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We study the long-time wave transport in correlated and uncorrelated disordered 2D arrays. When a 
separation of dimensions is applied to the model, we find that the previously predicted 1D random dimer 
phenomenology also appears in so-called pseudo-2D arrays. Therefore, a threshold behavior is observed 
in terms of the effective size for eigenmodes, as well as in long-time dynamics. A minimum system size 
is required to observe this threshold, which is very important when considering a possible experimental 
realization. For the long-time evolution, we find that for correlated lattices a super-diffusive long-range 
transport is observed. For completely uncorrelated disorder 2D transport becomes sub-diffusive within 
the localization length and for random binary pseudo-2D arrays localization is observed.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The concept of wave localization due to disorder, known as An-
derson localization (AL), has been around for quite some time [1], 
and several reviews with compiled progresses on this topic have 
been written recently (cf. Refs. [2–4]). This phenomenon appears 
as a consequence of the destructive interference of multiple scat-
tered waves and has been observed in such different physical 
contexts as electronics, photonics, Bose–Einstein condensates (see 
Refs. [5–11]), to name a few. Whenever the corresponding physi-
cal system can be modeled with a tight-binding Hamiltonian, with 
time-invariant potential for non-interacting particles, AL can be 
found. This is particularly, for example, the case for the propaga-
tion of light in evanescently coupled optical waveguide arrays [4]. 
Here, over recent years, impressive progress in experimental obser-
vations in one (1D) and two dimensions (2D) has been made [12,
13]. Diverse quantum, and condensed matter, phenomena have 
been reproduced in these – clean and macroscopic – setups, by us-
ing electromagnetic waves [14–16]. Moreover, it has been possible 
to incorporate controlled disorder during the fabrication of these 
photonic structures, and different studies concerning AL have been 
carried out [17,4].

In general, localization properties depend strongly on the 
dimensionality of the system [18]. In contrast to the three-
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dimensional (3D) case, in 1D and 2D already the slightest amount 
of uncorrelated disorder leads to a complete exponential localiza-
tion for all eigenmodes without any mobility edge, even though 
the localization length is much larger for 2D systems [19]. But, 
when correlations are included in the system, the picture changes 
dramatically [20] and long-range transport may be still possi-
ble, even in low dimensions (for a recent review, see [21]). The 
paradigmatic example in 1D is the random dimer model (RDM) [22,
23], where the pairing of adjacent on-site energies (dimers), at 
random positions in the lattice, leads to two-site correlations for 
an otherwise random binary model. For finite lattices of length 
N , the RDM shows that, below a certain threshold of the disorder 
strength, there are ∼ √

N extended (thus transparent) states, re-
sulting in super-diffusive wave-packet evolution below the thresh-
old, and diffusive transport exactly at the threshold region [22]. 
These delocalized eigenstates were shown in experiments [24,25], 
whereas a direct observation of the transport properties was re-
ported only very recently [17].

A two-dimensional rectangular optical waveguide array can be 
thought as a classical analog to study quantum transport of two 
interacting particles in an one-dimensional chain, in the context 
of a Bose–Hubbard model. The 1D problem is mapped to a 2D 
lattice, where the interaction between particles is described by 
taking the propagation constants at the lattice diagonal (n = m) 
different to the rest of the lattice [26–28]. Recently [29], it was 
shown that the interaction between particles could promote a 
metallic two-particle state in a 1D quasiperiodic lattice, whereas 
the single-particle (classical) regime presented no transport [30,
31]. Therefore, the study of a 2D random dimer lattice presents an 
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interesting possibility to observe similar features in a model pre-
senting a well defined transport transition.

In the present work, we will use a special construction of dis-
order in two dimensions, named pseudo-2D, to map our system 
described by a tight-binding Hamiltonian for non-interacting par-
ticles onto 1D chains. This enables us to access the super-diffusive 
transport properties in such arrays. In Section 2 we will first 
present the model of pseudo-two-dimensional lattices using a sep-
aration ansatz; in Section 3 we use the extension of eigenmodes 
in smaller lattices to show the threshold behavior and its depen-
dence on system size. In Section 4 we show the super-diffusive 
transport in the numerical long-time evolution of correlated ar-
rays. We also compare the localization volume of random binary 
pseudo-2D arrays with 1D lattices. Finally we conclude the present 
work in Section 5.

2. 2D random dimer model

We start from a 2D discrete linear Schrödinger equation corre-
sponding to a tight-binding Hamiltonian for non-interacting parti-
cles, which also describes, e.g., the evolution of the field envelope 
amplitude of light propagating along the longitudinal direction z
in a 2D linear waveguide array [32]:

−i dz an,m = εn,man,m + �nman,m, (1)

with dz ≡ d
d z and εn,m corresponding to the onsite-propagation 

constant at site {n, m}. Linear coupling, between nearest-neighbor 
sites of a square lattice, is defined as �nman,m ≡ C(an,m+1 +
an,m−1 + an+1,m + an+1,m), where C represents the hopping con-
stant. Without loss of generality, we set C = 1, having in mind 
its rescaling effect on site energies and the effective propagation 
time/distance. Now, by restricting our study to the case: εn,m ≡
εn + εm , we make a dimension reduction by means of a separable 
ansatz: an,m(z) = un(z)vm(z). Thus, we obtain two independent set 
of equations [32] for each separable dimension:

−i dz un = εnun + (un−1 + un+1),

−i dz vm = εm vm + (vm−1 + vm+1). (2)

The propagation constants εl (l = n, m) are chosen in random pairs 
(dimers) as follows:

εl = εl+1 =
{

Δ, if κ ≤ 1/2,

0, if κ > 1/2,
(3)

where κ is chosen randomly in the interval [0, 1]. Δ corresponds 
to the index (energy) contrast, which defines the differences in 
propagation constants (energies) between two different lattice 
sites. In the following, we will consider four different cases of dis-
order realizations:

i. Equally correlated random dimers (ecoradi): εn = εm [sket-
ched in Fig. 1(a)].

ii. Different correlated random dimers (dicoradi): εn �= εm [sket-
ched in Fig. 1(b)].

iii. A binary case of uncorrelated random monomers (uncoram); 
i.e., the case where the onsite propagation constants in 
model (1) are chosen randomly between two precise values: 
0 or 2Δ.

iv. A binary case of pseudo-2D uncorrelated random monomers 
(ramps), where the onsite propagation constants for each site
in model (2) are chosen randomly between the precise values: 
0 or Δ.
Fig. 1. Sketch of pseudo-2D random dimers: (a) ecoradi and (b) dicoradi. The indi-
vidual realizations of εn and εm are shown on both axis. εn,m = 0, εn,m = Δ, 

εn,m = 2Δ.

3. Eigenmodes size

To understand the fundamental properties of different lattices, 
it is crucial to get some information about the eigenmodes of every 
system. By analyzing their spatial localization features, we could 
gain a good insight of possible transport properties on the par-
ticular lattice. In order to investigate the spatial extension of a 
wave-packet in a square lattice of N × N sites with fixed boundary 
conditions, we define the normalized participation ratio as

R ≡ P 2

N2
∑

n,m |un,m|4 , (4)

with P = ∑
n,m |un,m|2 being a conserved quantity of model (1). In 

an optical waveguide array context, P corresponds to the optical 
power (in other contexts as BECs, this quantity is usually named 
as Norm or Number of particles). The participation ratio R is a 
very useful quantity [33,34], which helps us to identify the number 
of effectively excited sites of a given profile, it can be understood 
as well as an effective occupied area of the profile. For a highly 
localized wave packet, R approaches 1/N2, and tends to 1 for the 
case of a completely homogeneous array excitation. We use it here 
to calculate the extension of the N2 eigenmodes of a 2D square 
array with given disorder distribution.

Following the arguments presented in Ref. [22], in a 1D array 
of N lattice sites governed by the RDM, a fraction of 

√
N eigen-

modes are extended over the whole lattice, as long as Δ ≤ 2. Thus, 
long-range transport is possible below a certain threshold. There-
fore, in a separable pseudo-2D array described by Eqs. (2), with 
system size N × N , we expect the same behavior, but for 

√
N2 = N

states. In Fig. 2, we plot 〈R N 〉 versus the contrast degree Δ. R N

is defined as the average participation ratio for the N most ex-
tended (largest R-value) eigenmodes, of a given realization, for a 
given Δ. Then, 〈R N〉 is obtained by averaging over 100 realizations 
for each Δ-value, for different system sizes (N2). For this compu-
tation, we choose systems sizes with N : {20, 60}, in order to trace 
the emergence of the threshold behavior. This is done in order to 
estimate the smallest N2-value required to observe the predicted 
critical phenomenology, which is important when thinking on an 
experimental observation of the present results.

The participation ratio for all cases (i)–(iv) is displayed in 
Figs. 2(a)–(d). For ecoradi [see Fig. 2(a)], the values of 〈R N 〉 first 
decrease to some kind of plateau at Δ = 2, with a value of 〈R N〉 >
0.3. This corresponds roughly to an average size of the eigenmodes 
larger than 30% of the lattice size, what actually implies very de-
localized states [for the ordered case (Δ = 0) and for very small 
Δ extended linear modes cover around 45–50% of the lattice]. For 
Δ > 2, 〈R N 〉 drops abruptly, especially for larger lattices. This phe-
nomenon can be clearly attributed to the threshold behavior of 
the RDM [17,22,23], what is highly dependent on the system size. 
Therefore, in order to indeed observe a larger number of modes 
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Fig. 2. 〈RN 〉 vs. Δ for (a) ecoradi, (b) dicoradi, (c) uncoram and (d) ramps

cases. All values are averaged over 100 realizations of disorder. The dot-dashed 
(thin dashed, thick dashed, thin full, thick full) curve corresponds to N = 20, 30,

40, 50, 60, respectively.

with a localization length comparable to the extension of the lat-
tice, a larger system size is required. From this figure, it is difficult 
to determine the emergence of the AL because this is a dynamical 
effect, which is associated with the absence of diffusion across the 
lattice. However, we could identify that its appearance must oc-
cur for Δ > 3, where larger lattices have a 〈R N 〉 < 0.1. A rather 
similar scenario, but without a clear plateau and without such 
a pronounced threshold, is observed for the case dicoradi [see 
Fig. 2(b)]. For all system sizes, we observe a smooth decrement 
of 〈R N 〉, as a function of Δ, with some change on the curvature 
around Δ ≈ 2 as a soft manifestation of the threshold behav-
ior (a more abrupt decrement is observed after this region). For 
the uncoram and ramps cases, the curves of 〈R N 〉 show a rather 
smooth and fast decrement, without any threshold signature; they 
show only a reduction of the mode participation ratio as disorder 
grows, as uncorrelated disordered systems must show. Further-
more, for the ramps case we observe a smaller participation ratio 
for growing Δ than for the uncoram case, suggesting a difference 
in localization volume for these cases, as will be confirmed in the 
following Section 4. For all the cases, we observe that for N � 50
results tend to converge, and that the transition threshold becomes 
evident.

4. Long-time evolution

To characterize and determine the diffusion of a wave-packet, 
we study the evolution of the second moment, which measures 
the size of a given profile in terms of its width with respect to 
a given center of mass. For two-dimensional lattices, we compute 
this quantity for each dimension separately. First of all, we define 
the center of mass in the horizontal and vertical directions

〈
x(z)

〉 ≡
∑

n,m n|un,m(z)|2
P

,

〈
y(z)

〉 ≡
∑

n,m m|un,m(z)|2
, (5)
P

Fig. 3. log〈M(z)〉 vs. log z, for ecoradi (green), dicoradi (blue) and uncoram (red). 
The dashed lines represent M(z) = z

3
2 (green) and M(z) = z (red). ramps for εn =

εm and εn �= εm are shown in black and gray, respectively. All curves are a result 
of averaging over L = 10 realizations of disorder with Δ = 1.5, the shadows show 
the corresponding standard deviation. Inset: Saturation for random binary 1D (blue) 
and ramps 2D (red) lattices. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

respectively. Then, we define the second moments, for each dimen-
sion, as

Mx(z) ≡
∑

n,m[n − 〈x(z)〉]2|un,m(z)|2
P

,

M y(z) ≡
∑

n,m[m − 〈y(z)〉]2|un,m(z)|2
P

. (6)

The evolution along z is then averaged over the number of realiza-
tions (L) and over the horizontal and vertical directions. With this, 
we finally obtain an effective mean square displacement given by

〈
M(z)

〉 = 1

2L

L∑
i=1

[
Mx(z) + M y(z)

]
i . (7)

For 1D lattices, the mobility threshold is located at Δ = 2 [17,
22]. Below this threshold, the second moment evolves super-
diffusively as 〈M(z)〉 ∝ z3/2, while at the threshold the transport 
becomes diffusive with 〈M(z)〉 ∝ z. Above the threshold, the ex-
pansion is diffusive up to the localization length and then the 
second moment saturates, and diffusion is stopped. To prove the 
validity of the separation ansatz, we numerically integrate the orig-
inal model equations (1) with the initial excitation un,m(z = 0) =
δn,n0δm,m0 , located at the central site (n0, m0) for a value of Δ =
1.5 below the threshold. To compute the long-time evolution up to 
zmax = 1500, we implement a symplectic solver with a SBAB2 in-
tegration scheme [35]. The lattice sizes are chosen in such a way 
that the wave-packet spreading never reaches the border, reaching 
a maximum lattice extension of N × N = 51202 for the ecoradi

and dicoradi cases, and N × N = 40962 for the uncoram case. 
We average over L = 10 realizations for each case. This may ap-
pear as an insufficient number of realizations at first glance; but, 
since every second moment, Mx(z) and M y(z), includes the sum-
mation over the other dimension, curves are very smooth with 
nearly undistinguishable standard deviation, which is actually plot-
ted with shadows for all cases in Fig. 3.
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Our main result, the evolution of log〈M(z)〉 for Δ = 1.5, is 
shown in Fig. 3 for ecoradi, dicoradi, uncoram and two ramps

cases, in green, blue, red, black and gray, respectively. We can 
confirm, that both the overlapping ecoradi and dicoradi evolve 
superdiffusively parallel to the green dashed line 3 log[z]/2 show-
ing no sign of change in curvature for growing z. Therefore, they 
behave as their one-dimensional counterparts [22]. The case of un-

coram keeps evolving sub-diffusively (see that results are below 
the red dashed line). This can be understood by thinking about 
the localization length l properties. In a completely random 2D 
array, l scales exponentially [6] with the mean free path ξ as 
l ∝ ξ exp(κξ), in contrast to a 1D array for which l ∝ ξ . In our case, 
the N × N = 40962 arrays are just too small to observe saturation 
of transport for a 2D array. Therefore, we also show the results for 
two kind of ramps arrays, with εn = εm (black) and εn �= εm (gray), 
that show earlier saturation, as expected for uncorrelated binary 
disorder.

Since we observe the huge difference between localization 
length in the uncoram and ramps cases, we furthermore explored 
the localization behavior of ramps vs. real 1D random binary ar-
rays [36]. In order to give a qualitative measure of the localization 
length, we define a mean value 〈Msat〉, which is computed by aver-
aging over the interval z ∈ {1000, 1500}. The results are shown in 
the inset of Fig. 3. We observe that for the random binary 1D ar-
ray and for the 2D ramps lattice the saturation tendency occurs for 
almost the same value of 〈Msat〉, for a given contrast Δ. By doing 
this, we demonstrate that the behavior of the pseudo-2D array is 
essentially one-dimensional, as was suggested by the construction 
of the disorder.

5. Conclusions

Along this work we showed that a restriction of the distribu-
tion of on-site disorder facilitates the separation of dimensions in 
an originally two-dimensional array without interaction. This so-
called pseudo-2D arrays show the same threshold behavior as the 
1D case for a value equal to the sum of two 1D threshold values. 
If interaction would be included (leading to an effective nonlinear-
ity), we would expect the threshold to increase in certain regions 
due to the renormalization of eigen-energies [29]. We found out 
that in order to observe a threshold behavior for a pseudo-2D 
lattice, a minimum system size is required ∼ 50 × 50, what is 
crucial when thinking on the experimental implementation of this 
problem and observation of our findings. We also showed that, in 
a long-time evolution for short-range correlated arrays (ecoradi

and dicoradi) and for Δ = 1.5, a super-diffusive long-range trans-
port is observed, while for the uncoram case transport becomes 
sub-diffusive and must saturate for higher evolution times. The lo-
calization length behavior in the pseudo-2D random binary arrays 
is shown to be comparable to an one-dimensional lattice, which 
could be very useful to tune the localization volume in such se-
tups. We emphasize the finding that for 2D lattices we have being 
able to find good transport properties for a disordered system. In 
the present case, this is by virtue of the applied correlations on the 
disorder functions and the critical behavior upon some threshold 
parameter.
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