Spinor norm for skew-hermitian forms over quaternion algebras

Luis Arenas-Carmona, Patricio Quiroz*

Universidad de Chile, Facultad de Ciencias, Casilla 653, Santiago, Chile

ARTICLE INFO

Article history:
Received 20 June 2013
Received in revised form 3 December 2014
Accepted 5 December 2014
Available online 4 February 2015
Communicated by David Goss

Keywords:
Skew-hermitian forms
Spinor norm
Quaternion algebras

ABSTRACT

We complete all local spinor norm computations for quaternionic skew-hermitian forms over the field Q of rational numbers. This can be used to compute the number of classes in a genus of skew-hermitian lattices of rank 2 or larger over a maximal order in a quaternion algebra D over Q in many cases, e.g., when D ramifies at infinity. Examples are provided.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a number field and let D be a quaternion algebra over K with canonical involution $q \mapsto \bar{q}$. Let V be a rank-n free D-module. Let $h : V \times V \to D$ be a skew-hermitian form, i.e., h is D-linear in the first variable and it satisfies $h(x, y) = -\bar{h}(y, x)$. A D-linear map $\phi : V \to V$ preserving h is called an isometry. We denote by U_K (resp. U_K^+) the unitary group of h (resp. the special unitary group of h), i.e., the group of isometries (resp. isometries with trivial reduced norm) of h. Skew-hermitian forms share many properties of quadratic forms. In fact, if $D \cong M_2(K)$, skew-hermitian forms in a rank-n free

* Corresponding author.
E-mail address: pato.ingemat@gmail.com (P. Quiroz).

http://dx.doi.org/10.1016/j.jnt.2014.12.011
0022-314X/© 2015 Elsevier Inc. All rights reserved.
D-module are naturally in correspondence with quadratic forms in the $2n$-dimensional K-vector space PV, for any idempotent matrix P of rank 1 in D [3, §3]. In this case, the unitary group of h is isomorphic to the orthogonal group of the corresponding quadratic form. On the other hand, $U_K = U^+_K$ when D is a division algebra [8, §2.6].

As in the quadratic case, the problem of determining if two skew-hermitian lattices in the same space are isometric or not can be approached by the theory of genera and spinor genera [1]. This theory depends on the knowledge of the image, under the spinor norm, of the stabilizer of a given lattice in each local group U^+_K. Full computations of this image exist for symmetric integral bilinear forms. Non-dyadic cases can be found in [7] and the dyadic case in [5]. For this reason we assume, from now on, that D is a quaternion division algebra. For skew-hermitian forms, non-dyadic places have been completely studied by Böge in [6]. The dyadic case was studied by Arenas-Carmona in [2] and [4], not covering all the cases, which we complete here when $K_p = \mathbb{Q}_2$. From now on $k = K_p$ denotes a dyadic local field of characteristic 0.

We denote by $| \cdot | : D \to \mathbb{R}_{\geq 0}$ and $| \cdot |_k : k \to \mathbb{R}_{\geq 0}$ the absolute values on D and k respectively, and we assume $|q| = |Nq|_k$, where N is the reduced norm, for any $q \in D$. We use ν for the surjective valuation $\nu : D^* \to \mathbb{Z}$. Let $\mathcal{O}_D = \nu^{-1}(\mathbb{Z}_{\geq 0}) \cup \{0\}$ be the unique maximal order in D [12, §2]. A skew-hermitian lattice or \mathcal{O}_D-lattice in V, is a lattice Λ in V such that $\mathcal{O}_D \Lambda = \Lambda$. Any skew-hermitian lattice Λ has a decomposition of the type

$$\Lambda = \Lambda_1 \perp \cdots \perp \Lambda_t,$$

where each indecomposable lattice Λ_i has rank 1 or 2, and the scales satisfy $\mathfrak{s}(\Lambda_{r+1}) \subset \mathfrak{s}(\Lambda_r)$ [2, §5]. If some Λ_m in the decomposition of Λ has rank 1, then $\Lambda_m = \mathcal{O}_{D_1} a_m$ and $h(s_m, s_m) = a_m$. We usually write $\Lambda_m = \langle a_m \rangle = \mathcal{O}_{D_1} a_m$ in this case. A statement like $\Lambda = \langle a_1 \rangle \perp \cdots \perp a_i = \mathcal{O}_{D_1} a_1 \perp \cdots \perp \mathcal{O}_{D_1} s_i$ must be interpreted similarly. Define $A \subset k^+/k^{*2}$ by $A = \{ N(a_m)k^{*2} | \Lambda_m = \langle a_m \rangle, 1 \leq m \leq t \}$. Following [6], we define the spinor image $H(\Lambda) \subseteq k^*$ by the relation $H(\Lambda)/k^{*2} = \theta(U^+_k(\Lambda))$, where $U^+_k(\Lambda)$ is the stabilizer of Λ in U^+_k, and $\theta : U^+_k \to k^*/k^{*2}$ denotes the spinor norm. If $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$, we let $\mu(\Lambda) = \min\{\nu(a_{i+1}) - \nu(a_i) | 1 \leq i < n\} \in \mathbb{Z}_{\geq 0}$. The lattices Λ for which the set $H(\Lambda)$ remains unknown to date are:

Case I: $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$, where $A = \{-uk^{*2}\}$, for a unit $u \in \mathcal{O}^*_k$ of non-minimal quadratic defect [9, §63], and $0 < \mu(\Lambda) \leq \nu(16)$.

Case II: $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$, where $A = \{\pi k^{*2}\}$, for a prime π in k, and $\nu(4) \leq \mu(\Lambda) \leq \nu(16)$.

Theorem 1. Table 1 contains all local spinor images when the base field is \mathbb{Q}_2. In the table, s denotes the number of indecomposable components of rank 2 in the decomposition (1) of Λ, and $\Delta \in \mathcal{O}^*_k$ is a unit of minimal quadratic defect [9, §63]. Furthermore, π, u, A and $\mu = \mu(\Lambda)$ are as above. A dash means “irrelevant.”
Our (computer assisted) proof of Theorem 1 goes as follows: We use Theorem 2 below to reduce the computation of $H(\Lambda)$ to low rank Λ. In our case, this means rank 2 or 3. Then we use Theorems 3 and 4 for constructing an algorithm for binary lattices over unramified local dyadic fields and we apply it to $k = \mathbb{Q}_2$. Then we patch the proof in the remaining “rank 3” case.

Before we state the critical theorems, we recall a few facts about simple rotations in skew-hermitian spaces,\(^1\) see [2, §6] for details. Let (V, h) be a skew-hermitian D-space. If $s \in V$ and $\sigma \in D^*$ satisfy $\sigma - \bar{\sigma} = h(s, s)$, the map $(s; \sigma)(x) = x - h(x, s)\sigma^{-1}s$ is called a simple rotation with axis s. Its spinor norm [2] is $\theta[(s; \sigma)] = N(\sigma)k^{s^2}$, where $N : D^* \to k^*$ is the reduced norm. The set of simple rotations span the group \mathcal{U}_k^+. One way to produce simple rotations, that we use heavily in the sequel, is the next lemma:

Simple Rotation Generating Lemma (SRGL). (See [2, Lemma 6.3].) Let $t, u \in V$ be such that $h(u, u) = h(t, t) = a$. Let $s = t - u$ and $\sigma = h(t, s)$. Then $(s; \sigma)$ is a well-defined simple rotation satisfying $(s; \sigma)(t) = u$. Furthermore, if $u = rt + t_0$, where $t_0 \in t^\perp$, we have the identities $\sigma = a(1 - \bar{r})$, $h(t_0, t_0) = a - r\bar{a}$, and $\sigma - \bar{\sigma} = h(s, s)$.

Let $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$, with $\langle a_i \rangle = \mathcal{O}_D s_i$ as in (1). Assume also $|2a_m| \geq |a_i|$ for $m < l$. Then the first author proved in [2, Lemma 6.7] that the unitary group $\mathcal{U}_k^+(\Lambda)$ of the lattice is generated by $\mathcal{A}(\Lambda) \cup \mathcal{B}(\Lambda)$, where

1. $\mathcal{A}(\Lambda)$ is the set of simple rotations with axis s_m, for some $m = 1, \ldots, n$.
2. $\mathcal{B}(\Lambda)$ is the set of simple rotations of the form $(s; \sigma)$, where $s = s_m - t$ for some $t = rs_m + s_0$ with $s_0 \in \mathcal{O}_D s_{m+1} \perp \cdots \perp \mathcal{O}_D s_n$, and $1 - r \notin (2i)$.

In particular, the elements of $\mathcal{B}(\Lambda)$ satisfy all relations in SRGL. Note that $\mathcal{A}(\Lambda)$ and $\mathcal{B}(\Lambda)$ depend on the splitting (1).

\(^1\) Some authors call these elements reflections. We prefer the name simple rotation since $(s; \sigma)$ acts on the 2-dimensional subspace $k[\sigma]s$ by $v \mapsto uv$, where $u = \bar{\sigma}^{-1}$ is an element of norm 1.
Theorem 2. Let $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$, with $\langle a_i \rangle = \mathcal{O}_{D} s_i$, be a skew-hermitian lattice and let $\mu = \mu(\Lambda)$ be as above. Assume $\mu > \nu(4)$ and $N(a_2), \ldots, N(a_n) \in N(a_1)k^{*2}$. Let $(s; \sigma) \in \mathcal{B}(\Lambda)$, i.e., $s = (1 - r)s_m - s_0$, where $s_0 = \lambda_{m+1}s_{m+1} + \cdots + \lambda_n s_n$, $\sigma = a_m(1 - r)$ and $|1 - r| \geq |2|$. If $|\lambda_{m+1}| \geq |2^{l} - 1\lambda_{m+l+1}|$, for some $t \in \{1, \ldots, n - m\}$ and for all $l \in \{1, \ldots, n - m - t\}$, then there exists $\Lambda' = \langle b_1 \rangle \perp \cdots \perp \langle b_{t+1} \rangle \subset \Lambda$ satisfying the following conditions:

1. $(s; \sigma) \in \mathcal{U}^{+}_{k}(\Lambda')$.
2. $\mu(\Lambda') \geq \mu(\Lambda)$.
3. $N(b_i) \in N(a_1)k^{*2}$, for all $i = 1, \ldots, t + 1$.

We say that an element $r \in \mathcal{O}_{D}$ satisfies the k-star conditions for a lattice $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$ if $z = a_1 - ra_1r$ satisfies $NzNa_1 \in k^{*2}$ and $NzN(\pi^{*}a_1)^{-1} \in \mathcal{O}_{k}$, where $\nu(\pi^{*}) = \mu(\Lambda)$, while the Hilbert symbol $\left(\frac{N(1 - r), -Na_1}{p} \right)$ equals -1.

Theorem 3. Let $\Lambda = \langle a_1 \rangle \perp \langle a_2 \rangle$ be a skew-hermitian lattice such that $|2a_1| \geq |a_2|$ and $N(a_2) \in N(a_1)k^{*2}$. The following statements are equivalent:

1. $H(\Lambda) = k^{*}$.
2. There exists $(s; \sigma) \in \mathcal{B}(\Lambda)$ such that $N\sigma \notin N(k(a_1)^{*})$.
3. There exists $r \in \mathcal{O}_{D}$ satisfying the k-star conditions for Λ.

It is known that the (unique) quaternion division k-algebra D has a basis $\{1, i, j, ij\}$, where $i^2 = \pi$, $j^2 = \Delta$, $ij = -ji$. Moreover, if $\omega = \frac{j + 1}{2}$, then $\{1, \omega, i, i\omega\}$ is an \mathcal{O}_{k}-basis for \mathcal{O}_{D}. Let $e = \nu(2)/2$ be the ramification index of k/\mathbb{Q}_{2}, and assume $\nu(\pi^{*}) = \mu(\Lambda)$.

Theorem 4. Let Λ be as in Theorem 3. There exists $r \in \mathcal{O}_{D}$ satisfying the k-star conditions for Λ if and only if there exists $\alpha \in S \oplus S\omega \oplus Si \oplus Si\omega \subset \mathcal{O}_{D}$ satisfying them, for one (any) set of representatives S of $\mathcal{O}_{k}/\pi^{u}\mathcal{O}_{k}$, with $u = t + 6e$, as above.

2. Generators of $\mathcal{U}^{+}_{k}(\Lambda)$ and their spinor norm

If $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$ is a skew-hermitian lattice, then $[k^{*} : N(k(a_1)^{*})] = 2$ [9, §63] and $N(k(a_1)^{*}) \subset H(\Lambda)$ [2, §6]. As a direct consequence of these facts, we have:

Proposition 2.1. Let $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$ be a skew-hermitian lattice. Then $H(\Lambda) = N(k(a_1)^{*})$ or $H(\Lambda) = k^{*}$. In particular:

1. $H(\Lambda) = k^{*}$ if and only if, there exists $\phi \in \mathcal{C}(\Lambda)$ such that $\theta(\phi) \notin N(k(a_1)^{*})/k^{*2}$, for one (any) set of generators $\mathcal{C}(\Lambda)$ for $\mathcal{U}^{+}_{k}(\Lambda)$.
2. If there exists $b \in \mathcal{O}_{D}$ with $N(b) \notin N(a_1)k^{*2}$ such that $\Lambda = \langle b \rangle \perp \Lambda'$, for some lattice Λ', we have $H(\Lambda) = k^{*}$.
Remark 2.1. In particular, if \(|2a_m| \geq |a_l|\) for \(m < l\), and \(\mathcal{C}(\Lambda) = \mathcal{A}(\Lambda) \cup \mathcal{B}(\Lambda)\), we just need to check the property for the elements in \(\mathcal{B}(\Lambda)\), since simple rotations \((s_m; \sigma) \in \mathcal{A}(\Lambda)\) have spinor norm \(N(\sigma)k^{*2} \in N(k(a_m)^*)/k^{*2}\). Our strategy includes to replace \(\mathcal{B}(\Lambda)\) by a smaller set that still generates but it is easier to control (cf. Lemma 4.7).

Lemma 2.1. Let \(\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle\), with \(\langle a_i \rangle = \mathcal{O}_D s_i\), be a skew-hermitian lattice such that \(|2a_m| \geq |a_l|\) for \(m < l\). Take \((s; \sigma) \in \mathcal{B}(\Lambda)\), i.e., \(s = (1 - r)s_m - s_0\), where \(s_0 = \lambda_{m+1}s_{m+1} + \cdots + \lambda_n s_n\), \(\sigma = a_m(1 - \bar{r})\), and \(|1 - r| \geq |2|\). If any of the following conditions is satisfied:

1. \(|1 - r| > |2|\) and \(|\lambda_{m+1}| < 1\), while \(\mu(\Lambda) \geq \nu(8)\), and \(k/\mathbb{Q}_2\) is unramified,
2. \(|1 - r| = |2|\) and \(|\lambda_{m+1}| \leq |2|\), while \(\mu(\Lambda) \geq \nu(4\pi)\),
3. \(|1 - r| > |2|\) or \(|\lambda_{m+1}| < 1\), while \(\mu(\Lambda) \geq \nu(16)\),
4. \(|\lambda_{m+1}| \leq |4|, |\lambda_{m+2}| \leq |2|\) and \(|\lambda_{m+3}| < 1\).

then \(\theta[(s; \sigma)] \in N(k(a_m)^*)/k^{*2}\).

Proof. It suffices to prove that if \(a = h(s, s)\), then \(N(a) \in N(a_m)k^{*2}\), since \(\sigma \in k(a)\). In fact, we have \(s = (1 - r)s_m - s_0\), so that \(a = (1 - r)a_m(1 - \bar{r}) + a_0\), where \(a_0 = h(s_0, s_0)\). It follows that

\[
N(a) = N(a_m)N(1 - r)^2N(1 + (1 - r)^{-1}a_0(1 - \bar{r})^{-1}a_m^{-1}).
\]

(2)

Now, \(a_0 = \lambda_{m+1}a_{m+1}\bar{\lambda}_{m+1} + \cdots + \lambda_n a_n\bar{\lambda}_n\) and \(|(1 - r)^{-1}a_0(1 - \bar{r})^{-1}a_m^{-1}| = |a_0|a_m^{-1}|/|1 - r|^2 < |4|\) if any of the conditions above is satisfied. This implies the last norm in (2) is a square. \(\Box\)

The following result, together with \text{SRGL}, gives us an easy method to construct simple rotations in \(\mathcal{B}(\Lambda)\) as in the introduction.

Lemma 2.2. Let \(r \in \mathcal{O}_D\) be a non-zero quaternion and let \(a_1, a_2 \in \mathcal{O}_D\) be non-zero pure quaternions. There exists \(\lambda \in \mathcal{O}_D\) different from zero such that \(a_1 = ra_1\bar{r} + \lambda a_2\bar{\lambda}\) if and only if \(NzNa_2 \in k^{*2}\) and \(NzNa_2^{-1} \in \mathcal{O}_k\), where \(z = a_1 - ra_1\bar{r}\).

Proof. The equation \(a_1 = ra_1\bar{r} + \lambda a_2\bar{\lambda}\) has a solution \(\lambda \in D^*\) if and only if the binary skew-hermitian form \(h'\) whose Gramm matrix is \(
\begin{pmatrix}
\frac{z}{0}
\frac{0}{-a_2}
\end{pmatrix}
\)

is isotropic. Now, \(h'\) is isotropic if and only if \(NzNa_2 = \text{disc}(h') \in k^{*2}\) [10, Chapter 10, §3, Theorem 3.6]. We conclude that there exists \(\lambda \in D^*\) satisfying \(a_1 = ra_1\bar{r} + \lambda a_2\bar{\lambda}\) if and only if \(NzNa_2 \in k^{*2}\). Finally, we have \(Nz = Na_2N\lambda^2\), whence \(\lambda \in \mathcal{O}_D\) if and only if \(NzNa_2^{-1} \in \mathcal{O}_k\). \(\Box\)
3. Proof of Theorems 2, 3 and 4

Proof of Theorem 2. Set $\Lambda' = \langle b_1 \rangle \perp \cdots \perp \langle b_{t+1} \rangle = \mathcal{O}_D s_m \perp \cdots \perp \mathcal{O}_D s_{m+t-1} \perp \mathcal{O}_D s_0'$, where $s_0' = \sum_{i=m+1}^{n} \lambda_i s_i$. It is clear that $\Lambda' \subset \Lambda$. To prove condition (1) in the theorem, we note that $s_0 = s_0' - \sum_{i=m+1}^{m+t-1} \lambda_i s_i \in \Lambda'$. We compute

- $(s; \sigma)(s_i) = s_i - h(s_i,s)\sigma^{-1}s = s_i + h(s_i,s_0)\sigma^{-1}s$, for $m + 1 \leq i \leq m + t - 1$,
- $(s; \sigma)(s_0') = s_0' - h(s_0', s_0)\sigma^{-1}s = s_0' + h(s_0', s_0)\sigma^{-1}s$, and
- $(s; \sigma)(s_m) = r s_m + s_0 \in \Lambda'$.

Hence, $(s; \sigma)(\Lambda') \subset \Lambda'$ if $h(s_i, s_0)\sigma^{-1}, h(s_0', s_0)\sigma^{-1} \in \mathcal{O}_D$. The latter holds since $|\sigma| = |a_m(1 - \bar{r})| \geq 2|a_m|$ is larger than the height of s_0. We conclude that $(s; \sigma) \in \mathcal{U}_{k}^{+}(\Lambda')$.

On the other hand, as

$$b_{t+1} = h(s_0', s_0') = \sum_{u=m+t}^{n} \lambda_u a_u \lambda_u,$$

we have $|b_{t+1}| = |a_{m+t}|\lambda_{m+t}|^2$, since $|\lambda_{m+t}| \geq |2^{l-1}\lambda_{m+t+l}|$ when $1 \leq l \leq n - m - t$ and $\mu(\Lambda) > \nu(4)$. From here $\mu(\Lambda') \geq \mu(\Lambda)$, proving condition (2). Finally, to prove the last condition, we consider

$$N(b_{t+1}) = N(\lambda_{m+t})^2 N(a_{m+t}) N\left(1 + (\lambda_{m+t} a_{m+t} \bar{\lambda}_{m+t})^{-1} \sum_{u=m+t+1}^{n} \lambda_u a_u \lambda_u\right),$$

where $|(\lambda_{m+t} a_{m+t} \bar{\lambda}_{m+t})^{-1}| = |a_{m+t}|^{-1}|\lambda_{m+t}|^{-2}$. Since $|a_{m+t+l}| < |4'| a_{m+t}$ and $|\lambda_{m+t}| \geq |2^{l-1}\lambda_{m+t+l}|$ for all $l \in \{1, \ldots, n - m - t\}$, the last term in (3) is a square, whence $N(b_{t+1}) \in N(a_{m+t})k^{2}$ and the proof of the condition (3) is completed. □

Proof of Theorem 3. The equivalence between (1) and (2) is a direct consequence of Proposition 2.1 and the subsequent remark to it. To prove that (2) implies (3), let $(s; \sigma)$ be a simple rotation such that $\theta[(s; \sigma)] = N(\sigma) k^{2} \notin N(k(a_1)^*)/k^{2}$. As isometry $(s; \sigma) \in \mathcal{B}(\Lambda)$ satisfies $a_1 = h(s_1, s_1) = ra \bar{r} + \lambda a \lambda$, where $(s; \sigma)(s_1) = rs + \lambda s$. Such an $r \in \mathcal{O}_D$ satisfies $\sigma = a_1(1 - \bar{r})$ by SRGL. Hence, $\theta[(s; \sigma)] \notin N(k(a_1)^*)/k^{2}$ if and only if $N(1 - r) \notin N(k(a_1)^*)$, or equivalently $(N(1 - r) - Na_1)^{p} = -1$. On the other hand, Lemma 2.2 tells us that $NzNa_2 \in k^{2}$ and $NzNa_2^{-1} \in \mathcal{O}_k$, where $z = a_1 - ra \bar{r}$. The result follows since $Na_2 \in N(a_1)k^{2}$ and $\mu = \nu(a_2) - \nu(a_1) = \nu(\pi^t)$. Conversely, if $r \in \mathcal{O}_D$ satisfies the k-star conditions, then Lemma 2.2 and SRGL imply the existence of $\phi \in \mathcal{B}(\Lambda)$ such that $\theta(\phi) = N(a_1)N(1 - r)k^{2}$ and the result follows as before. □

Corollary 3.1. Let Λ be as in Theorem 3. Let t be such that $\mu = \nu(\pi^t)$. If $H(\Lambda) = k^{*}$, then $H(\Lambda') = k^{*}$ for every lattice $\Lambda' = \langle a_1 \rangle \perp \langle b \rangle$ with $N(b) \in N(a_1)k^{2}$ and $\mu(\Lambda') = \nu(\pi^t)$, for $e \leq s < t$.
Remark 3.1. Due to Lemma 2.1, in the condition (2) of Theorem 3, it is enough to consider simple rotations \((s; \sigma) \in \mathcal{B}(\Lambda) \) with \(|\lambda| > |4|\), where \(s = (1 - r)s_1 - \lambda s_2 \). Remember that \(|1 - r| \geq 2| \) for \((s; \sigma) \in \mathcal{B}(\Lambda)\).

Proof of Theorem 4. Assume \(r \in \mathcal{O}_D \) satisfies the \(k \)-star conditions. Let \(\alpha \in \mathcal{O}_D \) be a representative of the class of \(r \) modulo \(\pi^u \) as in the statement. Then, \(r = \alpha + \pi^u \beta \), with \(\beta \in \mathcal{O}_D \) and \(\alpha \in \mathcal{S} \oplus \mathcal{S} \omega \oplus \mathcal{S} \iota \oplus \mathcal{S} \iota \omega \subset \mathcal{O}_D \). As \(1 - r = 1 - \alpha - \pi^u \beta \) we have \(N(1 - r) = N(1 - \alpha)N(1 - (1 - \alpha)^{-1}\pi^u \beta) \). Now, \(|1 - r| \geq 2| \) implies \(|1 - \alpha| \geq 2| \).

Therefore, \(N(1 - (1 - \alpha)^{-1}\pi^u \beta) \) is a square. Hence, \((\frac{N(1-r)}{\pi^u})_p - Na_1 = (\frac{N(1-\alpha)}{\pi^u})_p - Na_1 \).

On the other hand, if \(z = a_1 - ra_1 \bar{r} = \pi^t \lambda a_1 \bar{\lambda} \) and \(z' = a_1 - \alpha a_1 \bar{\alpha} \), then \(z = z' - \pi^u \gamma \), with \(\gamma = \alpha a_1 \bar{\beta} + \beta a_1 \bar{\alpha} + \pi^u \beta a_1 \bar{\beta} \in \mathcal{O}_D \). Note that \(a_1^{-1} \gamma \in \mathcal{O}_D \). We have \(|z'| = |z| |\), since \(|z| = |\pi^t \lambda a_1 \bar{\lambda}| > |16\pi^t a_1| = |\pi^{4e+4} a_1| > |\pi^u \gamma| \), where we are assuming \(|\lambda| > |4| \) (see Remark 3.1). Furthermore, we have that \(Nz/Nz' = Nz(1 - z'^{-1}\pi^u \gamma) \) with \(|z'^{-1}\pi^u \gamma| < |\pi^{-(4e+4)} a_1^{-1}\pi^u a_1 \bar{\gamma}| \leq |\pi^{2e} a_1^{-1}\gamma| \leq 4| \). Hence, \(NzNa_1 \) is a square if and only if \(NzNa_1 \) is a square. Finally, from \(|z'| = |z| \) we obtain \(|Nz|/\pi^{2t} (a_1)|_k \leq 1 \) if and only if \(|Nz'|/\pi^{2t} (a_1)|_k \leq 1 \).

Remark 3.2. The optimal choice for the number \(u \) in Theorem 4 depends on \(|\lambda| \). For example, since \(z = a_1 - ra_1 \bar{r} = \pi^t \lambda a_1 \bar{\lambda} \), if \(\lambda \) satisfies \(|\lambda| = 1 \), then we would have \(|z'| = |z| \) and so \(|z'^{-1}\pi^u \gamma| = |\pi^{-t} a_1^{-1}\pi^u \gamma| \leq |\pi^{u-t}| < |4| \) if \(u = t + 2e + 1 \). This holds in some cases when \(k = \mathbb{Q}_2 \).

4. Proof of Theorem 1

The following result is a direct consequence of [2, Lemma 4.3]. Note that for either of the remaining cases I or II described in the introduction, the extension \(k(a_1)/k \) is ramified.

Lemma 4.1. Let \(\langle a_1 \rangle \perp \langle a_2 \rangle \) be a skew-hermitian lattice such that \(N(a_2) \in N(a_1)k^{*2} \) and the extension \(k(a_1)/k \) is ramified. Then, there exists a skew-hermitian lattice \(L = \langle q \rangle \perp \langle \epsilon q \rangle \), where \(q \in D^* \) and \(\epsilon \in k^* \), such that \(H(L) = H(\Lambda) \). Moreover, we can assume that \(q = q' \), for any quaternion \(q' \in D^* \) with \(N(q') \in N(a_1)k^{*2} \).

Note that, due to Corollary 3.1, if \(\mu(\Lambda) = \nu(\pi^t) \) for \(\Lambda \) as in Theorem 3, we can take \(\epsilon \) in last lemma equals to \(\pi^t \), for any prime \(\pi \) of \(k \). If \(k = \mathbb{Q}_2 \), we have \(\mathcal{O}_k = \mathbb{Z}_2 \), \(\mathcal{O}_D = \mathbb{Z}_2[\omega] \oplus i\mathbb{Z}_2[\omega] \) and \(\mathcal{O}_k/\pi^u \mathcal{O}_k \cong \mathbb{Z}/2^u \mathbb{Z} \). By considering Theorems 3, 4 and the lemma above, we are able to construct an algorithm for computing \(H(\Lambda) \), for all binary \(\mathcal{O}_D \)-lattices \(\Lambda \), as follows:

1. By Lemma 4.1, we are reduced to compute \(H(L) \) for \(L = \langle q \rangle \perp \langle 2^t q \rangle \), for \(q^2 \) running over representative of all suitable square classes, and a few values of \(t \) for each \(q \).
2. Fix a set of representatives \(S \) of the finite ring \(\mathbb{Z}_2/2^u \mathbb{Z}_2 \): We can choose \(S = \{0, 1, \ldots, 2^u - 1\} \) for \(u \) large enough (see Remark 3.2).
3. For \(r = a + b\omega + ci + di\omega \in S \oplus S\omega \oplus Si \oplus Si\omega \subseteq \mathcal{O}_D \), check if the \(k \)-star conditions are satisfied. This verification can be done by using the computer algebra system Sage [11].

4. Conclude that \(H(\Lambda) = \mathbb{Q}_2^* \) if some \(r \) in the last step satisfies the \(k \)-star conditions. Otherwise, \(H(\Lambda) = N(\mathbb{Q}_2(a_1)^*) \) in virtue of Theorems 3, 4 and Proposition 2.1.

Remark 4.1. The algorithm can be extended to any unramified finite extension \(k \) of \(\mathbb{Q}_2 \). The condition \(|2a_1| \geq |a_2| \) in Theorems 3 and 2 is essential. Hence, the algorithm does not work, for \(\mu < \nu(2) \), if the extension \(k/\mathbb{Q}_2 \) ramifies, unless the algorithm returns the value \(k^* \) for \(\mu < \nu(2) \).

4.1. Computations using Sage

In all that follows we assume \(i^2 = 2 \), \(j^2 = 5 \), and \(ij = -ji \). Whenever a different uniformizing parameter \(\pi \) makes computations easier we use \(i_\pi = u_\pi i \), for some unit \(u_\pi \in \mathbb{Q}_2(j) \), such that \(i_\pi^2 = \pi \), or equivalently \(N(u_\pi) = \pi/2 \). The following results are obtained by computer search. When the algorithm does find solutions, we actually list them. Otherwise it is just stated that no solutions were found.

Lemma 4.2. (See Table 2.) For any \(q \in \{j+i, i+j\} \) and \(t \in \{3, 4\} \), there exist \(r_1, r_2 \in \mathcal{O}_D \) such that:

1. \(|1 - r_1| = |2|, \ NzNq \in \mathbb{Q}_2^{*2} \) and \(NzN(2^tq)^{-1} \in \mathbb{Z}_2^{*} \), where \(z = q - r_1q\overline{r_1} \).
2. \(|1 - r_2| = |i|, \ NzNq \in \mathbb{Q}_2^{*2} \) and \(NzN(2^tq)^{-1} \in \mathbb{Z}_2^{*} \), where \(z = q - r_2q\overline{r_2} \).

Lemma 4.3. (See Table 3.) Let \(L = \langle q \rangle \perp \langle 4q \rangle \) be a skew-hermitian lattice satisfying the conditions in Theorem 3, for \(q \in \{j+i, i+j\} \). Then there exists \(r \in \mathcal{O}_D \) satisfying the \(k \)-star conditions for \(L \).

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Proof of Lemma 4.2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>(t)</td>
</tr>
<tr>
<td>(j + ij)</td>
<td>3</td>
</tr>
<tr>
<td>(j + ij)</td>
<td>4</td>
</tr>
<tr>
<td>(i + j)</td>
<td>3</td>
</tr>
<tr>
<td>(i + j)</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Proof of Lemma 4.3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>(r)</td>
</tr>
<tr>
<td>(j + ij)</td>
<td>(+1 + 2i\omega)</td>
</tr>
<tr>
<td>(i + j)</td>
<td>(+1 + 2i + 2i\omega)</td>
</tr>
</tbody>
</table>
Lemma 4.4. (See Table 4.) Let \(L = \langle i_\pi \rangle \perp \langle 16i_\pi \rangle \) be a skew-hermitian lattice satisfying the hypothesis in Theorem 3, for \(\pi \in \{\pm 2, \pm 10\} \) as above. Then, there exists \(r \in \mathcal{O}_D \) satisfying the \(k \)-star conditions for \(L \).

Lemma 4.5. There is no \(r = a + b\omega + ci + di\omega \in \mathbb{Z} \oplus \mathbb{Z}\omega \oplus \mathbb{Z}i \oplus \mathbb{Z}i\omega = \mathcal{O}_D \), with \(0 \leq a, b, d, c < 2^{1+3} \) satisfying the \(k \)-star conditions for \(L = \langle q \rangle \perp \langle 2^t q \rangle \), if \(t \in \{3, 4\} \) and \(q \in \{j + ij, j + i\} \).

4.2. Proof of Theorem 1 in Case I

Assume \(\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle \), where \(N(a_m) \in -u\mathbb{Q}_2^2 \), for each \(m = 1, \ldots, n \) and \(u \in \mathbb{Z}_2^* \) is a unit of non-minimal quadratic defect independent of \(m \). As \(\mathbb{Z}_2^*/\mathbb{Z}_2^2 = \{\pm 1, \pm 3\} \) and a pure quaternion cannot have reduced norm \(-1\), we have two options for \(u \): \(u = -5 \) or \(u = -1 \).

In virtue of Lemma 4.1, we consider binary lattices \(\Lambda = \langle q \rangle \perp \langle 2^t q \rangle \), with \(1 \leq t \leq 4 \), where we can choose any pure quaternion \(q \in \mathcal{O}_D^0 \) satisfying \(N(q) \in -u\mathbb{Q}_2^2 \). Here, \(q = q_u \) satisfy \(N(q) \in -u\mathbb{Q}_2^2 \), for \(u \) running over the set \(\{-5, -1\} \) of units of non-minimal quadratic defect. We choose \(q_{-5} = j + ij \) and \(q_{-1} = i + j \).

Proposition 4.1. Let \(\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle \) be a skew-hermitian lattice such that \(N(a_1), \ldots, N(a_n) \in -u\mathbb{Q}_2^2 \) and \(0 < \mu(\Lambda) \leq \nu(4) \). Then \(H(\Lambda) = \mathbb{Q}_2^* \).

Proof. We can assume \(n = 2 \) and \(\Lambda = \langle q_u \rangle \perp \langle 2^t q_u \rangle \), with \(q_u \in \{q_{-5}, q_{-1}\} = \{j + ij, i + j\} \) and \(t \in \{1, 2\} \). In virtue of Corollary 3.1 it suffices to prove the result for \(t = 2 \). Lemma 4.3 tells us that there exists \(r \in \mathcal{O}_D \) satisfying the \(k \)-star conditions. This is equivalent to \(H(\Lambda) = \mathbb{Q}_2^* \) by Theorem 3. □

To handle the cases where \(\mu = \nu(8) \) or \(\mu = \nu(16) \) we use the following result, which is used to improve the set of generators \(\mathcal{B}(\Lambda) \). The proof is a routine computation.

Lemma 4.6. If \(r \in \mathcal{O}_D \) satisfies either of the equations

\[
j + ij = r(j + ij)\bar{r} + 2^t\lambda(j + ij)\bar{\lambda}, \quad \text{or} \quad i + j = r(i + j)\bar{r} + 2^t\lambda(i + j)\bar{\lambda},
\]

where \(\lambda \in \mathcal{O}_D, \) and \(t \geq 2, \) then \(1 - r \in i\mathcal{O}_D. \)

Lemma 4.7. Let \(\Lambda = \langle a_1 \rangle \perp \langle a_2 \rangle = \mathcal{O}_D s_1 \perp \mathcal{O}_D s_2 \) be a skew-hermitian lattice such that \(N(a_1), N(a_2) \in -u\mathbb{Q}_2^2 \) and \(\nu(8) \leq \mu(\Lambda) \leq \nu(16) \). There exists a lattice \(L \) of rank 2

<table>
<thead>
<tr>
<th>(\pi)</th>
<th>(r)</th>
<th>(N(1 - r))</th>
<th>(z)</th>
<th>(NzN\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pm 2)</td>
<td>(15 + 8\omega)</td>
<td>(5 \cdot 2^2(1 + 8 \cdot 5^{-1} \cdot 7))</td>
<td>(-592i_\pi + 304i_\pi \omega)</td>
<td>(2^{10}(1 + 8 \cdot 38))</td>
</tr>
<tr>
<td>(\pm 10)</td>
<td>(15 + 8\omega)</td>
<td>(5 \cdot 2^2(1 + 8 \cdot 5^{-1} \cdot 7))</td>
<td>(-592i_\pi + 304i_\pi \omega)</td>
<td>(2^{10} \cdot 5^2(1 + 8 \cdot 38))</td>
</tr>
</tbody>
</table>
such that $H(L) = H(\Lambda)$, and a suitable splitting of L, such that $\mathcal{A}(L) \cup \mathcal{B}_1(L)$ generates $\mathcal{U}^+_{\mathbb{Q}_2}(L)$, for $l = 1, 2$, where $\mathcal{B}_1(L) = \{(s; \sigma) \in \mathcal{B}(L): |1-r| = |i|\}$ and $\mathcal{B}_2(L) = \{(s; \sigma) \in \mathcal{B}(L): |\lambda| = 1\}$, with r as in SRGL and λ as in Lemma 2.2.

Proof. By Lemma 4.1 there is a lattice $L = O_D s_1 \perp O_D s_2 = \langle q_u \rangle \perp \langle 2^t q_u \rangle$ as above, with $u \in \{-5, -1\}$ and $t \in \{3, 4\}$ satisfying $H(L) = H(\Lambda)$. Let $\phi \in \mathcal{B}(L)$ be such that $\phi(s_1) = rs_1 + \lambda s_2$. We have $|1-r| \in \{|i|, |2|\}$ in virtue of Lemma 4.6. Hence, to prove that $\mathcal{B}_1(L)$ satisfies the required property, it suffices to prove that, if ϕ satisfies $|1-r| = |2|$, then there exists $(s; \sigma) \in \mathcal{B}(L)$ such that $|1-r''| = |i|$ and $|1-r'| = |i|$, where $(s; \sigma)(s_1) = r's_1 + \lambda' s_2$ and $(s; \sigma)(s_1) = r'' s_1 + \lambda'' s_2$. In this case, there exists a second element $(s'; \sigma') \in \mathcal{B}_1(L)$ defined by $s' = s_1 - (s; \sigma)(s_1)$, $\sigma' = q(1-r')$ such that $(s'; \sigma')(s; \sigma)(s_1) = s_1$. In fact, by a computation we have

$$1 - r'' = 1 - r + [rq(1-r') + 2^t q \bar{\lambda}] (1-r')^{-1} q^{-1} (1-r'), \quad \lambda'' = \lambda + [rq(1-r') + 2^t q \bar{\lambda}] (1-r')^{-1} q^{-1} \lambda', \quad (5)$$

Lemma 4.2 implies the existence of an element $r' \in O_D$ such that $|1-r'| = |i|$, $NzN(2^t q) \in \mathbb{Q}_2^2$, and $NzN(2^t q)^{-1} \in \mathbb{Z}_2$, where $z = q - r' q \bar{\lambda}$ and $t \in \{3, 4\}$. Hence, by Lemma 2.2, there exists $\lambda' \in O_D$, such that $q = r'q \bar{\lambda} + 2^t \lambda' q \bar{\lambda}$. Then $(s; \sigma)$, where $s = (1-r')s_1 - \lambda' s_2$ and $\sigma = q(1-r')$, belongs to $\mathcal{B}_1(L)$ (cf. SRGL). On the other hand, as

$$- \left[rq(1-r') + 2^t \lambda q \bar{\lambda} \right] (1-r')^{-1} q^{-1} (1-r') = |rq(1-r') + 2^t \lambda q \bar{\lambda}| = |1-r'| = |i| \quad (7)$$

and $|1-r| = |2|$, it follows that $|1-r''| = |i|$. In particular, $\mathcal{A}(L) \cup \mathcal{B}_1(L)$ generates $\mathcal{U}^+_{\mathbb{Q}_2}(L)$.

Now, to prove that $\mathcal{A}(L) \cup \mathcal{B}_2(L)$ generates $\mathcal{U}^+(L)$, by a similar argument as for $\mathcal{B}_1(L)$, it suffices to prove that, if $\phi \in \mathcal{B}(L)$ satisfies $|\lambda| < 1$, there exists $(s; \sigma) \in \mathcal{B}(L)$ such that $|\lambda'| = 1$ and $|\lambda''| = 1$, where $\lambda, \lambda', \lambda''$ are defined by ϕ, $(s; \sigma)$ and $(s; \sigma)\phi$ respectively, as before. From Eq. (6) we see that $|\lambda''| = 1$ if $|\lambda| < 1$ and $|\lambda'| = 1$. By Lemma 4.2, there exists $r' \in O_D$ such that

$$|1-r'| = |i| \text{ or } |2|, \quad NzN(2^t q) \in \mathbb{Q}_2^2 \quad \text{and} \quad NzN(2^t q)^{-1} \in \mathbb{Z}_2^2, \quad (8)$$

where $z = q - r' q \bar{\lambda}$ and $t \in \{3, 4\}$. Hence, by Lemma 2.2, there exists $\lambda' \in O_D$ such that $q = r'q \bar{\lambda} + 2^t \lambda' q \bar{\lambda}$. Then if $s = (1-r')s_1 - \lambda' s_2$ and $\sigma = q(1-r')$, then $(s; \sigma) \in \mathcal{B}(L)$ (cf. SRGL), and $|\lambda'| = 1$ since $NzN(2^t q)^{-1} \in \mathbb{Z}_2^2$. Now, we take $|1-r'| = |i|$ if $|1-r| = |2|$, and $|1-r'| = |2|$ if $|1-r| = |i|$, so that $|1-r'|, |1-r''| \geq |2|$ by (5). The result follows. □

Remark 4.2. Notice that, for a lattice Λ as in the previous lemma, we can replace $\mathcal{B}(\Lambda)$ by $\mathcal{B}_l(\Lambda)$, for $l = 1, 2$, in Theorem 3. Hence, since $|\lambda| = 1$ for $(s; \sigma) \in \mathcal{B}_2(\Lambda)$, we can improve the number u in Theorem 4 in virtue of Remark 3.2.
Proposition 4.2. Let $\Lambda = \langle a_1 \rangle \perp \langle a_2 \rangle$ be as in Theorem 3. There exists $r \in \mathcal{O}_D$ satisfying the k-star conditions for $t \in \{3, 4\}$ and $Na_1 \in -w\mathbb{Q}_2^2$, with u a unit of non-minimal quadratic defect, if and only if there exists $\alpha = a + b\omega + ci + di\omega \in \mathbb{Z} \oplus \mathbb{Z} \omega \oplus \mathbb{Z} i \oplus \mathbb{Z} i\omega = \mathcal{O}_D$, with $0 \leq a, b, c, d < 2^{t+3}$, satisfying them.

Combining this result with Theorem 3, Lemma 4.1 and Lemma 4.5, we obtain

Corollary 4.1. Let $\Lambda = \langle a_1 \rangle \perp \langle a_2 \rangle$ be a skew-hermitian lattice such that $N(a_1), N(a_2) \in -u\mathbb{Q}_2^2$, where u is a unit of non-minimal quadratic defect and $\mu = \nu(a_2) - \nu(a_1)$ satisfies $\nu(8) \leq \mu \leq \nu(16)$. Then $H(\Lambda) = N(Q_2(a_1)^*)$.

We need the following result to handle ternary lattices Λ with $\mu(\Lambda) = \nu(8)$. For the sake of generality we state it for an arbitrary dyadic field k.

Lemma 4.8. If $|\eta| = |i|$ and a_1 is a pure unit, then $T(2(\eta a_1 \bar{\eta})^{-1}a_1) \in \pi\mathcal{O}_k$, where T is the trace map.

Proof. Set $\eta = i\rho$, for $\rho \in \mathcal{O}_D^\times$. Note that $a_1 i \equiv i\bar{a}_1 \mod \pi$, while ρ and \bar{a}_1 commute modulo i. We conclude that $\eta a_1 \bar{\eta} \equiv -N(\rho)\pi\bar{a}_1 \mod \pi i$. In other words $\frac{1}{\pi}\eta a_1 \bar{\eta} = -N(\rho)a_1 + \varepsilon$, where $\varepsilon \in i\mathcal{O}_D$, whence $\pi(\eta a_1 \bar{\eta})^{-1} = -\frac{\mu}{\pi N(\rho a_1)}$, for some $\delta \in i\mathcal{O}_D$. Hence

$$T(2(\eta a_1 \bar{\eta})^{-1}a_1) \equiv \frac{-4a_1^2}{\pi N(\rho a_1)} + \frac{2}{\pi}T(\delta a_1) \mod \pi$$

and the result follows since $\delta \in i\mathcal{O}_D$ implies $T(\delta a_1) \in \pi\mathcal{O}_k$. □

Note that if $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$ is a skew-hermitian lattice and $(s; \sigma) \in \mathcal{B}(\Lambda)$, then $s = (1-r)s_m - s_0$, for some $s_0 \in \mathcal{O}_D s_{m+1} \perp \cdots \perp \mathcal{O}_D s_n$. Hence, if $m > 1$ then $(s; \sigma)$ fixes $\langle a_1 \rangle$, so we can assume $m = 1$ in order to compute spinor norms in the next result.

Proposition 4.3. Let $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$ be a skew-hermitian lattice such that $N(a_1), \ldots, N(a_n) \in -u\mathbb{Q}_2^2$, where u is a unit of non-minimal quadratic defect. If $\mu = \mu(\Lambda)$ satisfies $\nu(8) \leq \mu \leq \nu(16)$, then $H(\Lambda) = N(Q_2(a_1)^*)$.

Proof when $\mu = \nu(16)$. In virtue of Lemma 2.1 it suffices to consider rotations $(s; \sigma) \in \mathcal{B}(\Lambda)$ such that $|1 - r| = |2|$ and $|\lambda_2| = 1$. In this case, Theorem 2 tells us we can set $n = 2$ in the statement of the proposition. For $n = 2$, because of Lemma 4.7, we can replace Λ by a lattice L such that $H(L) = H(\Lambda)$ and a set of generators of $U_{Q_2}(L)$ is $A(L) \cup B_1(L)$. It follows that $H(\Lambda) = N(Q_2(a_1)^*)$ since rotations in $B_1(L)$ have spinor norm belonging to $N(Q_2(a_1)^*)$ in virtue of Lemma 2.1. □

Proof when $\mu = \nu(8)$. In virtue of Lemma 2.1, any rotation $(s; \sigma) \in \mathcal{B}(\Lambda)$ satisfies $\theta[(s; \sigma)] \in N(Q_2(a_1)^*)/\mathbb{Q}_2^2$ unless one of the following conditions is satisfied:
1. $|1 - r| = |i|$, $|\lambda_2| = 1$,
2. $|1 - r| = |2|$, $|\lambda_2| \in \{1, |i|\}$.

As in the previous case, by Theorem 2, when $|\lambda_2| = 1$ we are reduced to consider binary lattices and when $|1 - r| = |2|$, $|\lambda_2| = |i|$ to study either binary lattices or rank 3 lattices with $|\lambda_3| = 1$. For rank 2 lattices, Corollary 4.1 tells us that $\mathcal{H}(\Lambda) = N(Q_2(\sigma_1)^*)$. We prove that, for rank 3 lattices Λ such that $(s; \sigma) \in B(\Lambda)$ satisfies $|1 - r| = |2|$, $|\lambda_2| = |i|$, $|\lambda_3| = 1$ we also have $\theta/(s; \sigma) \in N(Q_2(\sigma_1)^*/Q_2^2$. In fact, in virtue of $[2, \text{Lemma 4.3}]$ we can assume that $\Lambda = \langle a_1 \rangle \perp (8e_2a_1) \perp (64e_3a_1)$, with $e_2, e_3 \in Z^2$. Hence, SRGL tells us that $r, \lambda_2, \lambda_3 \in \mathcal{O}_D$, with $|1 - r| \geq |2|$, define an element ϕ if $\phi \in B(\Lambda)$ as before if and only if they satisfy the relation

$$z = a_1 - ra_1 \bar{r} = 8\lambda_2 e_2a_1 \bar{\lambda}_2 + 64\lambda_3 e_3a_1 \bar{\lambda}_3.$$

We can rewrite this equation as $z = 8\lambda_3 w \bar{\lambda}_3$, where $w = e_2 \eta a_1 \bar{\eta} + 8e_3a_1$ and $\eta = \lambda_3^{-1} \lambda_2$. Remember that, in this case, $|\lambda_2| = |i|$ and $|\lambda_3| = 1$. Hence, by Lemma 2.2, the existence of r, λ_2, λ_3 satisfying the equation above is equivalent to the existence of $r, \eta \in \mathcal{O}_D$, with $|\eta| = |i|$ such that $NzN(w) \in Q_2^2$ and $NzN(8w)^{-1} \in Z^2$. We know that $|w| = |2|$, so $NzN(8w)^{-1} \in Z_2$ if and only if $NzN(w)^{-1} \in Z_2$. On the other hand, $N(w) = N(\epsilon(e_2 \eta a_1 \bar{\eta})N(1 + 8\epsilon(e_2 \eta a_1 \bar{\eta})^{-1}a_1)$, where $\epsilon = \epsilon_2^{-1} \epsilon_3 \in Z^2$. Here, as $|8\epsilon(e_2 \eta a_1 \bar{\eta})^{-1}a_1| = |4|$, we can write $8\epsilon(e_2 \eta a_1 \bar{\eta})^{-1}a_1 = 4\epsilon \xi$ with $\xi = 2(e_2 \eta a_1 \bar{\eta})^{-1}a_1 \in \mathcal{O}_D$. As we have the relation $N(1 + 4\epsilon \xi) = 1 + 4\epsilon T(\xi) + 16\epsilon^2 N(\xi)$, it follows that $N(1 + 4\epsilon \xi) \in Q_2^2 \cup 5Q_2^2$, hence, $N(e_2 \eta a_1 \bar{\eta} + 8e_3a_1) \in N(a_1)Q_2^2 \cup 5N(a_1)Q_2^2$, where $N(w) \in 5Na_1Q_2^2$ if and only if $T(\xi) \equiv 1 \pmod{2}$. The last condition is not satisfied in virtue of Lemma 4.8. Therefore, we are reduced to the following result, which is an analogue of Theorem 3: $\mathcal{H}(\Lambda) = Q_2^*$ if and only if there exists $r \in \mathcal{O}_D$, with $|1 - r| = |2|$ satisfying the conditions:

$$\left(\frac{N(1 - r), -Na_1}{p} \right) = -1, \quad NzNa_1 \in Q_2^*, \quad |z| = |16|.$$

These are the k-star conditions for $\langle a_1 \rangle \perp (16a_1)$, and Lemma 4.5 implies that there is no $r \in \mathcal{O}_D$ satisfying them. Hence, we conclude that $\mathcal{H}(\Lambda) = N(Q_2(\sigma_1)^*)$.

4.3. Proof of Theorem 1 in Case II

By Lemma 4.1, in rank 2 case, we consider lattices Λ of the form $\langle i_{\pi} \rangle \perp (2^{i_{\nu}}i_{\pi})$, where $\nu(4) \leq t \leq \nu(16)$, and for every prime π, we set $i_{\pi} \in O_{k(i)}$ such that $i_{\pi}^2 = \pi$. Remember that, if we prove that $\mathcal{H}(\Lambda) = Q_2^*$, then $\mathcal{H}(\Lambda) = Q_2^*$ for lattices Λ of arbitrary rank. By Corollary 3.1, we can assume $t = 4$. Hence, the next result follows from Lemma 4.4 and Theorem 3:

Proposition 4.4. Let $\Lambda = \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$ be a skew-hermitian lattice such that $N(a_1), \ldots, N(a_n) \in \pi Q_2^*$ and $0 < \mu(\Lambda) \leq \nu(16)$. Then $\mathcal{H}(\Lambda) = Q_2^*$.

4.4. Examples

Let consider the family of lattices $\Lambda = \langle i \rangle \perp (2^t i)$, for $t > 0$, where $D = (\frac{2.5}{Q})$ and $i^2 = 2$. D ramifies only at 2 and 5. The lattice Λ is unimodular for $p \neq 2$. We have that $H(\Lambda_p) = \mathbb{Z}_p^* \mathbb{Q}_p^{*2}$ for $p \neq 2$, in virtue of the computations in [7] (for $p \neq 5$) and [6, Theorem 4] (for $p = 5$). Hence, the spinor class field Σ_{Λ} can ramify only at 2 and ∞, so $\Sigma_{\Lambda} \subset \mathbb{Q}(\sqrt{-1}, \sqrt{2})$. Observe that the algebra D decomposes at infinity and the quadratic form corresponding to Λ is indefinite. Hence, class and spinor genus of Λ coincide and $\Sigma_{\Lambda} \subset \mathbb{R}$. On the other hand, for $p = 2$, Table 1 tells us that $H(\Lambda_2) = \mathbb{Q}_2^*$ if $t \leq 4$ and $H(\Lambda_2) = N(\mathbb{Q}_2(i^*)^*)$ if $t > 4$, whence Σ_{Λ} decomposes at 2 for $t \leq 4$ and ramifies at 2 for $t > 4$. We conclude that $\Sigma_{\Lambda} = \mathbb{Q}$ for $t \leq 4$, while $\Sigma_{\Lambda} = \mathbb{Q}(\sqrt{2})$ for $t > 4$. In the first case, Hasse principle holds for Λ. In the second case, the class number of Λ is 2.

Now consider the family of lattices $\Lambda = \langle i \rangle \perp (2^t i^t)$, where $D = (\frac{-1}{Q})$ and $i^2 = -1$. D ramifies only at 2 and ∞. As before $H(\Lambda_p) = \mathbb{Z}_p^* \mathbb{Q}_p^{*2}$ for $p \neq 2$, hence $\Sigma_{\Lambda} \subset \mathbb{Q}(\sqrt{-1}, \sqrt{2})$. Since the form has discriminant 1 it is isotropic and therefore \mathcal{U}_K^+ is non-compact at infinity. In fact, the same holds for every binary lattice over a quaternion algebra ramifying at ∞, since all pure quaternions in the Hamilton Algebra are congruent. Hence, class and spinor genus of Λ coincide also in this case. On the other hand, the spinor image is \mathbb{R}^+ at infinity and, since -1 is a ramified unit at 2, Table 1 tells us that $\Sigma_{\Lambda} = \mathbb{Q}$ for $t \leq 2$, while $\Sigma_{\Lambda} = \mathbb{Q}(\sqrt{-1})$ for $t > 2$.

Acknowledgments

The research was partly supported by FONDECYT, Project No. 1120565.

References