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nionic skew-hermitian forms over the field Q of rational num-
bers. This can be used to compute the number of classes in a 
genus of skew-hermitian lattices of rank 2 or larger over a max-
imal order in a quaternion algebra D over Q in many cases, 
e.g., when D ramifies at infinity. Examples are provided.
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1. Introduction

Let K be a number field and let D be a quaternion algebra over K with canonical invo-
lution q �→ q̄. Let V be a rank-n free D-module. Let h : V ×V → D be a skew-hermitian 
form, i.e., h is D-linear in the first variable and it satisfies h(x, y) = −h(y, x). A D-linear 
map φ : V → V preserving h is called an isometry. We denote by UK (resp. U+

K) the uni-
tary group of h (resp. the special unitary group of h), i.e., the group of isometries (resp. 
isometries with trivial reduced norm) of h. Skew-hermitian forms share many proper-
ties of quadratic forms. In fact, if D ∼= M2(K), skew-hermitian forms in a rank-n free 
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D-module are naturally in correspondence with quadratic forms in the 2n-dimensional 
K-vector space PV , for any idempotent matrix P of rank 1 in D [3, §3]. In this case, the 
unitary group of h is isomorphic to the orthogonal group of the corresponding quadratic 
form. On the other hand, UK = U+

K when D is a division algebra [8, §2.6].
As in the quadratic case, the problem of determining if two skew-hermitian lattices 

in the same space are isometric or not can be approached by the theory of genera and 
spinor genera [1]. This theory depends on the knowledge of the image, under the spinor 
norm, of the stabilizer of a given lattice in each local group U+

K℘
. Full computations of 

this image exist for symmetric integral bilinear forms. Non-dyadic cases can be found 
in [7] and the dyadic case in [5]. For this reason we assume, from now on, that D is 
a quaternion division algebra. For skew-hermitian forms, non-dyadic places have been 
completely studied by Böge in [6]. The dyadic case was studied by Arenas-Carmona in [2]
and [4], not covering all the cases, which we complete here when Kp = Q2. From now 
on k = Kp denotes a dyadic local field of characteristic 0.

We denote by | · | : D → R≥0 and | · |k : k → R≥0 the absolute values on D and k
respectively, and we assume |q| = |Nq|k, where N is the reduced norm, for any q ∈ D. 
We use ν for the surjective valuation ν : D∗ → Z. Let OD = ν−1(Z≥0) ∪ {0} be the 
unique maximal order in D [12, §2]. A skew-hermitian lattice or OD-lattice in V , is a 
lattice Λ in V such that ODΛ = Λ. Any skew-hermitian lattice Λ has a decomposition 
of the type

Λ = Λ1⊥ · · ·⊥Λt, (1)

where each indecomposable lattice Λr has rank 1 or 2, and the scales satisfy s(Λr+1) ⊂
s(Λr) [2, §5]. If some Λm in the decomposition of Λ has rank 1, then Λm = ODsm
and h(sm, sm) = am. We usually write Λm = 〈am〉 = ODsm in this case. A statement 
like Λ = 〈a1〉⊥ · · · ⊥〈at〉 = ODs1⊥ · · · ⊥ODst must be interpreted similarly. Define A ⊂
k∗/k∗2 by A = {N(am)k∗2 | Λm = 〈am〉, 1 ≤ m ≤ t}. Following [6], we define the spinor 
image H(Λ) ⊆ k∗ by the relation H(Λ)/k∗2 = θ(U+

k (Λ)), where U+
k (Λ) is the stabilizer 

of Λ in U+
k , and θ : U+

k → k∗/k∗2 denotes the spinor norm. If Λ = 〈a1〉⊥ · · · ⊥〈an〉, we 
let μ(Λ) = min{ν(ai+1) − ν(ai) | 1 ≤ i < n} ∈ Z≥0. The lattices Λ for which the set 
H(Λ) remains unknown to date are:

Case I: Λ = 〈a1〉⊥ · · · ⊥〈an〉, where A = {−uk∗2}, for a unit u ∈ O∗
k of non-minimal 

quadratic defect [9, §63], and 0 < μ(Λ) ≤ ν(16).
Case II: Λ = 〈a1〉⊥ · · · ⊥〈an〉, where A = {πk∗2}, for a prime π in k, and ν(4) ≤ μ(Λ) ≤

ν(16).

Theorem 1. Table 1 contains all local spinor images when the base field is Q2. In the table, 
s denotes the number of indecomposable components of rank 2 in the decomposition (1)
of Λ, and Δ ∈ O∗

k is a unit of minimal quadratic defect [9, §63]. Furthermore, π, u, A
and μ = μ(Λ) are as above. A dash means “irrelevant”.
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Table 1
Spinor images for arbitrary lattices over Q2.

s |A| A μ H(Λ) Reference
– > 1 – – Q∗

2 Proposition 2.1 or [2, Table 2]
0 1 −ΔQ∗2

2 – Z∗
2Q

∗2
2 [2, Table 2]

0 1 −uQ∗2
2 0 ≤ μ ≤ ν(4) Q∗

2 Proposition 4.1 and [2, Table 1]
0 1 −uQ∗2

2 μ ≥ ν(8) N(Q2(am)∗) Proposition 4.3 and [2, Table 2]
0 1 πQ∗2

2 0 ≤ μ ≤ ν(16) Q∗
2 Proposition 4.4 and [2, Tables 1–2]

0 1 πQ∗2
2 μ ≥ ν(32) N(Q2(am)∗) [2, Table 2]

�= 0 – – – Q∗
2 [4, Theorem 2]

Our (computer assisted) proof of Theorem 1 goes as follows: We use Theorem 2 below 
to reduce the computation of H(Λ) to low rank Λ. In our case, this means rank 2 or 3. 
Then we use Theorems 3 and 4 for constructing an algorithm for binary lattices over 
unramified local dyadic fields and we apply it to k = Q2. Then we patch the proof in 
the remaining “rank 3” case.

Before we state the critical theorems, we recall a few facts about simple rotations in 
skew-hermitian spaces,1 see [2, §6] for details. Let (V, h) be a skew-hermitian D-space. 
If s ∈ V and σ ∈ D∗ satisfy σ − σ̄ = h(s, s), the map (s; σ) ∈ UK defined by (s; σ)(x) =
x − h(x, s)σ−1s is called a simple rotation with axis s. Its spinor norm [2] is θ[(s; σ)] =
N(σ)k∗2, where N : D∗ → k∗ is the reduced norm. The set of simple rotations span the 
group U+

k . One way to produce simple rotations, that we use heavily in the sequel, is the 
next lemma:

Simple Rotation Generating Lemma (SRGL). (See [2, Lemma 6.3].) Let t, u ∈ V be such 
that h(u, u) = h(t, t) = a. Let s = t − u and σ = h(t, s). Then (s; σ) is a well-defined 
simple rotation satisfying (s; σ)(t) = u. Furthermore, if u = rt + t0, where t0 ∈ t⊥, we 
have the identities σ = a(1 − r̄), h(t0, t0) = a − rar̄, and σ − σ̄ = h(s, s).

Let Λ = 〈a1〉⊥ · · · ⊥〈an〉, with 〈ai〉 = ODsi as in (1). Assume also |2am| ≥ |al| for 
m < l. Then the first author proved in [2, Lemma 6.7] that the unitary group U+

k (Λ) of 
the lattice is generated by A(Λ) ∪ B(Λ), where

1. A(Λ) is the set of simple rotations with axis sm, for some m = 1, . . . , n.
2. B(Λ) is the set of simple rotations of the form (s; σ), where s = sm − t for some 

t = rsm + s0 with s0 ∈ ODsm+1⊥ · · · ⊥ODsn, and 1 − r /∈ (2i).

In particular, the elements of B(Λ) satisfy all relations in SRGL. Note that A(Λ) and 
B(Λ) depend on the splitting (1).

1 Some authors call these elements reflections. We prefer the name simple rotation since (s; σ) acts on the 
2-dimensional subspace k[σ]s by v �→ uv, where u = σ̄σ−1 is an element of norm 1.
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Theorem 2. Let Λ = 〈a1〉⊥ · · · ⊥〈an〉, with 〈ai〉 = ODsi, be a skew-hermitian lattice and 
let μ = μ(Λ) be as above. Assume μ > ν(4) and N(a2), . . . , N(an) ∈ N(a1)k∗2. Let 
(s; σ) ∈ B(Λ), i.e., s = (1 −r)sm−s0, where s0 = λm+1sm+1 + · · ·+λnsn, σ = am(1 − r̄)
and |1 − r| ≥ |2|. If |λm+t| ≥ |2l−1λm+t+l|, for some t ∈ {1, . . . , n − m} and for all 
l ∈ {1, . . . , n − m − t}, then there exists Λ′ = 〈b1〉⊥ · · · ⊥〈bt+1〉 ⊂ Λ satisfying the 
following conditions:

1. (s; σ) ∈ U+
k (Λ′).

2. μ(Λ′) ≥ μ(Λ).
3. N(bi) ∈ N(a1)k∗2, for all i = 1, . . . , t + 1.

We say that an element r ∈ OD satisfies the k-star conditions for a lattice Λ =
〈a1〉⊥ · · · ⊥〈an〉 if z = a1 − ra1r̄ satisfies NzNa1 ∈ k∗2 and NzN(πta1)−1 ∈ Ok, where 
ν(πt) = μ(Λ), while the Hilbert symbol (N(1−r),−Na1

p
) equals −1.

Theorem 3. Let Λ = 〈a1〉⊥〈a2〉 be a skew-hermitian lattice such that |2a1| ≥ |a2| and 
N(a2) ∈ N(a1)k∗2. The following statements are equivalent:

1. H(Λ) = k∗.
2. There exists (s; σ) ∈ B(Λ) such that Nσ /∈ N(k(a1)∗).
3. There exists r ∈ OD satisfying the k-star conditions for Λ.

It is known that the (unique) quaternion division k-algebra D has a basis {1, i, j, ij}, 
where i2 = π, j2 = Δ, ij = −ji. Moreover, if ω = j+1

2 , then {1, ω, i, iω} is an Ok-basis 
for OD. Let e = ν(2)/2 be the ramification index of k/Q2, and assume ν(πt) = μ(Λ).

Theorem 4. Let Λ be as in Theorem 3. There exists r ∈ OD satisfying the k-star condi-
tions for Λ if and only if there exists α ∈ S ⊕ Sω ⊕ Si ⊕ Siω ⊂ OD satisfying them, for 
one (any) set of representatives S of Ok/π

uOk, with u = t + 6e as above.

2. Generators of U+
k (Λ) and their spinor norm

If Λ = 〈a1〉⊥ · · · ⊥〈an〉 is a skew-hermitian lattice, then [k∗ : N(k(a1)∗)] = 2 [9, §63]
and N(k(a1)∗) ⊂ H(Λ) [2, §6]. As a direct consequence of these facts, we have:

Proposition 2.1. Let Λ = 〈a1〉⊥ · · · ⊥〈an〉 be a skew-hermitian lattice. Then H(Λ) =
N(k(a1)∗) or H(Λ) = k∗. In particular:

1. H(Λ) = k∗ if and only if, there exists φ ∈ C(Λ) such that θ(φ) /∈ N(k(a1)∗)/k∗2, for 
one (any) set of generators C(Λ) for U+

k (Λ).
2. If there exists b ∈ OD with N(b) /∈ N(a1)k∗2 such that Λ = 〈b〉⊥Λ′, for some 

lattice Λ′, we have H(Λ) = k∗.



L. Arenas-Carmona, P. Quiroz / Journal of Number Theory 151 (2015) 159–171 163
Remark 2.1. In particular, if |2am| ≥ |al| for m < l, and C(Λ) = A(Λ) ∪B(Λ), we just need 
to check the property for the elements in B(Λ), since simple rotations (sm; σ) ∈ A(Λ)
have spinor norm N(σ)k∗2 ∈ N(k(am)∗)/k∗2. Our strategy includes to replace B(Λ) by 
a smaller set that still generates but it is easier to control (cf. Lemma 4.7).

Lemma 2.1. Let Λ = 〈a1〉⊥ · · · ⊥〈an〉, with 〈ai〉 = ODsi, be a skew-hermitian lattice 
such that |2am| ≥ |al| for m < l. Take (s; σ) ∈ B(Λ), i.e., s = (1 − r)sm − s0, where 
s0 = λm+1sm+1 + · · · + λnsn, σ = am(1 − r̄), and |1 − r| ≥ |2|. If any of the following 
conditions is satisfied:

1. |1 − r| > |2| and |λm+1| < 1, while μ(Λ) ≥ ν(8), and k/Q2 is unramified,
2. |1 − r| = |2| and |λm+1| ≤ |2|, while μ(Λ) ≥ ν(4π),
3. |1 − r| > |2| or |λm+1| < 1, while μ(Λ) ≥ ν(16),
4. |λm+1| ≤ |4|, |λm+2| ≤ |2| and |λm+3| < 1.

then θ[(s; σ)] ∈ N(k(am)∗)/k∗2.

Proof. It suffices to prove that if a = h(s, s), then N(a) ∈ N(am)k∗2, since σ ∈ k(a). In 
fact, we have s = (1 − r)sm− s0, so that a = (1 − r)am(1 − r̄) +a0, where a0 = h(s0, s0). 
It follows that

N(a) = N(am)N(1 − r)2N
(
1 + (1 − r)−1a0(1 − r̄)−1a−1

m

)
. (2)

Now, a0 = λm+1am+1λm+1 + · · · + λnanλn and |(1 − r)−1a0(1 − r̄)−1a−1
m | =

|a0||a−1
m |/|1 − r|2 < |4| if any of the conditions above is satisfied. This implies the 

last norm in (2) is a square. �
The following result, together with SRGL, gives us an easy method to construct simple 

rotations in B(Λ) as in the introduction.

Lemma 2.2. Let r ∈ OD be a non-zero quaternion and let a1, a2 ∈ OD be non-zero pure 
quaternions. There exists λ ∈ OD different from zero such that a1 = ra1r̄ + λa2λ̄ if and 
only if NzNa2 ∈ k∗2 and NzNa−1

2 ∈ Ok, where z = a1 − ra1r̄.

Proof. The equation a1 = ra1r̄ + λa2λ̄ has a solution λ ∈ D∗ if and only if the binary 
skew-hermitian form h′ whose Gramm matrix is 

(
z 0
0 −a2

)
is isotropic. Now, h′ is isotropic 

if and only if NzNa2 = disc(h′) ∈ k∗2 [10, Chapter 10, §3, Theorem 3.6]. We conclude 
that there exists λ ∈ D∗ satisfying a1 = ra1r̄+λa2λ̄ if and only if NzNa2 ∈ k∗2. Finally, 
we have Nz = Na2Nλ2, whence λ ∈ OD if and only if NzNa−1

2 ∈ Ok. �
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3. Proof of Theorems 2, 3 and 4

Proof of Theorem 2. Set Λ′ = 〈b1〉⊥ · · · ⊥〈bt+1〉 = ODsm⊥ · · · ⊥ODsm+t−1⊥ODs′0, 
where s′0 =

∑n
i=m+t λisi. It is clear that Λ′ ⊂ Λ. To prove condition (1) in the the-

orem, we note that s0 = s′0 −
∑m+t−1

i=m+1 λisi ∈ Λ′. We compute

• (s; σ)(si) = si − h(si, s)σ−1s = si + h(si, s0)σ−1s, for m + 1 ≤ i ≤ m + t − 1,
• (s; σ)(s′0) = s′0 − h(s′0, s)σ−1s = s′0 + h(s′0, s0)σ−1s, and
• (s; σ)(sm) = rsm + s0 ∈ Λ′.

Hence, (s; σ)(Λ′) ⊆ Λ′ if h(si, s0)σ−1, h(s′0, s0)σ−1 ∈ OD. The latter holds since |σ| =
|am(1 − r̄)| ≥ |2am| is larger than the height of s0. We conclude that (s; σ) ∈ U+

k (Λ′). 
On the other hand, as

bt+1 = h
(
s′0, s

′
0
)

=
n∑

u=m+t

λuauλu,

we have |bt+1| = |am+t||λm+t|2, since |λm+t| ≥ |2l−1λm+t+l| when 1 ≤ l ≤ n − m − t

and μ(Λ) > ν(4). From here μ(Λ′) ≥ μ(Λ), proving condition (2). Finally, to prove the 
last condition, we consider

N(bt+1) = N(λm+t)2N(am+t)N
(

1 + (λm+tam+tλm+t)−1
n∑

u=m+t+1
λuauλu

)
, (3)

where |(λm+tam+tλm+t)−1| = |am+t|−1|λm+t|−2. Since |am+t+l| < |4lam+t| and 
|λm+t| ≥ |2l−1λm+t+l| for all l ∈ {1, . . . , n − m − t}, the last term in (3) is a square, 
whence N(bt+1) ∈ N(am+t)k∗2 and the proof of the condition (3) is completed. �
Proof of Theorem 3. The equivalence between (1) and (2) is a direct consequence of 
Proposition 2.1 and the subsequent remark to it. To prove that (2) implies (3), let 
(s; σ) be a simple rotation such that θ[(s; σ)] = N(σ)k∗2 /∈ N(k(a1)∗)/k∗2. As isometry 
(s; σ) ∈ B(Λ) satisfies a1 = h(s1, s1) = ra1r̄ + λa2λ̄, where (s; σ)(s1) = rs1 + λs2. Such 
an r ∈ OD satisfies σ = a1(1 − r̄) by SRGL. Hence, θ[(s; σ)] /∈ N(k(a1)∗)/k∗2 if and 
only if N(1 − r) /∈ N(k(a1)∗), or equivalently 

(N(1−r),−Na1
p

)
= −1. On the other hand, 

Lemma 2.2 tells us that NzNa2 ∈ k∗2 and NzNa−1
2 ∈ Ok, where z = a1 − ra1r̄. The 

result follows since Na2 ∈ N(a1)k∗2 and μ = ν(a2) − ν(a1) = ν(πt). Conversely, if 
r ∈ OD satisfies the k-star conditions, then Lemma 2.2 and SRGL imply the existence 
of φ ∈ B(Λ) such that θ(φ) = N(a1)N(1 − r̄)k∗2 and the result follows as before. �
Corollary 3.1. Let Λ be as in Theorem 3. Let t be such that μ = ν(πt). If H(Λ) = k∗, then 
H(Λ′) = k∗ for every lattice Λ′ = 〈a1〉⊥〈b〉 with N(b) ∈ N(a1)k∗2 and μ(Λ′) = ν(πs), 
for e ≤ s < t.
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Remark 3.1. Due to Lemma 2.1, in the condition (2) of Theorem 3, it is enough to 
consider simple rotations (s; σ) ∈ B(Λ) with |λ| > |4|, where s = (1 − r)s1 − λs2. 
Remember that |1 − r| ≥ |2| for (s; σ) ∈ B(Λ).

Proof of Theorem 4. Assume r ∈ OD satisfies the k-star conditions. Let α ∈ OD be 
a representative of the class of r modulo πu as in the statement. Then, r = α + πuβ, 
with β ∈ OD and α ∈ S ⊕ Sω ⊕ Si ⊕ Siω ⊂ OD. As 1 − r = 1 − α − πuβ we have 
N(1 − r) = N(1 − α)N(1 − (1 − α)−1πuβ). Now, |1 − r| ≥ |2| implies |1 − α| ≥ |2|. 
Therefore, N(1 − (1 − α)−1πuβ) is a square. Hence, 

(N(1−r),−Na1
p

)
=

(N(1−α),−Na1
p

)
. 

On the other hand, if z = a1 − ra1r = πtλa1λ̄ and z′ = a1 − αa1α, then z = z′ − πuγ, 
with γ = αa1β̄ + βa1ᾱ+ πuβa1β̄ ∈ OD. Note that a−1

1 γ ∈ OD. We have |z′| = |z|, since 
|z| = |πtλa1λ̄| > |16πta1| = |π4e+ta1| > |πuγ|, where we are assuming |λ| > |4| (see 
Remark 3.1). Furthermore, we have that Nz = Nz′N(1 − z′ −1πuγ) with |z′ −1πuγ| <
|π−(4e+t)a−1

1 πt+6eγ| = |π2ea−1
1 γ| ≤ |4|. Hence, NzNa1 is a square if and only if Nz′Na1

is a square. Finally, from |z′| = |z| we obtain |Nz/π2tN(a1)|k ≤ 1 if and only if 
|Nz′/π2tN(a1)|k ≤ 1. �
Remark 3.2. The optimal choice for the number u in Theorem 4 depends on |λ|. For 
example, since z = a1 − ra1r̄ = πtλa1λ̄, if λ satisfies |λ| = 1, then we would have 
|z′| = |πta1| and so |z′ −1πuγ| = |π−ta−1

1 πuγ| ≤ |πu−t| < |4| if u = t + 2e + 1. This holds 
in some cases when k = Q2.

4. Proof of Theorem 1

The following result is a direct consequence of [2, Lemma 4.3]. Note that for either 
of the remaining cases I or II described in the introduction, the extension k(a1)/k is 
ramified.

Lemma 4.1. Let 〈a1〉⊥〈a2〉 be a skew-hermitian lattice such that N(a2) ∈ N(a1)k∗2
and the extension k(a1)/k is ramified. Then, there exists a skew-hermitian lattice 
L = 〈q〉⊥〈εq〉, where q ∈ D∗ and ε ∈ k∗, such that H(L) = H(Λ). Moreover, we can 
assume that q = q′, for any quaternion q′ ∈ D∗ with N(q′) ∈ N(a1)k∗2.

Note that, due to Corollary 3.1, if μ(Λ) = ν(πt) for Λ as in Theorem 3, we can 
take ε in last lemma equals to πt, for any prime π of k. If k = Q2, we have Ok = Z2, 
OD = Z2[ω] ⊕ iZ2[ω] and Ok/π

uOk
∼= Z/2uZ. By considering Theorems 3, 4 and the 

lemma above, we are able to construct an algorithm for computing H(Λ), for all binary 
OD-lattices Λ, as follows:

1. By Lemma 4.1, we are reduced to compute H(L) for L = 〈q〉⊥〈2tq〉, for q2 running 
over representative of all suitable square classes, and a few values of t for each q.

2. Fix a set of representatives S of the finite ring Z2/2uZ2: We can choose S =
{0, 1, . . . , 2u − 1} for u large enough (see Remark 3.2).
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Table 2
Proof of Lemma 4.2.

q t r1 r2

j + ij 3 −1 − 4i − 4iω 1 − 14ω − i − 10iω
j + ij 4 −1 − 8i − 8iω 1 − 6ω − 13i − 6iω
i + j 3 −1 − 4iω 1 − 2ω − i
i + j 4 −1 − 8iω −1 − 6ω − 3i

Table 3
Proof of Lemma 4.3.

q r N(1 − r) z NzNq

j + ij 1 + 2iω 2 · 22 4(−1 + 2ω − 4i − 7iω) 24 · 52

i + j 1 + 2i + 2iω −2 · 22 4(1 − 2ω + 3i + 3iω) 24(1 + 8 · 20)

3. For r = a + bω + ci + diω ∈ S ⊕Sω⊕Si ⊕Siω ⊂ OD, check if the k-star conditions 
are satisfied. This verification can be done by using the computer algebra system 
Sage [11].

4. Conclude that H(Λ) = Q∗
2 if some r in the last step satisfies the k-star conditions. 

Otherwise, H(Λ) = N(Q2(a1)∗) in virtue of Theorems 3, 4 and Proposition 2.1.

Remark 4.1. The algorithm can be extended to any unramified finite extension k of Q2. 
The condition |2a1| ≥ |a2| in Theorems 3 and 2 is essential. Hence, the algorithm does 
not work, for μ < ν(2), if the extension k/Q2 ramifies, unless the algorithm returns the 
value k∗ for μ < ν(2).

4.1. Computations using Sage

In all that follows we assume i2 = 2, j2 = 5, and ij = −ji. Whenever a different 
uniformizing parameter π makes computations easier we use iπ = uπi, for some unit 
uπ ∈ Q2(j), such that i2π = π, or equivalently N(uπ) = π/2. The following results are 
obtained by computer search. When the algorithm does find solutions, we actually list 
them. Otherwise it is just stated that no solutions were found.

Lemma 4.2. (See Table 2.) For any q ∈ {j+ij, i +j} and t ∈ {3, 4}, there exist r1, r2 ∈ OD

such that:

1. |1 − r1| = |2|, NzNq ∈ Q∗2
2 and NzN(2tq)−1 ∈ Z∗

2, where z = q − r1qr1.
2. |1 − r2| = |i|, NzNq ∈ Q∗2

2 and NzN(2tq)−1 ∈ Z∗
2, where z = q − r2qr2.

Lemma 4.3. (See Table 3.) Let L = 〈q〉⊥〈4q〉 be a skew-hermitian lattice satisfying the 
conditions in Theorem 3, for q ∈ {j + ij, i + j}. Then there exists r ∈ OD satisfying the 
k-star conditions for L.
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Table 4
Proof of Lemma 4.4.

π r N(1 − r) z NzNiπ

±2 15 + 8ω 5 · 22(1 + 8 · 5−1 · 7) −592iπ + 304iπω 210(1 + 8 · 38)
±10 15 + 8ω 5 · 22(1 + 8 · 5−1 · 7) −592iπ + 304iπω 210 · 52(1 + 8 · 38)

Lemma 4.4. (See Table 4.) Let L = 〈iπ〉⊥〈16iπ〉 be a skew-hermitian lattice satisfying 
the hypothesis in Theorem 3, for π ∈ {±2, ±10} as above. Then, there exists r ∈ OD

satisfying the k-star conditions for L.

Lemma 4.5. There is no r = a + bω + ci + diω ∈ Z ⊕ Zω ⊕ Zi ⊕ Ziω = OD, with 
0 ≤ a, b, d, c < 2t+3 satisfying the k-star conditions for L = 〈q〉⊥〈2tq〉, if t ∈ {3, 4} and 
q ∈ {j + ij, j + i}.

4.2. Proof of Theorem 1 in Case I

Assume Λ = 〈a1〉⊥ · · · ⊥〈an〉, where N(am) ∈ −uQ∗2
2 , for each m = 1, . . . , n and u ∈

Z∗
2 is a unit of non-minimal quadratic defect independent of m. As Z∗

2/Z
∗2
2 = {±1,±5}

and a pure quaternion cannot have reduced norm −1, we have two options for u: u = −5
or u = −1.

In virtue of Lemma 4.1, we consider binary lattices Λ = 〈q〉⊥〈2tq〉, with 1 ≤ t ≤ 4, 
where we can choose any pure quaternion q ∈ O0

D satisfying N(q) ∈ −uQ∗2
2 . Here, q = qu

satisfy N(q) ∈ −uQ∗2
2 , for u running over the set {−5, −1} of units of non-minimal 

quadratic defect. We choose q−5 = j + ij and q−1 = i + j.

Proposition 4.1. Let Λ = 〈a1〉⊥ · · · ⊥〈an〉 be a skew-hermitian lattice such that 
N(a1), . . . , N(an) ∈ −uQ∗2

2 and 0 < μ(Λ) ≤ ν(4). Then H(Λ) = Q∗
2.

Proof. We can assume n = 2 and Λ = 〈qu〉⊥〈2tqu〉, with qu ∈ {q−5, q−1} = {j+ ij, i + j}
and t ∈ {1, 2}. In virtue of Corollary 3.1 it suffices to prove the result for t = 2. Lemma 4.3
tells us that there exists r ∈ OD satisfying the k-star conditions. This is equivalent to 
H(Λ) = Q∗

2 by Theorem 3. �
To handle the cases where μ = ν(8) or μ = ν(16) we use the following result, which 

is used to improve the set of generators B(Λ). The proof is a routine computation.

Lemma 4.6. If r ∈ OD satisfies either of the equations

j + ij = r(j + ij)r̄ + 2tλ(j + ij)λ̄, or i + j = r(i + j)r̄ + 2tλ(i + j)λ̄, (4)

where λ ∈ OD, and t ≥ 2, then 1 − r ∈ iOD.

Lemma 4.7. Let Λ = 〈a1〉⊥〈a2〉 = ODs1⊥ODs2 be a skew-hermitian lattice such that 
N(a1), N(a2) ∈ −uQ∗2

2 and ν(8) ≤ μ(Λ) ≤ ν(16). There exists a lattice L of rank 2
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such that H(L) = H(Λ), and a suitable splitting of L, such that A(L) ∪ Bl(L) generates 
U+
Q2

(L), for l = 1, 2, where B1(L) = {(s; σ) ∈ B(L): |1 − r| = |i|} and B2(L) = {(s; σ) ∈
B(L): |λ| = 1}, with r as in SRGL and λ as in Lemma 2.2.

Proof. By Lemma 4.1 there is a lattice L = ODs1⊥ODs2 = 〈qu〉⊥〈2tqu〉 as above, 
with u ∈ {−5, −1} and t ∈ {3, 4} satisfying H(L) = H(Λ). Let φ ∈ B(L) be such 
that φ(s1) = rs1 + λs2. We have |1 − r| ∈ {|i|, |2|} in virtue of Lemma 4.6. Hence, to 
prove that B1(L) satisfies the required property, it suffices to prove that, if φ satisfies 
|1 − r| = |2|, then there exists (s; σ) ∈ B(L) such that |1 − r′′| = |i| and |1 − r′| = |i|, 
where (s; σ)(s1) = r′s1 + λ′s2 and (s; σ)φ(s1) = r′′s1 + λ′′s2. In this case, there exists a 
second element (s′; σ′) ∈ B1(L) defined by s′ = s1 − (s; σ)φ(s1), σ′ = q(1 − r′′) such that 
(s′; σ′)(s; σ)φ(s1) = s1. In fact, by a computation we have

1 − r′′ = 1 − r +
[
rq
(
1 − r̄′

)
+ 2tλqλ̄′

](
1 − r̄′

)−1
q−1(1 − r′

)
, (5)

λ′′ = λ +
[
rq
(
1 − r̄′

)
+ 2tλqλ̄′

](
1 − r̄′

)−1
q−1λ′. (6)

Lemma 4.2 implies the existence of an element r′ ∈ OD such that |1 − r′| = |i|, 
NzN(2tq) ∈ Q∗2

2 , and NzN(2tq)−1 ∈ Z2, where z = q − r′qr′ and t ∈ {3, 4}. Hence, 
by Lemma 2.2, there exists λ′ ∈ OD, such that q = r′qr′ + 2tλ′qλ′. Then (s; σ), where 
s = (1 − r′)s1 −λ′s2 and σ = q(1 − r̄′), belongs to B1(L) (cf. SRGL). On the other hand, 
as

∣∣[rq(1 − r̄′
)

+ 2tλqλ̄′
](

1 − r̄′
)−1

q−1(1 − r′
)∣∣ =

∣∣rq(1 − r̄′
)

+ 2tλqλ̄′
∣∣

=
∣∣1 − r̄′

∣∣ = |i| (7)

and |1 − r| = |2|, it follows that |1 − r′′| = |i|. In particular, A(L) ∪ B1(L) generates 
U+
Q2

(L).
Now, to prove that A(L) ∪B2(L) generates U+(L), by a similar argument as for B1(L), 

it suffices to prove that, if φ ∈ B(L) satisfies |λ| < 1, there exists (s; σ) ∈ B(L) such that 
|λ′| = 1 and |λ′′| = 1, where λ, λ′, λ′′ are defined by φ, (s; σ) and (s; σ)φ respectively, as 
before. From Eq. (6) we see that |λ′′| = 1 if |λ| < 1 and |λ′| = 1. By Lemma 4.2, there 
exists r′ ∈ OD such that

∣∣1 − r′
∣∣ = |i| or |2|, NzN

(
2tq

)
∈ Q∗2

2 and NzN
(
2tq

)−1 ∈ Z∗
2,

where z = q− r′qr′ and t ∈ {3, 4}. Hence, by Lemma 2.2, there exists λ′ ∈ OD such that 
q = r′qr′+2tλ′qλ′. Then if s = (1 −r′)s1−λ′s2 and σ = q(1 − r̄′), then (s; σ) ∈ B(Λ) (cf.
SRGL), and |λ′| = 1 since NzN(2tq)−1 ∈ Z∗

2. Now, we take |1 − r′| = |i| if |1 − r| = |2|, 
and |1 −r′| = |2| if |1 −r| = |i|, so that |1 −r′|, |1 −r′′| ≥ |2| by (5). The result follows. �
Remark 4.2. Notice that, for a lattice Λ as in the previous lemma, we can replace B(Λ)
by Bl(Λ), for l = 1, 2, in Theorem 3. Hence, since |λ| = 1 for (s; σ) ∈ B2(Λ), we can 
improve the number u in Theorem 4 in virtue of Remark 3.2.
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Proposition 4.2. Let Λ = 〈a1〉⊥〈a2〉 be as in Theorem 3. There exists r ∈ OD satisfying 
the k-star conditions for t ∈ {3, 4} and Na1 ∈ −uQ∗2

2 , with u a unit of non-minimal 
quadratic defect, if and only if there exists α = a +bω+ci +diω ∈ Z ⊕Zω⊕Zi ⊕Ziω = OD, 
with 0 ≤ a, b, c, d < 2t+3, satisfying them.

Combining this result with Theorem 3, Lemma 4.1 and Lemma 4.5, we obtain

Corollary 4.1. Let Λ = 〈a1〉⊥〈a2〉 be a skew-hermitian lattice such that N(a1), N(a2) ∈
−uQ∗2

2 , where u is a unit of non-minimal quadratic defect and μ = ν(a2) −ν(a1) satisfies 
ν(8) ≤ μ ≤ ν(16). Then H(Λ) = N(Q2(a1)∗).

We need the following result to handle ternary lattices Λ with μ(Λ) = ν(8). For the 
sake of generality we state it for an arbitrary dyadic field k.

Lemma 4.8. If |η| = |i| and a1 is a pure unit, then T (2(ηa1η̄)−1a1) ∈ πOk, where T is 
the trace map.

Proof. Set η = iρ, for ρ ∈ O∗
D. Note that a1i ≡ iā1 (mod π), while ρ and ā1 commute 

modulo i. We conclude that ηa1η̄ ≡ −N(ρ)πā1 (mod πi). In other words 1
πηa1η̄ =

−N(ρ)ā1 + ε, where ε ∈ iOD, whence π(ηa1η̄)−1 = −(N(ρ)ā1)−1 + δ = −a1
N(ρa1) + δ, for 

some δ ∈ iOD. Hence

T
(
2(ηa1η̄)−1a1

)
≡ −4a2

1
πN(ρa1)

+ 2
π
T (δa1) (mod π)

and the result follows since δ ∈ iOD implies T (δa1) ∈ πOk. �
Note that if Λ = 〈a1〉⊥ · · · ⊥〈an〉 is a skew-hermitian lattice and (s; σ) ∈ B(Λ), then 

s = (1 − r)sm− s0, for some s0 ∈ ODsm+1⊥ · · · ⊥ODsn. Hence, if m > 1 then (s; σ) fixes 
〈a1〉, so we can assume m = 1 in order to compute spinor norms in the next result.

Proposition 4.3. Let Λ = 〈a1〉⊥ · · · ⊥〈an〉 be a skew-hermitian lattice such that 
N(a1), . . . , N(an) ∈ −uQ∗2

2 , where u is a unit of non-minimal quadratic defect. If 
μ = μ(Λ) satisfies ν(8) ≤ μ ≤ ν(16), then H(Λ) = N(Q2(a1)∗).

Proof when μ = ν(16). In virtue of Lemma 2.1 it suffices to consider rotations (s; σ) ∈
B(Λ) such that |1 − r| = |2| and |λ2| = 1. In this case, Theorem 2 tells us we can set 
n = 2 in the statement of the proposition. For n = 2, because of Lemma 4.7, we can 
replace Λ by a lattice L such that H(L) = H(Λ) and a set of generators of U+

Q2
(L) is 

A(L) ∪ B1(L). It follows that H(Λ) = N(Q2(a1)∗) since rotations in B1(L) have spinor 
norm belonging to N(Q2(a1)∗) in virtue of Lemma 2.1. �
Proof when μ = ν(8). In virtue of Lemma 2.1, any rotation (s; σ) ∈ B(Λ) satisfies 
θ[(s; σ)] ∈ N(Q2(a1)∗)/Q∗2

2 unless one of the following conditions is satisfied:
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1. |1 − r| = |i|, |λ2| = 1,
2. |1 − r| = |2|, |λ2| ∈ {1, |i|}.

As in the previous case, by Theorem 2, when |λ2| = 1 we are reduced to consider binary 
lattices and when |1 − r| = |2|, |λ2| = |i| to study either binary lattices or rank 3 lattices 
with |λ3| = 1. For rank 2 lattices, Corollary 4.1 tells us that H(Λ) = N(Q2(a1)∗). We 
prove that, for rank 3 lattices Λ such that (s; σ) ∈ B(Λ) satisfies |1 − r| = |2|, |λ2| = |i|, 
|λ3| = 1 we also have θ[(s; σ)] ∈ N(Q2(a1)∗)/Q∗2

2 . In fact, in virtue of [2, Lemma 4.3]
we can assume that Λ = 〈a1〉⊥〈8ε2a1〉⊥〈64ε3a1〉, with ε2, ε3 ∈ Z∗

2. Hence, SRGL tells us 
that r, λ2, λ3 ∈ OD, with |1 − r| ≥ |2|, define an element φ ∈ B(Λ) as before if and only 
if they satisfy the relation

z = a1 − ra1r̄ = 8λ2ε2a1λ2 + 64λ3ε3a1λ3.

We can rewrite this equation as z = 8λ3wλ3, where w = ε2ηa1η + 8ε3a1 and η =
λ−1

3 λ2. Remember that, in this case, |λ2| = |i| and |λ3| = 1. Hence, by Lemma 2.2, 
the existence of r, λ2, λ3 satisfying the equation above is equivalent to the existence of 
r, η ∈ OD, with |η| = |i| such that NzN(w) ∈ Q∗2

2 and NzN(8w)−1 ∈ Z2. We know 
that |w| = |2|, so NzN(8w)−1 ∈ Z2 if and only if Nz

28 ∈ Z2. On the other hand, N(w) =
N(ε2ηa1η)N(1 + 8ε(ηa1η)−1a1), where ε = ε−1

2 ε3 ∈ Z∗
2. Here, as |8ε(ηa1η)−1a1| = |4|, 

we can write 8ε(ηa1η)−1a1 = 4εξ with ξ = 2(ηa1η)−1a1 ∈ O∗
D. As we have the relation 

N(1 + 4εξ) = 1 + 4εT (ξ) + 16ε2N(ξ), it follows that N(1 + 4εξ) ∈ Q∗2
2 ∪ 5Q∗2

2 , hence, 
N(ε2ηa1η + 8ε3a1) ∈ N(a1)Q∗2

2 ∪ 5N(a1)Q∗2
2 , where N(w) ∈ 5Na1Q

∗2
2 if and only if 

T (ξ) ≡ 1 (mod 2). The last condition is not satisfied in virtue of Lemma 4.8. Therefore, 
we are reduced to the following result, which is an analogue of Theorem 3: H(Λ) = Q∗

2
if and only if there exists r ∈ OD, with |1 − r| = |2| satisfying the conditions:

(
N(1 − r),−Na1

p

)
= −1, NzNa1 ∈ Q∗2

2 , |z| = |16|.

These are the k-star conditions for 〈a1〉⊥〈16a1〉, and Lemma 4.5 implies that there is no 
r ∈ OD satisfying them. Hence, we conclude that H(Λ) = N(Q2(a1)∗). �
4.3. Proof of Theorem 1 in Case II

By Lemma 4.1, in rank 2 case, we consider lattices Λ of the form 〈iπ〉⊥〈2tiπ〉, where 
ν(4) ≤ t ≤ ν(16), and for every prime π, we set iπ ∈ Ok(j)i such that i2π = π. Remember 
that, if we prove that H(Λ) = Q∗

2, then H(Λ) = Q∗
2 for lattices Λ of arbitrary rank. By 

Corollary 3.1, we can assume t = 4. Hence, the next result follows from Lemma 4.4 and 
Theorem 3:

Proposition 4.4. Let Λ = 〈a1〉⊥ · · · ⊥〈an〉 be a skew-hermitian lattice such that 
N(a1), . . . , N(an) ∈ πQ∗2

2 and 0 < μ(Λ) ≤ ν(16). Then H(Λ) = Q∗
2.
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4.4. Examples

Let consider the family of lattices Λ = 〈i〉⊥〈2ti〉, for t > 0, where D = (2,5
Q

) and 
i2 = 2. D ramifies only at 2 and 5. The lattice Λ is unimodular for p �= 2. We have 
that H(Λp) = Z∗

pQ
∗2
p for p �= 2, in virtue of the computations in [7] (for p �= 5) and [6, 

Theorem 4] (for p = 5). Hence, the spinor class field ΣΛ can ramify only at 2 and ∞, so 
ΣΛ ⊂ Q(

√
−1, 

√
2). Observe that the algebra D decomposes at infinity and the quadratic 

form corresponding to Λ is indefinite. Hence, class and spinor genus of Λ coincide and 
ΣΛ ⊂ R. On the other hand, for p = 2, Table 1 tells us that H(Λ2) = Q∗

2 if t ≤ 4 and 
H(Λ2) = N(Q2(i)∗) if t > 4, whence ΣΛ decomposes at 2 for t ≤ 4 and ramifies at 2 for 
t > 4. We conclude that ΣΛ = Q for t ≤ 4, while ΣΛ = Q(

√
2) for t > 4. In the first case, 

Hasse principle holds for Λ. In the second case, the class number of Λ is 2.
Now consider the family of lattices Λ = 〈i〉⊥〈2ti〉, where D = (−1,−1

Q
) and i2 = −1. 

D ramifies only at 2 and ∞. As before H(Λp) = Z∗
pQ

∗2
p for p �= 2, hence ΣΛ ⊂

Q(
√
−1, 

√
2). Since the form has discriminant 1 it is isotropic and therefore U+

K is non-
compact at infinity. In fact, the same holds for every binary lattice over a quaternion 
algebra ramifying at ∞, since all pure quaternions in the Hamilton Algebra are congru-
ent. Hence, class and spinor genus of Λ coincide also in this case. On the other hand, the 
spinor image is R+ at infinity and, since −1 is a ramified unit at 2, Table 1 tells us that 
ΣΛ = Q for t ≤ 2, while ΣΛ = Q(

√
−1) for t > 2.
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