 13ppd: 1,3-propanediol, 3hpp: 3-hydroxypropanoate, ppcoa: propanoyl-CoA, ppap: propanoyl 
phosphate, mmcoa-S: (S)-methylmalonyl-CoA, but: butanoic acid, and btcoa: butanoyl-CoA. 

 

Overall, the growth-coupled yield analysis revealed a positive correlation between 

the total number of strain designs and the number of predicted pathways for each target 

compound (Table 2-3). The same correlation was observed when comparing the 

number of independent growth-coupled pathways and the number of predicted 

pathways for each target compound. When examining specific targeted products, 
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approximately 40% of all predicted pathways were able to couple the target compound 

production with growth across any of the predefined oxygenation/substrate/knock-out 

conditions. Strain design C-mol yield averages for the production of 1-butanol were 

higher than the corresponding medial yield for other target compounds.  

Table 2-3: Predicted Yields for Growth-coupled strain designs by production Interval and product 

Yield Interval for growth-
coupled designs 

Total No. of Strain 
Designs 

  Oxygenation 
Nr. of designs/Avg. C-mol Yield   Substrate 

Nr. of designs/Avg. C-mol Yield   Knock Outs 
Nr. of designs/Avg. C-mol Yield 

  aerobic ECOM anaerobic   glucose xylose glycerol   2 KO 3 KO 4 KO 

0.8 - 1.0 10  2 / 0.93 8 / 0.93 0 / 0  0 / 0 5 / 0.94 5 / 0.92  0 / 0 8 / 0.93 2 / 0.94 
0.6 - 0.8 89  17 / 0.61 16 / 0.64 56 / 0.64  3 / 0.61 17 / 0.64 69 / 0.64  15 / 0.65 43 / 0.64 31 / 0.63 
0.4 - 0.6 342  35 / 0.47 70 / 0.49 237 / 0.50  38 / 0.51 121  / 0.48 183 / 0.51  105 / 0.5 146 / 0.50 91 / 0.48 
0.2 - 0.4 461  123 / 0.29 130 / 0.32 208 / 0.32  169 / 0.31 138 / 0.31 154 / 0.32  133 / 0.31 185 / 0.31 143 / 0.32 
0 - 0.2 369  248 / 0.1 59 / 0.05 62 / 0.08  149 / 0.1 121 / 0.10 99 / 0.06  147 / 0.07 137 / 0.11 85 / 0.09 
Overall 1271   425 / 0.21 283 / 0.34 563 / 0.4   359 / 0.25 402 / 0.32 510 / 0.39   400 / 0.29 519 / 0.35 352 / 0.34 
Percentage 19%   33% 22% 44%   28% 32% 40%   31% 41% 28% 

              

Target Compound Total No. of Strain 
Designs   

Oxygenation 
Nr. of designs/Avg. C-mol Yield   Substrate 

Nr. of designs/Avg. C-mol Yield   Knock Outs 
Nr. of designs/Avg. C-mol Yield 

aerobic ECOM anaerobic   glucose xylose glycerol   2 KO 3 KO 4 KO 

acrylamide 77  23 / 0.13 26 / 
0.31 28 / 0.33  29 / 0.20 25 / 0.39 23 / 0.21  27 / 0.22 31 / 0.30 19 / 0.28 

acrilic acid 152  38 / 0.13 67 / 
0.30 47 / 0.31  56 / 0.21 49 / 0.34 47 / 0.24  44 / 0.22 65 / 0.28 43 / 0.27 

3-hydroxypropanoate 110  34 / 0.19 36 / 
0.28 40 / 0.32  38 / 0.18 36 / 0.36 36 / 0.26  35 / 0.22 45 / 0.31 30 / 0.26 

1-propanol 143  55 / 0.15 6 / 0.41 82 / 0.39  41 / 0.25 47 / 0.25 55 / 0.38  63 / 0.26 50 / 0.33 30 / 0.36 
isopropanol 34  18 / 0.11 1 / 0.48 15 / 0.39  10 / 0.19 11 / 0.22 13 / 0.30  12 / 0.19 12 / 0.26 10 / 0.28 

1-butanol 211  62 / 0.35 25 / 
0.44 124 / 0.49  53 / 0.36 56 / 0.39 102 / 0.51  76 / 0.41 96 / 0.43 39 / 0.52 

isobutanol 23  1 / 0.01 17 / 
0.32 5 / 0.23  6 / 0.28 8 / 0.22 9 / 0.35  1 / 0.00 18 / 0.36 4 / 0.03 

1,3-propanediol 106  40 / 0.26 3 / 0.50 63 / 0.35  4 / 0.14 30 / 0.20 72 / 0.38  31 / 0.30 41 / 0.37 34 / 0.28 
2,3-propanediol 0  0 / 0.00 0 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 0 / 0.00 

1,4-butanediol 375  144 / 0.21 88 / 
0.35 143 / 0.44  110 / 0.23 129 / 0.31 136 / 0.43  100 / 0.30 145 / 0.34 130 / 0.34 

2,3-butanediol 2  0 / 0.00 0 / 0.00 2 / 0.38  1 / 0.37 1 / 0.40 0 / 0.00  0 / 0.00 2 / 0.38 0 / 0.00 
3-methyl-1-butanol 0  0 / 0.00 0 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 0 / 0.00 
2-methyl-1-butanol 0  0 / 0.00 0 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 0 / 0.00 
2-keto-isovaleric acid 1  0 / 0.00 1 / 0.54 0 / 0.00  0 / 0.00 0 / 0.00 1 / 0.54  0 / 0.00 0 / 0.00 1 / 0.54 
2-keto-valeric acid 1  0 / 0.00 0 / 0.00 1 / 0.50  0 / 0.00 0 / 0.00 1 / 0.50  0 / 0.00 1 / 0.50 0 / 0.00 
3-hydroxyvalerate 2  0 / 0.00 2 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 2 / 0.00  1 / 0.00 0 / 0.00 1 / 0.00 
2-keto-butanoic acid 17  5 / 0.14 3 / 0.31 9 / 0.50  4 / 0.39 6 / 0.39 7 / 0.31  4 / 0.36 7 / 0.34 6 / 0.38 
3-hydroxybutyrate 17  5 / 0.41 8 / 0.53 4 / 0.11  7 / 0.42 4 / 0.36 6 / 0.40  6 / 0.30 6 / 0.43 5 / 0.46 
4-hydroxybutyrate 0  0 / 0.00 0 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 0 / 0.00  0 / 0.00 0 / 0.00 0 / 0.00 
2-phenylethanol 0   0 / 0.00 0 / 0.00 0 / 0.00   0 / 0.00 0 / 0.00 0 / 0.00   0 / 0.00 0 / 0.00 0 / 0.00 

The number of strain designs and the corresponding average yield are separated by “/”. Results were tabulated for each yield interval under different 
oxygenation/substrate/knock-out conditions. Overall values were added at the bottom. The number of strain designs and the corresponding average 
yield are separated by “/”. Results were tabulated for target compounds under different oxygenation/substrate/knock-out conditions. Furthermore, the 
number of predicted strain designs and the number of growth-coupled pathway for each target compound were tabulated. 

For acrylamide, acrylic acid, and 3-hydroxypropanoate, the average yield was 

higher, only when compared to other targets on xylose. 1-propanol, isopropanol, and 

1,3-propanediol yield averages were higher under ECOM/aerobic, and 1,4-butanediol 

under wild type/anaerobic using glycerol as a substrate. Specifications regarding the 

number of predicted strain designs and average yield for each pathway are shown in 

Table A2-4.  
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Table 2-4: Comparison of GEM-Path growth coupled design to previously identified pathways from literature 

Target Compound 
aerobic   ECOM   anaerobic 

glucose xylose glycerol   glucose xylose glycerol   glucose xylose glycerol 

1,4-butanediol 0.13* 0.22* 0.36* 
 

0.47* 0.50* 0.60* 
 

0.40* 0.51* 0.60* 

1,3-propanediol 0.14* 0.16* 1,15E 
 

--- --- 1,00E 
 

--- 1,12E 0,86E 

3-hydroxypropanoate 1,76C 2,16C 0,51E 
 

1,21C 2,48C 22,5C 
 

1,67C 1,46C 2,29C 

1-propanol 1,85E 0,78E 0,79E 
 

0.36* 0,65E 0.48* 
 

0,82E 0,68E 0,85E 

1-butanol 1,34E 1,57E 2,32E 
 

2,03E/C 2,31E/C 1,06E 
 

1,05E/C 1,03E 1,16E 

isopropanol 0.18* 0.17* 0.21* 
 

--- --- 0.48* 
 

0.38* 0.40* 0.50* 
isobutanol --- --- 0.01* 

 
0.35* 0.37* 0.58* 

 
0.54†E/C 0,01E/C --- 

3-hydroxybutyrate 0.61* 0.35* 0.43* 
 

0.60* 0.52* 0.66* 
 

0.30* --- 0.12* 

2-phenylethanol --- --- --- 
 

--- --- --- 
 

--- --- --- 

2,3-propanediol --- --- --- 
 

--- --- --- 
 

--- --- --- 

2,3-butanediol --- --- --- 
 

--- --- --- 
 

0.37†E 0.40†E --- 

3-methyl-1-butanol --- --- --- 
 

--- --- --- 
 

--- --- --- 

2-methyl-1-butanol --- --- --- 
 

--- --- --- 
 

--- --- --- 

4-hydroxybutyrate --- --- ---   --- --- ---   --- --- --- 
For each target compound, the growth-coupled ratio between novel pathways generated by GEM-Path and experimentally implemented (E) and/or 
computationally generated pathways (C) are shown. Empty spaces (---) indicate that no referenced pathways for the corresponding target compound 
were found. 
* no experimentally implemented nor previous computationally  predicted pathways were able to growth couple the target compound production. 
Maximum growth-coupled yield associated with new pathway predicted by GEM-Path is reported. 
† only experimentally or previous computationally predicted pathway were able to growth couple the target compound production. Maximum growth-
coupled yield is reported. 

As expected, depending on the pathway precursor, intermediates, stoichiometry, 

and cofactors involved, specific combinations for oxygenation/substrate/knock-out lead 

to different productivities. As shown in Figure 2-10, for each target compound, most of 

the production potentials were under the maximum theoretical yield average. This 

behavior is due to the resulting strain designs being predicted as heterofermentative 

strains and also because some knock-outs significantly constrain the production 

potential. 

In order to compare and determine the growth coupled production potential for 

the novel pathway calculated using GEM-Path and the already reported pathways 

(computationally or experimentally), an analysis was performed by calculating the ratio 

between the highest growth-coupled production for the novel pathways predicted by 

GEM-Path over the experimentally or computationally reported pathways. Results were 

displayed under aerobic, ECOM, and anaerobic conditions, by using glucose, xylose, 

and glycerol as a carbon source. Values over 1 indicated that GEM-Path’s novel 

pathways have higher growth-coupled production potential than already referenced 

pathways (Table 2-4). Specifically, for 3-hydroxypropanoate, 1-propanol, and 1-butanol, 
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considerable improvements were found on various substrates and oxygenation 

conditions. Furthermore, for 1,4-butanediol, isopropanol, isobutanol, and 3-

hydroxybutarte, only growth-coupled designs associated to novel pathways from GEM-

Path were found. 

2.4.7 Analysis of Pathways and Strain Designs with the Highest Yield 

The final decision to implement any of the predicted pathways will be subject to 

the production potential. Promising strain designs with growth-coupled yield between the 

average theoretical yield plus standard deviation and the highest theoretical yield values 

were found in silico. The pathways are outlined in Figure 2-11 and strain designs were 

specified in Table A-2. Specifically, pathways for the production of 1,3-propanediol, 1-

butanol, 3-hydroxypropanoate, acrylic acid, and acrylamide were identified as potential 

candidates for experimental implementation. Of these top performers, 10% of the 

designs were predicted as being wild type/aerobic, 40% under ECOM/aerobic, and 50% 

wild type/anaerobic. As for the substrates, 25% of the designs used xylose as a carbon 

source and 75% used glycerol. No designs from glucose were found among the top 

producer designs, which indicate how robust E. coli’s metabolism is when using glucose 

as substrate. From all the selected pathways, three similar pathway structure patterns 

were identified. The first has as its intermediate compound 3-hydroxypropanal (3hppnl) 

and the precursors glycerol (glyc) and glyceraldehyde (glyald) (see Figure 2-11). 

Through these pathways, production of 3-hydroxypropanoate and 1,3-propanediol were 

predicted (deviation values were extracted for analysis. E. coli genes for reactions 

labeled as 1.2, 2.1, and 19.1 have been reported as being able to catalyze such 

enzymatic transformations (Jo et al. 2008; Zhuge et al. 2010). Pathways for designs 1, 

2, 16, and 17 (see deviation values were extracted for analysis. The pathways showed 

that all reactions are “known” (no promiscuous inference). Furthermore, designs 1 and 2 

showed an interesting phenotype, diverting most of the glycerol uptake flux through the 

production of 3-hydroxypropanoate, while fixing carbon dioxide for growth. In this 

design, approximately 5% of the carbon intake must come from carbon dioxide. This 

assumption could be valid as it has been reported in E. coli that carbon dioxide uptake 

representing around 10% of the entire carbon uptake has been observed (Lu et al. 

2009). The second common pathway structure, starting from design identifier 3 to 10 
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(deviation values were extracted for analysis. The pathways combines predictions that 

are able to produce acrylic acid, acrylamide, and 3hydroxypropanoate. These pathways 

have propenoyl-CoA (prpncoa) as a common intermediate and propanoyl-CoA (ppcoa) 

as a precursor. None of the pathways related to these designs were completely known, 

which means that at least one reaction in the pathway was predicted as promiscuous 

when comparing against BRENDA. All of the designs in this set were predicted under 

ECOM/aerobic conditions and the pyruvate kinase knock-out was involved in all of them. 

Finally, the third common structured pathway pattern, starting from design identifier 11 

to 15. For the linear pathway regarding the production of 1-butanol from butanoyl-CoA, 

all of the intermediates were native E. coli metabolites. All of these designs were 

predicted under wild type/anaerobic conditions using only glycerol as a substrate. 

Reactions 12.1 and 13.1 were already in the E. coli model (ALDD4 and BUTCT 

respectively) (Orth, Conrad, Na, Lerman, Nam, Feist and Palsson 2011), but defined as 

irreversible in the opposite direction. These designs represent a subset of a total of 1271 

designs identified in this work which are provided in detail in the online paper resources. 

2.4.8 GEM-Path output example 

2.4.8.1 Case I: Production of 1,3-propanediol 

A output example for the production of 1,3-propanediol using GEM-Path is given 

in Figure 2-12. Two different GEM-Path calculated pathways were outlined: Pathway #7 

(reactions 6 and 3) that has already been experimentally implemented, and pathway #16 

(reactions 17, 12, 16, and 3).  For pathway #16, specific output relating to the existence 

of catalyzing reactions from BRENDA and the promiscuity analysis are shown. For 

reaction 3, 6, and 17, exact matches in the BRENDA database were found, sharing 

identical cofactors, substrates, and products. This is represented by a substrate TC 

equal to 0 during the search. Furthermore, the species and EC number were reported 

(Ishikura et al. 2005; Kajiura et al. 2007; Wang, Liu, Xian, Zhang and Zhao 2012). It is 

worthwhile to note that for homologous enzymes, there was no ranking in terms of 

species shown to carry out a given reaction. The algorithm reports only the first hit, 

associated with the corresponding species and the predicted reaction. For experimental 

purposes, it may be necessary to use the predicted EC Number and a database such as 
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BRENDA to find multiple possible enzyme options that can be evaluated. The concept of 

sorting in terms of species distances between the host and the species associated with 

the predicted reaction was not considered. Attempts have been made to mine content 

for homologous expression in E. coli (Bayer et al. 2009), but this is an active field of 

research. According to the iterative algorithm shown in Figure 2-5, no exact substrate 

structural matches were found for reactions 12 and 16. Instead, a promiscuity analysis 

was performed, obtaining the corresponding reactions from BRENDA. The promiscuity 

space is represented by a multi-dimensional space, obtained from the multi-linear 

regression analysis. For simplicity, and in order to describe the promiscuity analysis 

output,, a two dimensional space was outlined in Fig 6 and the native BRENDA reaction 

substrate’s (blue circles) distances from the centroid (red circle) were normalized to 1, 

and the tested substrate (green circle) was outlined at a distance equal to the 

promiscuity score. For reaction 12 and 16, a PS equal to 1.1 and 0.69 were calculated, 

respectively. The BRENDA predicted reaction was reported showing the substrate 

difference in terms of the TC, the corresponding species, and EC number(Furuyoshi et 

al. 1991). 

In order to avoid extensive computation, the algorithm chooses and saves the 

first possible solution for the particular species and related promiscuity score, leaving 

behind a number of additional feasible solutions able to fulfill the PS threshold. Reaction 

17 represents a reaction gap filled by the algorithm. As shown in Figure 2-12, the only 

reaction that connects the D-malate (mal-D) metabolite to E. coli metabolism are 

transport reactions through the periplasmic and external membrane (iMALDt2_2pp and 

MALDtex, respectively). Since mal-D was not set as a media constituent, there was no 

option for it to be generated by the network. By calculating reaction 17, it was feasible to 

connect a heterologous pathway to central carbon metabolism, specifically to 

oxaloacetate (oaa). Note that E. coli does contain malate dehydrogenase (MDH) which 

reversibly converts L-malate to oaa, but it is not implied that it can convert it to D-

malate(Sutherland and McAlister-Henn 1985). 

Following synthetic calculation of heterologous pathways for each target 

compound, strain design computations were performed to engineer host cell 

metabolism. Continuing with the current example for 1,3-propandiol production, 
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production envelopes of growth-coupled designs for pathways #7 and #16 were outlined 

in Figure 2-16a. Furthermore, a productivity analysis under different conditions was 

performed (Figure 2-16b), where shaded areas represent the maximum theoretical 

production rate by setting the computational minimal growth rate to 0.1 h-1, and solid 

areas represent the maximum growth-coupled production rate. As mentioned before, the 

overall trend shows that under aerobic conditions, maximum theoretical production is 

higher flux compared to anaerobic. Moreover, by using glycerol as a substrate instead of 

glucose, higher productivities were calculated for both aerobic and anaerobic conditions. 

Specifically, when comparing the maximum theoretical production for pathways #16 and 

#7 under aerobic conditions, an increase of 17% and 25% was observed, and under 

anaerobic conditions a 6% and 67% increase was observed over glucose, respectively. 

 
Figure 2-12: GEM integrated synthetic pathway calculation (GEM-Path) output for 1,3-propanediol. Two different GEM-Path calculated pathways are 
shown: Pathway #7 (top, reactions 6 and 3) which has been experimentally implemented, and pathway #16 (bottom, reactions 17, 12, 16, and 3). For 
each pathway, reactions leading from the host metabolome are shown in black. Native and non-native E. coli metabolites are represented in yellow and 
brown, respectively. The corresponding target compound is shown in light blue. Reactions calculated as known in BRENDA and reaction calculated as 
promiscuous are shown in green and red, respectively. For each predicted reaction in pathway #16, specific values of the tanimoto coefficient (TC), 
promiscuity score (PS) and the corresponding BRENDA reaction (brown lines) are shown. For reactions predicted as promiscuous, the corresponding 
promiscuity space was outlined with the number of metabolites associated with the specific reaction found in BRENDA. For simplicity, a two 
dimensional space was plotted, where each of the native BRENDA metabolites (green) are separated from the centroid (red circle) in 1 dimensionless 
unit and the predicted metabolite is shown in green, with the corresponding distance equal to the PS. A promiscuity score threshold was plotted at a 
distance equal to 2. Each BRENDA reaction shows the corresponding associated EC number and a species known to catalyze the specific reaction. 

Depending on the inserted heterologous pathway, different flux distributions were 

calculated. For pathways #16 and #7, the flux solution ratio for maximum theoretical 
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production when using glycerol over glucose as substrates was calculated and 

qualitatively outlined (see  

Figure 2-13). For both pathways under aerobic conditions, there was a decrease in 

the carbon dioxide evolution when using glycerol as a substrate (approximately 50% 

less carbon dioxide was produced). Looking at the flux distributions, for pathway #16, no 

activity was predicted for the pentose phosphate pathway (PPP) when using glycerol as 

a substrate, and a higher target production rate when using glycerol was observed. This 

was due to the glycerol uptake metabolism, which is able to produce nadh and nadph 

similar to the PPP, but without generating carbon dioxide in the process, leading to more 

efficient carbon metabolism. For anaerobic conditions, a similar trend and a mixed acid 

fermentation behavior was observed. By comparing the maximum theoretical production 

for both pathways under the same conditions (same substrate and oxygenation), 

pathway #16 is able to achieve higher productivity by using glucose as a substrate, 

approximately 4% and 22% more under aerobic and anaerobic conditions, respectively. 

Still, by using glycerol as a carbon source, the productivity decreases approximately, 3% 

and 22% less under aerobic and anaerobic conditions, respectively. This result 

demonstrated that the novel GEM-Path predicted pathways #16 is more suited to 

implement linked to a glucose based fermentation process. According to Figure 2-16a 

and Figure 2-16b, growth-coupled designs were only found for glycerol under both 

anaerobic and aerobic conditions. No growth-coupled designs associated with glucose 

under anaerobic conditions were found, and under aerobic conditions, only a low 

productivity growth coupled design for pathway #16 was found. 
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Figure 2-13: Mayor pathways FBA solution comparison for 1,3-propanediol production. Two different pathways (Pathways #16 and #7) where used to 
compared FBA solutions under aerobic and anaerobic conditions. The substrates used for the analysis were glycerol and glucose. FBA was executed 
by : i) incorporating the heterologous pathways to the model, ii) setting an uptake rate to 120 C-mmol gDW-1h-1 for each carbon source, 20 mmol gDW-
1h-1 O2 when specified, iii) setting a minimal growth rate to sustain growth as 0.1 h-1 (as set by the amount of flux necessary through the BOFcore), 
and iv) using maximizing the flux through each of the exchange reactions in the model for the target compound. Afterwards, the ration between the 
glycerol over the glucose FBA solution was calculated. Reactions associated for each pathway were qualitatively analyzed, and pathways were 
highlighted in terms of the FBA solution ration. The intensity of the highlighted pathways increase with the value of the ration. Five different ratios 
intervals were chosen to analyze the difference between the conditions: approximately 0, between 0 and 1, approximately 1, between 1 and 10 and 
higher than 10. These conditions represents: no flux through the pathway by using glycerol as a substrate, higher flux through the pathway by using 
glucose as a substrate, no difference on the flux distribution, higher flux through the pathway by using glycerol as a substrate, and extremely higher flux 
through the pathway by using glycerol as a substrate, respectively. 
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2.4.8.2 Case-study II: Production of isopropanol 

GEM-Path predicted pathways for the production of isopropanol are given in 

Figure 2-14. For the production of isopropanol, two different GEM-Path calculated 

pathways were outlined: Pathway #13 (reactions 7, 8, and 1) which has been 

experimentally implemented, and Pathway #1 (reactions 1 and 3).  For Pathway #1, 

specific output relating to a promiscuity analysis is shown. For reaction 1, an exact 

match in the BRENDA database was found, sharing the same cofactors, substrates, and 

products. This is represented by a substrate TC equal to 0 during the search. 

Furthermore, a species known to carry out this reaction and EC number were reported 

(Drewke and Ciriacy 1988). Although the reaction was reported to proceed in the 

reverse direction, no evidence showing reaction irreversibility was found. Conversely, no 

exact substrate structural match was found for reaction 3. Thus, a promiscuity analysis 

was performed, obtaining the corresponding reaction from BRENDA. The promiscuity 

space is represented by 11 different native substrates (n =11). In order to describe the 

promiscuity analysis output and for simplicity, a two dimensional space was outlined (as 

described above). According to the results, a PS equal to 0.88 was calculated. The 

BRENDA predicted reaction was reported showing the substrate difference in terms of 

the TC along with a corresponding species and EC number. For the other pathway (i.e. 

#13), reaction 7 represents a reaction gap filled by the algorithm. As shown in Figure 

2-14, two different reactions connect acetoacetate (acac) to other metabolites in the 

network. The first reaction is ACACCT, which is an irreversible reaction on pathway #13 

opposite the isopropanol production direction, and the second reaction is a transport 

reaction. Since acac was not set as a media constituent, there was no option for it to be 

generated by the network. By calculating Reaction 7, it was feasible to connect the 

heterologous pathway to central carbon metabolism, specifically to acetyl-coa (accoa). It 

should be noted that there is experimental evidence for the existence of a reversible 

ACACT1r reaction (Fujii et al. 2010; Gulevich et al. 2012), but there is also contradictory 

evidence indicating that operation in this direction could be highly unfavorable (Lan and 

Liao 2012; McCloskey et al. 2014).  Nonetheless, the GEM-Path algorithm uses the 

content as defined in the model (Orth, Conrad, Na, Lerman, Nam, Feist and Palsson 

2011) and curation is a helpful step after promising production pathways are identified. 
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Beyond identifying pathways, growth coupled-designs utilizing pathways #1 and #13 

were outlined in Figure 2-16b. Furthermore, a max theoretical production analysis under 

different conditions was performed (Figure 2-16d), where shaded areas represent the 

maximum theoretical production by setting the computational growth rate to 0.1 h-1, and 

solid areas show the maximum growth-coupled productivity. As mention before, the 

overall trend shows that under aerobic conditions, pathways are capable of carrying 

higher theoretical flux as compared to anaerobic. Moreover, by using glycerol as a 

substrate instead of glucose, higher productivities were calculated for aerobic 

conditions. For anaerobic conditions and using glycerol as a substrate, only pathway #1 

was able to achieve higher flux compared to glucose. 

 
Figure 2-14: GEM integrated synthetic pathway calculation (GEM-Path) output for GEM integrated synthetic pathway 
calculation (GEM-Path) output for isopropanol. Two different GEM-Path calculated pathways are shown. Pathway #13 
(reactions 7, 8, and 1), that has been experimentally implemented, and Pathway #1 (reactions 1 and 3). For each 
pathway, reactions leading to the host cell metabolome are shown in black. Native and non-native E. coli metabolites 
are represented in yellow and brown, respectively. The corresponding target compound is shown in light blue. 
Reactions calculated as known in the BRENDA database and reactions calculated as promiscuous are shown in 
green and red, respectively. For each predicted reaction in pathway #1, specific values of the tanimoto coefficient 
(TC), promiscuity score (PS), and the corresponding BRENDA reaction (brown) are specified. For reactions predicted 
as promiscuous, the corresponding promiscuity space was outline with the number of metabolites associated with the 
specific reaction found in BRENDA. For simplicity, a two dimensional space was plot, where each of the native 
BRENDA metabolites (green) are separated from the centroid (red circle) in 1 dimensionless units and the predicted 
metabolite is shown in green, with the corresponding distance equal to the PS. A promiscuity scores threshold was 
plotted at a distance equal to 2. Each BRENDA reaction shows the corresponding associated EC number and species 
known to carry out the reaction. 

A maximum theoretical production analysis for isopropanol revealed differences 

in production potential when using glycerol or glucose as a substrate. For both pathways 
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under aerobic conditions, a decrease in carbon dioxide evolution was observed when 

using glycerol as a substrate. For both pathways, approximately 25% less carbon 

dioxide was produced. Looking at the flux distribution (see Figure 2-15), for pathway #1 

and #13, no activity in the PPP during glycerol consumption was observed, due to the 

same reason described in the first 1,3-propanediol case study. For anaerobic conditions, 

specifically for pathway #1, a mix acid fermentation behavior was observed. Higher 

productivity was observed compared to glycerol for pathway #13 under anaerobic 

conditions and using glucose as a substrate. Byproduct formation during glycerol growth 

was critical in diminishing the productivity. 

By comparing the pathway’s maximum theoretical production under the same 

conditions (same substrate and oxygenation), pathway #1 is able to achieve higher 

productivity by using glucose as a substrate, approximately 1% and 7% more under 

aerobic and anaerobic conditions, respectively. When utilizing glycerol as a carbon 

source, the productivity increases approximately 6% and 94% under anaerobic 

conditions, respectively. This result demonstrated that the novel GEM-Path predicted 

pathway #1 shows a higher theoretical potential when using a glycerol based 

fermentation process. As indicated in Figure 2-16c and Figure 2-16d, growth-coupled 

designs were only found for pathway #1. Growth-coupled productivities similar to the 

maximum theoretical achievable productivity were found using both glycerol and glucose 

as a substrate and under anaerobic conditions. 
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Figure 2-15: Mayor pathways FBA solution comparison for isopropanol production. Two different pathways (Pathways #13 and #1) 
where used to compared FBA solutions under aerobic and anaerobic conditions. The substrates used for the analysis were glycerol 
and glucose. FBA was executed by : i) incorporating the heterologous pathways to the model, ii) setting an uptake rate to 120 C-
mmol gDW-1h-1 for each carbon source, 20 mmol gDW-1h-1 O2 when specified, iii) setting a minimal growth rate to sustain growth 
as 0.1 h-1 (as set by the amount of flux necessary through the BOFcore), and iv) using maximizing the flux through each of the 
exchange reactions in the model for the target compound. Afterwards, the ration between the glycerol over the glucose FBA solution 
was calculated. Reactions associated for each pathway were qualitatively analyzed, and pathways were highlighted in terms of the 
FBA solution ration. The intensity of the highlighted pathways increase with the value of the ration. Five different ratios intervals were 
chosen to analyze the difference between the conditions: approximately 0, between 0 and 1, approximately 1, between 1 and 10 and 
higher than 10. These conditions represents: no flux through the pathway by using glycerol as a substrate, higher flux through the 
pathway by using  glucose as a substrate, no difference on the flux distribution, higher flux through the pathway by using glycerol as 
a substrate, and extremely higher flux through the pathway by using glycerol as a substrate, respectively. 
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Figure 2-16: Strain design productivity analysis for GEM-Path case studies. The production envelopes for strain 
designs of 2-4 gene knockouts were plot (a and c). Glucose and glycerol were used as substrate examples under 
aerobic and anaerobic conditions. Production envelopes for 1,3-propanediol (pathways #16 and #7) and ispopropanol 
(pathways #13 and #1) are shown in (a) and (c), respectively. Solid blue and red lines represent experimentally 
implemented pathways and novel GEM-Path calculated pathways, respectively. Production envelopes for growth-
coupled designs are shown in dotted lines. Productivity analysis for the production of 1,3-propanediol (b) and 
isopropanol (d) were outlined. Results were grouped for aerobic and anaerobic conditions, associated with the 
corresponding pathway number. By using glucose (blue) and glycerol (green) as substrates, maximum theoretical 
production rate (shaded bars) and growth-coupled production rate (filled bars) were plotted. FBA was used to 
determine the maximum theoretical productivity by setting the growth rate to 0.1 h-1 and optimizing for the target 
compound production. Growth-coupled productivity was calculated by knocking out computationally identified 
reactions and optimizing for growth rate. The maximum value for each condition was reported. 
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2.5 Conclusions 

The aim of this work was to outline the production potential for 20 industrially-

relevant chemicals in E. coli and generate feasible designs for production strains. The 

enabling technology generated for the project was a computational pipeline including 

chemoinformatics, bioinformatics, constraint-based modeling, and GEMs to aid in the 

process of metabolic engineering of microbes for industrial bioprocessing purposes. The 

main results from this study are, i) a comprehensive mapping from E. coli’s native 

metabolome to commodity chemicals that are 4 reactions or less away from a natural 

metabolite, ii) sets of metabolic interventions, specifically knock-outs and knock-ins, that 

coupled the target chemical production to growth rate, iii) the development of a 

retrosynthetic based pathway predictor algorithm containing a novel integration with 

GEMs and reaction promiscuity analysis, and iv) a complete strain design workflow 

integrating synthetic pathway prediction with growth-coupled designs for the production 

of non-native compounds in a target organism of interest. 

For synthetic pathway predictions, much attention has been focused on 

retrosynthetic algorithms, where a backward search for synthetic pathways is performed 

by an iterative application of biochemical reaction operators (BROs) from a target 

compound to a predefined source of metabolites (Medema, van Raaphorst, Takano and 

Breitling 2012). Based on 443 BROs included in this work, a retrosynthetic pathway 

predictor algorithm was developed which incorporates GEMs into the procedure. The 

GEM-Path algorithm is also coupled together with database analysis for reaction 

existence and reaction promiscuity inference. Predictions were compared to literature, 

and showed a good agreement with previously reported algorithms. Due to the filtering 

procedure at each iteration step, specifically the promiscuity analysis, the number of 

generated pathways was considerably lower as compared with previous algorithms, 

diminishing the candidates required for further experimental implementation. In total, 

GEM-Path generated 245 synthetic pathways for the production of 20 different 

compounds in E. coli. The majority of the predicted pathways involved at least one 

promiscuous reaction. Since the promiscuity analysis is based on E.C. reaction numbers 

instead of genes, an enzymatic validation step may be necessary to confirm the 

predicted functionality before introduction into a production host. 
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Theoretically, all synthetic pathways identified in this work are able to produce the 

target compound under a given substrate/oxygenation/strain conditions and in total, they 

characterize the production space. Novel pathways able to achieve high yield were 

found for a range of commodity chemicals. According to the theoretical maximum yield 

analysis, pathways implemented under wild type aerobic conditions tend to have a 

greater production potential compared to the other strain/oxygenation conditions. 

Furthermore, when changing the anaerobiosis threshold, the more anaerobic the 

condition of a strain, the less overall production could be achieved. Lower maximum 

theoretical yields observed in anaerobic conditions (vs. aerobic) are expected, as no 

oxygen is essentially an additional constraint, limiting the capability of the network (just 

like the removal of a key reaction in the network). Based on a C-mol Yield basis, under 

wild-type/aerobic conditions, glycerol is found to be the most efficient substrate for 

heterologous target compound production. However, for wild-type/anaerobic, xylose and 

glucose are the most efficient substrates. Additionally, precursor yield analysis reveals 

that pathways having precursors closest to the central metabolism are able to achieve 

higher yields which agrees with logic as central metabolic reactions carry the most flux 

in the network (Almaas et al. 2004). 

Growth-coupled production of a specific metabolite depends on the energy 

benefit that the cell can obtain through the pathway activation related to the growth-

coupled metabolite. Growth-coupled design algorithms operate by knocking out 

reactions, thus generating an energy imbalance that is recovered by then coupling 

different pathways to growth. The final metabolite involved in these pathways works as a 

final electron acceptor, thus, under anaerobic conditions, pathways are more susceptible 

to coupling to growth. The ability to find growth-coupled designs preferentially under 

anaerobic conditions can be seen by analyzing the overall results, where growth-

coupled designs under wild-type anaerobic conditions were found to be present more 

frequently and were able to achieve higher yields. Further, designs with glycerol as a 

substrate had the highest yields anaerobically. Thus, under anaerobic conditions, 

growth-coupled designs are easier to obtain compared to aerobic conditions. 

Furthermore, for most of the predicted reactions contributing to a growth-coupled 

design, approximately 40%, were oxidoredutases with NAD or NADP acceptors. 
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Removal of these reactions facilitates growth-coupling as they shift the flow of electrons 

in metabolism (King and Feist 2013). 

Designs highlighted in this work were selected according to their production 

potential (i.e., yield, Yp/s). Nevertheless, further improvements are needed for the design 

and production workflow to promote success in experimental implementation. For 

instance, toxicity due to product or co-product formation was not evaluated during the 

design pipeline; this might lead to the production of toxic compounds together with cell 

death. Due to the scope of the GEMs used in this work (i.e., metabolic GEMs), key 

regulatory steps were not taken into account. Furthermore, the impact of low substrate 

affinity of predicted promiscuous enzymes might lead to false positive results, 

decreasing the in vivo maximum achievable yield. However, to generate non-native 

products, it is obvious that new production pathways are necessary and thus that was 

the focus of this work. Furthermore, growth coupled designs, such as those produced 

here, provide an extra tool for metabolic engineers by allowing for the use of selection 

pressure to achieve a desired production state. For reactions predicted as promiscuous, 

in vitro enzyme analysis might be necessary to identify and characterize the potential 

promiscuous activity. Moreover, in order to avoid undesirable metabolite sinks, a 

promiscuity analysis regarding native metabolites must be taken into account when 

reactions are incorporated into metabolism. Lastly, as in any production strain project, 

enzyme efficiency issues and heterologous codon optimization (Medema, van 

Raaphorst, Takano and Breitling 2012) must also be considered for product formation. 

Taken together, the workflow presented here finds that the 20 major commodity 

chemicals are within 4 reactions from the metabolic network of E. coli. Further, it maps 

out all the feasible pathways linking the chemical structures of these commodity 

chemicals to the metabolic network of E. coli and their theoretical yields.  It also maps 

out the chemical reactions and enzymatic requirements for building these pathways. 

Thus, in a way, we have generated a pathway atlas that can guide the global metabolic 

engineering and strain design efforts needed to convert the petroleum-based industry to 

a biomass-based industry, and thus forms the basis for a grand challenge undertaking 

by the community. 
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Chapter 3  
 

A chemoinformatic approach to predict Gain-of –
Function (GoF) oncometabolites. 

 

3.1 Abstract 

By using the mutated isocitrate dehydrogenase (IDH) example to produced 

oncometabolites due to Gain-of-Function (GoF) mutations, that could be used for 

biomarkers identification, a chemoinformatic based workflow was generated to identify 

potential chemical oncometaboliotes substructures. Based on 6 mutated enzymatic 

genes and the corresponding metabolic reactions associations and assuming an IDH 

type of GoF kind of behavior for each mutated enzyme, synthetic reaction were 

simulated and further filtered to identify potential promiscuous activities. By using a 

maximum common substructures (MCS) search on all predicted promiscuous 

metabolites for each mutated enzyme reaction, 24 chemical substructures of 

oncometabolites resulting from the GoF analysis were predicted. 

3.2 Introduction 

The metabolic state coined as “aerobic glycolysis” (Warburg, Posener and 

Negelein 1924). which has been described as a passive response causing a malignant 

transformation (Hanahan and Weinberg 2011), is being challenged by recent 

discoveries. Studies has been proven that altered metabolism by itself can be a driver 

for oncogenesis (Letouze, Martinelli, Loriot, Burnichon, Abermil, Ottolenghi, Janin, 

Menara, Nguyen, Benit, Buffet, Marcaillou, Bertherat, Amar, Rustin, De Reynies, 

Gimenez-Roqueplo and Favier 2013; Lu, Ward, Kapoor, Rohle, Turcan, Abdel-Wahab, 

Edwards, Khanin, Figueroa, Melnick, Wellen, O'Rourke, Berger, Chan, Levine, 

Mellinghoff and Thompson 2012a; Xiao, Yang, Xu, Ma, Lin, Zhu, Liu, Liu, Yang, Xu, 
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Zhao, Ye, Xiong and Guan 2012; Xu, Yang, Liu, Yang, Wang, Kim, Ito, Yang, Xiao, Liu, 

Jiang, Liu, Zhang, Wang, Frye, Zhang, Xu, Lei, Guan, Zhao and Xiong 2011; Yang, 

Soga, Pollard and Adam 2012b). Specifically, characterized isocitrate dehydrogenase 

(IDH1, IDH2) mutations have established a new paradigm in cancer developments in 

that the heterozygous point mutations confer a new metabolic enzymatic activity that 

produce an oncometabolite (e.g. 2-hydroxyglutarate (2-HG), from α-ketoglutarate(α-KG)) 

(see Figure 3-1, GoF square). In fact, 2-HG shows a 100-fold increased concentration in 

glioma and acute myeloid leukemia’s (AML) patients with IDH1 or IDH2 missense 

mutations. This increased concentration of 2-HG competitively inhibits α-ketoglutarate 

binding to histone demethylases, thus blocking differentiation of cells (Lu, Ward, Kapoor, 

Rohle, Turcan, Abdel-Wahab, Edwards, Khanin, Figueroa, Melnick, Wellen, O'Rourke, 

Berger, Chan, Levine, Mellinghoff and Thompson 2012a; Xu, Yang, Liu, Yang, Wang, 

Kim, Ito, Yang, Xiao, Liu, Jiang, Liu, Zhang, Wang, Frye, Zhang, Xu, Lei, Guan, Zhao 

and Xiong 2011). 

Recently the Constraint-Based Reconstruction and Analysis (COBRA) approach, an 

emerging field in systems biology approach, has been proven successful in addressing 

heterogeneity in cancer by integrating experimental data with the genome scale metabolic 

reconstructions (GEMs) to tailor the models to the unique gene expression profiles of 

general cancer tissue, and even individual cell lines and tumors. This enables to study the 

cancer metabolism and simulate tumor phenotypes from a genome wide perspective(Lewis 

and Abdel-Haleem 2013). Based on genetic mutation information on a massive scale 

collected from more than 1,700 cancer genomes into context-specific GEMs of 

metabolism for nine cancer types, Nam et al., 2014 determined 6 different mutated 

metabolic enzymatic genes for GoF analysis, which presented missense mutations 

similar to those presented in the IDH case. According to the latter, in this work, a 

chemoinformatic based workflow was generated for predicting potential oncometabolites 

chemical structures due to GoF mutation. 
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3.3 Materials and Methods 

3.3.1 Chemoinformatics resources for gain-of-function (GoF) oncometabolite 
predictions 

Throughout the workflow for GoF oncometabolite predictions, chemoinformatic 

tools were essential for integrating computational chemical analysis into genome-scale 

model theory by simulating synthetic reactions, analyzing metabolites databases and 

results. A range of chemoinformatic in-house methods and functions, which are 

described below, were incorporated into the MATLAB® environment by linking it with 

ChemAxon’s software package libraries, specifically Marvin, JChem Base, Standardizer 

and Reactor [(ChemAxon, Budapest,Hungary, www.chemaxon.com)]. 

3.3.1.1 Defining similarity (Measuring similarities of substrates and reactions) 

Based on gene mutations (i.e. GoF), enzymes are capable to carry out new 

catalytic functions. Two different kinds of changes on the catalytic functions can be 

distinguished. First, the basic reaction mechanism is changed (e.g. changes up to three 

digits in the EC number) which directly affects the nature of the substrate to be 

catalyzed by the mutated enzyme. And on the other hand, the basic reaction mechanism 

is preserved, but substrate specificity is changed (e.g. changes in the fourth digit in the 

EC number). This can directly affect the kcat for the native substrate and also affects 

different molecules which are structurally similar to the native substrate. These 

promiscuous enzyme descriptions are presented in this work as GoF. Changes between 

non-mutated and mutated enzymes (GoF) could be measured and compared using a 

chemoinformatic approach. A number of studies have previously shown the use of 

chemoinformatic tools and approaches for enzyme promiscuity predictions(de Groot et 

al. 2009; Hu et al. 2011), reaction Enzyme Commission (EC) number assignments(Hu, 

Zhu, Li, Zhang, Deng and Yang 2012; Latino and Aires-de-Sousa 2009), heterologous 

metabolic pathways for small chemicals predictions(Campodonico, Andrews, Asenjo, 

Palsson and Feist 2014), and reaction database analysis(Holliday et al. 2012). In this 

study mutated enzyme’s native and non-native metabolites and reactions were 

represented by fingerprints, and the similarity of reactions and metabolites were 

determined by calculating the corresponding Tanimoto coefficient between fingerprints. 

http://www.chemaxon.com)/
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3.3.1.2 Insilico chemical representation 

For compound and reaction representation MDL Molfiles (Dalby, Nourse, 

Hounshell, Gushurst, Grier, Leland and Laufer 1992) were used. A Molfile contains 

information about the atoms, bonds, connectivity, and coordinates of a molecule. The 

Molfile consists of some header information, the connection table containing atom 

information, then bond connections and types, followed by sections for more complex 

information. 

3.3.1.3 Molecular and reactions fingerprints 

The chemical fingerprint (CFP) of a molecule is defined as CFP = (Fi), in which Fi 

refers to a molecular fragment with real occurrences of a molecule. Fi is obtained by 

molecular fragmentation method. Each Fi in the fingerprint is represented in bit string 

where each position of the sequence is represented by ‘1’ or ‘0’ digits, depending on the 

presence or absence of the structural pattern predefined by Fi. Previous studies have 

shown good results by using linear fragments from 5 up to 6 bonds (Hu, Zhu, Li, Zhang, 

Deng and Yang 2012; Latino and Aires-de-Sousa 2009).  In order to choose optimal 

parameters for the compounds present in the HMDB, the ChemAxon parameter 

optimization criteria was used. From this analysis, the fingerprint length, the maximum 

fragmentation pattern length and number of bit in the string were 1024, 6, and 2 

respectively. 

In the case of reaction fingerprints, each compound present in the reaction is 

represented as a CFP. This fingerprint is a segmented fingerprint that is constituted from 

8 chemical fingerprint sections. This reaction fingerprint representation allows to 

compare reactions from its structural and transformational features. Parameters were 

defines as previously stated for molecules. 

3.3.1.4 Tanimoto coefficient 

The premise of similarity searching is that similar structures have similar fingerprints. 

Here, we used the TC dissimilarity (TCdiss) metric to determine how similar two 

fingerprints were. Values of this metric are non-negative numbers. A zero dissimilarity 

value indicates that the two fingerprints are identical, and the larger the value of the 
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dissimilarity coefficient the higher the difference between the two structures. In its 

original form, the Tanimoto metric is a similarity metric (TCsim): 

𝑇𝑠𝑖𝑠 =
𝐵(𝑚&𝑙)

𝐵(𝑚) + 𝐵(𝑙) − 𝐵(𝑚&𝑙)
 

Where a and b are two binary fingerprints, & denotes binary bit-wise and-operator, | 

denotes bit-wise or-operator, and B(x) is the number of 1 bits in any binary fingerprint x: 

𝐵(𝑥) = |{𝑥𝑖 = 1}|𝑥𝑖 ∈ {0,1}; 𝑖 = 1, … … ,𝑖}| = �𝑥𝑖

𝑛

𝑖=1

 

From that it is straightforward to obtain a dissimilarity measure: 

𝑇𝑑𝑖𝑠𝑠 = 1 − 𝑇𝑠𝑖𝑠 

It is worth noting that if the TCdiss between two fingerprints is 0, it means that both 

molecules share the exact same fingerprint.  While this doesn’t mean that both 

molecules are the same, it does mean that both molecules share the same bonds 

according to the fragmentation process, since the molecular fingerprint only represents 

the presence or absence of a given particular bond pattern. 

3.3.2 Synthetic Reaction Construction: SMIRKS & SMARTS 

For biochemical reaction operators (BROs) representation, SMIRKS (James, 

Weininger and Delany 2004) was used as a language for describing generic reactions 

by using a SMARTS (James, Weininger and Delany 2004) representation of the 

reaction’s substructures. A SMARTS pattern may include not only a specification of 

reaction center but also a specification of a local structure that must occur or is 

necessarily absent based on our best understanding of the relevant biochemistry 

(Silverman 2002). BROs were constructed based on the smallest substructure related to 

the structural change of the main substrates and products in the reaction. Based on 

previous studies (Henry, Broadbelt and Hatzimanikatis 2010; Mu, Unkefer, Unkefer and 

Hlavacek 2011; Yim, Haselbeck, Niu, Pujol-Baxley, Burgard, Boldt, Khandurina, 

Trawick, Osterhout, Stephen, Estadilla, Teisan, Schreyer, Andrae, Yang, Lee, Burk and 
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Van Dien 2011), a set of 374 irreversible BROs were defined to generate novel 

biochemical reactions and pathways. Approximately 76% of the reactions in KEGG 

(Kanehisa, Goto, Hattori, Aoki-Kinoshita, Itoh, Kawashima, Katayama, Araki and 

Hirakawa 2006) and 72% of the reactions in BRENDA (Curran and Alper 2012) involved 

a transformation captured in this defined BRO set. Each BRO is related to specific 

cofactors and a third-level EC number for further reaction reconstruction and 

identification. After BRO construction, we generate all possible reactions that may occur 

and every compound that may be produced given the previous selected list of human 

metabolites. Then, specific cofactors were assigned, and for filtering purposes mass 

balance was performed.  

 

3.3.3 Compound Clustering Analysis 

Maximum common substructures (MCS), refers to the largest substructure shared 

by two compounds and provide one of the most accurate similarity measures(Cao et al. 

2008). The MCS problem has been well studied as a general graph matching problem, 

and has found applications in many areas(Bunke 2000). In this study, in order to identify 

the most common chemical pattern from all predicted products and substrates related to 

each mutated enzyme, a MCS analysis was used. Basically the algorithm is able to 

identify from a range of molecular structures, the largest substructure common in all of 

them. 

3.4 Results and Discussions 

Results and discussions presented here are in the context of Nam et al., 2014 

work in PLoS Computational Biology. At the moment of this thesis presentation, the 

manuscript was accepted for publication. The general workflow used for predicting 

oncometabolites via context-specific genome-scale metabolic network is described in 

Figure 3-1. As shown in Figure 3-1, starting from nine different cancer cell-types, 

together with the corresponding gene expression and mutation data, 20 recurrently 

mutated metabolic enzymatic genes were selected for oncometabolite prediction. 

Oncometabolite metabolite predictions were based on two different metabolic reaction 
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perturbations due to enzyme mutations.  First, native oncometabolites concentrations 

could change due to metabolic enzymes Loss-of-Function mutations (e.g. FH and SDH 

LoF in Figure 3-1). And second, oncometabolites could change their concentrations due 

to metabolic enzymes Gain-of-Function mutations (e.g. IDH GoF in Figure 3-1). The aim 

of the work presented in this thesis was to completely describe the chemoinformatic 

approach used in Nam et al., 2014 for predicting oncometabolites due to GoF mutations. 

Out of the 20 selected enzymes, previously described, 6 mutated enzymatic genes were 

selected for GoF analysis, presenting missense mutations (i.e. the consensus type of 

mutation that is observed in IDH oncometabolite studies) and showing potential catalytic 

activity in cancer. Genes were associated with the corresponding enzymes and 

reactions in the global human metabolic network Recon 2(Thiele et al. 2013). In total 36 

(see Table 3-1) metabolic reactions were extracted from Recon 2 and used for GoF 

analysis which is described below.  

 
Figure 3-1: Nam et al., 2014 General Workflow to predict oncometabolites via context-specific genome-scale 
metabolic networks. Across 9 different cancer types, a list of recurrently mutated metabolic enzyme that could 
produce oncometabolites was generated. Then by using this list as a starting point oncometabolites were predicted by 
first simulating flux changes between Loss-of-function (LoF) cancer vs, normal in silico GEM analysis, and second by 
using a chemoinformatics approach which predicts potential promiscuous enzyme activities due to Gain-of-function 
(GoF) mutations. GoF analysis was highlighted in green, and represents the work presented in this thesis.   
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3.4.1 Gain-of-Function (GoF) analysis workflow 

The framework for GoF oncometabolites predictions, involves five major steps, 

specifically described in Figure 3-2. First, based on the mutated enzyme gene list 

generated for GoF analysis, 36 metabolic reactions out of 6 genes were obtained from 

Recon 2. For each reaction substrates and products were extracted and the 

corresponding Molfiles were generated. For irreversible reactions only the substrate was 

taken into account, whilst for reversible reactions, both substrates and products were 

taken into account. Second, in order to further feed the synthetic reaction construction 

process, metabolites were selected from The Human Metabolome Database (HMDB) 

(Wishart et al. 2009). The HMDB contains 40.251 metabolites, this large amount of 

metabolites makes the synthetic reaction reconstruction process and further analysis 

computationally intractable. Thus, the HMDB was filtered and metabolites for synthetic 

reaction construction were selected on a reaction specific manner. For each reaction, 

substrates and/or products were compared to the HMDB. This was performed by using 

chemical fingerprints (CFP), where a dissimilarity Tanimoto coefficient (TC) matrix was 

calculated between each substrate and/or product of mutant enzymatic reactions and 

each metabolite present in the HMDB. Then, by using different TC cutoffs values (0.8 – 

0.005), the number of HMDB metabolites to feed the synthetic reaction calculation for 

Biochemical Reaction Operators (BROs) simulation was determine. For each TC cutoffs 

values, HMDB metabolites scores of less than or equal to the cutoff values were 

counted. Then, in order to constraint computational efforts,  for each mutated enzyme 

the number of HMDB for further BRO application was set to a value that allows to further 

proceed with the analysis in tractable time. The total number of HMDB used selected for 

each reaction are shown in Table 3-1, numbers in superscripts represents the TC cutoff 

value used for the metabolite selection. The compound list for BROs simulation was 

reduced from 40.251 to 550 metabolites in total. The third step in the workflow, 

correspond to the BRO simulations for calculating all potential synthetic reactions. For 

this 374 BROs were used to calculate all possible reactions that may occur and every 

compound that may be produced given the previous set of human metabolites. In total 

more than 200,000 synthetic reactions were generated. 
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Figure 3-2: Gain-of-function (GoF) oncometabolites prediction pipeline. Synthetic reaction reconstruction and filtering 
pipeline for GoF prediction is described and outlined in five major steps. Process descriptions in yellow represent 
external inputs to the workflow. The specific processes or algorithm uses for the analysis were highlighted in orange, 
while inputs or outputs from these processes were depicted in blue. 
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Table 3-1. Mutated enzyme genes, reaction and general result information  

Mut. 
Enz. 
ID 

No. of 
HMDB 

for 
BROs 

Reaction abbreviation EC num Gene (Entrez ID) 
No. of 

Filtered 
rxns 

No. of 
Indep. 
Prod. 

No. of 
Indep. 
HMDB 
Prod. 

No. of 
Indep. 
Subs. 

No. of 
Indep. 
HMDB 
Subs 

3 120.05 hco3[c] + atp[c] + accoa[c]  -> 
malcoa[c] + adp[c] + h[c] + pi[c]    ACACB(32) 25 23 5 4 0 

4 120.05 hco3[m] + accoa[m] + atp[m] -> 
malcoa[m] + h[m] + adp[m] + pi[m]  6.4.1.2  ACACB(32) 25 23 5 4 0 

5 80.05 ACP[c] + accoa[c]  <=> acACP[c] + 
coa[c] 2.3.1.38  FASN (2194) 2542 491 8 490 484 

6 20.01 
occoa[c] + 3*h[c] + 2*nadph[c] + 

malcoa[c]  -> dcacoa[c] + h2o[c] + 
2*nadp[c] + co2[c] + coa[c] 

2.3.1.86  FASN (2194) 822 311 2 303 301 

7 20.01 
dcacoa[c] + 3*h[c] + 2*nadph[c] + 

malcoa[c]  -> ddcacoa[c] + h2o[c] + 
2*nadp[c] + co2[c] + coa[c] 

2.3.1.86  FASN (2194) 822 311 2 303 301 

8 20.01 
ddcacoa[c] + 3*h[c] + 2*nadph[c] + 
malcoa[c]  -> tdcoa[c] + h2o[c] + 

2*nadp[c] + co2[c] + coa[c] 
2.3.1.86  FASN (2194) 822 311 2 303 301 

9 20.01 
tdcoa[c] + 3*h[c] + 2*nadph[c] + 

malcoa[c] -> pmtcoa[c] + h2o[c] + 
2*nadp[c] + co2[c] + coa[c] 

2.3.1.86  FASN (2194) 822 311 2 303 301 

10 20.01 
pmtcoa[c] + 3*h[c] + 2*nadph[c] + 
malcoa[c]  -> stcoa[c] + h2o[c] + 

2*nadp[c] + co2[c] + coa[c] 
2.3.1.86  FASN (2194) 822 311 2 303 301 

11 20.01 
accoa[c] + 9*h[c] + 6*nadph[c] + 

3*malcoa[c]  -> occoa[c] + 3*h2o[c] + 
6*nadp[c] + 3*co2[c] + 3*coa[c]   

2.3.1.86  FASN (2194) 777 301 2 313 311 

12 20.01 
accoa[c] + 20*h[c] + 14*nadph[c] + 
7*malcoa[c]  -> hdca[c] + 6*h2o[c] + 

14*nadp[c] + 7*co2[c] + 8*coa[c]  
2.3.1.85  FASN (2194) 777 301 2 313 311 

13 80.05 ACP[c] + malcoa[c]  <=> malACP[c] + 
coa[c] 2.3.1.85  FASN (2194) 1860 436 8 477 471 

14 810.05 asp_L[c] + cbp[c]  <=> cbasp[c] + h[c] + 
pi[c] 2.1.3.2  CAD (790) 21 21 4 12 4 

15 570.05 
 gln_L[c] + h2o[c] + 2 atp[c] + hco3[c]  -
> 2 adp[c] + 2 h[c] + pi[c] + glu_L[c] + 

cbp[c]    CAD (790) 2886 1664 57 170 137 

16 70.05 dhor_S[c] + h2o[c] <=> cbasp[c] + h[c] 3.5.2.3  CAD (790) 0 0 0 0 0 
17 690.08 56dura[c] + nadp[c] <=> ura[c] + h[c] + 

nadph[c] 1.3.1.2  DPYD (1806) 13 2 2 8 8 
18 1270.08 56dthm[c] + nadp[c]  <=> thym[c] + h[c] 

+ nadph[c] 1.3.1.2  DPYD (1806) 25 4 4 12 12 
41 20.01 HC01401[x] + nad[x] -> 3oddcoa[x] + 

h[x] + nadh[x] 1.1.1.35  FASN (2194) 782 285 2 254 252 
42 110.02 HC01446[e] + h2o[e] <=> HC01440[e] 

+ glc_D[e] 3.2.1.23  FASN (2194) 0 0 0 0 0 
43 160.005 xol7ah3[c] + nad[c]  <=> xol7ah2al[c] + 

h[c] + nadh[c] 1.1.1.1  FASN (2194) 2565 681 17 630 614 
44 160.005 xoltriol[c] + o2[c] + h[c] + nadph[c] <=> 

xoltetrol[c] + h2o[c] + nadp[c] 1.14.13.15  FASN (2194) 4688 636 17 944 928 
45 20.01 HC01459[x] + nad[x] -> cholcoaone[x] 

+ h[x] + nadh[x] 1.1.1.35  FASN (2194) 749 285 2 222 220 
46 180.005 xol7ah2[c] + nadp[c] <=> xol7ah[c] + 

h[c] + nadph[c] 1.1.1.50  FASN (2194) 3985 643 19 929 911 
47 170.005 xoltriol[c] + nadp[c] <=> xoldioloneh[c] 

+ h[c] + nadph[c] 1.1.1.50  FASN (2194) 3726 656 18 859 842 
48 70.02 34dhmald[m] + h2o[m] + nadp[m] <=> 

34dhoxmand[m] + 2 h[m] + nadph[m] 1.2.1.5  FASN (2194) 1033 218 15 173 170 
49 110.02 3mox4hpac[m] + h2o[m] + nad[m] <=> 

homoval[m] + 2 h[m] + nadh[m] 1.2.1.5  FASN (2194) 1146 260 24 274 267 
50 40.05 HC01590[c] + nadp[c] <=> HC01589[c] 

+ h[c] + nadph[c]  2.3.1.85  FASN (2194) 65 16 4 17 16 
51 50.05 HC01590[c]  <=> HC01591[c] + h2o[c] 2.3.1.85  FASN (2194) 0 0 0 0 0 

58 20.025 pail4p_hs[c] + atp[c] -> pail34p_hs[c] + 
adp[c] + h[c] 2.7.1.68  PIK3C2B 

(5287) 542 224 2 217 215 

59 20.025 pail4p_hs[r] + atp[r] -> pail34p_hs[r] + 
adp[r] + h[r] 2.7.1.68  PIK3C2B 

(5287) 542 224 2 217 215 

60 20.025 pail5p_hs[c] + atp[c] -> pail35p_hs[c] + 
adp[c] + h[c]   PIK3C2B 

(5287) 559 242 2 216 214 

61 20.025 pail5p_hs[r] + atp[r]  -> pail35p_hs[r] + 
adp[r] + h[r]   PIK3C2B 

(5287) 559 242 2 216 214 

62 20.025 pail_hs[c] + atp[c] -> pail3p_hs[c] + 
adp[c] + h[c] 2.7.1.137  

PIK3C2B 
(PIK3C2B 

(5287)) 
407 169 2 169 167 

63 20.025 pail_hs[r] + atp[r] -> pail3p_hs[r] + 
adp[r] + h[r] 2.7.1.137  PIK3C2B 

(5287) 407 169 2 169 167 

64 20.025 pail5p_hs[c] + atp[c] <=> CE5132[c] + 
adp[c] + h[c] 2.7.1.137  PIK3C2B 

(5287) 1071 242 2 227 225 

56 160.03 pail345p_hs[c] + h2o[c] -> 
pail45p_hs[c] + pi[c] 3.1.3.67  PTENP1(5728) 5 1 1 5 5 

57 160.03 pail345p_hs[n] + h2o[n] -> 
pail45p_hs[n] + pi[n]  3.1.3.67  PTENP (5728) 5 1 1 5 5 

 

During the fourth step, in order to determine potential promiscuous reactions due 

to GoF mutations, calculated reactions were compared and filtered based on the IDH 

GoF mutation case. Five different cut off values were determined according to Figure 
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3-3. Rxn 1 represents the native reaction mechanism, while Rxn 2 corresponds to the 

new enzyme activity due to enzyme mutation. In order to characterized and quantify the 

difference between the reactions and the corresponding metabolites and cofactors, two 

different pairs of “pseudo” reactions were defined. PsRrxn 1 and 2 (Figure 3-3B) were 

respectively build from Rxn 1 and Rxn2. In this case only substrates and products were 

used to form both reactions. Same procedure was used in order to construct PsCrxn 1 

and 2, (Figure 3-3C) but in this case only cofactors were taken into account to construct 

the “pseudo” reactions. From these pairs of reaction different metrics where calculated 

in order to numerically characterizes the chemical changes in the reactions due to 

mutation.  

 

Figure 3-3: Cutoff values for reaction filtering based on the IDH GoF mutation example. A) GoF complete reaction 
parameters were defined. Specifically for the Substrate Tanimoto Coefficient (STco), Product Tanimoto Coefficient 
(PTCco) and the Reaction Tanimoto Coefficient (RTCco). B) GoF Substrate/Product Pseudo Reaction metric 
definition based only on the reactions products and substrates (PsRTC). C) GoF Cofactor Pseudo Reaction metric 
definition based only on the cofactors used in the reactions (PSCTC). 

As mention above, these metrics were use as threshold values for filtering 

mutated enzyme reactions and computationally generated reactions. For the pair of 

reactions outlined in Figure 3-3A, the substrate Tanimoto coefficient (STCco) and the 

reaction Tanimoto coefficient (RTCco) were used for filtering. For “pseudo” reactions 

presented in B only the reaction Tanimoto coefficient (PsRTC) was taken into account. 

And finally for the last pair of “pseudo” reactions (C), the substrates Tanimoto coefficient 

(PsTCsub) and the product Tanimoto coefficient (PsCTpro) were chosen as valid 

thresholds. According to the later, reactions with scores of less than or equal to the 

cutoff values were chosen for further substructure oncometabolite search. In Table 3-1 

was described the output regarding each studied reaction, in which is specified the total 
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number of potential promiscuous reactions, together with the corresponding number of 

independent substrates and products. Finally, based on the filtered reactions, for each 

reaction-enzyme association, an MCS analysis on the predicted substrates and products 

was performed and the corresponding structural features of oncometabolites were 

predicted. 

3.4.2 Substructures of potential oncometabolites as a result of GoF mutations 
predictions 

Among the reactions associated with the six mutants, approximately more than 35.000 

promiscuous activities were calculated, 10.000 independent products and 9.000 

independent substrates (see Table 3-1). In most of the cases, promiscuous substrates 

showed high similarity with the native substrate, and in order to demonstrate 

predominant substructures of promiscuous substrates and products a MCS analysis was 

performed.  The chemical substructure shown in Table 3-2, correspond to the 

predominant substructure observed for promiscuous substrates and products. Notable, 

several promiscuous substrates and products did not have dominant substrates. Finally, 

in total 24 chemical substructures were identify as potential promiscuous compound 

substructures as features of GoF oncometabolites. 
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Table 3-2: Mutated enzymes associated synthetic promiscuous reactions and the corresponding predominant 
substructures of potential promiscuity oncometabolites 

MutEnz 

ID 

Gene  

(Entrez ID) 

No. of predicted 

promiscuous 

reactions 

No. of predicted substrate, 

dominant substructure 

 

No. of predicted 

product, dominant 

substructure 

 

3 
ACACB 

(32) 
25 

4 

N/A 

23 

O

O

O
H3C

3 CH 3

O

 

4 
ACACB 

(32) 
25 

4 

N/A 

23 

O

O

O
H3C

3 CH 3

O

 

14 CAD (790) 21 

12 

H
3C

H
N

OHO

4

NH 2
5

O
7  

21 

HO

O

H
N

H3C

4

NH 25

O
7

 

15 CAD (790) 2886 

170 

N
H

O

H 2N OH

NH

OHO

 

1644 

H 3C
H
N

O

NH2

OH

NH  

17 
DPYD 

(1806) 
13 

8 

N/A 

2 

N/A 

18 
DPYD 

(1806) 
25 

12 

N

O

N

O

CH 3

 

4 

N

O

N

O

CH 3

 

5 
FASN 

(2194) 
2542 490 491 
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CH3

NH

CH3

O

CH3H 3C

 

O N
H

CH3

O

CH3

H3C

 

6 
FASN 

(2194) 
822 

303 

N/A 

311 

N/A 

7 
FASN 

(2194) 
822 

303 

N/A 

311 

N/A 

8 
FASN 

(2194) 
822 

303 

N/A 

311 

N/A 

9 
FASN 

(2194) 
822 

303 

N/A 

311 

N/A 

10 
FASN 

(2194) 
822 

303 

N/A 

311 

N/A 

11 
FASN 

(2194) 
777 

311 

N/A 

301 

N/A 

12 
FASN 

(2194) 
777 

311 

N/A 

301 

N/A 

13 
FASN 

(2194) 
1860 

477 

O

P

O

HO

OH

OH

H3C

 

436 

O

P

O

HO

OH

OH

H3C
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41 
FASN 

(2194) 
782 

254 

N/A 

285 

N/A 

43 
FASN 

(2194) 
2565 

630 

H3C
H3C

 

681 

H3C
H3C

 

44 
FASN 

(2194) 
4688 

944 

H3 C
H3 C  

636 

H3 C
H3 C

 

45 
FASN 

(2194) 
749 

222 

N/A 

285 

N/A 

46 
FASN 

(2194) 
3985 

929 

H3 C
H3 C  

643

H3 C
H3 C

 

47 
FASN 

(2194) 
3726 

859 

CH3  

656 

CH3

 

48 
FASN 

(2194) 
1033 

173 

OH

OH

OH  

218 

HO

OH 

49 
FASN 

(2194) 
1146 274 260 
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H3C

OH

 CH 3

O
H3C

 

50 
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(2194) 
65 

17 
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O
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H5

6

O7

OH
8

 

16 

N/A 

58 
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OH

OHHO
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OH

O

HO

HO

 

59 
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OH

OHHO

OH
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CH3
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OH

O

HO

HO

 

60 
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(5287) 
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O

OH

P
O

OH

O

CH3
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CH3

OPO

OH

O

HO

HO

 

61 
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(5287) 
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216 

O

OH

P
O

OH

O

CH3

 

242 

CH3

OPO

OH

O

HO

HO

 

62 
PIK3C2B 

(5287) 
407 169 169 
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OH
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64 
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OH
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242 
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3.5 Conclusions 

Based on a chemoinformatic approach in conjunction with Recon 2, a workflow 

for predicting potential oncometabolites was established. Starting from a list of mutated 

enzymes genes, described as GoF mutations, a range of promiscuous catalytic activities 

were inferred. In total 24 chemical substructures of oncometabolites resulting from the 

GoF analysis were predicted.  

Since all the predictions were based only on the example showed for IDH, where 

an unexpected changed in the enzyme catalytic activity due to a missense mutation was 

observed,  it is mandatory to experimentally validate these results and test the predictive 

capacity of the proposed method. Nevertheless, this attempt represents the first 

example of oncometabolites predictions based on a chemoinformatic approach. Further 

improvements might be implemented by taking into account structural biology 

information and analysis in the context of GEMs regarding enzymes spatial and 

mechanistic changes due to GoF mutation and further connection with oncometabolites. 

Moreover, more examples such as IDH are needed to expand the predictive capacity of 

the method and make it more reliable. Finally, despite the drawbacks of the 

implemented method, this work represents the first attempt to predict oncometabolites 

structural patterns, due to GoF metabolic enzyme mutations based on a 

chemoinformatic approach. These predictions, could be used as a basis for cancer 

diagnosis and prognosis, and also be highly beneficial in biomarkers identification.
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Appendices 
 

Appendix 1 

Figure A1-1 Carbon fixation and electron transfer metabolism Flux Variability 
Analysis (FVA) results 

FVA was performed under autotrophic conditions using as electron donors ferrous ion 

(green), tetrathionate (purple), and thiosulfate (red). Carbon fixation and electron 

transfer metabolism were outlined. Reactions in light blue represent the flow of electrons 

through the membrane. Each reaction in the figure was associated with a specific graph, 

in which is represented the calculated FVA range for the three different condition 

studied. 
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Figure A1-2 Carbon fixation and electron transfer metabolism under oxygen 
limitations 

FBA was performed under autotrophic conditions using as electron donors ferrous ion 

(green). This analysis was executed by setting the carbon uptake rate in the form of 

h2co3 to 2.34 mmol/gDW/h, oxygen was varied between 0 and 60 mmol/gDW/h, and 

running FBA to maximize the flux through BOF.  Carbon fixation and electron transfer 

pathways were outlined. Reactions in light blue represent the flow of electrons through 

the membrane. Each reaction in the figure was associated with a specific graph, in 

which is represented the FBA prediction range for the three different condition studied. 

Lines in red represents two different kinds of simulations: i) simulations were a metabolic 

co2 transport outside the cell was incorporated into the model and setting h2co3 uptake 

rate upper and lower bound to -2.34, and ii) where no metabolic co2 transport was 

incorporated but setting the h2co3 uptake rate lower bound to -2.34 and upper bound to 

1000. Lines in purple shows the results without metabolic co2 transport incorporation, 

and setting the h2co3 uptake rate upper and lower bound to -2.34. Lines in light blue 

shows the obtained discrepancies between i) and ii). 
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Table A1-1: Biomass objective function specification 

 Macromolecule overall 
[gr/gr DW] 

metabolite 
(BiGG) 

Experimental  
Composition 

compositi
on (molar 
fraction) 

mmol/gDW 
(Calc.) 

difference b/w 
metabolite and 

structural 
component 

MWcorr 
(mg/mmol) 

mg (if total 
1 mmol) 

total 
wt 

(mg) 

composit
ion 

(weight 
fraction) 

g/gDW 

R
EA

C
TA

N
A

TS
 

Pr
ot

ei
n 

  
mg/ 100 mg 

Protein 1 
mmol 

AA/mg 
Protein 

5.57       
0.6 2 ala-L 7.8 0.0011 0.66 h2o 71     

 arg-L 7.3 0.0005 0.28 h2o 157     
 asn-L 5.15 0.0005 0.27 h2o 114     
 asp-L 5.15 0.0005 0.27 h2o 114     
 cys-L 0 0.0000 0.00 h2o 103     
 gln-L 5.55 0.0004 0.26 h2o 128     
 glu-L 5.55 0.0004 0.26 h2o 128     
 gly 5.2 0.0009 0.55 h2o 57     
 his-L 5.5 0.0004 0.24 h2o 137     
 ile-L 5.4 0.0005 0.29 h2o 113     
 leu-L 9.6 0.0008 0.51 h2o 113     
 lys-L 7.1 0.0005 0.33 h2o 129     
 met-L 3.7 0.0003 0.17 h2o 131     
 phe-L 4.4 0.0003 0.18 h2o 147     
 pro-L 4.4 0.0005 0.27 h2o 97     
 ser-L 3.4 0.0004 0.23 h2o 87     
 thr-L 4.4 0.0004 0.26 h2o 101     
 trp-L 0 0.0000 0.00 h2o 186     
 tyr-L 3.7 0.0002 0.14 h2o 163     
 val-L 6.7 0.0007 0.41 h2o 99     

D
N

A
   

mmol /mmol 
%*  0.075   

mg 
dNTP/mmo

l DNA  
mg dNTP 
/ mg DNA 

gdNTP/g
DW 

0.023 † datp 0.21  0.015 ppi 312 65 307 0.21 0.005 

 dctp 0.30  0.022 ppi 286 85  0.28 0.006 

 dgtp 0.29  0.022 ppi 328 96  0.31 0.007 

 dttp 0.21  0.015 ppi 304 63  0.20 0.005 

R
N

A
 

  
mmol /mmol 

%*  0.44   
mg 

NTP/mmol
RNA  

mg NTP / 
mg RNA 

gNTP/gD
W 

0.142 ctp 0.29  0.13 ppi 304 89 321 0.28 0.039 

 gtp 0.30  0.13 ppi 344 104  0.32 0.045 
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 utp 0.21  0.09 ppi 305 63  0.20 0.028 

 atp* 0.20  0.09 ppi 328 65  0.20 0.028 

Glycogen            
0.025 3 glycogen   0.154 none 162     

Murein            
0.025 3 murein5p

x4p   0.013 none 1893     

LPS            
0.034 3 lps_AFE   0.024 none 1400     

Phospholipid            
0.093 3 ppl_AFE   0.067 none 723     

In
or

ga
ni

c 
Io

ns
 

  
mg/100mg 
biomass 1  0.78       

0.03 1 k 0.17  0.04 none 39     
 na 0.33  0.14 none 23     
 mg2 0.58  0.24 none 24     
 ca2 0.35  0.088 none 40     
 fe2 0.375  0.067 none 56     
 fe3 0.375  0.067 none 56     
 cu2 0.009  0.001 none 64     
 mn2 0.17  0.03 none 55     
 zn2 0.014  0.002 none 64     
 so4 0.88  0.09 none 96     

So
lu

bl
e 

Po
ol

 

  
mg/mmol 

soluble pool 
mmol / 

mmolsolubl
e pool 

0.00498       
0.0034 3 ptrc 546.31 0.7155 0.00358 none 90     

 spmd 96.08 0.1450 0.00073 none 148     
 accoa 4.45 0.0060 0.00003 none 806     
 coa 0.00 0.0036 0.00002 none 764     
 succoa 0.00 0.0021 0.00001 none 863     
 nad 0.00 0.0384 0.00019 none 662     
 nadp 0.00 0.0024 0.00001 none 740     
 nadph 0.00 0.0072 0.00004 none 741     
 fad 0.00 0.0048 0.00002 none 784     
 thf 0.00 0.0048 0.00002 none 443     
 mlthf 0.00 0.0048 0.00002 none 467     
 5mthf 3.76 0.0048 0.00002 none 469     
 thmpp 2.13 0.0048 0.00002 none 422     
 q8h2 2.19 0.0048 0.00002 none 729     
 pydx5p 2.20 0.0048 0.00002 none 245     
 hemeO 2.26 0.0048 0.00002 none 781     
 pheme 2.03 0.0048 0.00002 none 559     
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 sheme 3.50 0.0048 0.00002 none 853     
 gthrd 2.68 0.0048 0.00002 none 302     
 udcpdp 0.80 0.0012 0.00001 none 924     
 10fthf 4.44 0.0048 0.00002 none 471     
 chor 1.08 0.0048 0.00002 none 224     
 amet 1.92 0.0048 0.00002 none 399     
 ribflv 1.81 0.0048 0.00002 none 376     
  678.82 mg/mmol        

            maintenance  atp*   139       
maintenance  h2o*   139       
maintenance 

+RNA  atp*   139.1       
maintenance - 

AA  h2o*   139.0       

PR
O

D
U

C
TS

 

maintenance ‡  adp   139       
maintenance ‡  h   139       
maintenance ‡  pi*   139       
sum of dNTPs  ppi*   0.075       
sum of NTPs  ppi*   0.436       

sum of AA  h2o*   5.569       
NT + dNT  ppi*   0.511       

maintenance ‡  pi*   139       
* Nucleotide content according to the genome composition. See Table A1-2. 

    † Obtain form correlation with different microorganisms. See Table A1-2. 
    ‡ GAM maintenance coefficients obtain from parameter estimation. 
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Table A1-2: RNA content in Acidithiobacillus ferrooxidans (Peterson et al. 2001)  

     

Number of 
Triplet 

Occurrenc
es 

% Triplet 
Frequen

cy 

% Triplet 
Frequency 

for AA 
    AA 

Name 
Codon 
Triplet 

   

A C G U 

Ala (A) GCC G C C 44970 5.01% 44.91% 0 89940 44970 0 
Ala (A) GCA G C A 12969 1.44% 12.95% 12969 12969 12969 0 
Ala (A) GCG G C G 32113 3.58% 32.07% 0 32113 64226 0 
Ala (A) GCT G C T 10086 1.12% 10.07% 0 10086 10086 10086 

     
100138 11.15% 100% 

    Arg (R) CGA C G A 4271 0.47% 6.77% 4271 4271 4271 0 
Arg (R) AGG A G G 3193 0.35% 5.06% 3193 0 6386 0 
Arg (R) CGT C G T 12099 1.34% 19.18% 0 12099 12099 12099 
Arg (R) CGG C G G 16592 1.85% 26.30% 0 16592 33184 0 
Arg (R) AGA A G A 2037 0.22% 3.23% 4074 0 2037 0 
Arg (R) CGC C G C 24887 2.77% 39.45% 0 49774 24887 0 

     
63079 7% 100% 

    Asn (N) AAC A A C 13444 1.49% 53.84% 26888 13444 0 0 
Asn (N) AAT A A T 11527 1.28% 46.16% 23054 0 0 11527 

     
24971 3% 100% 

    Asp (D) GAC G A C 21542 2.40% 47.75% 21542 21542 21542 0 
Asp (D) GAT G A T 23576 2.63% 52.25% 23576 0 23576 23576 
  

    
45118 5% 100% 0 0 0 0 

Cys (C) TGC T G C 5946 0.66% 65.13% 0 5946 5946 5946 
Cys (C) TGT T G T 3184 0.35% 34.87% 0 0 3184 6368 

     
9130 1% 100% 

    Gln (Q) CAA C A A 10167 1.13% 26.99% 20334 10167 0 0 
Gln (Q) CAG C A G 27496 3.06% 73.01% 27496 27496 27496 0 

     
37663 4% 100% 

    Glu (E) GAG G A G 22882 2.55% 47.88% 22882 0 45764 0 
Glu (E) GAA G A A 24909 2.77% 52.12% 49818 0 24909 0 

     
47791 5% 100% 

    Gly (G) GGA G G A 10183 1.13% 13.79% 10183 0 20366 0 
Gly (G) GGT G G T 17033 1.90% 23.07% 0 0 34066 17033 
Gly (G) GGG G G G 14788 1.64% 20.03% 0 0 44364 0 
Gly (G) GGC G G C 31827 3.55% 43.11% 0 31827 63654 0 

     
73831 8% 100% 

    His (H) CAC C A C 11075 1.23% 45.60% 11075 22150 0 0 
His (H) CAT C A T 13212 1.47% 54.40% 13212 13212 0 13212 

     
24287 3% 100% 

    Ile (I) ATT A T T 13889 1.54% 29.72% 13889 0 0 27778 
Ile (I) ATC A T C 28118 3.13% 60.18% 28118 28118 0 28118 
Ile (I) ATA A T A 4720 0.52% 10.10% 9440 0 0 4720 

     
46727 5% 100% 

    Leu (L) CTT C T T 8071 0.90% 8.23% 0 8071 0 16142 
Leu (L) CTG C T G 47842 5.33% 48.80% 0 47842 47842 47842 
Leu (L) TTA T T A 3342 0.37% 3.41% 3342 0 0 6684 
Leu (L) CTA C T A 3023 0.33% 3.08% 3023 3023 0 3023 
Leu (L) CTC C T C 19838 2.21% 20.23% 0 39676 0 19838 
Leu (L) TTG T T G 15925 1.77% 16.24% 0 0 15925 31850 

     
98041 11% 100% 

    Lys (K) AAG A A G 15145 1.68% 55.54% 30290 0 15145 0 
Lys (K) AAA A A A 12126 1.35% 44.46% 36378 0 0 0 

     
27271 3% 100% 

    Met (M) ATG A T G 22121 2.46% 100.00% 22121 0 22121 22121 

     
22121 2.46% 100.00% 

    Phe (F) TTT T T T 14760 1.64% 46.47% 0 0 0 44280 
Phe (F) TTC T T C 17001 1.89% 53.53% 0 17001 0 34002 

     
31761 4% 100% 

    Pro (P) CCG C C G 18418 2.05% 38.51% 0 36836 18418 0 
Pro (P) CCC C C C 17733 1.97% 37.07% 0 53199 0 0 
Pro (P) CCA C C A 5451 0.60% 11.40% 5451 10902 0 0 
Pro (P) CCT C C T 6229 0.69% 13.02% 0 12458 0 6229 

     
47831 5% 100% 

    Ser (S) AGT A G T 6671 0.74% 13.84% 6671 0 6671 6671 
Ser (S) TCA T C A 2847 0.31% 5.91% 2847 2847 0 2847 

Ser (S) AGC A G C 14340 1.59% 29.75% 14340 14340 14340 0 
Ser (S) TCG T C G 7208 0.80% 14.95% 0 7208 7208 7208 
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Ser (S) TCC T C C 12957 1.44% 26.88% 0 25914 0 12957 
Ser (S) TCT T C T 4186 0.46% 8.68% 0 4186 0 8372 

     
48209 5% 100% 

    STOP  TAG T A G 508 0.05% 15.99% 508 0 508 508 
STOP  TGA T G A 1897 0.21% 59.71% 1897 0 1897 1897 
STOP  TAA T A A 772 0.08% 24.30% 1544 0 0 772 

     
3177 0% 100% 

    Thr (T) ACA A C A 4119 0.45% 9.30% 8238 4119 0 0 
Thr (T) ACT A C T 4246 0.47% 9.59% 4246 4246 0 4246 
Thr (T) ACC A C C 23509 2.62% 53.09% 23509 47018 0 0 
Thr (T) ACG A C G 12404 1.38% 28.01% 12404 12404 12404 0 

     
44278 5% 100% 

    Trp (W) TGG T G G 14323 1.59% 100.00% 0 0 28646 14323 

     
14323 1.59% 100.00% 

    Tyr (Y) TAT T A T 12914 1.44% 55.06% 12914 0 0 25828 
Tyr (Y) TAC T A C 10539 1.17% 44.94% 10539 10539 0 10539 
  

    
23453 3% 100% 0 0 0 0 

Val (V) GTC G T C 19515 2.17% 30.90% 0 19515 19515 19515 
Val (V) GTG G T G 27826 3.10% 44.06% 0 0 55652 27826 
Val (V) GTT G T T 8036 0.89% 12.72% 0 0 8036 16072 
Val (V) GTA G T A 7780 0.86% 12.32% 7780 0 7780 7780 
  

    
63157 7% 100% 

    
  

Grand 
Totals 

   
896357 0.9964   

    

       
SUM 534056 783090 812090 559835 

       

In stop 
codon 3949 0 2405 3177 

       
Total 530107 783090 809685 556658 

        
ATP CTP GTP UTP 

        

0.1978350
76 

0.2922479
23 

0.30217
3 

0.20774
4 
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Table A1-3: Single, double and tripe knock-out and growth coupled design results  

KO Reactions EPS Biomass 
 

KO Reactions EPS Biomass 
'FUM' 

  
0.206 0.011 

 
'FUM' 'PUNP1' 'ADNSE' 0.223 0.007 

'MDH' 
  

0.206 0.011 
 

'FUM' 'PUNP1' 'HCYSMT' 0.224 0.007 
'ADA' 'FUM' 

 
0.223 0.007 

 
'FUM' 'PUNP2' 'INSK' 0.223 0.007 

'ADA' 'MDH' 
 

0.223 0.007 
 

'FUM' 'IMPD' 'INSK' 0.236 0.004 
'ADPT' 'FUM' 

 
0.223 0.007 

 
'FUM' 'GUAD' 'INSK' 0.223 0.007 

'ADPT' 'MDH' 
 

0.223 0.007 
 

'FUM' 'GUAPRT' 'UPPRT' 0.223 0.007 
'PUNP1' 'FUM' 

 
0.223 0.007 

 
'FUM' 'GUAPRT' 'URIP' 0.223 0.007 

'PUNP1' 'MDH' 
 

0.223 0.007 
 

'FUM' 'HCYSMT' 'ADPT' 0.224 0.007 
'FUM' 'ADA' 

 
0.223 0.007 

 
'FUM' 'HCYSMT' 'PUNP1' 0.224 0.007 

'FUM' 'ADPT' 
 

0.223 0.007 
 

'FUM' 'UPPRT' 'GUAPRT' 0.223 0.007 
'FUM' 'PUNP1' 

 
0.223 0.007 

 
'FUM' 'URIP' 'GUAPRT' 0.223 0.007 

'MDH' 'ADA' 
 

0.223 0.007 
 

'FUM' 'HXAND' 'INSK' 0.223 0.007 
'MDH' 'ADPT' 

 
0.223 0.007 

 
'IMPD' 'INSK' 'FUM' 0.236 0.004 

'MDH' 'PUNP1' 
 

0.223 0.007 
 

'IMPD' 'INSK' 'MDH' 0.236 0.004 
'INSK' 'PUNP2' 'FUM' 0.223 0.007 

 
'IMPD' 'FUM' 'INSK' 0.236 0.004 

'INSK' 'PUNP2' 'MDH' 0.223 0.007 
 

'IMPD' 'MDH' 'INSK' 0.236 0.004 
'INSK' 'FUM' 'PUNP2' 0.223 0.007 

 
'GUAD' 'INSK' 'FUM' 0.223 0.007 

'INSK' 'FUM' 'IMPD' 0.236 0.004 
 

'GUAD' 'INSK' 'MDH' 0.223 0.007 
'INSK' 'FUM' 'GUAD' 0.223 0.007 

 
'GUAD' 'FUM' 'INSK' 0.223 0.007 

'INSK' 'FUM' 'HXAND' 0.223 0.007 
 

'GUAD' 'MDH' 'INSK' 0.223 0.007 
'INSK' 'IMPD' 'FUM' 0.236 0.004 

 
'GUAPRT' 'FUM' 'UPPRT' 0.223 0.007 

'INSK' 'IMPD' 'MDH' 0.236 0.004 
 

'GUAPRT' 'FUM' 'URIP' 0.223 0.007 
'INSK' 'GUAD' 'FUM' 0.223 0.007 

 
'GUAPRT' 'MDH' 'UPPRT' 0.223 0.007 

'INSK' 'GUAD' 'MDH' 0.223 0.007 
 

'GUAPRT' 'MDH' 'URIP' 0.223 0.007 
'INSK' 'MDH' 'PUNP2' 0.223 0.007 

 
'GUAPRT' 'UPPRT' 'FUM' 0.223 0.007 

'INSK' 'MDH' 'IMPD' 0.236 0.004 
 

'GUAPRT' 'UPPRT' 'MDH' 0.223 0.007 
'INSK' 'MDH' 'GUAD' 0.223 0.007 

 
'GUAPRT' 'URIP' 'FUM' 0.223 0.007 

'INSK' 'MDH' 'HXAND' 0.223 0.007 
 

'GUAPRT' 'URIP' 'MDH' 0.223 0.007 
'INSK' 'HXAND' 'FUM' 0.223 0.007 

 
'MDH' 'INSK' 'PUNP2' 0.223 0.007 

'INSK' 'HXAND' 'MDH' 0.223 0.007 
 

'MDH' 'INSK' 'IMPD' 0.236 0.004 
'ADPT' 'ADNSE' 'FUM' 0.223 0.007 

 
'MDH' 'INSK' 'GUAD' 0.223 0.007 

'ADPT' 'ADNSE' 'MDH' 0.223 0.007 
 

'MDH' 'INSK' 'HXAND' 0.223 0.007 
'ADPT' 'FUM' 'ADNSE' 0.223 0.007 

 
'MDH' 'ADPT' 'ADNSE' 0.223 0.007 

'ADPT' 'FUM' 'HCYSMT' 0.224 0.007 
 

'MDH' 'ADPT' 'HCYSMT' 0.224 0.007 
'ADPT' 'MDH' 'ADNSE' 0.223 0.007 

 
'MDH' 'ADNSE' 'ADPT' 0.223 0.007 

'ADPT' 'MDH' 'HCYSMT' 0.224 0.007 
 

'MDH' 'ADNSE' 'PUNP1' 0.223 0.007 
'ADPT' 'HCYSMT' 'FUM' 0.224 0.007 

 
'MDH' 'PUNP1' 'ADNSE' 0.223 0.007 

'ADPT' 'HCYSMT' 'MDH' 0.224 0.007 
 

'MDH' 'PUNP1' 'HCYSMT' 0.224 0.007 
'ADNSE' 'ADPT' 'FUM' 0.223 0.007 

 
'MDH' 'PUNP2' 'INSK' 0.223 0.007 

'ADNSE' 'ADPT' 'MDH' 0.223 0.007 
 

'MDH' 'IMPD' 'INSK' 0.236 0.004 
'ADNSE' 'PUNP1' 'FUM' 0.223 0.007 

 
'MDH' 'GUAD' 'INSK' 0.223 0.007 

'ADNSE' 'PUNP1' 'MDH' 0.223 0.007 
 

'MDH' 'GUAPRT' 'UPPRT' 0.223 0.007 
'ADNSE' 'FUM' 'ADPT' 0.223 0.007 

 
'MDH' 'GUAPRT' 'URIP' 0.223 0.007 

'ADNSE' 'FUM' 'PUNP1' 0.223 0.007 
 

'MDH' 'HCYSMT' 'ADPT' 0.224 0.007 
'ADNSE' 'MDH' 'ADPT' 0.223 0.007 

 
'MDH' 'HCYSMT' 'PUNP1' 0.224 0.007 

'ADNSE' 'MDH' 'PUNP1' 0.223 0.007 
 

'MDH' 'UPPRT' 'GUAPRT' 0.223 0.007 
'PUNP1' 'ADNSE' 'FUM' 0.223 0.007 

 
'MDH' 'URIP' 'GUAPRT' 0.223 0.007 

'PUNP1' 'ADNSE' 'MDH' 0.223 0.007 
 

'MDH' 'HXAND' 'INSK' 0.223 0.007 
'PUNP1' 'FUM' 'ADNSE' 0.223 0.007 

 
'HCYSMT' 'ADPT' 'FUM' 0.224 0.007 

'PUNP1' 'FUM' 'HCYSMT' 0.224 0.007 
 

'HCYSMT' 'ADPT' 'MDH' 0.224 0.007 
'PUNP1' 'MDH' 'ADNSE' 0.223 0.007 

 
'HCYSMT' 'PUNP1' 'FUM' 0.224 0.007 

'PUNP1' 'MDH' 'HCYSMT' 0.224 0.007 
 

'HCYSMT' 'PUNP1' 'MDH' 0.224 0.007 
'PUNP1' 'HCYSMT' 'FUM' 0.224 0.007 

 
'HCYSMT' 'FUM' 'ADPT' 0.224 0.007 

'PUNP1' 'HCYSMT' 'MDH' 0.224 0.007 
 

'HCYSMT' 'FUM' 'PUNP1' 0.224 0.007 
'PUNP2' 'INSK' 'FUM' 0.223 0.007 

 
'HCYSMT' 'MDH' 'ADPT' 0.224 0.007 

'PUNP2' 'INSK' 'MDH' 0.223 0.007 
 

'HCYSMT' 'MDH' 'PUNP1' 0.224 0.007 
'PUNP2' 'FUM' 'INSK' 0.223 0.007 

 
'UPPRT' 'FUM' 'GUAPRT' 0.223 0.007 

'PUNP2' 'MDH' 'INSK' 0.223 0.007 
 

'UPPRT' 'GUAPRT' 'FUM' 0.223 0.007 
'FUM' 'INSK' 'PUNP2' 0.223 0.007 

 
'UPPRT' 'GUAPRT' 'MDH' 0.223 0.007 

'FUM' 'INSK' 'IMPD' 0.236 0.004 
 

'UPPRT' 'MDH' 'GUAPRT' 0.223 0.007 
'FUM' 'INSK' 'GUAD' 0.223 0.007 

 
'URIP' 'FUM' 'GUAPRT' 0.223 0.007 

'FUM' 'INSK' 'HXAND' 0.223 0.007 
 

'URIP' 'GUAPRT' 'FUM' 0.223 0.007 
'FUM' 'ADPT' 'ADNSE' 0.223 0.007 

 
'URIP' 'GUAPRT' 'MDH' 0.223 0.007 

'FUM' 'ADPT' 'HCYSMT' 0.224 0.007 
 

'URIP' 'MDH' 'GUAPRT' 0.223 0.007 
'FUM' 'ADNSE' 'ADPT' 0.223 0.007 

 
'HXAND' 'INSK' 'FUM' 0.223 0.007 

'FUM' 'ADNSE' 'PUNP1' 0.223 0.007 
 

'HXAND' 'INSK' 'MDH' 0.223 0.007 

      
'HXAND' 'FUM' 'INSK' 0.223 0.007 

      
'HXAND' 'MDH' 'INSK' 0.223 0.007 
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Appendix 2 

Figure A2-1 Predicted Pathways Figures 

Compounds are represented within circles, yellow corresponds to E. coli native 

metabolites according to iJO1366, intermediate compounds are colored in brown and 

the target compound in blue. Reactions are represented by arrows. The color specifies 

whether the reaction is predicted as promiscuous (red) or known (green). Pathways 

were highlighted whether they were identified as already experimentally implemented in 

E. coli (purple) or reported as computationally generated (green) by previous work. 

Furthermore, for each target compound and set of pathways prediction, two different 

tables were defined. The first table specifies each predicted reaction ID, substrate TC / 

Promiscuity Score, EC number, Species and ΔrG’. The second table specifies each 

predicted pathway ID, reaction chain according to the reaction IDs, the metabolism 

precursor, the pathway index and the productivity under aerobic and aerobic conditions 

using glucose, xylose and glycerol as a substrate. For the productivity calculations, 

each carbon source was set to 120 C-mmol gDW-1h-1, O2 was 20 mmol gDW-1h-1 

when specified, a minimal growth rate to sustain growth was set to 0.1 h-1 (as set by 

the amount of flux necessary through the BOFcore) and FBA was used to maximize the 

flux through each of the exchange reaction in the model for the targeted products. In 

this table experimental, computational and the maximum productivity pathways for each 

condition are colored in purple, green and orange respectively. 
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Table A2-1. Pathway Prediction Tools 
Comparison 

        
            

  
BROs 

Retrosynthetic   
Based Approach 

Thermodynamic 
Analysis Prioritization Toxicity 

Analysis 
GEMs 

Integration 

Chemoinformatic 
Metabolome 

Search 

Knock Out for 
Growth Coupled 

Designs 

EC Number 
Reaction 

Association 

Gene - 
Reaction 

Association 

Promiscuous 
Analysis 

Enzyme 
performance 

GEM-Path       
: 

RobustKnock29 : BRENDA22  
: 

BRENDA22 
 

RetroPath38        : KEGG14 : KEGG14 : KEGG14 : 
BRENDA22 

BNICE39            

System of 
Cho et al.7        : KEGG14 : KEGG14 : KEGG14  

Biopathway35            

OptStrain40       : OptKnock5 : KEGG14 : KEGG14   

            
            
 

 Present in the Pathway prediction Algorithm 
     

 

 
Not Present in the Pathway prediction 
Algorithm 
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Table A2-2. High Yield growth-coupled designs of synthetic pathways specifications 
     

          
 

          

Design 
identifier 

Product 
ID Substrate Oxygenation Reaction KO 

abbreviation 

Reaction KI identifier 

Reaction Formula Reaction 
ID 

Delta 
Gr Species EC 

Number Prom Idex 

1 3hpp Glycerol Aerobic GLYK ; GLYCDx ; 
ALCD19 

glyc -> 3hppnl + h2o 1.1 -28.3 Klebsiella 
pneumoniae 4.2.1.28 0/0 

3hppnl + nad + h2o -> 3hpp+ nadh + h 1.2 -6.2 Escherichia coli 1.2.1.3 0/0 

2 3hpp Glycerol Aerobic GLYK ; GLYCDx ; 
ALCD19 1.1  &&  3hppnl + nadp + h2o -> 3hpp + nadph + h 2.1 13.6 Escherichia coli 1.2.1.B6 0/0 

3 aa D-Xylose ECOM PYK ; F6PA ; ACKr 

ppcoa + o2 -> prpncoa + h2o2 3.1 -18.6 Mus musculus 1.3.3.6 0.005/0.25 
prpncoa + succ -> acryl + succoa 3.2 1.7 Acetobacter aceti 2.8.3.8 0.014/0.91 

acryl + nh4 -> aa+ h2o 3.3 24.6 Pseudomonas 
aeruginosa 3.5.1.4 0/0 

4 acryl D-Xylose ECOM PYK ; DHAPT ; 
ACKr 3.1 + 3.2      

5 acryl D-Xylose ECOM PYK ; GLYK ; F6PA 
; ACKr 3.1 + 3.2           

6 3hpp D-Xylose ECOM PYK ; DHAPT ; 
ACKr 3.1 + 3.2  &&  acryl + h2o -> 3hpp 6.1 -2.1 Sus scrofa 4.2.1.2 0.39/1.02 

7 3hpp D-Xylose ECOM PYK ; F6PA ; ACKr 3.1 + 3.2 + 8.1           

8 aa Glycerol ECOM PYK ; GLYCDx ; 
ACKr 3.1 +3.2 +3.3      

9 acryl Glycerol ECOM PYK ; GLYCDx ; 
ACKr 3.1 + 3.2           

10 3hpp Glycerol ECOM PYK ; GLYCDx ; 
ACKr 3.1 + 3.2 + 6.1      

11 btoh Glycerol Anaerobic PFL ; G3PD2 

btcoa + succ -> but + succoa 11.1 -9.69 Homo Sapiens 2.8.3.5 0.001/0.95 
but + nadph + h -> btal + nadp + h2o 11.2 -11.5 Acetobacter aceti 1.2.1.4 0/0 

btal + nadh + h -> btoh + nad 11.3 -52.7 Saccharomyces 
cerevisiae 1.1.1.1 0/0 

12 btoh Glycerol Anaerobic PFL ; G3PD2 11.1  &&  but + nadh + h -> btal + nad + h2o 12.1 8.4 Escherichia coli 1.2.1.19 0/0 
btal + nadph + h -> btoh + nadp 12.2 -72.6 Cucumis melo 1.1.1.1 0/0 

13 btoh Glycerol Anaerobic PFL ; GLYK 12.1 + 12.2  &&  btcoa + ac  -> but + accoa 13.1 -2.6 Escherichia coli 2.8.3.3 0/0 

14 btoh Glycerol Anaerobic PYK ; PFL ; G3PD2 11.1 + 11.2 + 11.3      
15 btoh Glycerol Anaerobic PYK ; PFL ; G3PD2 11.1 + 12.1 + 12.2           

16 13ppd Glycerol Anaerobic GLYK ; ALCD2x 1.1  &&  3hppnl + nadh + h -> 13ppd + nad 16.1 -53.7 Klebsiella 
pneumoniae 1.1.1.202 0/0 

17 13ppd Glycerol Anaerobic PYK ; ACALD 
16.1  &&  glyald -> ppdal + h2o 17.1 -82.5 Klebsiella oxytoca 4.2.1.28 0.3/0.8 

ppdal + nadh + h -> 3hppnl + nad 17.2 -17.7 Saccharomyces 
cerevisiae 1.1.1.1 0.13/0.8 

18 13ppd Glycerol Anaerobic PYK ; GLYCDx ; 
ATPS4rpp 1.1 + 16.1      

19 13ppd Glycerol Anaerobic PYK ; FLDR2 ; 
DHAPT 1.1  &&  3hppnl + nadph + h -> 13ppd + nadp 19.1 -73.6 Escherichia coli 1.1.1.202 0/0 

20 13ppd Glycerol Anaerobic PDH ; G3PD2 ; 
ACALD 17.1 + 17.2  + 16.1           
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Table A2-3. Predicted reactions and 3rd EC Numbers NC-IUBMB frequency specifications 

   
3rd EC 
Number Frequency Nomenclature Committee of the International Union of Biochemistry and Molecular Biology 

1.1.1 49 Oxidoreductases, acting on CH-OH group of donors, with NAD or NADP acceptor 
1.2.1 39 Oxidoreductases, acting on aldehyde or oxo group of donors, with NAD or NADP acceptor 
4.2.1 22 Lyases, Carbon-Oxygeb Lyases, Hydro-Lyases 
4.1.1 21 Lyases, Carbon-Carbon Lyases, Carboxy-Lyases 
2.8.3 17 Transferases,  Transferring Sulfur-Containing Groups, CoA-transferases 
3.1.2 10 Hydrolases, Acting on Ester Bonds, Thioester Hydrolases 
4.1.2 8 Lyases, Carbon-Carbon Lyases, Aldehyde-Lyases 
4.3.1 5 Lyases, Carbon-Nitrogen Lyases, Ammonia-Lyases 
3.1.3 4 Hydrolases, Acting on Ester Bonds, Phosphoric Monoester Hydrolases 
1.3.3 4 Oxidoreductases, acting on the CH-CH group of donors, with oxygen as acceptor 
2.3.3 4 Transferases, Acyltransferases, Acyl groups converted into alkyl on transfer 
3.5.1 4 Hydrolases, Acting on Carbon-Nitrogen Bonds, other than Peptide Bonds, In Linear Amides 
1.4.3 3 Oxidoreductases, acting on the CH-NH2 group of donors, with oxygen acceptor 

1.13.12 3 
Oxidoreductases, Acting on single donors with incorporation of molecular oxygen (oxygenases), 
With incorporation of one atom of oxygen (internal monooxygenases or internal mixed function 

oxidases) 

1.17.1 3 Oxidoreductases, Acting on CH or CH2 groups, With NAD+ or NADP+ as acceptor 
6.2.1 3 Ligases,Forming Carbon-Sulfur Bonds, Acid-Thiol Ligases 
1.2.4 3 Oxidoreductases, acting on aldehyde or oxo group of donors, with a disulfide as acceptor 
2.1.2 2 Transferases, Transferring One-Carbon Groups,Hydroxymethyl-, Formyl- and Related Transferases 
2.3.1 2 Transferases, Acyltransferases, Transferring groups other than amino-acyl groups 
2.4.1 2 Transferases, Glycosyltransferases, Hexosyltransferases 
2.1.1 2 Transferases, Transferring One-Carbon Groups, Methyltransferases 
1.4.1 2 Oxidoreductases, acting on the CH-NH2 group of donors, with NAD or NADP acceptor 
3.1.1 2 Hydrolases, Acting on Ester Bonds, Carboxylic Ester Hydrolases 

1.14.12 1 Oxidoreductases, Acting on paired donors, with incorporation or reduction of molecular oxygen, 
With NADH or NADPH as one donor, and incorporation of two atoms of oxygen into one donor 

1.14.13 1 Oxidoreductases, Acting on paired donors, with incorporation or reduction of molecular oxygen, 
With NADH or NADPH as one donor, and incorporation of one atom of oxygen 

2.1.3 1 Transferases, Transferring One-Carbon Groups, Carboxy- and Carbamoyltransferases 
3.6.1 1 Hydrolases, Acting on Acid Anhydrides,  In Phosphorus-Containing Anhydrides 
3.7.1 1 Hydrolases, Acting on Carbon-Carbon Bonds, In Ketonic Substances 
1.1.3 1 Oxidoreductases, acting on CH-OH group of donors, with oxygen as acceptor 

5.4.99 1 Isomerases, Intramolecular Transferases,  Thansfering Other Groups 
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Table A2-4. Knock Out Reactions frequency specified by Oxygenation, Substrate and Yield conditions 

KO Reaction Frequency  Substrate   Oxygenation   Yield Interval    
 glc xyl glyc  aerobic ECOM anaerobic  0,0 - 0,2 0,2 - 0,4 0,4 - 0,6 0,6 - 0,8 0,8 - 1,0 

ORNDC 15  5 6 4  12 0 3  12 0 3 0 0 
FUM 72  34 27 11  57 3 12  44 16 11 1 0 
GND 19  12 6 1  13 5 1  14 4 1 0 0 
PYK 328  26 174 128  97 68 163  70 95 132 23 8 

DHAPT 44  8 15 21  12 7 25  9 0 27 6 2 
ACKr 107  28 56 23  32 45 30  28 24 42 5 8 
PGCD 65  25 14 26  45 7 13  33 19 13 0 0 

RPI 22  12 0 10  11 7 4  15 4 3 0 0 
SUCOAS 38  10 8 20  9 11 18  31 0 7 0 0 
AKGDH 21  9 8 4  9 8 4  21 0 0 0 0 
ACCOAL 26  7 7 12  7 7 12  21 0 5 0 0 

TALA 24  4 18 2  6 9 9  10 3 8 3 0 
ACACT1r 37  7 23 7  4 9 24  8 13 16 0 0 
G6PDH2r 38  27 10 1  3 20 15  9 23 5 1 0 

POR5 18  3 3 12  3 4 11  4 7 4 3 0 
PFL 528  156 127 245  284 26 218  172 172 148 36 0 
PDH 105  45 35 25  6 80 19  17 71 15 2 0 
TPI 116  62 24 30  64 13 39  45 32 18 21 0 

ATPS4rpp 534  171 168 195  206 139 189  154 239 118 23 0 
TKT1 14  2 10 2  12 0 2  4 10 0 0 0 

PPCSCT 12  3 1 8  2 4 6  10 0 2 0 0 
ASPO3 1  1 0 0  1 0 0  1 0 0 0 0 

CYTBO3_4pp 24  4 8 12  24 0 0  10 13 1 0 0 
THD2pp 44  14 9 21  15 0 29  9 22 3 10 0 

PGM 9  5 3 1  8 1 0  5 2 1 1 0 
GAPD 8  6 0 2  7 1 0  6 1 1 0 0 
TKT2 70  18 12 40  42 2 26  27 27 16 0 0 
ENO 11  3 3 5  8 3 0  7 3 1 0 0 
PPS 15  2 1 12  15 0 0  4 3 0 8 0 

GHMT2r 12  1 1 10  3 2 7  5 6 1 0 0 
PPC 72  18 12 42  19 3 50  16 22 24 10 0 

LDH_D 56  25 20 11  3 6 47  8 17 26 5 0 
ACALD 94  20 23 51  14 26 54  12 30 36 16 0 

PGI 124  117 6 1  4 27 93  27 86 11 0 0 
GLYCL 9  1 1 7  8 0 1  8 1 0 0 0 
MALS 5  0 5 0  5 0 0  0 5 0 0 0 
RPE 117  0 117 0  68 9 40  58 41 16 2 0 

F6PA 19  8 11 0  1 6 12  2 4 7 3 3 
CYTBDpp 1  0 1 0  1 0 0  0 1 0 0 0 

CYTBD2pp 1  0 1 0  1 0 0  0 1 0 0 0 
MDH2 1  0 0 1  1 0 0  1 0 0 0 0 
IPDDI 9  1 3 5  2 0 7  3 4 2 0 0 
GLYK 85  0 1 84  21 18 46  22 11 25 24 3 

GLYCDx 81  0 0 81  31 19 31  0 35 37 4 5 
ALCD19 3  0 0 3  2 0 1  0 0 0 1 2 
GLUDy 129  26 37 66  2 112 15  12 64 33 20 0 
FLDR2 23  1 6 16  5 5 13  6 7 8 2 0 

ALCD2x 110  26 24 60  10 24 76  12 45 33 20 0 
PPKr 51  0 11 40  8 1 42  9 24 18 0 0 
MDH 173  39 74 60  1 148 24  16 80 60 17 0 

ASPO6 5  1 4 0  0 5 0  4 1 0 0 0 
ALDD2y 1  0 1 0  0 1 0  0 0 1 0 0 
G3PD2 26  0 0 26  0 1 25  1 0 12 13 0 

PYAM5PO 1  0 0 1  0 1 0  0 0 1 0 0 
ASPT 1  0 0 1  0 1 0  0 0 1 0 0 

RNTR3c2 1  0 0 1  0 1 0  1 0 0 0 0 
ATHRDHr 1  0 0 1  0 1 0  1 0 0 0 0 

HEX7 10  10 0 0  0 0 10  0 8 2 0 0 
XYLI2 19  18 1 0  0 0 19  0 17 2 0 0 
EDA 4  2 2 0  0 0 4  0 4 0 0 0 

HEX1 14  14 0 0  0 0 14  0 14 0 0 0 
PFK 2  1 0 1  0 0 2  0 1 0 1 0 

CBPS 18  4 8 6  0 0 18  1 10 7 0 0 
CBMKr 20  4 10 6  0 0 20  1 12 7 0 0 
FRD2 2  0 2 0  0 0 2  0 1 1 0 0 
FRD3 1  0 1 0  0 0 1  0 0 1 0 0 
DRPA 1  0 1 0  0 0 1  1 0 0 0 0 

NADH18pp 3  0 2 1  0 0 3  0 1 2 0 0 
NADH17pp 1  0 1 0  0 0 1  0 1 0 0 0 

MGSA 8  0 8 0  0 0 8  6 2 0 0 0 
AGDC 1  0 1 0  0 0 1  0 0 1 0 0 
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ME2 6  0 4 2  0 0 6  0 0 4 2 0 
CYTK1 1  0 1 0  0 0 1  0 0 1 0 0 
G6PDA 1  0 0 1  0 0 1  0 0 1 0 0 
THRD 6  0 0 6  0 0 6  0 6 0 0 0 
THRAi 6  0 0 6  0 0 6  0 6 0 0 0 
PPM 1  0 0 1  0 0 1  0 0 1 0 0 

DMPPS 1  0 0 1  0 0 1  1 0 0 0 0 
UPPRT 1  0 0 1  0 0 1  0 0 1 0 0 
R15BPK 1  0 0 1  0 0 1  0 0 1 0 0 

ALATA_D2 2  0 0 2  0 0 2  0 2 0 0 0 
PRPPS 1  0 0 1  0 0 1  0 0 1 0 0 

DURIK1 1  0 0 1  0 0 1  0 0 1 0 0 
NDPK3 4  0 0 4  0 0 4  4 0 0 0 0 
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Table A2-5. Pathways Strain Design Yield average for different oxygenation/substrate/KO combinations 

Target / Pathway Overall  oxygenation 
 

substrate  Knock Outs 
  aerobic ECOM anaerobic   glc xyl glyc   2 KO 3 KO 4 KO 

acrylamide 40   40 40 40   40 40 40   40 40 40 
2 '0.33 / 22'   '0.21 / 6' '0.38 / 8' '0.37 / 8'   '0.24 / 8' '0.48 / 6' '0.30 / 8'   '0.25 / 9' '0.47 / 9' '0.20 / 4' 
3 '0.29 / 22'   '0.12 / 7' '0.34 / 7' '0.39 / 8'   '0.21 / 9' '0.42 / 8' '0.22 / 5'   '0.21 / 9' '0.31 / 7' '0.37 / 6' 
4 '0.18 / 25'   '0.08 / 7' '0.19 / 9' '0.24 / 9'   '0.14 / 9' '0.26 / 9' '0.11 / 7'   '0.14 / 8' '0.19 / 9' '0.20 / 8' 
8 '0.01 / 8'   '0.01 / 3' '0.01 / 2' '0.00 / 3'   '0.01 / 3' '0.01 / 2' '0.00 / 3'   '0.00 / 1' '0.01 / 6' '0.00 / 1' 
acrilic acid 43   39 43 30   43 43 43   30 43 39 
1 '0.36 / 23'  '0.21 / 6' '0.43 / 9' '0.39 / 8'  '0.24 / 8' '0.54 / 7' '0.31 / 8'  '0.25 / 9' '0.49 / 9' '0.32 / 5' 
2 '0.30 / 23'  '0.12 / 7' '0.34 / 7' '0.40 / 9'  '0.21 / 9' '0.39 / 8' '0.29 / 6'  '0.22 / 9' '0.35 / 8' '0.32 / 6' 
3 '0.18 / 25'  '0.08 / 7' '0.19 / 9' '0.24 / 9'  '0.14 / 9' '0.26 / 9' '0.11 / 7'  '0.14 / 8' '0.19 / 9' '0.20 / 8' 
4 '0.10 / 9'  '0.10 / 3' '0.13 / 4' '0.06 / 2'  '0.12 / 3' '0.04 / 3' '0.14 / 3'  '0 / 0' '0.11 / 8' '0.10 / 1' 
8 '0.18 / 25'  '0.08 / 7' '0.19 / 9' '0.24 / 9'  '0.14 / 9' '0.26 / 9' '0.11 / 7'  '0.14 / 8' '0.19 / 9' '0.20 / 8' 
9 '0.16 / 19'  '0.04 / 4' '0.16 / 7' '0.23 / 8'  '0.13 / 7' '0.21 / 5' '0.16 / 7'  '0.15 / 6' '0.18 / 9' '0.14 / 4' 
15 '0.32 / 9'  '0.18 / 1' '0.34 / 8' '0 / 0'  '0.26 / 4' '0.31 / 2' '0.29 / 3'  '0.26 / 2' '0.27 / 3' '0.30 / 4' 
16 '0.29 / 3'  '0 / 0' '0.29 / 3' '0 / 0'  '0.19 / 1' '0.20 / 1' '0.19 / 1'  '0 / 0' '0.29 / 3' '0 / 0' 
17 '0.36 / 9'  '0.18 / 1' '0.38 / 8' '0 / 0'  '0.32 / 4' '0.31 / 2' '0.30 / 3'  '0.29 / 2' '0.35 / 3' '0.31 / 4' 
21 '0.01 / 7'  '0.01 / 2' '0.01 / 3' '0.00 / 2'  '0.01 / 2' '0.01 / 3' '0.01 / 2'  '0 / 0' '0.01 / 4' '0.01 / 3' 
3-hydroxypropanoate 28   28 20 20   20 20 28   24 28 24 
12 '0.37 / 24'   '0.22 / 6' '0.43 / 9' '0.40 / 9'   '0.24 / 8' '0.54 / 8' '0.31 / 8'   '0.25 / 9' '0.48 / 9' '0.35 / 6' 
13 '0.29 / 21'   '0.13 / 6' '0.28 / 6' '0.41 / 9'   '0.22 / 8' '0.35 / 7' '0.30 / 6'   '0.24 / 8' '0.36 / 8' '0.25 / 5' 
14 '0.18 / 25'   '0.08 / 7' '0.19 / 9' '0.24 / 9'   '0.14 / 9' '0.26 / 9' '0.11 / 7'   '0.14 / 8' '0.19 / 9' '0.20 / 8' 
22 '0.17 / 25'   '0.07 / 7' '0.19 / 9' '0.24 / 9'   '0.13 / 9' '0.26 / 9' '0.11 / 7'   '0.14 / 8' '0.19 / 9' '0.20 / 8' 
23 '0.01 / 11'   '0.01 / 4' '0.01 / 3' '0.00 / 4'   '0.01 / 4' '0.01 / 3' '0.01 / 4'   '0.00 / 1' '0.01 / 8' '0.01 / 2' 
9 '0.47 / 1'   '0.47 / 1' '0 / 0' '0 / 0'   '0 / 0' '0 / 0' '0.47 / 1'   '0 / 0' '0.47 / 1' '0 / 0' 
10 '0.45 / 3'   '0.45 / 3' '0 / 0' '0 / 0'   '0 / 0' '0 / 0' '0.45 / 3'   '0.24 / 1' '0.46 / 1' '0.20 / 1' 
1-propanol 63   63 21 63   63 58 63   63 63 42 
1 '0.37 / 11'  '0.14 / 2' '0.31 / 1' '0.43 / 8'  '0.25 / 4' '0.43 / 3' '0.39 / 4'  '0.31 / 5' '0.33 / 2' '0.41 / 4' 
2 '0.36 / 13'  '0.18 / 4' '0 / 0' '0.44 / 9'  '0.26 / 4' '0.35 / 5' '0.39 / 4'  '0.30 / 6' '0.36 / 4' '0.36 / 3' 
3 '0.31 / 11'  '0.14 / 2' '0 / 0' '0.35 / 9'  '0.24 / 4' '0.20 / 3' '0.39 / 4'  '0.23 / 5' '0.39 / 3' '0.26 / 3' 
4 '0.29 / 7'  '0.14 / 2' '0 / 0' '0.35 / 5'  '0.22 / 3' '0 / 0' '0.32 / 4'  '0.15 / 3' '0.33 / 2' '0.31 / 2' 
5 '0.22 / 12'  '0.11 / 6' '0 / 0' '0.33 / 6'  '0.15 / 4' '0.19 / 4' '0.29 / 4'  '0.22 / 6' '0.23 / 6' '0 / 0' 
6 '0.26 / 10'  '0.15 / 4' '0 / 0' '0.33 / 6'  '0.21 / 2' '0.19 / 4' '0.29 / 4'  '0.25 / 5' '0.26 / 5' '0 / 0' 
7 '0.20 / 8'  '0.15 / 4' '0 / 0' '0.25 / 4'  '0.14 / 1' '0.06 / 3' '0.29 / 4'  '0.18 / 5' '0.22 / 3' '0 / 0' 
8 '0.24 / 10'  '0.15 / 4' '0 / 0' '0.30 / 6'  '0.19 / 2' '0.18 / 4' '0.28 / 4'  '0.22 / 5' '0.25 / 5' '0 / 0' 
9 '0.23 / 16'  '0.11 / 6' '0.19 / 2' '0.32 / 8'  '0.16 / 5' '0.21 / 6' '0.31 / 5'  '0.22 / 6' '0.23 / 6' '0.23 / 4' 
10 '0.21 / 9'  '0.12 / 3' '0 / 0' '0.25 / 6'  '0.07 / 1' '0.09 / 4' '0.33 / 4'  '0.16 / 5' '0.20 / 2' '0.22 / 2' 
13 '0.22 / 19'  '0.09 / 9' '0.25 / 2' '0.37 / 8'  '0.22 / 6' '0.19 / 6' '0.28 / 7'  '0.20 / 6' '0.22 / 6' '0.26 / 7' 
14 '0.20 / 17'  '0.11 / 9' '0.24 / 1' '0.30 / 7'  '0.14 / 5' '0.18 / 5' '0.26 / 7'  '0.13 / 6' '0.22 / 6' '0.25 / 5' 
isopropanol 14   14 7 14   14 14 14   14 14 14 
1 '0.23 / 18'   '0.10 / 9' '0.24 / 1' '0.37 / 8'   '0.19 / 5' '0.21 / 6' '0.29 / 7'   '0.20 / 6' '0.22 / 6' '0.27 / 6' 
2 '0.19 / 16'   '0.10 / 9' '0 / 0' '0.30 / 7'   '0.14 / 5' '0.17 / 5' '0.23 / 6'   '0.13 / 6' '0.22 / 6' '0.19 / 4' 
1-butanol 100   100 72 100   100 100 100   100 100 89 
1 '0.31 / 11'  '0.17 / 4' '0.13 / 1' '0.43 / 6'  '0.26 / 4' '0.30 / 3' '0.31 / 4'  '0.28 / 4' '0.33 / 7' '0 / 0' 
2 '0.36 / 13'  '0.11 / 2' '0.30 / 4' '0.46 / 7'  '0.29 / 3' '0.30 / 3' '0.39 / 7'  '0.29 / 4' '0.35 / 7' '0.41 / 2' 
3 '0.31 / 10'  '0.11 / 2' '0.29 / 2' '0.39 / 6'  '0.21 / 3' '0.18 / 1' '0.40 / 6'  '0.29 / 4' '0.25 / 4' '0.41 / 2' 
4 '0.32 / 7'  '0.13 / 2' '0 / 0' '0.39 / 5'  '0.10 / 1' '0.18 / 1' '0.36 / 5'  '0.24 / 2' '0.29 / 4' '0.28 / 1' 
5 '0.42 / 10'  '0.43 / 3' '0 / 0' '0.41 / 7'  '0.35 / 3' '0.17 / 2' '0.51 / 5'  '0.44 / 4' '0.39 / 4' '0.29 / 2' 
6 '0.36 / 16'  '0.33 / 7' '0.12 / 1' '0.41 / 8'  '0.29 / 5' '0.32 / 5' '0.42 / 6'  '0.37 / 6' '0.36 / 7' '0.28 / 3' 
7 '0.43 / 11'  '0.43 / 3' '0 / 0' '0.43 / 8'  '0.38 / 2' '0.22 / 3' '0.51 / 6'  '0.47 / 4' '0.39 / 4' '0.32 / 3' 
8 '0.40 / 16'  '0.33 / 7' '0.33 / 2' '0.50 / 7'  '0.29 / 4' '0.42 / 6' '0.45 / 6'  '0.38 / 6' '0.39 / 7' '0.47 / 3' 
9 '0.43 / 11'  '0.43 / 3' '0 / 0' '0.43 / 8'  '0.37 / 2' '0.22 / 3' '0.51 / 6'  '0.47 / 4' '0.39 / 4' '0.32 / 3' 
10 '0.43 / 17'  '0.33 / 7' '0.42 / 3' '0.54 / 7'  '0.34 / 5' '0.44 / 7' '0.52 / 5'  '0.38 / 6' '0.46 / 8' '0.47 / 3' 
11 '0.31 / 11'  '0.43 / 3' '0.33 / 1' '0.25 / 7'  '0.15 / 2' '0.09 / 3' '0.52 / 6'  '0.29 / 4' '0.36 / 5' '0.26 / 2' 
12 '0.38 / 17'  '0.33 / 7' '0.33 / 1' '0.43 / 9'  '0.27 / 5' '0.33 / 5' '0.50 / 7'  '0.27 / 6' '0.46 / 7' '0.41 / 4' 
13 '0.33 / 9'  '0.14 / 2' '0.13 / 1' '0.43 / 6'  '0.28 / 3' '0.33 / 2' '0.31 / 4'  '0.28 / 4' '0.38 / 5' '0 / 0' 
14 '0.35 / 10'  '0.14 / 2' '0.31 / 1' '0.41 / 7'  '0.21 / 2' '0.27 / 2' '0.41 / 6'  '0.29 / 4' '0.32 / 4' '0.41 / 2' 
15 '0.32 / 9'  '0.11 / 2' '0.29 / 2' '0.42 / 5'  '0.20 / 2' '0.18 / 1' '0.40 / 6'  '0.29 / 4' '0.26 / 3' '0.41 / 2' 
16 '0.32 / 7'  '0.13 / 2' '0 / 0' '0.39 / 5'  '0.10 / 1' '0.18 / 1' '0.36 / 5'  '0.24 / 2' '0.29 / 4' '0.28 / 1' 
17 '0.36 / 13'  '0.14 / 2' '0.28 / 3' '0.45 / 8'  '0.28 / 3' '0.32 / 4' '0.41 / 6'  '0.29 / 4' '0.36 / 6' '0.40 / 3' 
18 '0.36 / 13'   '0.14 / 2' '0.28 / 3' '0.45 / 8'   '0.28 / 3' '0.32 / 4' '0.41 / 6'   '0.29 / 4' '0.36 / 6' '0.40 / 3' 
isobutanol 77   8 69 15   46 46 62   8 77 8 
1 '0.37 / 2'   '0 / 0' '0 / 0' '0.37 / 2'   '0.27 / 1' '0.29 / 1' '0 / 0'   '0 / 0' '0.37 / 2' '0 / 0' 
5 '0.01 / 6'   '0.00 / 1' '0.04 / 2' '0.00 / 3'   '0.01 / 1' '0.00 / 3' '0.04 / 2'   '0.00 / 1' '0.00 / 1' '0.03 / 4' 
6 '0.32 / 3'   '0 / 0' '0.32 / 3' '0 / 0'   '0.18 / 1' '0.18 / 1' '0.29 / 1'   '0 / 0' '0.32 / 3' '0 / 0' 
7 '0.27 / 3'   '0 / 0' '0.27 / 3' '0 / 0'   '0.13 / 1' '0.13 / 1' '0.28 / 1'   '0 / 0' '0.27 / 3' '0 / 0' 
8 '0.17 / 2'   '0 / 0' '0.17 / 2' '0 / 0'   '0.13 / 1' '0.13 / 1' '0 / 0'   '0 / 0' '0.17 / 2' '0 / 0' 
10 '0.27 / 3'   '0 / 0' '0.27 / 3' '0 / 0'   '0.13 / 1' '0.13 / 1' '0.28 / 1'   '0 / 0' '0.27 / 3' '0 / 0' 
9 '0.18 / 1'   '0 / 0' '0.18 / 1' '0 / 0'   '0 / 0' '0 / 0' '0.18 / 1'   '0 / 0' '0.18 / 1' '0 / 0' 
11 '0.18 / 1'   '0 / 0' '0.18 / 1' '0 / 0'   '0 / 0' '0 / 0' '0.18 / 1'   '0 / 0' '0.18 / 1' '0 / 0' 
12 '0.18 / 1'   '0 / 0' '0.18 / 1' '0 / 0'   '0 / 0' '0 / 0' '0.18 / 1'   '0 / 0' '0.18 / 1' '0 / 0' 
13 '0.13 / 1'   '0 / 0' '0.13 / 1' '0 / 0'   '0 / 0' '0 / 0' '0.13 / 1'   '0 / 0' '0.13 / 1' '0 / 0' 
1,3-propanediol 34   34 7 34   10 34 34   34 34 34 
16 '0.21 / 10'  '0.16 / 4' '0 / 0' '0.25 / 6'  '0.07 / 1' '0.16 / 4' '0.27 / 5'  '0.14 / 3' '0.24 / 3' '0.20 / 4' 
17 '0.21 / 8'  '0.16 / 4' '0 / 0' '0.26 / 4'  '0.07 / 1' '0.15 / 2' '0.26 / 5'  '0.17 / 2' '0.23 / 3' '0.17 / 3' 
18 '0.21 / 8'  '0.16 / 4' '0 / 0' '0.26 / 4'  '0.07 / 1' '0.15 / 2' '0.26 / 5'  '0.17 / 2' '0.23 / 3' '0.17 / 3' 
19 '0.18 / 7'  '0.16 / 4' '0 / 0' '0.20 / 3'  '0.07 / 1' '0.11 / 2' '0.22 / 4'  '0.10 / 2' '0.17 / 3' '0.20 / 2' 
7 '0.35 / 7'  '0.26 / 2' '0 / 0' '0.39 / 5'  '0 / 0' '0.14 / 2' '0.45 / 5'  '0.35 / 2' '0.31 / 3' '0.28 / 2' 
8 '0.31 / 7'  '0.26 / 2' '0.25 / 1' '0.35 / 4'  '0 / 0' '0.09 / 1' '0.41 / 6'  '0.28 / 2' '0.40 / 3' '0.20 / 2' 
14 '0.22 / 9'  '0.16 / 3' '0 / 0' '0.25 / 6'  '0 / 0' '0.16 / 4' '0.27 / 5'  '0.14 / 3' '0.24 / 3' '0.21 / 3' 
15 '0.22 / 7'  '0.16 / 3' '0 / 0' '0.27 / 4'  '0 / 0' '0.15 / 2' '0.26 / 5'  '0.17 / 2' '0.23 / 3' '0.18 / 2' 
24 '0.22 / 9'  '0.16 / 3' '0 / 0' '0.25 / 6'  '0 / 0' '0.16 / 4' '0.27 / 5'  '0.14 / 3' '0.24 / 3' '0.21 / 3' 
25 '0.22 / 7'  '0.16 / 3' '0 / 0' '0.27 / 4'  '0 / 0' '0.15 / 2' '0.26 / 5'  '0.17 / 2' '0.23 / 3' '0.18 / 2' 
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34 '0.35 / 7'  '0.31 / 2' '0 / 0' '0.36 / 5'  '0 / 0' '0.14 / 2' '0.45 / 5'  '0.35 / 2' '0.32 / 3' '0.26 / 2' 
35 '0.30 / 7'  '0.26 / 2' '0.25 / 1' '0.34 / 4'  '0 / 0' '0.09 / 1' '0.40 / 6'  '0.28 / 2' '0.38 / 3' '0.20 / 2' 
36 '0.30 / 7'  '0.26 / 2' '0.25 / 1' '0.34 / 4'  '0 / 0' '0.09 / 1' '0.40 / 6'  '0.28 / 2' '0.38 / 3' '0.20 / 2' 
37 '0.22 / 6'  '0.21 / 2' '0 / 0' '0.22 / 4'  '0 / 0' '0.06 / 1' '0.27 / 5'  '0.16 / 2' '0.27 / 2' '0.14 / 2' 
2,3-propanediol 0   0 0 0   0 0 0   0 0 0 
1,4-butanediol 55   36 55 36   52 52 55   39 55 52 
13 '0.29 / 25'  '0.18 / 9' '0.32 / 7' '0.39 / 9'  '0.22 / 8' '0.30 / 9' '0.38 / 8'  '0.27 / 7' '0.30 / 9' '0.32 / 9' 
14 '0.29 / 23'  '0.19 / 9' '0.29 / 5' '0.40 / 9'  '0.18 / 7' '0.30 / 8' '0.38 / 8'  '0.26 / 6' '0.29 / 9' '0.32 / 8' 
15 '0.29 / 23'  '0.19 / 9' '0.29 / 5' '0.40 / 9'  '0.18 / 7' '0.30 / 8' '0.38 / 8'  '0.26 / 6' '0.29 / 9' '0.32 / 8' 
16 '0.29 / 21'  '0.19 / 9' '0.30 / 3' '0.38 / 9'  '0.21 / 6' '0.28 / 7' '0.35 / 8'  '0.26 / 6' '0.32 / 8' '0.27 / 7' 
17 '0.29 / 23'  '0.19 / 9' '0.29 / 5' '0.40 / 9'  '0.18 / 7' '0.30 / 8' '0.38 / 8'  '0.26 / 6' '0.28 / 9' '0.32 / 8' 
18 '0.29 / 21'  '0.19 / 9' '0.30 / 3' '0.39 / 9'  '0.21 / 6' '0.29 / 7' '0.35 / 8'  '0.26 / 6' '0.32 / 8' '0.27 / 7' 
19 '0.29 / 21'  '0.19 / 9' '0.30 / 3' '0.39 / 9'  '0.21 / 6' '0.29 / 7' '0.35 / 8'  '0.26 / 6' '0.32 / 8' '0.27 / 7' 
20 '0.28 / 20'  '0.18 / 9' '0.13 / 2' '0.41 / 9'  '0.21 / 6' '0.24 / 7' '0.38 / 7'  '0.26 / 6' '0.30 / 6' '0.28 / 8' 
21 '0.29 / 23'  '0.18 / 9' '0.29 / 5' '0.40 / 9'  '0.18 / 7' '0.30 / 8' '0.38 / 8'  '0.26 / 6' '0.29 / 9' '0.32 / 8' 
22 '0.29 / 21'  '0.19 / 9' '0.30 / 3' '0.38 / 9'  '0.20 / 6' '0.29 / 7' '0.35 / 8'  '0.26 / 6' '0.32 / 8' '0.27 / 7' 
23 '0.29 / 21'  '0.19 / 9' '0.30 / 3' '0.39 / 9'  '0.21 / 6' '0.29 / 7' '0.35 / 8'  '0.26 / 6' '0.32 / 8' '0.27 / 7' 
24 '0.28 / 20'  '0.19 / 9' '0.13 / 2' '0.41 / 9'  '0.21 / 6' '0.24 / 7' '0.38 / 7'  '0.26 / 6' '0.30 / 6' '0.28 / 8' 
25 '0.29 / 21'  '0.19 / 9' '0.30 / 3' '0.39 / 9'  '0.21 / 6' '0.29 / 7' '0.35 / 8'  '0.26 / 6' '0.32 / 8' '0.27 / 7' 
26 '0.28 / 20'  '0.19 / 9' '0.13 / 2' '0.41 / 9'  '0.21 / 6' '0.24 / 7' '0.38 / 7'  '0.26 / 6' '0.30 / 6' '0.28 / 8' 
27 '0.28 / 20'  '0.19 / 9' '0.13 / 2' '0.41 / 9'  '0.21 / 6' '0.24 / 7' '0.38 / 7'  '0.26 / 6' '0.30 / 6' '0.28 / 8' 
28 '0.27 / 18'  '0.18 / 9' '0.20 / 1' '0.37 / 8'  '0.13 / 5' '0.27 / 6' '0.36 / 7'  '0.22 / 6' '0.28 / 6' '0.29 / 6' 
29 '0.36 / 9'  '0 / 0' '0.36 / 9' '0 / 0'  '0.27 / 3' '0.28 / 3' '0.34 / 3'  '0.14 / 3' '0.37 / 3' '0.39 / 3' 
30 '0.32 / 4'  '0 / 0' '0.32 / 4' '0 / 0'  '0.10 / 1' '0.11 / 1' '0.40 / 2'  '0 / 0' '0.25 / 3' '0.30 / 1' 
31 '0.32 / 4'  '0 / 0' '0.32 / 4' '0 / 0'  '0.10 / 1' '0.11 / 1' '0.40 / 2'  '0 / 0' '0.25 / 3' '0.30 / 1' 
32 '0.25 / 4'  '0 / 0' '0.25 / 4' '0 / 0'  '0.10 / 1' '0.19 / 2' '0.24 / 1'  '0 / 0' '0.23 / 3' '0.18 / 1' 
33 '0.32 / 4'  '0 / 0' '0.32 / 4' '0 / 0'  '0.10 / 1' '0.11 / 1' '0.40 / 2'  '0 / 0' '0.25 / 3' '0.30 / 1' 
34 '0.25 / 4'  '0 / 0' '0.25 / 4' '0 / 0'  '0.10 / 1' '0.19 / 2' '0.24 / 1'  '0 / 0' '0.23 / 3' '0.18 / 1' 
35 '0.25 / 4'  '0 / 0' '0.25 / 4' '0 / 0'  '0.10 / 1' '0.19 / 2' '0.24 / 1'  '0 / 0' '0.23 / 3' '0.18 / 1' 
36 '0.19 / 1'  '0 / 0' '0.19 / 1' '0 / 0'  '0 / 0' '0 / 0' '0.19 / 1'  '0 / 0' '0.19 / 1' '0 / 0' 
2,3-butanediol 50   0 0 50   50 50 0   0 50 0 
1 '0.26 / 2'   '0 / 0' '0 / 0' '0.26 / 2'   '0.18 / 1' '0.20 / 1' '0 / 0'   '0 / 0' '0.26 / 2' '0 / 0' 
3-methyl-1-butanol 0  0 0 0  0 0 0  0 0 0 
2-methyl-1-butanol 0   0 0 0   0 0 0   0 0 0 
2-keto-isovaleric acid 33   0 33 0   0 0 33   0 0 33 
2 '0.27 / 1'   '0 / 0' '0.27 / 1' '0 / 0'   '0 / 0' '0 / 0' '0.27 / 1'   '0 / 0' '0 / 0' '0.27 / 1' 
3-hydroxyvalerate 33   0 33 0   0 0 33   33 0 33 
3 '0.00 / 2'   '0 / 0' '0.00 / 2' '0 / 0'   '0 / 0' '0 / 0' '0.00 / 2'   '0.00 / 1' '0 / 0' '0.00 / 1' 
2-keto-butanoic acid 20   20 20 20   20 20 20   20 20 20 
1 '0.31 / 17'  '0.11 / 5' '0.23 / 3' '0.45 / 9'  '0.31 / 4' '0.34 / 6' '0.27 / 7'  '0.28 / 4' '0.29 / 7' '0.33 / 6' 
3-hydroxybutyrate 11   11 11 11   11 11 11   11 11 11 
1 '0.34 / 17'   '0.34 / 5' '0.47 / 8' '0.08 / 4'   '0.37 / 7' '0.29 / 4' '0.34 / 6'   '0.26 / 6' '0.37 / 6' '0.39 / 5' 
4-hydroxybutyrate 0  0 0 0  0 0 0  0 0 0 
2-phenylethanol 0   0 0 0   0 0 0   0 0 0 
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Table A2-6. Metabolites abbreviation names 
 
abbreviation Compound Name  abbreviation Compound Name  

  acryl acrylic acid 
 

glyald D-glyceraldehyde 
 btd 2,3-butandiol 

 
glyc glycerol 

 btoh 1-butanol 
 

glyclt glycolate 
 ghb 4-hydroxybutyrate 

 
glyc-R (R)-glycerate 

 ibutoh isobutanol 
 

glx glyoxylate 
 1poh 1-propanol 

 
hpyr hydroxypyruvate 

 12ppd 2,3-propanediol 
 

ibt isobutyric acid 
 13ppd 1,3-propanediol 

 
prpncoa Propenoyl-CoA 

 14btd 1,4-butanediol 
 

lac lactate 
 2mbtoh 2-methyl-1-butanol 

 
laccoa Lactoyl-CoA 

 2obut 2-oxobutanoate 
 

ladl-LD lactaldehyde 
 2ppoh isoporpanol 

 
lald-D D-lactaldehyde 

 2phetoh 2-Phenylethanol 
 

lald-L L-lactaldehyde 
 3hb-R (R)-3-hydroxybutyrate 

 
mal-D D-malate 

 3hpt 3-hydroxyvalerate 
 

meoh methanol 
 3hpp 3-hydroxypropanoate 

 
mlthf 5,10-methylenetetrahydrofolate 

 3mob alpha-ketoisovalerate  
 

mmcoa-S (S)-methylmalonyl-CoA 
 3mop ketoisoleucine 

 
msa 3-Oxopropanoate 

 4mop 2-oxoisocaproate 
 

oaa oxaloacetate 
 12ppd-R D-1,2-propanediol 

 
pacald phenylacetaldehyde 

 2dhp 2-dehydropantoate 
 

pant-R pantoate 
 2abut (S)-2-aminobutanoate 

 
pep phosphoenolpyruvate 

 2mbald 2-methylbutanal 
 

phpyr phenylpyruvate 
 2mcit 2-methylcitrate 

 
ppal propanal 

 
2oh2hmbut 

2-hydroxy-2-(1-hydroxy-2-
methylpropan-2-yl) butanedioic 
acid 

 
ppap propanoyl phosphate 

 

 

ppcoa propanoyl-CoA 

 2opntn 2-oxopentanoic acid 
 

succoa succinyl-CoA 
 2pg D-glycerate 2-phosphate 

 
sucsal succinic semialdehyde 

 2pglyc 2-phosphoglycolate 
 

thf tetrahydrofolate 
 3hbcoa (S)-3-hydroxybutanoyl-CoA 

 
vaccoa Vinylacetyl-CoA 

 3hhcoa (S)-3-hydroxyhexanoyl-CoA 
 

val-L L-valine 
 3hpcoa 3-hydroxypropanoyl-CoA 

 
acrolein*** acrolein 

 3hppnl 3-Hydroxypropanal 
 

ahyvala*** 2-hydroxyisovaleric acid 
 3mbald 3-methylbutanal 

 
allyoh*** 2-propenol 

 34hpp 4-hydroxyphenylpyruvate 
 

ibutal*** isobutyraldehyde 
 4abutn 4-aminobutanal 

 
meacryl*** methyl acrylate 

 4hbutcoa 4-hydroxybutyryl-CoA 
 

me2hp*** methyl 2-hydroxypropanoate 
 4hoxpacd 4-Hydroxyphenylacetaldehyde 

 
neopglyc*** neopentyl glycol 

 5ohdmoxp 5-hydroxy-4,4-dimethyl-3-oxopentanoic acid ppdal*** propanedial 
 aacoa acetoacetyl-CoA 

 
sucsal*** succindialdehyde  

 ac acetate 
 

sucsalcoa*** succindialdehyde-Coa 
 acac acetoacetate 

 
2a2mn3obt*** 2-amino-2-methyl-3-oxobutanoic acid 

acetoin acetoin 
 

2btenac*** 2-Butenoicacid 
 acetone acetone 

 
2hacrylac*** 2-hydroxyacrylic acid 

 acetol acetol 
 

2e2hobtae*** 2-ethyl-2-hydroxybutanedioic acid 
 acgal N-acetyl-D-galactosamine 

 
2hacrylac*** 2-hydroxyacrylic acid 

 acgam6p N-Acetyl-D-glucosamine 6-phosphate 2hxaa*** 2-hydroxyacrylamide 
 ahcys S-adenosyl-L-homocysteine 

 
2h4obute*** 2-hydroxy-4-oxobutanoic acid 

 akg 2-oxoglutarate 
 

2mn3obt*** 2-methylidene-3-oxobutanoic acid 
 alac-S (S)-2-acetolactate 

 
24dhbut*** 2,4-dihydroxybutyrate 

 ala-D D-alanine 
 

23dproa*** 2,3-dihydroxypropanamide 
 amet S-adenosyl-L-methionine 

 
3btenac*** 3-butenoic acid 

 appl 1-Aminopropan-2-ol 
 

3hproa*** 3-hydroxypropanamide 
 aspsa L-aspartate 4-semialdehyde 

 
3hoptal*** 3-hydroxypentanal 

 athr-L L-allothreonine 
 

3hoptalcoa*** 3-hydroxy pentanoil coa 
 btal butanal 

 
3hylpi*** (3-hydroxypropanoyl)oxyphosphonic acid 

btcoa butanoyl-CoA 
 

3mbtoh*** 2-methyl-1-butanol 
 but butanoic acid 

 
4hbtal*** 4-hydroxybutanal 

 dohdmpen 3,5-dihydroxy-4,4-dimethylpentanoic acid 42hetphe*** 4-(2-Hydroxyethyl)phenol 
 fald formaldehyde 

    fum fumarate     Metabolite names and the corresponding abbreviation were tabulated. The first 20 metabolites correspond to the target compounds. The rest are E. 
coli native and non-native intermediates. Abbreviations were taken from the BIGG database(Schellenberger et al., 2010). In case a specific metabolite 
wasn´t in the database, an abbreviation was assigned arbitrarily (***). 
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