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Normal modes and acoustic properties of an elastic solid with line defects
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The normal modes of a continuum solid endowed with a random distribution of line defects that behave like
elastic strings are described. These strings interact with elastic waves in the bulk, generating wave dispersion
and attenuation. Explicit formulas are provided that relate these properties to the density of string states. For
a density of states that mimics the boson peak (BP) in amorphous materials, the attenuation as a function of
frequency ω behaves as ω4 for low frequencies, and, as frequency increases, crosses over to ω2 near the BP, and
then to linear in ω. An Ioffe-Regel criterion is satisfied at the BP. Dispersion is negative in the frequency range
where attenuation is quartic and quadratic in frequency, with effective velocity reaching a minimum near the
BP. Continuum mechanics can thus be applied to both crystalline materials and their amorphous counterparts
at similar length scales. The possibility of linking this model with the microstructure of amorphous materials is
discussed.
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I. INTRODUCTION

The normal modes of a continuum elastic solid can be
easily counted using the classical theory of elasticity. However,
since there is no intrinsic length scale, an artificial short
distance cutoff must be introduced in order to obtain a finite
result for the total number of modes of a given material. The
Debye model does that, imposing a high frequency cutoff,
the Debye frequency ωD , so that the resulting total number
of degrees of freedom equals the number of degrees of
freedom inferred from the number of atoms in the solid. This
provides a firm underpinning, at wavelengths long compared to
interatomic spacing, for all properties of solids that depend on
the counting on such modes. If the solid is crystalline, a similar
counting can also be performed, exploiting the invariance of
the system under discrete translations. This counting reduces
to that provided by the Debye model at long wavelengths and
provides, as well, a firm underpinning for properties at shorter
wavelengths, down to the size of the unit cell.

The situation for amorphous solids, without a discrete
translation invariance, has long been unsatisfactory. While
at long wavelengths the situation is well described, as
expected, by the Debye model, at wavelengths on the order
of tens of mean interatomic distances, abundant evidence,
from specific heat [1], thermal conductivity [2], Raman
scattering [3], neutron scattering [4], and inelastic x-ray
scattering measurements [5], points to the existence of normal
modes with a frequency distribution that is peaked around
0.1ωD–0.2ωD . This distribution is qualitatively similar for
many such materials, and the details, but not the broad features,
depend on external parameters such as temperature, density,
and pressure, as well as chemical and thermal history [6–15].
This distribution, dubbed the “boson peak” (BP), cannot be
blamed on a (nonexistent) crystalline structure and deviates
without ambiguity from the distribution for a continuum,
at frequencies where the continuum approximation works
reasonably well in the case of crystals. Much research has
been performed in order to provide some rationale for this
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state of affairs [16–23]. Nevertheless, it does not seem unfair
to say that no satisfactory understanding exists yet, although
significant insights have been obtained through large-scale
(∼107 particles) simulations with Lennard-Jones [24] and soft
sphere [25] potentials and through inelastic x-ray scattering
experimental studies of SiO2 glasses and crystals [26].

In addition to the above, Rufflé et al. discovered that,
at low frequencies, acoustic attenuation as a function of
frequency ω behaves like ω4 in densified silica [27] and in
lithium diborate [28], and more recent experiments [29–34]
have provided a detailed measurement of the properties of
acoustic waves in amorphous materials at wavelengths that
probe length scales around the BP. Unexpected behavior for
dispersion and attenuation has been uncovered, and the thought
naturally comes to mind that whatever the physical mechanism
is that gives rise to the BP, it should also explain the acoustic
behavior at THz frequencies. This paper provides one such
possible explanation, together with an answer to the following
question: How can continuum mechanics, at similar length
scales, be made to work similarly well for crystals and for
their amorphous counterparts?

II. THE MODEL AND ITS DENSITY OF STATES

At THz frequencies, continuum mechanics provides an
adequate description for the vibrational degrees of freedom of
crystals. It is proposed that it should also provide an adequate
explanation for amorphous materials: Consider then an elastic
isotropic solid, as in the Debye model, with cL and cT the
speed of propagation of longitudinal and transverse waves,
respectively. In addition, this solid may have line defects that
can be thought of as elastic strings endowed with mass per
unit length m ∼ ρb2 and line tension T ∼ μb2, where ρ is the
mass density of the bulk, μ is its shear modulus, and b is a
distance on the order of a typical interatomic spacing. These
line defects can be pinned segments of length L that can vibrate
around a straight equilibrium position, or circular loops that
can oscillate, moving along the mantle of a cylinder around
a circular equilibrium position (Fig. 1). The precise physical
nature of these line defects is delayed for later discussion. The
fact that they are defects is used to relate m with ρ and T with
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FIG. 1. Line defects in a continuum elastic solid. (Left) An elastic
string of length L with pinned ends that can oscillate around a straight-
line equilibrium position. (Right) An elastic circular string of radius
R that can oscillate around a circular equilibrium position, along the
mantle of a circular cylinder with generator b. Only the case of a
straight line is considered in the present paper; results for the circle
are qualitatively similar.

μ. As a result, the speed of propagation of elastic waves along
the strings, cS , is of the same order of magnitude as cL and cT .

To start with a simple description, assume that only the
fundamental mode of vibration of the strings is relevant,
ignoring higher harmonics. The strings have a length L

with a distribution of such lengths: Let p(L)dL be the
number of strings per unit volume with length between
L and L + dL. The assumption that only the fundamental
mode, with frequency ω1, counts means there is a one-to-one
correspondence between ω1 and L and leads to a string density
of states gS(ω1) (number of states per unit frequency per unit
volume) given by gS(ω1)dω1 ≡ p(L)dL. The total density of
states g(ω) of this model solid is

g(ω) = gD(ω) + gS(ω), (1)

where gD(ω) = 3ω2/2c3π2 is the Debye distribution, with
3c−3 ≡ c−3

L + 2c−3
T . For later convenience, we normalize the

distribution gS to gD and frequencies to the Debye frequency,

gS(ω) ≡ g̃(ω̃)gD(ω), (2)

where ω̃ ≡ ω/ωD , so g(ω) = gD[1 + g̃(ω̃)].

III. ACOUSTIC PROPERTIES

An elastic string will oscillate in response to loading by
an elastic wave. These oscillations will, in turn, generate
secondary, scattered waves, a process that has been studied
in great detail by Maurel et al. [35–37]. The dynamics is
described by the string displacements X(s,t) away from its
equilibrium position X0, where s is a Lagrangian parameter to
label string points and t is time. The displacement X satisfies
an elastic string equation [38],

mẌ(s,t) + BẊ(s,t) − T X′′(s,t) = μb Mlk∇luk( �X0,t), (3)

with B a phenomenological viscous damping coefficient and
∇luk( �X0,t) the gradient of the displacement �u(�x,t) associated
with the incoming wave, evaluated at the string equilibrium
position �x = �X0. An overdot denotes differentiation with
respect to time t , and a prime denotes differentiation with
respect to s. The motion X ≡ �X · t̂ is along a plane spanned
by the tangent τ̂ to the string and a normal t̂ . Until further
notice, B is an adjustable parameter of the model. However,
we take it to be small, in a sense made more precise later,
so that we have underdamped string oscillations and it makes

FIG. 2. Line defects, randomly distributed and oriented, have an
effect on the properties of an acoustic wave, here depicted as a set
of planes incident from the left. Attenuation is given by Eq. (14),
and velocity dispersion is given by Eq. (17). Their lengths have a
distribution that, through the frequency of their fundamental mode of
oscillation, translates to a frequency distribution.

sense to speak of its modes of vibration. The binormal is
n̂ ≡ τ̂ × t̂ and Mlk ≡ tlnk + tknl. The right-hand side of (3)
is the Peach-Koehler force for line dislocations in elastic
continua. This coupling ensures that only the shear modulus,
and not the bulk modulus, will become frequency dependent,
a fact that has been observed in the numerical simulations of
Maruzzo et al. [25].

We now wish to consider the interaction of acoustic waves
with many such strings, randomly distributed and randomly
oriented (Fig. 2). We assume all positions to be equally
likely, as well as all orientations. Lengths, however, have a
distribution p(L). An elastic wave progressing through this
medium will attenuate, and will propagate with a frequency-
dependent velocity, both for longitudinal as well as transverse
polarizations. In the following we treat the transverse case, for
which the effect is stronger [35]. This is also in agreement with
the measurements of Chumakov et al. [39] that link the BP of
a glass with the transverse acoustic van Hove singularity of its
crystalline counterpart.

A. A toy model: All strings have the same length

In order to get physical insight we consider first the
idealized case of all strings having the same length. This is
the same as bunching all excess modes within the BP under a
δ function,

gS(ω) = nδ(ω − ω1), (4)

where n is the total number of strings of length L per unit
volume and ω1 =

√
(πcS/L)2 − (B/2m)2.

1. Attenuation and the Ioffe-Regel limit

(a) Attenuation. The attenuation coefficient �T is given by
(in units of frequency)

�T = n cT σT (L), (5)

where σT is the total scattering cross section for a transverse
wave by a single defect. It will, in general, depend on the
relative orientation of the string and the incident wave, so we
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take the average value. The resulting average cross section
is [35]

σT (L) = 16L2

25π5

(
ρb2

m

)2
ω4

[ω2 − (πcS/L)2]2 + ω2B2/m2
.

(6)

Taking m = ρb2/π and cT = cS ≡ c, we have that (5) and (6)
lead to

�T = 16

25π4
nL3

(
cπ

L

)
ω4

[ω2 − (cπ/L)2]2 + ω2B2/m2
. (7)

It is apparent that the attenuation �T as a function of frequency
ω behaves as ω4 for low frequencies, that is, when ω � cπ/L.
When ω ∼ cπ/L, that is, when ω2 ∼ ω2

1 + (B/2m)2, which
is near, and slightly above the BP for small B/2mω1, the
attenuation behaves like frequency squared: �T ∼ ω2. This
is in agreement with measurements on densified silica [27],
lithium diborite [28], glycerol [29], sorbitol [30,34], and
silica [31–33]. At higher frequencies the attenuation reaches a
maximum, decreases, and flattens out at a constant asymptotic
value when ω � cπ/L and ω � B/m.

Note that expression (7) depends on three independent
string parameters: density n, length L, and attenuation
frequency B/m. The qualitative behavior discussed in the
previous paragraph is independent of their numerical values,
as long as the attenuation parameter B is small.

(b) Ioffe-Regel limit. Thermal conductivity measurements
indicate that the BP is also a frequency at which phonons lose
their propagating character due to the condition, the Ioffe-
Regel (IR) limit, that mean free path 	 becomes smaller than
wavelength [23,40,41]. More precisely, if k is wave number,
the IR condition is k	 ∼ 1. In our notation, 	−1 = nσT (L), so
that the IR criterion means �T = ω. Using (6) this translates
into

16

25π4
n′ ω′3

(ω′2 − 1)2 + ω′2b′2 = 1, (8)

where b′ ≡ (B/m)/(πc/L), ω′ ≡ ω/(πc/L), and n′ ≡ nL3.
How does this condition constrain the model?

Equation (8) can be thought of as an equation for ω′ that
depends on string length and density, through n′, and string
attenuation b′. Remember that b′ < 1 for the underdamped
strings we are considering. The left-hand side of (8) has a
maximum at ω′ ∼ 1, the same frequency where the attenuation
behaves as ω2. If n′ is very small or b′ not small enough, the
equality (8) will not be satisfied. Introducing ω′ = 1 into (8)
provides a threshold for these two parameters:

b′2 = 16

25π4
n′. (9)

If we take n′ = nL3 ∼ 1, that is, an ensemble of strings
separated by a mean distance comparable to their length, this
condition is satisfied by b′ ∼ 0.1, a reasonable value. Lower
(higher) densities imply also lower (higher) attenuations. At
these values of the parameters, the attenuation at the BP
becomes

�|ω∼ω1 ∼ πc

L
(10)

up to corrections of order b′2. For a BP located at one-tenth
of the Debye frequency, this translates into an attenuation
at that level as well, in rough agreement with experimental
measurements.

To conclude this section, the BP frequency coincides
with the IR frequency for reasonable values of the model
parameters.

2. Dispersion relation for transverse acoustic waves

The scattering by strings also modifies the coherent behav-
ior of acoustic waves, a phenomenon that has been studied by
Maurel et al. [42]. Their result, obtained through a multiple
scattering formalism, is that the velocity of propagation cT is
renormalized to an effective, frequency-dependent velocity vT

given by

vT = cT

(
1 + 4nL

5π2

ρb2

m
c2
T

(ω2 − (πcS/L)2)

(ω2 − (πcS/L)2)2 + ω2B2/m2

)

= cT

(
1 + 4n′

5π3

(ω′2 − 1)

(ω′2 − 1)2 + ω′2b′2

)
, (11)

where the second line uses the same notation as in (8).
In the limit of very low frequencies, ω′ → 0,

vT → cT

(
1 − 4n′

5π3

)
.

That is, the strings have an effect on the speed of transverse
acoustic waves even at very low frequencies.

As the frequency increases, vT decreases until it reaches a
minimum,

vT min ≈ cT

(
1 − 4n′

5π3

1

2b′

)
, (12)

when ω′2 = 1 − b′, that is, for the small string dampings we
are hypothesizing, near and slightly below the BP. Negative
velocity dispersion of this kind, up to frequencies comparable
to the BP, has been observed in glycerol [29], silica [33], and
sorbitol [34].

B. A distribution of lengths

The BP is not a δ function, but a set of modes distributed
over a frequency interval. Within the present model, as
discussed in Sec. II, this corresponds to an ensemble of strings
with a distribution of lengths p(L). The attenuation coefficient
�T will now be given by (in units of frequency) [42]

�T = cT

∫
σT (L)p(L)dL, (13)

where σT is the total scattering cross section for a transverse
wave by a single defect. Using (2), (6), ω2

1 = (πcS/L)2 −
(B/2m)2, and m = ρb2/π , Eq. (13) becomes

�̃T (ω̃) = 24ω̃4

25π3

∫
g̃(ω̃1)ω̃2

1dω̃1

A(ω̃1)B(ω̃,ω̃1)
, (14)

with b̃ ≡ B/mωD,�̃T ≡ �T /ωD , and

A(ω̃1) ≡ ω̃1
2 + b̃2/4, (15)

B(ω̃,ω̃1) ≡ (ω̃2 − ω̃1
2 − b̃2/4)2 + ω̃2b̃2. (16)
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Equation (14) establishes a clear relation between the
degrees of freedom responsible for the BP and the degrees
of freedom responsible for acoustic attenuation: Indeed, they
are one and the same. At low frequencies, there is a ω̃4

Rayleigh behavior, as expected for attenuation produced by
the scattering from objects much smaller than wavelength and
as observed experimentally [27–29,32]. At higher frequencies,
there is a crossover to ω̃2 behavior, as observed experimentally
as well [29,32]. Also, the magnitude of the attenuation is
proportional to the magnitude of the BP and its exact functional
behavior depends on the parameters of the density of states, as
well as the viscous damping b̃.

The effective velocity becomes, similarly,

vT ≈ cT

{
1 + 1

π2

∫
[ω̃2 − A(ω̃1)] g̃(ω̃1) ω̃2

1 dω̃1

A(ω̃1)1/2B(ω̃,ω̃1)

}
(17)

in terms of dimensionless, scaled, variables. The string degrees
of freedom introduce a dispersion term into the effective
velocity of acoustic waves. Equation (17) establishes a clear
relation between the dispersion term and the density of states
responsible for the BP. At low frequencies dispersion is
negative, and it changes sign at about the same frequency
that the attenuation (14) behaves as ω̃2, as observed experi-
mentally [29,33,34]. The amount of dispersion is proportional
to the amplitude of the BP.

In formulas (14) and (17), the distribution g̃(ω̃) of the
degrees of freedom responsible for the BP appears within
an integral sign. Consequently, the resulting attenuation and
velocity dispersion will be fairly insensitive to the small-scale
details of the BP.

IV. POSSIBLE VALUES FOR MODEL PARAMETERS

In order to get a better understanding of the relation between
line defects, density of states and acoustics that is being
proposed, consider a BP in which the density of states follows
a log-normal distribution:

g̃(ω̃1) = 2π2

3ω̃2
1

nc3

ω3
D

1√
2π σ ω̃1

e−[ln(ω̃1)−μ̃]2/2σ 2
. (18)

This distribution depends on three parameters—n, μ̃, and σ—
that determine the location, magnitude, and width of the BP.
It reduces to (4) when the variance vanishes: σ → 0. The BP
will be located at the mode of this distribution, ω̃1 = eμ̃−3σ 2

.
The attenuation (14) and the effective velocity (17) become,
respectively,

�̃T (ω̃)

ω̃2
= 16

25π

nc3

ω3
D

ω̃2
∫

dω̃1
L(ω̃1)

A(ω̃1)B(ω̃,ω̃1)
(19)

and

vT (ω̃)

cT

− 1 = 2

3

nc3

ω3
D

∫
[ω̃2 − A(ω̃1)]L(ω̃1)dω̃1

A(ω̃1)1/2B(ω̃,ω̃1)
, (20)

with

L(ω̃1) ≡ 1√
2π σ ω̃1

e−[ln(ω̃1)−μ̃]2/2σ 2
. (21)

It is easy to see that the parameter n satisfies∫
gS(ω)dω =

∫
p(L)dL = n,

so it is the total number of line defects per unit volume, and
the average length of the line defects is

〈L〉 ≡
∫

Lp(L)dL∫
p(L)dL

= πc

ωD

∫ L(ω̃1)dω̃1

A(ω̃1)1/2
. (22)

The coefficient in front of the integral sign is of the order of the
interatomic spacing—call it a ≡ πc/ωD—so the mean defect
length will be around ten interatomic spacings.

We have four parameters—n, μ̃, σ , and b̃—and the fol-
lowing experimental facts need to be explained. (i) Typically,
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FIG. 3. Density of states (bottom panel) associated with a
distribution of strings of varying lengths, given by (18) with
μ̃ = −1.8971 = ln(0.15), σ = 0.35, and na3 = 0.01. Attenuation �̃

(middle panel) given by Eq. (19) and effective velocity vT (top panel)
given by Eq. (20), for b̃ = 0.01 (dotted lines), 0.008 (dashed lines),
and 0.006 (solid lines). The IR criterion, �̃ = ω̃ at the BP, is satisfied
for b̃ = 0.006. These different values of b̃ have almost no influence
on the effective velocity. All frequencies are in units of ωD .
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the magnitude of the BP is a factor of about 2 over the Debye
density of states (DOS), it is located at about 0.1 ωD , and
has a width of about 0.05 ωD . (ii) Attenuation starts out as
∼ω4 at low frequencies and crosses over to ∼ω2 near the BP.
(iii) Around the BP, attenuation (in units of frequency) is at
the level of a few percent of ωD . (iv) Also around the BP,
the IR criterion, attenuation of the same order of frequency
�̃ ∼ ω̃, is satisfied. (v) There is a velocity dip, due to negative
dispersion, at the level of 10% of the low-frequency value,
again near the BP. In other words, the acoustic velocity as a
function of frequency starts at a constant value, then has a
negative dispersion (the velocity decreases as the frequency
increases) as the BP frequencies are approached, and then
acoustic velocity increases with frequency.

Figure 3 shows a DOS given by (18) with μ̃ = −1.8971 =
ln(0.15), σ = 0.35, and na3 = 0.01, or about one string per
100 atoms. This satisfies the requirements (i) and (ii) above.
Now, in principle, b̃ could be different for different string
lengths, i.e., a function of ω̃. To start with the simplest
possibility, we assume that it is the same for all strings,
b̃ � 0.01. The resulting acoustic attenuation, given by (19),
and velocity dispersion, given by (20), for these values of the
parameters are shown in Fig. 3 as well. The magnitude of the
effects appears to be in order-of-magnitude agreement with
experimental observations, as required by (iii) and (v), and the
IR criterion is met with b̃ = 0.006, satisfying (iv).

V. POSSIBILITY OF A RELATION TO THE
MICROSTRUCTURE OF AMORPHOUS MATERIALS

The analysis that has been carried out here is wholly within
a continuum mechanics approximation. How could the results
be linked with the structure of amorphous materials at the
atomic scale? In the case of crystals, Volterra dislocations in
a continuum seamlessly blend to dislocations in a crystalline
structure, the latter providing a specific value for their Burgers
vector. These line defects, at least in small-enough numbers,
break the short-range order but not the long-range order. The
existence of crystallographic slip planes allows for the large-
scale motion of these defects, which explains crystal plasticity.
Could line defects, microscopically well defined, exist in
amorphous materials, without slip planes? Point defects are
well known and are responsible for important technological
properties [43]. Indeed, the possibility of specific vitreous state
defects as a source of BP vibrations has been explored [44–46].
Could such point defects be arranged in a necklace to give rise
to a line defect? At least there does not appear to be an argument
of a general nature (say, energetic, entropic, or topologic) to
rule out their existence. Alternatively, line defects arranged in
knots would also destroy the slip planes.

The connection of the BP to one-dimensional elastic
objects has been considered before: Karpov [47] studied the
possibility that acoustic waves propagate along closed looplike
trajectories, as a consequence of the randomness of the sound
velocity, leading to a DOS that competes with that of phonons,
and Novikov and Surotsev [48] have shown that Raman
scattering in glasses is consistent with BP vibrations belonging
to a one-dimensional spatial structure.

From a different point of view, it has been well established,
through numerical simulation, that atomic displacements in
amorphous Lennard-Jones, silica, and silicon are split into
affine and nonaffine modes [49–54]. The possibility arises that
the line defects envisaged here are responsible for the nonaffine
modes. In addition, Vural and Legget [55] have developed
a formalism that blames the low-temperature properties of
amorphous materials on a splitting of acoustic properties into
phonon and nonphonon modes, a distinction that is similar
in spirit to what is carried out here. Finally, signatures of
collective stringlike motion in supercooled liquids in computer
simulations have also been found [56,57]. A microscopic link
to the line defects envisaged in this paper could provide a
useful tool to understand the behavior of the BP as a function of
external control parameters such as temperature and pressure.

VI. DISCUSSION AND OUTLOOK

A model has been proposed, within the framework
of continuum mechanics, that links the BP in amorphous
materials to the properties of acoustic waves in interaction with
line defects. This approach bears some similarity to the classic
treatment of the quantum hydrodynamics of superfluid helium
and atomic Bose-Einstein condensates through (quantized)
vortex lines [58–60]. It also provides an answer to the
long-standing question of how to apply continuum mechanics,
at similar length scales, both to crystals and to their amorphous
counterparts. In the present work, the degrees of freedom
responsible for the BP are taken to be the vibrations of line
defects around an equilibrium position; they are also respon-
sible for acoustic attenuation and dispersion. Figure 3 shows
an example of the effect of a given DOS on attenuation and
dispersion. As expected, a larger number of defects provides
a higher effect. Dispersion behaves as ω4 at low frequencies,
then crosses over to ω2 at frequencies ωBP comparable to the
BP, and then, at even higher frequencies, to linear in ω. The IR
criterion is satisfied at the BP. The velocity of acoustic waves
has a negative dispersion at low frequencies and then increases
as a function of frequency around ωBP. Notice that the defects
have an effect even at low frequencies, suggesting the model
can be tested, say, using resonant ultrasound spectroscopy
(RUS), a tool that has been used to measure dislocation
densities in polycrystalline materials [61,62], or hyper sound
damping in the subteraherz range, as measured in vitreous
silica [63,64]. Additional possible topics for further research
include a numerical, atomistic study of the hypothesized linear
defects; the effect they would have on thermal and electrical
conductivity properties, particularly at very low temperatures,
where quantum effects would be dominant; and the role they
may or may not have in plasticity properties and in the glass
transition.
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