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recovering a potential in a semi-discrete wave equation, discretized by finite differ-
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stability results, when compared with their continuous counterparts, include new 
terms depending on the discretization parameter h. From these stability results, we 
design a numerical method to compute convergent approximations of the continuous 
potential.
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r é s u m é

A partir d’inégalités de Carleman pour des équations aux dérivées partielles 
dicrétisées elliptiques et hyperboliques, on étudie la stabilité Lipschitz et logarith-
mique du problème inverse de détermination du potentiel dans une équation des 
ondes semidiscrétisée, par un schéma aux différences finies sur un maillage 2-d uni-
forme, à partir de mesures internes ou frontières. Quand ils sont comparés avec leur 
contrepartie continue, les résultats de stabilité dans le cadre discret contiennent de 
nouveaux termes dépendants du pas h du maillage utilisé. C’est à partir de ces résul-
tats qu’on donne une méthode numérique de calcul d’approximations convergentes 
du potentiel continu.
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1. Introduction

The goal of this article is to study the convergence of an inverse problem for the wave equation, which 
consists in recovering a potential through the knowledge of the flux of the solution on a part of the boundary. 
This article follows the previous work [2] on that precise topic in the 1-d case.

1.1. The continuous inverse problem

Setting. We will first present the main features of the continuous inverse problem we consider in this article. 
Let Ω be a smooth bounded domain of Rd, and for T > 0, consider the wave equation:⎧⎪⎨⎪⎩

∂tty − Δy + qy = f, in (0, T ) ×Ω,

y = f∂ , on (0, T ) × ∂Ω,

y(0, ·) = y0, ∂ty(0, ·) = y1, in Ω.

(1.1)

Here, y = y(t, x) is the amplitude of the waves, (y0, y1) is the initial datum, q = q(x) is a potential, f is a 
distributed source term and f∂ is a boundary source term.

In the following, we explicitly write down the dependence of the function y solution of (1.1) in terms of q
by denoting it y[q] and similarly for the other quantities depending on q.

We assume that the initial datum (y0, y1) and the source terms f and f∂ are known. We also assume the 
additional knowledge of the flux

M [q] = ∂νy[q] on (0, T ) × Γ0, (1.2)

where Γ0 is a non-empty open subset of the boundary ∂Ω and ν is the unit outward normal vector on ∂Ω. 
Note that for this map to be well-defined, we need to give a precise functional setting: for instance, we may 
assume (y0, y1) ∈ H1(Ω) × L2(Ω), f ∈ L1((0, T ); L2(Ω)), f∂ ∈ H1((0, T ) × ∂Ω) and y0|∂Ω = f∂(t = 0) so 
that M is well-defined for all q ∈ L∞(Ω) and takes value in L2((0, T ) × ∂Ω), see e.g. [27].

This article is about the recovering the potential q from M [q]. As usual when considering inverse problems, 
this topic can be decomposed into the following questions:

• Uniqueness: Does the measurement M [q] uniquely determine the potential q?
• Stability: Given two measurements M [qa] and M [qb] which are close, are the corresponding potentials 

qa and qb close?
• Reconstruction: Given a measurement M [q], can we design an algorithm to recover the potential q?

Concerning the precise inverse problem we are interested in, the uniqueness result is due to [11] and we shall 
focus on the stability properties of the inverse problem (1.1). The question of stability has attracted a lot 
of attention and is usually based on Carleman estimates. There are mainly two types of results: Lipschitz 
stability results, see [25,31,32,38,22,1,23,3,35], provided the observation is done on a sufficiently large part 
of the boundary and the time is large enough, or logarithmic stability results [4,6] when the observation set 
does not satisfy any geometric requirement. We also mention the works [5,12] for logarithmic stability of 
inverse problems for other related equations.

Below we present more precisely these two type of results, since our main goal will be to discuss discrete 
counterparts in these two cases.

Lipschitz stability results under the Gamma-conditions. Getting Lipschitz stability results for the continuous 
inverse problem usually requires the following assumptions, originally due to [18]. We say that the triplet 
(Ω, Γ, T ) satisfy the Gamma-conditions (see [29]) if
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• (Ω, Γ ) satisfies the geometric condition:

∃x0 ∈ R
N \Ω,

{
x ∈ ∂Ω, s.t. (x− x0) · ν(x) ≥ 0

}
⊂ Γ, (1.3)

• T satisfies the lower bound:

T > sup
x∈Ω

|x− x0|. (1.4)

In [1], following the works [21,20], the next stability result was proved:

Theorem 1.1. (See [1].) Let m > 0 and consider a potential qa ∈ L∞(Ω) with ‖qa‖L∞(Ω) ≤ m, and assume 
for some K > 0 the regularity condition

y
[
qa
]
∈ H1(0, T ;L∞(Ω)

)
with

∥∥y[qa]∥∥
H1(0,T ;L∞(Ω)) ≤ K, (1.5)

where y[qa] denotes the solution of (1.1) with potential qa. Let us further assume that (Ω, Γ0, T ) satisfies 
the Gamma-conditions (1.3), (1.4) and the following positivity condition:

∃α0 > 0, inf
x∈Ω

∣∣y0(x)
∣∣ ≥ α0. (1.6)

Then there exists a constant C > 0 depending on m, K and α0 such that for all qb ∈ L∞(Ω) satisfying 
‖qb‖L∞(Ω) ≤ m, we have M [qa] − M [qb] ∈ H1(0, T ; L2(Γ0)), and

1
C

∥∥qa − qb
∥∥
L2(Ω) ≤

∥∥M
[
qa
]
− M

[
qb
]∥∥

H1(0,T ;L2(Γ0))
≤ C

∥∥qa − qb
∥∥
L2(Ω). (1.7)

Besides, if ω is a neighborhood of Γ0, i.e. for some δ > 0, {x ∈ Ω, d(x, Γ0) < δ} ⊂ ω, we also have 
∂ty[qa] − ∂ty[qb] ∈ H1((0, T ) × ω) and

1
C

∥∥qa − qb
∥∥
L2(Ω) ≤

∥∥∂ty[qa]− ∂ty
[
qb
]∥∥

H1((0,T )×ω) ≤ C
∥∥qa − qb

∥∥
L2(Ω). (1.8)

Remark 1.2. Note that in Theorem 1.1, we do not give assumptions on the smoothness of the data y0, y1, f , 
f∂ directly. They rather appear through the bound K in (1.5) in an intricate way. Also note that estimate 
(1.8) is not written in [1], but the proof of (1.8) follows line to line the one of (1.7).

Logarithmic stability results under weak geometric condition. Let us now explain what can be done when 
the geometric part (1.3) of the Gamma conditions is not satisfied. In this case, to our knowledge, the best 
result available is due to [4]. Below, we state a slightly improved version of it:

Theorem 1.3. (See [4], revisited.) Assume that there exist an open subset Γ1 ⊂ ∂Ω of the boundary ∂Ω and 
an open subset O of Ω such that:

• Γ0 ⊂ Γ1 and (Ω, Γ1) satisfies the condition (1.3);
• O contains a neighborhood of Γ1 in Ω, i.e. for some δ > 0,

{
x ∈ Ω, d(x, Γ1) < δ

}
⊂ O. (1.9)

Let qa be a potential lying in the class Λ(Q, m) defined for Q ∈ L∞(O) and m > 0 by
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Λ(Q,m) =
{
q ∈ L∞(Ω), s.t. q|O = Q and ‖q‖L∞(Ω) ≤ m

}
. (1.10)

Let y0 ∈ H1(Ω) satisfying the positivity condition (1.6) and assume that y[qa] satisfies the regularity condi-
tion

y
[
qa
]
∈ H1(0, T ;L∞(Ω)

)
∩W 2,1(0, T ;L2(Ω)

)
. (1.11)

Let α > 0 and M > 0. Then there exists C > 0 such that for T > 0 large enough, for all qb ∈ Λ(Q, m)
satisfying

qa − qb ∈ H1
0 (Ω) and

∥∥qa − qb
∥∥
H1

0 (Ω) ≤ M, (1.12)

we have M [qa] − M [qb] ∈ H1(0, T ; L2(Γ0)) and

∥∥qa − qb
∥∥
L2(Ω) ≤ C

[
log

(
2 + C

‖M [qa] − M [qb]‖H1(0,T ;L2(Γ0))

)]− 1
1+α

. (1.13)

Besides, the constant C depends on m in (1.10), M in (1.12), α0 in (1.6), a priori bounds on ‖y0‖H1(Ω) +
‖y[qa]‖H1(0,T ;L∞(Ω))∩W 2,1(0,T ;L2(Ω)) and the geometric setting (Γ0, Γ1, O, Ω).

To be more precise, [4] states the previous result with α = 1 and under slightly stronger geometric and 
regularity conditions. Since Theorem 1.3 states a slightly better result than the one in [4], we will prove it in 
Section 3. Similarly as in [4], we will work on the difference y[qa] −y[qb] and use the Fourier–Bros–Iagoniltzer 
transform which links solutions of the wave equation with solutions of an elliptic PDE, but instead of 
considering the usual Gaussian transform as in [4] (see also [33,34]), we will consider the one used in [28]
(see also [6,30]). We will thus be led to prove a quantified unique continuation result for an elliptic PDE, 
which we derive using a classical Carleman estimate ([19]). Nevertheless, we will do it in a somewhat different 
way as the one in [34,30] by constructing one global weight which allows to prove Theorem 1.3 without the 
use of iterated three spheres inequalities. The proof of Theorem 1.3 will then be completed by the use of 
the stability estimates (1.8).

Objectives. Our goal is to derive counterparts of Theorem 1.1 and Theorem 1.3 for the finite-difference space 
approximations of the wave equation discretized on a uniform mesh. In order to give precise statements, 
we need to introduce several notations listed in the next section. For simplicity of notations, we make the 
choice of focusing on the unit square in the 2-d case

Ω = (0, 1)2, (1.14)

though our methodology applies similarly in the case of the d-dimensional domains of rectangular form 
Ω =

∏d
j=1[aj , bj ] (still discretized on a uniform mesh). Note that, even if we stated Theorems 1.1 and 1.3

for smooth bounded domains, both theorems also hold in the case of a domain Ω = (0, 1)2.

1.2. Some notations in the discrete framework

Here, we introduce the notations corresponding to the case of a finite-difference discretization of the wave 
equation on a uniform mesh. Let N ∈ N be the number of interior points in each direction, and h = 1/(N+1)
the mesh size. All the notations introduced in the discrete setting will be indexed by the parameter h > 0
to avoid confusion with the continuous case.



L. Baudouin et al. / J. Math. Pures Appl. 103 (2015) 1475–1522 1479
Fig. 1. Main discrete notations in Ω = (0, 1) × (0, 1).

Discrete domains. We introduce the following (see also an illustration in Fig. 1):

Ωh = {h, 2h, . . . , Nh}2, Ωh = {0, h, 2h, . . . , Nh, 1}2,

∂Ωh =
((
{0} ∪ {1}

)
× {h, . . . , Nh}

)
∪
(
{h, . . . , Nh} ×

(
{0} ∪ {1}

))
,

Γ−
h,1 = {0} × {h, . . . , Nh}, Γ−

h,2 = {h, . . . , Nh} × {0},

Γ+
h,1 = {1} × {h, . . . , Nh}, Γ+

h,2 = {h, . . . , Nh} × {1},

Γ−
h = Γ−

h,1 ∪ Γ−
h,2, Γ+

h = Γ+
h,1 ∪ Γ+

h,2, ∂Ωh = Γ−
h ∪ Γ+

h ,

Ω−
h,1 = Ωh ∪ Γ−

h,1, Ω−
h,2 = Ωh ∪ Γ−

h,2, Ω−
h = Ω−

h,1 ∩Ω−
h,2. (1.15)

Note that this naturally introduces two representations of the discrete set Ωh. We will use alternatively 
xh ∈ Ωh or (i, j) ∈ �0, N + 1�2 (where �a, b� = [a, b] ∩ N) to denote the point xh = (ih, jh), the advantage 
of the first writing being its consistency with the continuous model.

Discrete integrals. By analogy with the continuous case, if we denote by fh = (f(xh))xh∈Ωh
, respectively 

fh = (f(xh))xh∈Ω−
h,1

, fh = (f(xh))xh∈Ω−
h,2

, a discrete function, we will use the following shortcuts:

ˆ

Ωh

fh =
ˆ

Ωh

fi,j = h2
N∑

i,j=1
fi,j ;

ˆ

Ω−
h,1

fh = h2
N∑
i=0

N∑
j=1

fi,j ;
ˆ

Ω−
h,2

fh = h2
N∑
i=1

N∑
j=0

fi,j . (1.16)

One should notice that if these symbols are applied to continuous functions or products of discrete and 
continuous functions, they have to be understood as the corresponding Riemann sums.

When considering integrals on the boundary ∂Ωh, we use the natural scale for the boundary and we 
define, for fh a discrete function on ∂Ωh,

ˆ

∂Ωh

fh = h
∑

xh∈∂Ωh

f(xh). (1.17)

Subsets. In several places, we will consider open subsets O, ω ⊂ Ω and we then note Oh = O ∩ Ωh, 
Oh = {x ∈ Ω, d(x, O) ≤ h} ∩ Ωh, O−

h,k = {x ∈ Ω, ∃ε ∈ [0, h], , x + εek ∈ O} ∩ Ω−
h,k, and similarly for the 

sets ωh, ωh and ω−
h,k (notice that these sets are always non-empty for h small enough). Integrals on these 

discrete approximations of open subsets of Ω are given for fh discrete functions on Oh as follows:
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ˆ

Oh

fh =
ˆ

Ωh

fh1Oh
,

ˆ

O−
h,k

fh =
ˆ

Ω−
h,k

fh1O−
h,k

, (1.18)

and similarly for the integrals on ωh, ω−
h,k.

When considering open subsets Γ of the boundary ∂Ω, we will similarly set Γh = Γ ∩ ∂Ωh, and the 
integrals on these discrete approximations of subsets of the boundary will be given by

ˆ

Γh

fh =
ˆ

∂Ωh

fh1Γh
.

Discrete Lp-spaces. We also define in a natural way a discrete version of the Lp(Ω)-norms as follows: for 
p ∈ [1, ∞), we introduce Lp

h(Ωh) (respectively Lp
h(Ω−

h,1)) the space of discrete functions fh = (fi,j)i,j∈�1,N�, 
(respectively i ∈ �0, N�, j ∈ �1, N�) endowed with the norms

‖fh‖pLp
h(Ωh) =

ˆ

Ωh

|fh|p
(

resp. ‖fh‖pLp
h(Ω−

h,1)
=

ˆ

Ω−
h,1

|fh|p
)
, (1.19)

and, for p = ∞, ‖fh‖L∞
h (Ωh) = supi,j∈�1,N� |fi,j |, (resp. ‖fh‖L∞

h (Ω−
h,1)

= supi∈�0,N�;j∈�1,N� |fi,j |).
We define the spaces Lp

h(Ω−
h,2), L

p
h(Oh) and Lp

h(ωh) for open subsets O, ω ⊂ Ω in a similar way. We also 
define discrete norms on parts of the boundary: if Γ is an open subset of ∂Ω, the space Lp

h(Γh), (p ∈ [1, ∞)) 
is the set of discrete functions fh defined on Γh endowed with the norm

‖fh‖pLp
h(Γh) =

ˆ

Γh

|fh|p.

Discrete operators. We approximate the Laplace operator by the 5-points finite-difference approximation: 
∀(i, j) ∈ �1, N�2,

(Δhvh)i,j = 1
h2 (vi+1,j + vi,j+1 + vi−1,j + vi,j − 4vi,j). (1.20)

Besides the discrete Laplacian Δh, let us also introduce the following discrete operators:

(mh,1vh)i,j = vi+1,j + 2vi,j + vi−1,j

4 ; (mh,2vh)i,j = vi,j+1 + 2vi,j + vi,j−1

4 ;(
m+

h,1vh
)
i,j

=
(
m−

h,1vh
)
i+1,j = vi+1,j + vi,j

2 ;
(
m+

h,2vh
)
i,j

=
(
m−

h,1vh
)
i+1,j = vi,j + vi,j+1

2 ;

(∂h,1vh)i,j = vi+1,j − vi−1,j

2h ; (∂h,2vh)i,j = vi,j+1 − vi,j−1

2h ; ∇h =
(
∂h,1
∂h,2

)
;

(
∂+
h,1vh

)
i,j

=
(
∂−
h,1vh

)
i+1,j = vi+1,j − vi,j

h
;

(
∂+
h,2vh

)
i,j

=
(
∂−
h,2vh

)
i,j+1 = vi,j+1 − vi,j

h
;

(Δh,1vh)i,j = vi+1,j − 2vi,j + vi−1,j

h2 ; (Δh,2vh)i,j = vi,j+1 − 2vi,j + vi,j−1

h2 .

We finally introduce the following semi-discrete wave operator:

�h = ∂tt − Δh = ∂tt − Δh,1 − Δh,2.

Spaces of more regularity. We will use the space H1
h(Ωh) of discrete functions fh defined on Ωh endowed 

with the norm
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‖fh‖2
H1

h(Ωh) = ‖fh‖2
L2

h(Ωh) +
∑
k=1,2

∥∥∂+
h,kfh

∥∥2
L2

h(Ω−
h,k).

We also denote H1
0,h(Ωh) the set of functions fh defined on Ωh and vanishing on ∂Ωh endowed with the 

above norm.
Note down that H1

h(Ωh) and H1
0,h(Ωh) denote spaces of functions defined on Ωh. We decided to slightly 

abuse the notations by denoting them that way, since the topology of these spaces is strong enough to define 
the trace operators.

Similarly, when ω is a non-empty open subset of Ω, we denote by H1
h(ωh) the set of discrete functions 

fh defined in ωh endowed with the norm

‖fh‖2
H1

h(ωh) = ‖fh‖2
L2

h(ωh) +
∑
k=1,2

∥∥∂+
h,kfh

∥∥2
L2

h(ω−
h,k).

We finally introduce H2
h(Ωh) the set of discrete functions fh defined on Ωh endowed with the norm

‖fh‖2
H2

h(Ωh) = ‖fh‖2
H1

h(Ωh) + ‖Δh,1fh‖2
L2

h(Ωh) + ‖Δh,2fh‖2
L2

h(Ωh) +
∥∥∂+

h,1∂
+
h,2fh

∥∥2
L2(Ω−

h ).

Besides, with an abuse of notations, we will often denote L2(0, T ; H1
h(Ωh)) ∩ H1(0, T ; L2

h(Ωh)) by
H1

h((0, T ) ×Ωh) and the space H2(0, T ; L2
h(Ωh)) ∩H1(0, T ; H1

h(Ωh)) ∩L2(0, T ; H2
h(Ωh)) by H2

h((0, T ) ×Ωh).

Extension and restriction operators. Finally, we shall explain how to compare discrete functions with con-
tinuous ones. In order to do so, we introduce extension and restriction operators.

The first one extends discrete functions by continuous piecewise affine functions and is denoted by eh. 
To be more precise, if fh is a discrete function (fi,j)i,j∈�0,N+1�, the extension eh(fh) is defined on [0, 1]2 for 
(x1, x2) ∈ [ih, (i + 1)h] × [jh, (j + 1)h] by

eh(fh)(x1, x2) =
(

1 − x1 − ih

h

)(
1 − x2 − jh

h

)
fi,j +

(
x1 − ih

h

)(
1 − x2 − jh

h

)
fi+1,j

+
(

1 − x1 − ih

h

)(
x2 − jh

h

)
fi,j+1 +

(
x1 − ih

h

)(
x2 − jh

h

)
fi+1,j+1. (1.21)

This extension presents the advantage of being naturally in H1(Ω). The second extension operator is the 
piecewise constant extension e0

h(fh), defined for discrete functions fh = (fi,j)i,j∈�1,N� by

e0
h(fh) = fi,j on [(i− 1/2)h, (i + 1/2)h[×[(j − 1/2)h, (j + 1/2)h[, i, j ∈ �1, N�,

e0
h(fh) = 0 elsewhere. (1.22)

This one is natural when dealing with functions lying in L2(Ω) as ‖e0
h(fh)‖L2(Ω) = ‖fh‖L2

h(Ωh). Also note 
that easy (but tedious) computations show that eh(fh) converge to f in L2(Ω) if and only if e0

h(fh) converge 
to f in L2(Ω).

We finally introduce restriction operators rh, r̃h and rh,∂Ω where rh is defined for continuous function 
f ∈ C(Ω) by

rh(f) = fh given by fi,j = f(ih, jh), ∀i, j ∈ �1, N�,

r̃h for functions f ∈ L2(Ω) by
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r̃h(f) = fh given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi,j = 1
h2

ˆ ˆ

|x1−ih|≤h/2
|x2−jh|≤h/2

f(x1, x2) dx1dx2, ∀i, j ∈ �1, N�

fi,j = 1
2h2

ˆ ˆ

|x1−ih|≤h/2
|x2−jh|≤h/2
(x1,x2)∈Ω

f(x1, x2) dx1dx2, ∀xh = (ih, jh) ∈ ∂Ωh

and rh,∂Ω for functions f∂ ∈ L2(∂Ω) by

rh,∂Ω(f∂)(xh) = 1
h

ˆ

|x−xh|≤h/2,
x∈∂Ω

f∂(x)dσ for xh ∈ ∂Ωh.

1.3. The semi-discrete inverse problem and main results

We discretize the usual 2-d wave equation on Ω = (0, 1)2 using the finite difference method on a uniform 
mesh of mesh size h > 0. Using the above notations, this leads to the following equation:⎧⎪⎨⎪⎩

∂ttyh − Δhyh + qhyh = fh in (0, T ) ×Ωh,

yh = f∂,h on (0, T ) × ∂Ωh,

yh(0) = y0
h, ∂tyh(0) = y1

h in Ωh.

(1.23)

Here, yh(t, xh) is an approximation of the solution y of (1.1) in (t, xh), Δh approximates the Laplace operator 
and we assume that (y0

h, y
1
h) are the initial sampled data (y0, y1) at xh, and f∂,h ∈ L2(0, T ; L2

h(∂Ωh)) and 
fh ∈ L1(0, T ; L2

h(Ωh)) are discrete approximations of the boundary and source terms f∂ and f .
Our main goal is to establish the convergence of the discrete inverse problems for (1.23) toward the 

continuous one for (1.1) in the sense developed in [2]. Let us rapidly present what kind of results should be 
expected.

The natural idea to compute an approximation of the potential q in (1.1) from the boundary measurement 
M [q] is to try to find a discrete potential qh such that the measurement

Mh[qh] = ∂νeh
(
yh[qh]

)
on (0, T ) × Γ0 (1.24)

where yh[qh] is the solution of (1.23), and eh is the piecewise affine extension defined in (1.21), approximates 
M [q] defined in (1.2). We are thus asking the following:

if one finds a sequence qh of discrete potentials such that Mh[qh] converges towards M [q] as h → 0 (in a 
suitable topology), can we guarantee that the sequence qh converges (in a suitable topology) towards q ?

As it is classical in numerical analysis – this is the so-called Lax theorem for the convergence of numerical 
schemes – such result can be achieved using the consistency and the uniform stability of the problem. In 
our context, even if the consistency requires some work, the stability issue is much more intricate since even 
in the continuous case it is based on Carleman estimates. Here, stability refers to the possibility of getting 
bounds of the form ∥∥e0

h

(
qah − qbh

)∥∥
∗ ≤ C

∥∥Mh

[
qah
]
− Mh

[
qbh
]∥∥

#, (1.25)

where e0
h is the piecewise constant extension defined in (1.22), and the norms ‖ · ‖∗ and ‖ · ‖# have to be 

precised, for some positive constant C independent of h.
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As we already pointed out in [2] in the 1-d case, a stability estimate of the form (1.25) is far from obvious 
and actually, instead of getting an estimate like (1.25), we proposed a slightly modified observation operator 
M̃h for which we prove uniform stability estimates and the convergence of the inverse problem.

Hence the main difficulty in obtaining convergence results is to derive suitable stability estimates for the 
discrete inverse problem under consideration. We will thus state convergence results for the discrete inverse 
problems in the forthcoming Theorem 1.6, while the main part of the article focuses on the proof of stability 
estimates for the discrete inverse problem set on (1.23) stated hereafter in Theorems 1.4 and 1.5.

1.3.1. Discrete stability results

Discrete Lipschitz stability. Since we assumed Ω = (0, 1)2, the condition (1.3) will be satisfied by a set 
Γ0 ⊂ ∂Ω if and only if Γ0 contains two consecutive edges, and in this case the time T in (1.4) can be taken 
to be any T >

√
2. Thus, with no loss of generality, when the Gamma-conditions (1.3), (1.4) are satisfied, 

we can focus on the study of the case

Ω = (0, 1)2, Γ0 ⊃ Γ+ =
(
{1} × (0, 1)

)
∪
(
(0, 1) × {1}

)
, T >

√
2. (1.26)

When the measurement is done on a part of the boundary Γ0 satisfying the above conditions, we will prove 
the following counterpart of Theorem 1.1:

Theorem 1.4 (Lipschitz stability under Gamma-conditions). Assume that (Ω, Γ0, T ) satisfy the configuration 
(1.26). Let m > 0, K > 0, α0 > 0, and qah ∈ L∞

h (Ωh) with ‖qah‖L∞
h (Ωh) ≤ m. Assume also that y0

h and the 
solution yh[qah] of (1.23) with potential qah satisfy

inf
Ωh

∣∣y0
h

∣∣ ≥ α0 and
∥∥yh[qah]∥∥H1(0,T ;L∞

h (Ωh)) ≤ K. (1.27)

Then there exists a constant C = C(T, m, K, α0) > 0 independent of h such that for all qbh ∈ L∞
h (Ωh) with 

‖qbh‖L∞
h (Ωh) ≤ m, the following uniform stability estimate holds:

∥∥qah − qbh
∥∥
L2

h(Ωh) ≤ C
∥∥Mh

[
qah
]
− Mh

[
qbh
]∥∥

H1(0,T ;L2
h(Γ0,h))

+ Ch
∑
k=1,2

∥∥∂+
h,k∂ttyh

[
qah
]
− ∂+

h,k∂ttyh
[
qbh
]∥∥

L2(0,T ;L2
h(Ω−

h,k)), (1.28)

where yh[qbh] is the solution of (1.23) with potential qbh.
Similarly, if ω is a neighborhood of Γ+, i.e. there exists δ > such that

(
(1, 1 − δ) × (0, 1)

)
∪
(
(0, 1) × (1 − δ, 1)

)
⊂ ω, (1.29)

then there exists a constant C = C(T, m, K, α0, δ) > 0 independent of h such that for all qbh ∈ L∞
h (Ωh) with 

‖qbh‖L∞
h (Ωh) ≤ m, the following uniform stability estimate holds:

∥∥qah − qbh
∥∥
L2

h(Ωh) ≤ C
∥∥∂tyh[qah]− ∂tyh

[
qbh
]∥∥

H1(0,T ;L2
h(ωh))

+ C
∑
k=1,2

∥∥∂+
h,k∂tyh

[
qah
]
− ∂+

h,k∂tyh
[
qbh
]∥∥

L2(0,T ;L2
h(ω−

k,h))

+ Ch
∑
k=1,2

∥∥∂+
h,k∂ttyh

[
qah
]
− ∂+

h,k∂ttyh
[
qbh
]∥∥

L2(0,T ;L2
h(Ω−

h,k)). (1.30)
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When comparing Theorem 1.4 with Theorem 1.1, one immediately sees that estimate (1.28) is a reinforced 
version of (1.7) due to the additional term

Ch
∑
k=1,2

∥∥∂+
h,k∂ttyh

[
qah
]
− ∂+

h,k∂ttyh
[
qbh
]∥∥

L2(0,T ;L2
h(Ω−

h,k)). (1.31)

This was already observed in [2] for the corresponding 1-d inverse problems, and is remanent from the fact 
that observability estimates for the discrete wave equations do not hold uniformly if they are not suitably 
penalized, see [24,39,14]. Note in particular that as h → 0 and under suitable convergence assumptions, this 
term vanishes and allows to recover the left hand side inequality of (1.7) by passing to the limit in (1.28). 
Theorem 1.4 is proved in Section 2.4. Following the proof of its continuous counterpart Theorem 1.1, the 
main issue is to derive a discrete Carleman estimate for the wave operator (Theorem 2.1), as it was already 
done in [2] in the 1-d setting. Though the proof of this discrete Carleman estimate is very close to the one 
in 1-d, the dimension 2 introduces new cross-terms involving discrete operators in space that require careful 
computations. Note however that our proof also applies in higher dimension when the domain is a cuboid 
discretized on uniform meshes as this would involve similar terms. Actually, this has already been done in 
the context of elliptic equations, see [8].

Discrete logarithmic stability. Since we limit ourselves to the case Ω = (0, 1)2, we may assume that Γ0 is 
a (non-empty) subset of one edge and that the counterpart of Γ1 appearing in Theorem 1.3 satisfying the 
Gamma conditions (1.3) is formed by two consecutive edges. Due to the invariance by rotation, with no loss 
of generality, we may thus assume:

Ω = (0, 1)2, Γ0 ⊂ {1} × (0, 1), Γ1 = Γ+ =
(
{1} × (0, 1)

)
∪
(
(0, 1) × {1}

)
. (1.32)

Theorem 1.5 (Logarithmic stability under weak geometric conditions). Assume that the triplet (Ω, Γ0, Γ1)
satisfy the geometric configuration (1.32) and the existence of an open set O ⊂ Ω such that

• O contains a neighborhood ω of Γ1 in Ω, i.e. such that (1.29) holds.
• the potential qh is known on ∂Ωh and in Oh, where it takes the value Qh ∈ L∞

h (Oh).

Let qah be a potential lying in the class Λh(Qh, m) defined for Qh ∈ L∞
h (Oh) and m > 0 by

Λh(Qh,m) =
{
qh ∈ L∞

h (Ωh), s.t. qh|Oh
= Qh and ‖qh‖L∞

h (Ωh) ≤ m
}
. (1.33)

Let α0 > 0, M > 0 and α > 0. Assume also that y0
h ∈ H1

h(Ωh) and the solution yh[qah] of (1.23) with potential 
qah satisfy the conditions

inf
Ωh

∣∣y0
h

∣∣ ≥ α0 and yh
[
qa
]
∈ H1(0, T ;L∞

h (Ωh)
)
∩W 2,1(0, T ;L2

h(Ωh)
)
. (1.34)

Then there exist C > 0 and h0 > 0 such that for T > 0 large enough, for all h ∈ (0, h0), for all
qbh ∈ Λh(Qh, m) satisfying

qah − qbh ∈ H1
0,h(Ωh) and

∥∥qah − qbh
∥∥
H1

0,h(Ωh) ≤ M, (1.35)

we have
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∥∥qah − qbh
∥∥
L2

h(Ωh) ≤ Ch1/(1+α) + C

[
log

(
2 + C

‖Mh[qah] − Mh[qbh]‖H1(0,T ;L2(Γ0))

)]− 1
1+α

+ Ch
∑
k=1,2

∥∥∂+
h,k∂ttyh

[
qah
]
− ∂+

h,k∂ttyh
[
qbh
]∥∥

L2(0,T ;L2
h(Ω−

h,k)). (1.36)

Besides, the constant C depends on the constants m, M in (1.35), α0 in (1.34), an a priori bound on 
‖y0

h‖H1
h(Ωh) + ‖yh[qah]‖H1(0,T ;L∞

h (Ωh))∩W 2,1(0,T ;L2
h(Ωh)), and on the geometric configuration.

When compared with the corresponding continuous result of Theorem 1.3, the stability estimate (1.36)
contains two extra terms: the penalization term (1.31) and the new term Ch1/(1+α).

The proof of (1.36), given in Section 3, follows the same path as in the continuous case and combines the 
stability results obtained in the case where the Gamma conditions are satisfied with stability results obtained 
for solutions of the wave equation through a Fourier–Bros–Iagoniltzer transform and a Carleman estimate 
for elliptic operators due to [7,8]. Hence, the penalization term (1.31) is remanent from Theorem 1.4. But 
the term Ch1/(1+α) comes from the fact that the parameters within the discrete Carleman estimates cannot 
be made arbitrarily large and should be at most at the order of 1/h. This fact has already been observed 
in several articles in the elliptic case, see [7,8,13], see also [9] in the parabolic case. We also refer to [26] for 
a previous work related to the convergence of the quasi-reversibility method.

1.3.2. Discrete convergence results
The stability results of the previous Theorems 1.4 and 1.5 suggest to introduce the observation operators 

M̃h = M̃h{y0
h, y

1
h, fh, f∂,h} defined for h > 0 by

M̃h : L∞
h (Ωh) → L2(0, T ;L2(Γ0)

)
× L2((0, T ) ×Ω

)
,

qh �→
(
∂νeh

(
yh[qh]

)
, h∇xeh

(
∂ttyh[qh]

))
, (1.37)

where yh[qh] is the solution of (1.23) with potential qh and data y0
h, y

1
h, fh, f∂,h and eh is the piecewise 

affine extension defined in (1.21). Corresponding to the case h = 0, we introduce its continuous analogous 
M̃0 = M̃0{y0, y1, f, f∂}:

M̃0 : L∞(Ω) → L2(0, T ;L2(Γ0)
)
× L2((0, T ) ×Ω

)
,

q �→
(
∂νy[q], 0

)
, (1.38)

where y[q] is the solution of (1.1). Recall that according to [27], this map M̃0 is well defined on L∞(Ω) for 
data (

y0, y1, f, f∂
)
∈ H1(Ω) × L2(Ω) × L1((0, T );L2(Ω)

)
×H1((0, T ) × ∂Ω

)
,

with y0|∂Ω = f∂(t = 0), (1.39)

that we shall always assume in the following:
Remark that with these notations, the quantities∥∥Mh

[
qah
]
− Mh

[
qbh
]∥∥

H1((0,T );L2
h(Γ0,h)) + h

∑
k=1,2

∥∥∂+
h,k∂ttyh

[
qah
]
− ∂+

h,k∂ttyh
[
qbh
]∥∥

L2((0,T )×Ω−
h,k)

and ∥∥M̃h

[
qah
]
− M̃h

[
qbh
]∥∥

1 2 2
H (0,T ;L (Γ0))×L ((0,T )×Ω)
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are equivalent, uniformly with respect to the parameter h > 0. Hence the stability results in Theorems 1.4
and 1.5 easily recast into stability results for M̃h.

Our convergence result is then the following:

Theorem 1.6 (Convergence of the inverse problem). Let q ∈ H1 ∩ L∞(Ω) and assume that we know q∂ =
q|∂Ω. Let the data (y0, y1, f, f∂) follow conditions (1.39) and the positivity condition infΩ |y0| ≥ α0 > 0. 
Furthermore, assume that the trajectory y[q] solution of (1.1) satisfies

y[q] ∈ H2(0, T ;H1(Ω)
)
∩H1(0, T ;H2(Ω)

)
. (1.40)

We can construct discrete sequences (y0
h, y

1
h, fh, f∂,h), such that if we assume either

• (Ω, Γ0, T ) satisfy the configuration (1.26), and in this case we define Xh = L∞
h (Ωh),

or

• (Ω, Γ0, Γ+) satisfy the configuration (1.32), T > 0 is large enough, q is known on O, neighborhood of 
Γ+, and takes the value q|O = Q, and we define

Xh =
{
qh ∈ L∞

h (Ωh) s.t. qh|Oh
= r̃h(Q),

and qh, extended on ∂Ωh by qh|∂Ωh
= rh,∂Ω(q∂), belongs to H1

h(Ωh)
}
,

that we endow with the L∞(Ωh) ∩H1
h(Ωh)-norm,

then
– there exists a sequence (qh)h>0 ∈ Xh of potentials such that

lim sup
h→0

‖qh‖Xh
< ∞, and lim

h→0

∥∥M̃h[qh] − M̃0[q]
∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω) = 0, (1.41)

– for all sequence (qh)h>0 ∈ Xh of potentials satisfying (1.41), we have

lim
h→0

∥∥e0
h(qh) − q

∥∥
L2(Ω) = 0.

Let us briefly comment the assumptions of Theorem 1.6, which might seem much stronger compared to the 
ones for the stability results in Theorems 1.4 and 1.5. This is due to the consistency of the inverse problem, 
detailed in Lemma 4.3, which requires to find discrete potentials such that the corresponding solutions of 
the discrete wave equation (1.23) belongs to H1(0, T ; L∞(Ω)). But this class is not very natural for the wave 
equation, and we will thus rather look for the class H1(0, T ; H2(Ω)), which embeds into H1(0, T ; L∞(Ω))
according to Sobolev’s embeddings (since Ω ⊂ R

2). This is actually the only place in the article which truly 
depends on the dimension.

It may also seem surprising to assume the knowledge of q on the boundary even in the configuration 
(1.26), for which Theorem 1.4 applies with only an L∞

h (Ωh)-norm on the potential. This is actually due 
to the fact that the knowledge of q|∂Ω is hidden in the regularity assumptions on y[q]. Indeed, if y[q] is 
smooth and satisfies (1.1), we may write ∂tty(0, x) = Δy0(x) − q(x)y0(x) + f(0, x) for all x ∈ Ω and in 
particular x ∈ ∂Ω, whereas ∂tty(0, x) = ∂ttf∂(0, x) for x ∈ ∂Ω. In particular, since y0 does not vanish on 
the boundary, these two identities imply that q|∂Ω can be immediately deduced from the knowledge of y0, 
f and f∂ for sufficiently smooth solutions, see Remark 4.5.
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Details on the derivation of Theorem 1.6 are given in Section 4, with a particular emphasis on the related 
consistency issues. In particular, Lemma 4.3 explains how to derive the discrete data y0

h, y1
h, fh and f∂,h

from the data y0, y1, f , f∂ and q|∂Ω .

1.4. Outline

Section 2 will be devoted to the establishment of a uniform semi-discrete hyperbolic Carleman estimates 
in two-dimensions, including the boundary observation case in Theorem 2.1 and the distributed observation 
case in Theorem 2.2. We will then derive from these tools the discrete stability result of Theorem 1.4. 
In Section 3, we will present a revisited version of Theorem 1.3 based on a global elliptic Carleman es-
timate and follow the same strategy to establish the discrete stability result of Theorem 1.5, that relies 
on a global uniform semi-discrete elliptic Carleman estimate due to [8]. Finally, Section 4 will gather the 
proof of Theorem 1.6, some informations about the Lax type argument, and a detailed discussion about
consistency issues.

2. Application of hyperbolic Carleman estimates

In this section, we discuss uniform Carleman estimates for the 2-d space semi-discrete wave operator 
discretized using the finite difference method and applications to stability issues for discrete wave equations. 
These discrete results are closely related to the study of the 1-d space semi-discrete wave equation one can 
read in [2]. Actually, our methodology (here and in [2]) goes back to the articles [7,8] where uniform Carleman 
estimates were derived for elliptic operators.

2.1. Discrete Carleman estimates for the wave equation in a square

The proofs of the results stated here will be presented in Sections 2.2 and 2.3.
Recall that we assume the geometric configuration

Ω = (0, 1)2, Γ0 ⊃ Γ+ =
(
{1} × (0, 1)

)
∪
(
(0, 1) × {1}

)
. (2.1)

Carleman weight functions. Let a > 0, xa = (−a, −a) /∈ Ω = [0, 1]2, and β ∈ (0, 1). In [−T, T ] × [0, 1]2, we 
define the weight functions ψ = ψ(t, x) and ϕ = ϕ(t, x) as

ψ(t, x) = |x− xa|2 − βt2 + c0, ϕ(t, x) = eμψ(t,x), (2.2)

where c0 > 0 is such that ψ ≥ 1 on [−T, T ] × [0, 1]2 and μ ≥ 1 is a parameter.

Uniform discrete Carleman estimates: the boundary case. One of the main results of this article is
the following:

Theorem 2.1. Assume the configuration (2.1) for Ω and Γ+. Let a > 0, β ∈ (0, 1) in (2.2) and T > 0. There 
exist τ0 ≥ 1, μ ≥ 1, ε > 0, h0 > 0 and a constant C = C(τ0, μ, T, ε, β) > 0 independent of h > 0 such that 
for all h ∈ (0, h0) and τ ∈ (τ0, ε/h), for all wh satisfying⎧⎪⎨⎪⎩

�hwh ∈ L2(−T, T ;L2
h(Ωh)),

w0,j(t) = wN+1,j(t) = wi,0(t) = wi,N+1(t) = 0 ∀t ∈ (−T, T ), i, j ∈ �0, N + 1�,

wi,j(±T ) = ∂twi,j(±T ) = 0 ∀i, j ∈ �0, N + 1�,

(2.3)

we have
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τ

T̂

−T

ˆ

Ωh

e2τϕh |∂twh|2 dt + τ
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,kwh

∣∣2 dt + τ3
T̂

−T

ˆ

Ωh

e2τϕh |wh|2 dt

≤ C

T̂

−T

ˆ

Ωh

e2τϕh |�hwh|2 dt + Cτ
∑
k=1,2

T̂

−T

ˆ

Γ+
h,k

e2τϕh
∣∣∂−

h,kwh

∣∣2 dt + Cτh2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k∂twh

∣∣2 dt,
(2.4)

where ϕh is defined as the approximation of ϕ given by ϕh(t) = rhϕ(t) for t ∈ [0, T ].
Besides, if wh(0, xh) = 0 for all xh ∈ Ωh, we also have

τ1/2
ˆ

Ωh

e2τϕh(0)∣∣∂twh(0, xh)
∣∣2 ≤ C

T̂

−T

ˆ

Ωh

e2τϕh |�hwh|2 dt

+ Cτ
∑
k=1,2

T̂

−T

ˆ

Γ+
h,k

e2τϕh
∣∣∂−

h,kwh

∣∣2 dt + Cτh2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k∂twh

∣∣2 dt. (2.5)

The proof of Theorem 2.1 will be given later in Section 2.2. It is very similar to the one of [2, Theo-
rem 2.2] but more intricate. The continuous counterpart of Theorem 2.1 is given in [3, Theorem 2.1 and 
Theorem 2.10], and very close versions of it can be found in [21,20]. However, two main differences with 
respect to the corresponding continuous Carleman estimates appear:

• The parameter τ is limited from above by the condition τh ≤ ε: this restriction on the range of the 
Carleman parameter always appear in discrete Carleman estimates, see [7,8,2,13]. This is related to the fact 
that the conjugation of discrete operators with the exponential weight behaves as in the continuous case 
only for τh small enough, since for instance

eτϕ∂h
(
e−τϕ

)
� −τ∂xϕ only for τh small enough.

• There is an extra term in the right hand-side of (2.4), namely

τh2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k∂twh

∣∣2 dt (2.6)

that cannot be absorbed by the left hand-side terms of (2.4). This is not a surprise as this term already 
appeared in the Carleman estimates obtained for the waves in the 1-d case, see [2, Theorem 2.2], and 
also in the multiplier identity [24]. As it has been widely studied in the context of the control of discrete 
wave equations (see e.g. the survey articles [39,14]), this term is needed since the discretization process 
creates spurious frequencies that do not travel at the velocity prescribed by the continuous dynamics (see 
also [36]). Also note that this additional term only concerns the high-frequency part of the solutions, since 
the operators h∂+

h,1, h∂
+
h,2 are of order 1 for frequencies of order 1/h, whereas it can be absorb by the right 

hand-side of (2.4) for scale O(1/h1−ε) for all ε > 0 by choosing h sufficiently small.

Uniform discrete Carleman estimates: the distributed case. The usual assumption in the distributed case for 
getting Carleman estimates in the continuous setting (see [20]) is that the observation set ω is a neighborhood 
of a part of the boundary satisfying the Gamma condition (1.3). Since in our geometric setting Ω = (0, 1)2, 
with no loss of generality we may assume that there exists δ > 0 such that (1.29) holds. Under these 
conditions, we show:
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Theorem 2.2. Assume the configuration (1.29) for ω. We then set

ωh = Ωh ∩ ω, ω−
h,k = Ω−

h,k ∩ ω, k ∈ {1, 2}.

Let a > 0, β ∈ (0, 1) in (2.2) and T > 0. There exist τ0 ≥ 1, μ ≥ 1, ε > 0, h0 > 0 and a constant 
C = C(τ0, μ, T, ε, β) > 0 independent of h > 0 such that for all h ∈ (0, h0) and τ ∈ (τ0, ε/h), for all wh

satisfying (2.3),

τ

T̂

−T

ˆ

Ωh

e2τϕh |∂twh|2 dt + τ
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,kwh

∣∣2 dt + τ3
T̂

−T

ˆ

Ωh

e2τϕh |wh|2 dt

≤ C

T̂

−T

ˆ

Ωh

e2τϕh |�hwh|2 dt + Cτh2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k∂twh

∣∣2 dt (2.7)

+ Cτ

T̂

−T

ˆ

ωh

e2τϕh |∂twh|2 dt + Cτ
∑
k=1,2

T̂

−T

ˆ

ω−
h,k

e2τϕh
∣∣∂+

h,kwh

∣∣2 dt + Cτ3
T̂

−T

ˆ

ωh

e2τϕh |wh|2 dt,

where ϕh(t) = rhϕ(t) for t ∈ [0, T ]. Besides, if wh(0, xh) = 0 for all xh ∈ Ωh, the term

τ1/2
ˆ

Ωh

e2τϕh(0)∣∣∂twh(0, xh)
∣∣2

is also bounded by the right hand side of (2.8).

Of course, Theorem 2.2 shares the same features as Theorem 2.1. Actually, Theorem 2.2 is a corollary of 
Theorem 2.1, and we postpone its proof to Section 2.3.

2.2. Proof of the discrete Carleman estimate – boundary case

Proof of Theorem 2.1. The proof of estimate (2.4) is long and follows the same lines as [2, Theorem 2.2]. 
In particular, the main idea is to work on the conjugate operator

Lhvh := eτϕh�h

(
e−τϕhvh

)
. (2.8)

The precise computation of Lh already involves tedious computations summed up below:
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Proposition 2.3. The conjugate operator Lh can be written in the following way:

Lhvh = ∂ttvh − 2τμϕ∂tψ∂tvh + τ2μ2ϕ2(∂tψ)2vh − τμ2ϕ(∂tψ)2vh − τμϕ(∂ttψ)vh

−
∑
k=1,2

(1 + A0,k)Δh,kvh + 2τμ
∑
k=1,2

A1,k∂h,kvh −
∑
k=1,2

(
τ2μ2A2,k − τμ2A3,k − τμA4,k

)
vh,

(2.9)

where the coefficients A�,k are given, for (t, xh) ∈ (−T, T ) ×Ωh and e1 = (1, 0), e2 = (0, 1), by

A1,k(t, xh) = 1
2

1ˆ

−1

[ϕ∂xk
ψ]
(
t, xh + σhek

)e−τϕ(t,xh+σhek)

e−τϕ(t,xh) dσ, (2.10)

A2,k(t, xh) =
1ˆ

−1

(
1 − |σ|

)[
ϕ2(∂xk

ψ)2
](
t, xh + σhek

)e−τϕ(t,xh+σhek)

e−τϕ(t,xh) dσ, (2.11)

A3,k(t, xh) =
1ˆ

−1

(
1 − |σ|

)[
ϕ(∂xk

ψ)2
](
t, xh + σhek

)e−τϕ(t,xh+σhek)

e−τϕ(t,xh) dσ, (2.12)

A4,k(t, xh) =
1ˆ

−1

(
1 − |σ|

)
[ϕ∂xkxk

ψ]
(
t, xh + σhek

)e−τϕ(t,xh+σhek)

e−τϕ(t,xh) dσ, (2.13)

A0,k = h2

2
(
τ2μ2A2,k − τμ2A3,k − τμA4,k

)
. (2.14)

In particular, these functions A�,k defined on [0, T ] ×Ωh can be extended on [0, T ] ×Ω in a natural way by 
the formulas (2.10)–(2.13) and satisfy the following property: setting

f0,k = 0, f1,k = ϕ∂xk
ψ, f2,k = ϕ2(∂xk

ψ)2, f3,k = ϕ(∂xk
ψ)2, f4,k = ϕ∂xkxk

ψ,

for some constants Cμ depending on μ but independent of τ and h, we have

‖A�,k − f�,k‖C2([0,T ]×Ω) ≤ Cμτh, ∀� ∈ {0, . . . , 4}, ∀k ∈ {1, 2}. (2.15)

The proof of Proposition 2.3 can be easily deduced from the detailed one in [2, Propositions 2.7, 2.8 
and Lemma 2.9, 2.10] and the details are left to the reader. Note in particular that (2.15) implies for all 
(�, k) ∈ �0, 4� × {1, 2},

‖A�,k − rhf�,k‖L∞((0,T );L∞
h (Ωh)) +

∑
k′=1,2

∥∥∂+
h,k′A�,k − rh∂xf�,k

∥∥
L∞((0,T );L2

h(Ω−
h,k′ ))

+ ‖ΔhA�,k − rhΔf�,k‖L∞((0,T );L∞
h (Ωh)) ≤ Cμτh.

Afterwards, one step of the usual way to prove a Carleman estimate is to split Lh into two operators Lh,1
and Lh,2, that, roughly speaking, corresponds to a decomposition into a self-adjoint part and a skew-adjoint 
one. To be more precise, using the notations

A2 = A2,1 + A2,2, A3 = A3,1 + A3,2, A4 = A4,1 + A4,2,

we set
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Lh,1vh = ∂ttvh −
∑
k=1,2

(1 + A0,k)Δh,kvh + τ2μ2(ϕ2(∂tψ)2 −A2
)
vh, (2.16)

Lh,2vh = (α1 − 1)τμ(ϕ∂ttψ −A4)vh − τμ2(ϕ|∂tψ|2 −A3
)
vh

− 2τμ
(
ϕ∂tψ∂tvh −

∑
k=1,2

A1,k∂h,kvh

)
, (2.17)

Rhvh = α1τμ(ϕ∂ttψ −A4)vh, with α1 = β + 1
β + 2 , (2.18)

so that we have Lh,1v + Lh,2v = Lhv + Rhv. Here, Rh will be considered as a lower order perturbation 
of no interest and the letter R states for “reminder”. More precisely, all our computations will be based on 
the following straightforward estimate:

T̂

−T

ˆ

Ωh

|Lh,1vh|2 dt +
T̂

−T

ˆ

Ωh

|Lh,2vh|2 dt + 2
T̂

−T

ˆ

Ωh

Lh,1vh Lh,2vh dt

≤ 2
T̂

−T

ˆ

Ωh

|Lhvh|2 dt + 2
T̂

−T

ˆ

Ωh

|Rhv|2 dt. (2.19)

In particular, we claim the following proposition, proved in Appendix B:

Proposition 2.4. For any T > 0, there exist μ ≥ 1, τ0 ≥ 1, ε0 > 0 and a constant C0 > 0 such that for all 
τ ∈ (τ0, ε0/h), for all vh satisfying v0,j = vN+1,j = vi,0 = vi,N+1 = 0 and vi,j(±T ) = ∂tvi,j(±T ) = 0, ∀i, j ∈
�0, N + 1�,

τ

T̂

−T

ˆ

Ωh

|∂tvh|2 dt + τ
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

∣∣∂+
h,kvh

∣∣2 dt + τ3
T̂

−T

ˆ

Ωh

|vh|2 dt +
T̂

−T

ˆ

Ωh

|Lh,1vh|2 dt

≤ C0

T̂

−T

ˆ

Ωh

|Lhvh|2 dt + C0τ
∑
k=1,2

T̂

−T

ˆ

Γ+
h,k

∣∣∂−
h,kvh

∣∣2 dt + C0τh
2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

∣∣∂+
h,k∂tvh

∣∣2 dt, (2.20)

where the operators Lh and Lh,1 are defined by (2.8) and (2.16).

The proof of Proposition 2.4 is the core of the derivation of the discrete Carleman estimate and consists 
in estimating from below the cross-product 

´ T

−T

´
Ωh

Lh,1vh Lh,2vh dt in (2.19). This is done in two steps: 
Computation of the cross-product and computations of the leading order terms coefficients in front of 
vh, ∂tvh, ∂

+
h,kvh. The proof of Proposition 2.4 is given in Appendix B.

Actually, this closely follows the proof of [2, Lemma 2.11] corresponding to the 1-d case. The main 
novelties with respect to [2, Lemma 2.11] are the following ones:

• Some computations in the cross-product of Lh,1vh and Lh,2vh are new since the term (α1−1)τμ(ϕ∂ttψ−∑
k A4,k)vh in Lh,2 in (2.17) vanishes in dimension 1. Actually, the coefficient α1 is chosen in some range 

that depends on the dimension d of the space variable and is required to belong to (2β/(β + d), 2/(β + d)). 
Hence, since d = 1 in [2], we chose α1 = 1 to simplify the computations.

• There are also new cross-products involving integration by parts of discrete derivatives in different 
directions. In particular, besides the 1-d integration by parts formula in [2, Lemma 2.6] that we recall in 
Appendix A, we will need the following specific 2-d formula:
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Lemma 2.5 (Discrete integration by part formula). Let vh, gh be discrete functions depending on the variable 
xh ∈ [0, 1]2 such that vh = 0 on the boundary of the square. Then we have the following identity:

ˆ

Ωh

ghΔh,1vh∂h,2vh = 1
2

ˆ

Ω−
h,1

∣∣∂+
h,1vh

∣∣2∂h,2(m+
h,1gh

)
−

ˆ

Ω−
h,1

∂+
h,1vhm

+
h,1(∂h,2vh)∂+

h,1gh

− h2

4

ˆ

Ω−
h

∣∣∂+
h,1∂

+
h,2vh

∣∣2∂+
h,2

(
m+

h,1gh
)
. (2.21)

Though the formula (2.21) cannot be found as it is in [2], it can be easily deduced from the integration 
by parts formula in Appendix A and the proof is left to the reader.

Furthermore, if we assume vh(0) = 0 in Ωh, we can compute the following cross-product (it is a
straightforward modification of the computations in [2, p. 586]):

0ˆ

−T

ˆ

Ωh

∂tvhLh,1vh dt = 1
2

ˆ

Ωh

∣∣∂tvh(0)
∣∣2 − 1

2
∑
k=1,2

0ˆ

−T

ˆ

Ω−
h,k

m+
h,k(∂tA0,k)

∣∣∂+
h,kvh

∣∣2 dt

+
∑
k=1,2

0ˆ

−T

ˆ

Ω−
h,k

∂+
h,kA0,k ∂

+
h,kvhm

+
h,k(∂tvh) dt− τ2μ2

2

0ˆ

−T

ˆ

Ωh

|vh|2∂t
(
ϕ2(∂tψ)2 −A2

)
dt.

Therefore, based on Proposition 2.3, we easily get

ˆ

Ωh

∣∣∂tvh(0)
∣∣2 ≤ C√

τ

0ˆ

−T

ˆ

Ωh

|Lh,1vh|2 dt + C
√
τ

0ˆ

−T

ˆ

Ωh

|∂tvh|2 dt

+ Cμτh
∑
k=1,2

0ˆ

−T

ˆ

Ω−
h,k

∣∣∂+
h,kvh

∣∣2 dt + Cμτh
∑
k=1,2

0ˆ

−T

ˆ

Ω−
h,k

|∂tvh|2 dt + Cμτ
2

0ˆ

−T

ˆ

Ωh

|vh|2 dt.

As τh ≤ 1, applying Proposition 2.4 then immediately yields

τ1/2
ˆ

Ωh

∣∣∂tvh(0)
∣∣2 ≤ C

T̂

−T

ˆ

Ωh

|Lhvh|2 dt + Cτ
∑
k=1,2

T̂

−T

ˆ

Γ+
h,k

∣∣∂−
h,kvh

∣∣2 dt + Cτh2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

∣∣∂+
h,k∂tvh

∣∣2 dt.
(2.22)

Finally, for wh satisfying (2.3), we set vh := eτϕhwh. Remarking that by construction Lhvh = eτϕh�hwh, 
we can apply directly Proposition 2.4. We notice that for τh ≤ 1,

|wh|2e2τϕh ≤ Cμ|vh|2,
|∂twh|2e2τϕh ≤ Cμ

(
|∂tvh|2 + |vh|2

)
, |∂+

h,kwh|2e2τϕh ≤ Cμ

(
|∂+

h,kvh|2 + Cμτ
2|m+

h,kvh|2
)
,∣∣∂+

h,k∂tvh
∣∣2 ≤ Cμ|∂+

h,k∂twh|2e2τϕh + Cμτ
2(∣∣∂+

h,kwh

∣∣2 +
∣∣m+

h,k∂tw
∣∣2)e2τϕh + Cμτ

4∣∣m+
h,kw

∣∣2e2τϕh ,

and |∂−
h,kvh|2 ≤ Cμ|∂−

h,kwh|2e2τϕh on the boundary Γ+
h,k as wh vanishes on ∂Ωh. We thus deduce Carleman 

estimate (2.4) for τ large enough and τh small enough directly from (2.20). Besides, when wh(0) = 0 on 
Ωh, then vh(0) = 0 and ∂tvh(0) = ∂twh(0)eτϕh(0) on Ωh, hence we conclude (2.5) from (2.22). �
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2.3. Proof of the discrete Carleman estimate – distributed case

Proof of Theorem 2.1. It can be deduced from Theorem 2.1. Indeed, under assumption (1.29), it suffices to 
define a cut-off function χ ∈ C∞(Ω; [0, 1]) taking value 1 on Ω \ {x ∈ Ω, d(x, Γ0) < δ/2} and vanishing on 
the boundary Γ+ = ({1} × (0, 1)) ∪ ((0, 1) × {1}) and to apply the Carleman estimate (2.4) to χhwh with 
χh = rh(χ): the boundary terms in (2.4) vanish by construction but we have

�h(χhwh) = χh�hwh − 2∇hχh∇hwh − Δhχh(2mhwh − wh).

Using that χ ≡ 1 on Ω \{x ∈ Ω, d(x, Γ0) < δ/2}, one easily checks that for h small enough, ∂hχh and Δhχh

are supported on ω. We thus readily obtain

τ

T̂

−T

ˆ

Ωh

e2τϕhχ2
h|∂twh|2 dt + τ

∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k(χhwh)
∣∣2 dt + τ3

T̂

−T

ˆ

Ωh

e2τϕhχ2
h|wh|2 dt

≤ C

T̂

−T

ˆ

Ωh

e2τϕhχ2
h|�hwh|2 dt + C

T̂

−T

ˆ

ωh

e2τϕh
(
|∇hwh|2 + |mhwh|2 + |wh|2

)
dt

+ Cτh2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k∂t(χhwh)
∣∣2 dt. (2.23)

One then easily checks that, for τh small enough,

T̂

−T

ˆ

ωh

e2τϕh
(
|∇hwh|2 +

∣∣mh(wh)
∣∣2 + |wh|2

)
dt + τh2

∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k∂t(χhwh)
∣∣2 dt

≤ C
∑
k=1,2

T̂

−T

ˆ

ω−
h,k

e2τϕh
∣∣∂+

h,kwh

∣∣2 dt + C

T̂

−T

ˆ

ωh

e2τϕh |wh|2 dt

+ Cτh2
T̂

−T

ˆ

Ωh

e2τϕh |∂twh|2 dt + Cτh2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k∂twh

∣∣2 dt.
We thus conclude (2.8) only by adding the terms

τ

T̂

−T

ˆ

ωh

e2τϕh |∂twh|2 dt + τ
∑
k=1,2

T̂

−T

ˆ

ω−
h,k

e2τϕh
∣∣∂+

h,kwh

∣∣2 dt + τ3
T̂

−T

ˆ

ωh

e2τϕh |wh|2 dt

on both sides of (2.23) and by taking τ large enough. �
2.4. Proof of the uniform Lipschitz stability result

As said in the introduction, Theorem 1.4 is a consequence of the Carleman estimates in Theorems 2.1 and 
2.2. Its statement is very similar to the one of [2, Theorem 3.1] in the 1-d case. With respect to the stability 
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estimates obtained in the continuous case in [1] (see also [21,3]), there is the additional term (1.31) which 
is remanent from (2.6) corresponding to some non-standard penalization of the discrete inverse problems.

Proof of Theorem 1.4. Let us begin with the identity

∑
k=1,2

T̂

−T

ˆ

Γ+
h,k

∣∣∂−
h,kyh

[
qah
]
− ∂−

h,kyh
[
qbh
]∣∣2 dt =

∥∥∂νeh(yh[qah])− ∂νeh
(
yh

[
qbh
])∥∥2

H1(0,T ;L2(Γ+)),

that allows to end the proof of Theorem 1.4 as soon as we obtain the stability estimate (1.28) with ‖Mh[qah] −
Mh[qbh]‖H1(0,T ;L2(Γ0)) replaced by

( ∑
k=1,2

T̂

−T

ˆ

Γ+
h,k

∣∣∂−
h,kyh

[
qah
]
− ∂−

h,kyh
[
qbh
]∣∣2 dt)1/2

.

Since the proof follows the one of [2, Theorem 3.1], we only sketch the main steps required.
• Step 1. Energy estimates. We first write classical energy estimates in the context of the semi-discrete 

wave equation in Ωh, like the one written in [2, Lemma 3.3], and apply them to zh = ∂t(yh[qbh] − yh[qah])
that satisfies ⎧⎪⎨⎪⎩

∂ttzh − Δhzh + qbhzh = (qbh − qah)∂tyh[qah], in (0, T ) ×Ωh,

zh = 0, on (0, T ) × ∂Ωh,

(zh(0), ∂tzh(0)) = (0, (qbh − qah)y0
h), in Ωh.

We thus get a constant C = C(T, m) > 0 independent of h and such that for all t ∈ (0, T ),∥∥∂+
h zh(t)

∥∥
L2

h(Ω−
h ) +

∥∥∂tzh(t)
∥∥
L2

h(Ωh) +
∥∥zh(t)

∥∥
L2

h(Ωh) ≤ CK
∥∥qah − qbh

∥∥
L2

h(Ωh), (2.24)

where ‖yh[qah]‖H1(0,T ;L∞
h (Ωh)) ≤ K.

• Step 2. Choice of the Carleman weight. Since we assumed T >
√

2, we can find a > 0 and β ∈ (0, 1)
such that

βT 2 > sup
x∈Ω

|x− xa|2 − inf
x∈Ω

|x− xa|2 = 2 + 4a.

Therefore, we can choose η > 0 such that the Carleman weight function ψ defined in (2.2) satisfies

sup
|t|∈(T−η,T ),x∈Ω

ψ(t, x) ≤ inf
x∈Ω

ψ(0, x). (2.25)

We then choose a and β as above in the Carleman weight (2.2), and choose μ, τ0, ε > 0 such that Theorem 2.1
holds.

• Step 3. Extension and truncation. We extend the equation in zh on (−T, T ), setting zh(t) = −zh(−t)
for all t ∈ (−T, 0). We also extend ∂tyh[qah] as an odd function on (−T, T ). We define the cut-off function 
χ ∈ C∞(R; [0, 1]) such that χ(±T ) = ∂tχ(±T ) = 0 and χ(t) = 1 for all t ∈ [−T + η, T − η]. Then wh = χzh
fulfills the assumptions of Theorem 2.1 and satisfies the following equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ttwh − Δhwh + qbhwh = ∂ttχzh + 2∂tχ∂tzh + (qbh − qah)∂tyh[qah], in (−T, T ) ×Ωh,

wh = 0, on (−T, T ) × ∂Ωh,

(wh(0), ∂twh(0)) = (0, (qah − qbh)y0
h), in Ωh,
wh(±T ) = 0, ∂twh(±T ) = 0, in Ωh.
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• Step 4. Using the Carleman estimate. We apply Carleman estimates (2.5) and (2.4) to wh and, using 
the expression of ∂twh(0) and Assumption (1.27), we get, for all τ ∈ (τ0, ε/h),

√
τ

ˆ

Ωh

eτϕh(0)∣∣qah − qbh
∣∣2 + τ3

T̂

−T

ˆ

Ωh

eτϕh |wh|2 dt ≤ C

T̂

−T

ˆ

Ωh

e2τϕh |�hwh|2 dt

+ Cτ
∑
k=1,2

T̂

−T

ˆ

Γ+
h,k

e2τϕh
∣∣∂−

h,kwh

∣∣2 dt + Cτh2
∑
k=1,2

T̂

−T

ˆ

Ω−
h,k

e2τϕh
∣∣∂+

h,k∂twh

∣∣2 dt. (2.26)

The end of the proof finally consists in estimating the term containing �hwh:

T̂

−T

ˆ

Ωh

e2τϕh |�hwh|2 dt ≤ C

T̂

−T

ˆ

Ωh

e2τϕh
∣∣qbhwh

∣∣2 dt + C

ˆ

|t|∈(T−η,T )

ˆ

Ωh

e2τϕh
(
|∂tzh|2 + |zh|2

)
dt

+ C

T̂

−T

ˆ

Ωh

e2τϕh
∣∣(qah − qbh

)
∂ty

[
qah
]∣∣2 dt. (2.27)

The first term of the right hand side of (2.27) can be absorbed by the left hand-side of (2.26) as qbh is of 
bounded L∞

h (Ωh)-norm. In the second term, we bound the weight function by its supremum on [T − η, T ]
and then use the energy bound (2.24) on zh. This can then be absorbed by the left hand-side of (2.26) due 
to the comparison (2.25) of the weight at time 0 and on (T − η, T ). Finally, since the weight function is 
maximal at t = 0, the last term can be bounded by C

´
Ωh

e2τϕh(0)|qah − qbh|2 due to the assumption (1.27)
and thus it can also be absorbed by the left hand-side of (2.26). Therefore, taking τ large enough completes 
the proof of Theorem 1.4 in the case of a boundary observation (1.28). The case of a distributed observation 
can be deduced similarly from Theorem 2.2 stating a Carleman estimate for a distributed observation. �
3. Application of elliptic Carleman estimates

3.1. Logarithmic stability estimate in the continuous case

The goal of this section is to prove Theorem 1.3. Actually, it is a direct consequence of the following 
result, similar to the ones in [28,30]:

Theorem 3.1. Let Γ0 be a non-empty open subset of ∂Ω and let ω be a smooth connected open subset of Ω
such that ∂ω ∩ ∂Ω is an open neighborhood of Γ0. Let m > 0 and q ∈ L∞(Ω) satisfying ‖q‖L∞ ≤ m. Let 
D > 0 and R0 > 0, and assume that ζ = ζ(t, x) solves the wave equation

{
∂ttζ − Δζ + qζ = f, in (−T, T ) ×Ω,

ζ = 0 on (−T, T ) × ∂Ω,
(3.1)

for some f ∈ L1(−T, T ; L2(Ω)) satisfying

f = 0 in (−T, T ) ×
{
x ∈ Ω, d(x, ω) < R0

}
, (3.2)

and satisfies ζ ∈ H2((−T, T ) ×Ω) with ‖ζ‖H2((−T,T )×Ω) ≤ D .
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Let α > 0. There exists T0 > 0 such that for any T ≥ T0, there exists a constant C = C(T ) > 0 such that

‖ζ‖H1((−T/8,T/8)×ω) ≤ CD

[
log

(
2 + D

‖∂νζ‖L2((−T,T )×Γ0)

)]− 1
1+α

. (3.3)

Indeed, let us first show how Theorem 3.1 implies Theorem 1.3.

Proof of Theorem 1.3. The idea is to apply Theorem 3.1 to ζ = ∂t(y[qa] − y[qb]), which satisfies the wave 
equation ⎧⎪⎨⎪⎩

∂ttζ − Δζ + qbζ = (qb − qa)∂ty[qa], (t, x) ∈ (0, T ) ×Ω,

ζ = 0, (t, x) ∈ (0, T ) × ∂Ω,

ζ(0, x) = 0, ∂tζ(0, x) = (qb − qa)(x)y0(x), x ∈ Ω.

(3.4)

Extending ζ as an odd function on (−T, T ), using the classical energy estimates on ∂tζ, the fact that ∂tζ is 
continuous at t = 0 by construction, and recalling assumption (1.12) on qa − qb, we easily get:

‖ζ‖H2((−T,T )×Ω) ≤ Cm

(∥∥(qa − qb
)
y0∥∥

H1
0 (Ω) +

∥∥(qa − qb
)
y1∥∥

L2(Ω) +
∥∥(qa − qb

)
∂ty

[
qa
]∥∥

W 1,1(0,T ;L2(Ω))

)
≤ Cmm

(∥∥y0∥∥
H1(Ω) +

∥∥y1∥∥
L2(Ω) +

∥∥∂ty[qa]∥∥W 1,1(0,T ;L2(Ω))

)
+ CmM

∥∥y0∥∥
L∞(Ω)

≤ Cm(m + M)
∥∥y[qa]∥∥

W 2,1(0,T ;L2(Ω))∩H1(0,T ;L∞(Ω)) + Cmm
∥∥y0∥∥

H1(Ω) = D . (3.5)

Since the potentials qa and qb coincide on O by (1.10), and because of (1.9), the source term f = (qa −
qb)∂ty[qa] extended to an odd function on (−T, 0), satisfies (3.2) for R0 = δ/2 and ω = {x ∈ Ω, d(x, Γ1) <
δ/2 }. Applying Theorem 3.1, we obtain:

∥∥∂ty[qa]− ∂ty
[
qb
]∥∥

H1((−T/8,T/8)×ω) ≤ D

[
log

(
2 + D

‖∂ν∂ty[qa] − ∂ν∂ty[qb]‖L2((−T,T )×Γ0)

)]− 1
1+α

.

Because ω = {x ∈ Ω, d(x, Γ1) < δ/2} satisfies the condition (1.9) and is thus a neighborhood of a boundary 
satisfying the Gamma-condition (1.3), the use of estimate (1.8) of Theorem 1.1 then completes the proof of 
Theorem 1.3. �

Let us now focus on the proof of Theorem 3.1. As we said in the introduction, this result follows from a 
suitable use of a Fourier–Bros–Iagoniltzer (FBI) transform to reduce the hyperbolic problem to an elliptic 
problem and on an elliptic Carleman estimate.

As in [28,30], we use a FBI transform with a “Gaussian-polynomial” kernel: this ingredient allows us to 
improve the exponent in (3.3) to any α > 0 instead of only α = 1 as in [4].

Also, our proof shortcuts the one in [30] by using a global Carleman estimate for the elliptic equation, 
allowing to get rid of the iterated three spheres inequalities in [30] (see also [4]). Though this does not yield 
any particular improvement on the result in the continuous setting, we will follow the same strategy in the 
semi-discrete case and that way, we will manage to avoid the iterated use of three spheres inequalities in 
the discrete setting, which would induce tedious discussions.

Proof of Theorem 3.1. The proof is rather long and can be split into several steps. Along this proof, the 
constants written in large caps may depend on the parameter n ∈ N and T > 0 and are independent of the 
other parameters. But constants with small caps, that will be numbered c0, c1, (. . .) have the additional 
property that they do not depend on the time parameter T either.

• Step 1. The Fourier Bros Iagoniltzer kernel. In this step, we introduce the FBI kernel follow-
ing [28, p. 473]. Let us set n ∈ N

∗ such that 1/(2n− 1) < α and γ = 1 − 1/(2n) (that guarantees 
1/(1 + α) < γ < 1). Introduce a function F defined on C as follows:
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F (z) = 1
2π

∞̂

−∞

eizξe−ξ2n
dξ. (3.6)

According to [28], this function F is even, holomorphic on C and satisfies, for some positive constants C0, 
c0, c1, c2: {

|F (z)| + |F ′(z)| ≤ C0 exp(c0|�(z)|1/γ), ∀z ∈ C,

|F (z)| ≤ C0 exp(−c1|z|1/γ), ∀z ∈ C with |�(z)| ≤ c2|�(z)|.
(3.7)

Then, for λ ≥ 1, we introduce

Fλ(z) = λγF
(
λγz

)
,

which, due to (3.7), satisfies the following estimates:{
|Fλ(z)| + |F ′

λ(z)| ≤ C0λ
2γ exp(c0λ|�(z)|1/γ), ∀z ∈ C,

|Fλ(z)| ≤ C0λ
γ exp(−c1λ|z|1/γ), ∀z ∈ C with |�(z)| ≤ c2|�(z)|.

(3.8)

Let us remark that F defined by (3.6) is the inverse Fourier transform of ξ �→ e−ξ2n so that Fλ is an 
approximation of the identity as λ → ∞. Finally, notice that by construction, the Fourier transform of 
Fλ(t) is

F(Fλ)(ξ) = F(F )
(

ξ

λγ

)
= exp

(
−
(

ξ

λγ

)2n)
. (3.9)

• Step 2. The Fourier–Bros–Iagoniltzer transform. Let ζ be the solution of (3.1). We introduce a cut-off 
function η ∈ C∞([−T, T ]; [0, 1]) such that

η(t) =
{ 1 if |t| ≤ T/2,

0 if |t| ≥ 3T/4.

We define the FBI transform of ζ for s ∈ R, a ∈ [−T/4, T/4] and x ∈ Ω by

va,λ(s, x) =
ˆ

R

Fλ(a + is− t)η(t)ζ(t, x) dt, (3.10)

where i denotes the imaginary unit. Since ∂sva,λ(s, x) = i ́
R
Fλ(a +is −t) ∂t(η(t)ζ(t, x)) dt, using integration 

by parts, one easily checks that va,λ solves the elliptic equation{ (−∂ss − Δx + q)va,λ = fa,λ in R×Ω,

va,λ = 0 on R× ∂Ω,

where fa,λ is defined as fa,λ = fa,λ,1 + fa,λ,2, with (since ζ satisfies (3.1))

fa,λ,1(s, x) =
ˆ

R

Fλ(a + is− t)
(
2η′(t)∂tζ(t, x) + η′′(t)ζ(t, x)

)
dt,

fa,λ,2(s, x) =
ˆ

Fλ(a + is− t)η(t)f(t, x) dt.

R
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On the one hand, using that 2η′∂tζ + η′′ζ is supported in {(t, x) ∈ (−T, T ) × Ω s.t. |t| ≥ T/2} and the 
second estimate in (3.8) on the kernel Fλ, we have

‖fa,λ,1‖2
L∞(−3,3;L2(Ω)) ≤ Cλ2γe−2c1λ(T/2)1/γ‖ζ‖2

H1((−T,T )×Ω) ≤ Cλ2γe−2c1λ(T/2)1/γD2, (3.11)

for any T > 12/c2, since a ∈ [−T/4, T/4], |t| ≥ T/2 and since we decided to work for s ∈ [−3, 3] and needed 
|s| ≤ c2|a − t| to apply (3.8).

On the other hand, the first estimate in (3.8) also yields, for c3 = 2 · 31/γc0,

‖va,λ‖2
H1((−3,3)×Ω) ≤ Cλ4γec3λ‖ζ‖2

H1((−T,T )×Ω) ≤ Cλ4γec3λD2, (3.12)

and, similarly,

‖∂νva,λ‖2
L2((−3,3)×Γ0) ≤ Cλ4γec3λ‖∂νζ‖2

L2((−T,T )×Γ0). (3.13)

• Step 3. Estimating va,λ by an observation on (−3, 3) × Γ0. This step strongly relies on a Carleman 
estimate for the following elliptic problem:{ (−∂ss − Δx + q)w = g in (−3, 3) ×Ω,

w = 0 on ∂((−3, 3) ×Ω).
(3.14)

One of the most important points is to suitably choose the Carleman weight. First construct a smooth 
function ψ0 = ψ0(x) on ω such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀x ∈ ω, ψ0(x) ≥ 0,
infω{|∇ψ0|} > 0,
∀x ∈ ∂ω \ Γ0, ψ0(x) = 0 and ∂νψ0(x) < 0,
‖ψ0‖L∞(ω) ≤ 1/2.

(3.15)

Note that such a function ψ0 exists according to the construction in [16] (see also [37, Appendix III]). We 
then extend this function ψ0 as a smooth function ψ on Ω satisfying ‖ψ‖L∞(Ω) ≤ 1. By continuity, there 
exists a positive constant R ∈ (0, R0) such that in the set

ωR =
{
x ∈ Ω, d(x, ω) < R

}
,

where the source term f vanishes by assumption (3.2), we have infx∈ωR
{|∇ψ(x)|} > 0 and such that in 

the set

C =
{
x ∈ Ω,

R

2 < d(x, ω) < R

}
,

we have, as pictured in Fig. 2,

0 = inf
ω

ψ > sup
C

ψ. (3.16)

We finally define, for μ ≥ 1,

ϕ := ϕ(s, x) = exp
(
μ
(
ψ(x) − s2)), (s, x) ∈ [−3, 3] ×Ω. (3.17)

According to [19] (see also [16,34]) one has the following Carleman estimate for (3.14):
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Fig. 2. Construction of the weight function ψ(x).

Lemma 3.2 (An elliptic Carleman estimate). There exist μ ≥ 1 and a constant C > 0 such that for all 
τ ≥ 1, for all g ∈ L2((−3, 3) ×Ω) and w solution of (3.14) supported in (−3, 3) × ωR,

τ3∥∥eτϕw∥∥2
L2((−3,3)×Ω) + τ

∥∥eτϕ∇s,xw
∥∥2
L2((−3,3)×Ω)

≤ C
∥∥eτϕg∥∥2

L2((−3,3)×Ω) + Cτ
∥∥eτϕ∂νw∥∥2

L2((−3,3)×Γ0)
, (3.18)

where the constant C can be taken uniformly with respect to q ∈ L∞(Ω) with ‖q‖L∞ ≤ m.

Estimate (3.18) has to be understood as a Carleman estimate with observation on (−3, 3) × Γ0 and in 
(−3, 3) × (Ω \ωR). But, as we assumed that w is supported in (−3, 3) ×ωR, we simply omit the observation 
in (−3, 3) × (Ω \ ωR).

Now, introduce smooth cut-off functions χS = χS(s) and χR = χR(x) such that

χS(s) =
{ 1 if |s| ≤ 2,

0 if |s| ≥ 3,
and ‖χS‖W 2,∞(R) ≤ C,

and

χR(x) =
{ 1 if d(x, ω) ≤ R/2,

0 if d(x, ω) ≥ R,
and ‖χR‖W 2,∞(Ω) ≤ C.

We can then define

wa,λ(s, x) = χS(s)χR(x)va,λ(s, x), (s, x) ∈ R×Ω (3.19)

which satisfies { (−∂ss − Δx + q)wa,λ = ga,λ in (−3, 3) ×Ω,

wa,λ = 0 on ∂((−3, 3) ×Ω),
(3.20)

where (using the fact that fa,λ,2 vanishes in ωR by assumption (3.2))

ga,λ = χSχRfa,λ,1 − 2χR∂sχS∂sva,λ − χR∂ssχSva,λ − 2χS∇χR∇va,λ − χSΔχRva,λ.

Thus, Carleman estimate (3.18) can be applied, and gives: for all τ ≥ 1,

τ3∥∥eτϕwa,λ

∥∥2
L2((−3,3)×Ω) + τ

∥∥eτϕ∇s,xwa,λ

∥∥2
L2((−3,3)×Ω)

≤ C
∥∥eτϕga,λ∥∥2

2 + Cτ
∥∥eτϕ∂νwa,λ

∥∥2
2 .
L ((−3,3)×Ω) L ((−3,3)×Γ0)
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Since wa,λ = va,λ on (−1, 1) × ω and ‖χSχR‖W 2,∞(R×Ω) ≤ C, we obtain

τ3∥∥eτϕva,λ∥∥2
L2((−1,1)×ω) + τ

∥∥eτϕ∇s,xva,λ
∥∥2
L2((−1,1)×ω))

≤ C
∥∥eτϕga,λ∥∥2

L2((−3,3)×Ω) + Cτ
∥∥eτϕ∂νva,λ∥∥2

L2((−3,3)×Γ ). (3.21)

Now, we estimate from below the left hand side and from above the right hand side of (3.21). Notice first 
that according to (3.16), we can choose ε0 ∈ (0, 1) such that

inf
|s|≤ε0, x∈ω

ϕ > sup
|s|≤3, x∈C

ϕ. (3.22)

In order to simplify notations, we set

Iω = inf
|s|≤ε0, x∈ω

ϕ, S = sup
|s|≤3, x∈Ω

ϕ, S(2,3) = sup
|s|∈(2,3), x∈Ω

ϕ, SC = sup
|s|≤3, x∈C

ϕ. (3.23)

Remark that, similarly to (3.22), that writes now Iω > SC , using the explicit form of ϕ and the fact that 
‖ψ‖L∞(Ω) ≤ 1, we have

Iω > S(2,3). (3.24)

Going back to (3.21), on the one hand, for all τ ≥ 1, the left hand side satisfies,

e2τIω‖va,λ‖2
H1((−ε0,ε0)×ω)) ≤ τ3∥∥eτϕva,λ∥∥2

L2((−1,1)×ω) + τ
∥∥eτϕ∇s,xva,λ

∥∥2
L2((−1,1)×ω). (3.25)

On the other hand, the first term of the right hand side in (3.21) can be estimated from above:

∥∥eτϕga,λ∥∥2
L2((−3,3)×Ω) ≤ e2τS ‖fa,λ,1‖2

L2((−3,3)×Ω) + C
(
e2τS(2,3) + e2τSC

)
‖va,λ‖2

H1((−3,3)×Ω) (3.26)

since ∂sχS , ∂ssχS are supported in {s ∈ R, s.t. |s| ∈ (2, 3)} and ∇χR, ΔχR are supported in C . Plugging 
(3.11) and (3.12) into (3.26), we obtain

∥∥eτϕga,λ∥∥2
L2((−3,3)×Ω) ≤ Ce2τS λ2γe−2c1λ(T/2)1/γD2 + C

(
e2τS(2,3) + e2τSC

)
λ4γec3λD2. (3.27)

Combining now estimates (3.21) with (3.25), (3.13) and (3.27), we get

e2τIω‖va,λ‖2
H1((−ε0,ε0)×ω) ≤ Ce2τS λ2γe−2c1λ(T/2)1/γD2

+ C
(
e2τS(2,3) + e2τSC

)
λ4γec3λD2

+ Cτe2τS λ4γec3λ‖∂νζ‖2
L2((−T,T )×Γ0). (3.28)

• Step 4. Estimating ζ from its FBI transform va,λ. Writing ζ as follows:

ζ(t, x) = ζ(t, x) − vt,λ(0, x) + vt,λ(0, x),

we obtain that, for t ∈ (−T/8, T/8),

‖ζ‖L2((−T/8,T/8)×ω) ≤
∥∥(t, x) �→ ζ(t, x) − vt,λ(0, x)

∥∥
L2((−T/8,T/8)×ω)

+
∥∥(a, x) �→ va,λ(0, x)

∥∥
2 . (3.29)
L ((−T/8,T/8)×ω)
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As already detailed in [30], since vt,λ(0, x) = Fλ � (ηζ)(t), where the convolution is only in the time variable, 
we obtain, from (3.9) the following estimate (notice η = 1 in (−T/8, T/8)):∥∥(t, x) �→ ζ(t, x) − vt,λ(0, x)

∥∥
L2((−T/8,T/8)×ω) =

∥∥ηζ − Fλ � (ηζ)
∥∥
L2((−T/8,T/8)×ω)

≤
∥∥(1 −F(Fλ)

)
F(ηζ)

∥∥
L2(R×ω) ≤

∥∥∥∥(ξ, x) �→ |ξ|
λγ

∣∣F(ηζ)(ξ, x)
∣∣∥∥∥∥

L2(R×ω)

≤ C

λγ
‖ηζ‖H1(R×ω) ≤

C

λγ
‖ζ‖H1((−T,T )×ω).

Besides, since Fλ is holomorphic, the map a + is �→ va,λ(s, x) is holomorphic in the variable a + is for all 
λ and x, and the Cauchy formula implies that (see appendix of [4], for some details)∥∥(a, x) �→ va,λ(0, x)

∥∥
L2((−T/8,T/8)×ω) ≤ C sup

a∈(−T/4,T/4)
‖va,λ‖L2((−ε0,ε0)×ω).

Hence, from (3.29), combining the above estimates we get

‖ζ‖L2((−T/8,T/8)×ω) ≤
C

λγ
‖ζ‖H1((−T,T )×ω) + C sup

a∈(−T/4,T/4)
‖va,λ‖L2((−ε0,ε0)×ω).

Having an estimate on va,λ in H1((−ε0, ε0) ×ω) at our disposal, we can apply the latter to ∂tζ and ∇ζ and 
obtain

‖ζ‖H1((−T/8,T/8)×ω) ≤
C

λγ
‖ζ‖H2((−T,T )×ω) + C sup

a∈(−T/4,T/4)
‖va,λ‖H1((−ε0,ε0)×ω)

≤ C

λγ
D + C sup

a∈(−T/4,T/4)
‖va,λ‖H1((−ε0,ε0)×ω). (3.30)

• Step 5. Concluding step. Combining estimates (3.28) and (3.30), we have shown that for all λ ≥ 1
and τ ≥ 1,

‖ζ‖2
H1((−T/8,T/8)×ω) ≤

C

λ2γ D2 + Ce2τ(S−Iω)λ2γe−2c1λ(T/2)1/γD2

+ Ce−2τIω
(
e2τS(2,3) + e2τSC

)
λ4γec3λD2

+ Cτe2τ(S−Iω)λ4γec3λ‖∂νζ‖2
L2((−T,T )×Γ0). (3.31)

Recalling (3.22) and (3.24), we can choose the Carleman parameter τ as a linear function of the FBI 
parameter λ by setting

τ = c3λ

Iω − max{SC ,S(2,3)}
. (3.32)

With this choice, one should assume λ ≥ λ∗, where λ∗ = 1
c3

(Iω −max{SC , S(2,3)}), in order to guarantee 
(3.31) (since τ ≥ 1). Thereby, there exist positive constants c4, c5, c6 such that for all λ ≥ λ∗,

e−2τIω
(
e2τS(2,3) + e2τSC

)
λ4γec3λ ≤ Ce−c4λ,

e2τ(S−Iω)λ2γe−2c1λ(T/2)1/γ ≤ Ceλ(c5−2c1(T/2)1/γ),

τe2τ(S−Iω)λ4γec3λ ≤ Cec6λ.
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Obviously, there exists T0 > 0 such that for all T ≥ T0, c5 ≤ c1(T/2)1/γ . Thus, estimate (3.31) yields, for 
all T ≥ T0 and λ ≥ λ∗,

‖ζ‖2
H1((−T/8,T/8)×ω) ≤ CD2

(
1
λ2γ + e−c4λ + e−λc1(T/2)1/γ

)
+ Cec6λ‖∂νζ‖2

L2((−T,T )×Γ0)

or, in a more concise form, for all λ ≥ λ∗,

‖ζ‖H1((−T/8,T/8)×ω) ≤
C

λγ
D + Cec6λ/2‖∂νζ‖L2((−T,T )×Γ0). (3.33)

Finally, if we define the ratio “data over measurement”

ρ = D

‖∂νζ‖L2((−T,T )×Γ0)

and the critical value

λ0 = 1
c6

log(2 + ρ), (3.34)

taking λ = λ0 if λ0 ≥ λ∗ we have

‖ζ‖H1((−T/8,T/8)×ω) ≤ CD

(
1

[log(2 + ρ)]γ + (2 + ρ)1/2

ρ

)
.

We can drop the second term of the right hand side since the first term dominates as ρ → ∞ (ρ is bounded 
from below by the continuity of the operator z �→ ∂νz from H2((−T, T ) × Ω) to L2((−T, T ) × ∂Ω)). 
Otherwise, if λ0 < λ∗, we take λ = λ∗: In this case, ρ ≤ exp(c6λ∗) = C, i.e. D ≤ C‖∂νζ‖L2((−T,T )×Γ0), so 
that (3.33) with λ = λ∗ yields

‖ζ‖H1((−T/8,T/8)×ω) ≤ C‖∂νζ‖L2((−T,T )×Γ0) ≤ C
D

ρ
.

This concludes the proof of (3.3) since −γ < −1/(1 + α). �
Remark 3.3. When f vanishes everywhere in (0, T ) × Ω, no cut-off function χR is needed and one obtains 
the following quantification of unique continuation result due to [30, Theorem F] (see also [34] for α = 1): 
For all T > 0 large enough, for all ζ ∈ H2((−T, T ) ×Ω) solution of the wave equation (3.1) with f = 0,

‖ζ‖H1((−T/8,T/8)×Ω) ≤ C‖ζ‖H2((−T,T )×Ω)

[
log

(
2 +

‖ζ‖H2((−T,T )×Ω)

‖∂νζ‖L2((−T,T )×Γ )

)]− 1
1+α

,

or, equivalently,

‖ζ‖H2((−T,T )×Ω) ≤ C exp
(
CΛ1+α

)
‖∂νζ‖L2((−T,T )×Γ ), where Λ =

‖ζ‖H2((−T,T )×Ω)

‖ζ‖H1((−T/8,T/8)×Ω)
.

Since ζ in that case is a solution of the wave equation with no source term, this last formulation can be 
written in terms of the initial data (ζ(0), ∂tζ(0)) = (ζ0, ζ1) ∈ H2 ∩H1

0 (Ω) ×H1
0 (Ω):∥∥(ζ0, ζ1)∥∥

H2∩H1
0 (Ω)×H1

0 (Ω) ≤ C exp
(
CΛ1+α

0
)
‖∂νζ‖L2((−T,T )×Γ ),

where Λ0 =
‖(ζ0, ζ1)‖H2∩H1

0×H1
0

‖(ζ0, ζ1)‖H1
0×L2

.
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3.2. Uniform stability in the semi-discrete case

The goal of this section is to derive the semi-discrete counterpart of Theorem 3.1. Similarly as in the 
continuous case, that will be the main ingredient for the proof of Theorem 1.5.

As specified in the introduction, we limit ourselves to the case Ω = (0, 1)2. We may thus assume that Γ0
is a subset of one edge. Due to the invariance by rotation, with no loss of generality, we may further assume 
that this edge is {1} × (0, 1).

We claim the following result:

Theorem 3.4. Let Ω = (0, 1)2 and Γ0 be a non-empty open subset of the edge {1} × (0, 1). Let ω be a 
connected open subset of Ω with Lipschitz boundary and assume that ∂ω ∩ ∂Ω is an open neighborhood of 
Γ0. Also set ωh = ω ∩Ωh. Let m > 0 and qh ∈ L∞

h (Ωh) satisfying ‖qh‖L∞
h (Ωh) ≤ m. Let D > 0 and R0 > 0, 

and assume that ζh is a solution of the wave equation{
∂ttζh − Δζh + qhζh = fh, in (−T, T ) ×Ωh,

ζh = 0, on (−T, T ) × ∂Ωh,
(3.35)

for some fh ∈ L1(−T, T ; L2
h(Ωh)) satisfying fh = 0 in (−T, T ) × {xh ∈ Ωh, d(xh, ω) < R0}, and satisfies 

ζh ∈ H2
h((−T, T ) ×Ωh) with

‖ζh‖H2
h((−T,T )×Ωh) ≤ D

for some R0 > 0 and D independent of h > 0.
Let α > 0. There exist T0 > 0 and h0 > 0 such that for any T ≥ T0, there exists a constant C independent 

of h such that for all h ∈ (0, h0),

‖ζh‖H1
h((−T/8,T/8)×ωh) ≤ CD

[
log

(
2 + D

‖∂−
h,2ζh‖L2((−T,T );L2

h(Γ0,h))

)]− 1
1+α

+ CDh1/(1+α). (3.36)

Before proving Theorem 3.4, let us point out that it differs from Theorem 3.1 by the last term h1/(1+α)D

in (3.36). Nonetheless, this term vanishes in the limit h → 0 and thus estimate (3.3) can be recovered from 
(3.36) when h → 0. But in particular, estimate (3.36) does not state a uniqueness result anymore, but rather 
an “almost-uniqueness” result: if ∂−

h,2ζh vanishes on (−T, T ) × Γ0,h for some ζh satisfying the assumptions 
of Theorem 3.4, we only have that the norm of ζh in H1

h((−T/8, T/8) × ωh) is smaller than Ch1/(1+α)D . 
Due to the definition of D , this corresponds to the case, where

‖ζh‖H1
h((−T/8,T/8)×ωh) ≤ Ch1/(1+α)‖ζh‖H2

h((−T,T )×Ωh),

i.e. functions that are localized outside (−T/8, T/8) ×ωh. This is completely consistent with the presence of 
spurious high-frequency modes that are localized, see [36,39,14]. We refer for instance to a counterexample 
due to O. Kavian: if wh denotes the discrete function given by wi,j = (−1)i when i = j and vanishing for 
i �= j, the function ζh(t, xh) = exp(2it/h)wh(xh) is a solution of (3.35) with qh = 0 and fh = 0 whose 
discrete normal derivative on {1} × (1/4, 3/4) vanishes identically.

Proof of Theorem 3.4. It follows the same steps as the one of Theorem 3.1. More precisely, Steps 1, 2 and 
4 involving the FBI transform in time are left unchanged, but Steps 3 and 5 need to be modified. Indeed, 
Step 3 in the proof of Theorem 3.1 is based on the Carleman estimate in Lemma 3.2 and we should thus use 
a semi-discrete counterpart. Namely, we use the discrete Carleman inequality proved in [8, Theorem 1.4]
that we rewrite below within our setting and using our notations.
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Fig. 3. Construction of the weight function ψ0,r(x) when ω is a neighborhood of two consecutive edges.

Before stating this result, let us make precise how we choose the weight function. In particular, let us 
emphasize that the weight function in [8] is assumed to be Cp([−3, 3] × Ω) for p large enough, and this 
cannot be true with the construction we did for the proof of Theorem 3.1, since Ω = (0, 1)2 contains corners. 
We thus build the weight function ψ0,r as follows (here the subscript ‘r’ stands for ‘regularized’): first we 
conceive an open subset ωr such that ωr ⊂ {x ∈ Ω, d(x, ω) < R0/2 }, ω ⊂ ωr, and ∂ωr \ Γ+ is smooth (see 
Fig. 3). We can then design a smooth weight function ψ0,r such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∀x ∈ ωr, ψ0,r(x) ≥ 0,
inf
ωr

{|∇ψ0,r(x)|} > 0,

∀x ∈ ∂ωr \ Γ0, ∂νψ0,r(x) < 0,
∀x ∈ ∂ωr \ Γ+, ψ0,r(x) = 0,
‖ψ0,r‖L∞(ωr) ≤ 1/2.

(3.37)

Again, such a function ψ0,r exists according to the construction in [16,37] and it can be extended as a 
smooth function ψr on Ω satisfying ‖ψr‖L∞(Ω) ≤ 1. By continuity, there exists R ∈ (0, R0/2) such that for 
the sets

ωr,R =
{
x ∈ Ω, d(x, ωr) < R

}
and Cr =

{
x ∈ Ω, R/2 ≤ d(x, ωr) ≤ R

}
,

we have

inf
ωr,R

{∣∣∇ψr(x)
∣∣} > 0, and inf

ωr
ψr > sup

Cr

ψr. (3.38)

We then define ϕr as in (3.17) but with this function ψr: for μ ≥ 1,

ϕr := ϕr(s, x) = exp
(
μ
(
ψr(x) − s2)) (s, x) ∈ [−3, 3] ×Ω.

Theorem 3.5. (See [8].) Let ϕr be as above and its restriction on the mesh ϕr,h = rhϕr.
There exist μ ≥ 1, C > 0, h0 > 0 and ε0 > 0 such that for all h ∈ (0, h0), τ ≥ 1 with τh ≤ ε0, for all 

gh ∈ L2((−3, 3); L2
h(Ωh)) and wh solution of{ (−∂ss − Δh + qh)wh = gh in (−3, 3) ×Ωh,

wh = 0 on ((−3, 3) × ∂Ωh) ∪ ({−3, 3} ×Ωh),

supported in (−3, 3) × ωr,R,
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τ3∥∥eτϕr,hwh

∥∥2
L2(−3,3;L2

h(Ωh)) + τ
∥∥eτϕr,h∇swh

∥∥2
L2(−3,3;L2

h(Ωh)) + τ
∑
k=1,2

∥∥eτϕr,h∂+
h,kwh

∥∥2
L2(−3,3;L2

h(Ω−
k,h))

≤ C
∥∥eτϕr,hgh

∥∥2
L2(−3,3;L2

h(Ωh)) + Cτ
∥∥eτϕr,h∂−

h,2wh

∥∥2
L2(−3,3;L2

h(Γ0,h)). (3.39)

Besides, the constant C can be taken uniformly with respect to qh ∈ L∞
h (Ωh) with ‖qh‖L∞

h
≤ m.

Remark 3.6. Before going further, let us comment more precisely Theorem 3.5, which cannot be found under 
that precise form in [8] and differs from [8, Theorem 1.4] at three levels.

The first issue is that Theorem 1.4 in [8] concerns the case of an observation on the boundary of the 
continuous variable, corresponding here to s = ±3. Therefore, Assumption 1.3 on the weight function in 
[8] is designed to yield observations on the boundary of the continuous variable, and in our case, they are 
replaced by the condition ∀x ∈ ∂ωr \ Γ0, ∂νψ0,r(x) < 0 in (3.37). We claim that this condition is enough to 
guarantee a Carleman estimate with an observation on the boundary of the discrete variables. This can be 
proved following the lines of [8] in that case and looking at the boundary terms denoted Y and estimated in 
[8, Lemma 3.7], which are strong enough to absorb the boundary terms in J11 in [8, Lemma 3.3] on ∂Ω \Γ0.

The second issue is that Assumption 1.3 in [8] requires some convexity condition in the neighborhood of 
the boundary. But, as mentioned in [10, Remark 1.3], this can be avoided by suitably modifying the proof 
of Lemma C.4 in [8].

The third and last issue is that our weight function may degenerate outside (−3, 3) × ωr,R. But, as in 
the continuous case, this actually does not come into play as we apply Carleman estimate (3.39) to discrete 
functions wh supported in (−3, 3) × ωr,R.

Note that the main difference in the discrete Carleman estimate of Theorem 3.5 with respect to the one 
in Lemma 3.2 is the fact that the parameter τ is assumed to satisfy τh ≤ ε0. The proof of Theorem 3.1 shall 
then be modified to keep track on this restriction. Thus, Step 3 can be done as in the proof of Theorem 3.1, 
except that the construction of the cut-off function χR is now based on ωr, and the existence of ε0 > 0
such that

inf
|s|≤ε0,x∈ωr

ψr(s, x) > sup
|s|≤3,x∈Cr

ψr(s, x)

is granted by (3.38). Then, all the constants Iω, S , S(2,3), SC in (3.23), now denoted Iωr , S , S(2,3), SCr , 
are defined by replacing ω by ωr, ϕ by ϕr and C by Cr. Hence, instead of (3.31), we obtain the following: 
for all h ∈ (0, h0), τ ≥ 1 with τh ≤ ε0, for all λ ≥ 1,

‖ζh‖2
H1((−T/8,T/8)×ωr,h) ≤

C

λ2γ D2 + Ce2τ(S−Iωr )λ2γe−2c1λ(T/2)1/γD2

+ Ce−2τIωr
(
e2τS(2,3) + e2τSCr

)
λ4γec3λD2

+ Cτe2τ(S−Iωr )λ4γec3λ
∥∥∂−

h,2ζh
∥∥2
L2(−T,T ;L2

h(Γ0,h)).

The discussion then follows the same path as in the Step 5 of the proof of Theorem 3.1: the natural choice 
is to take τ as a linear function of λ as in (3.32). Thereby, we get the following discrete counterpart of 
(3.33): there are constants C > 0 and ε∗ > 0 independent of h > 0 such that for all h ∈ (0, h0) and for all 
λ ∈ (λ∗, ε∗/h),

‖ζh‖H1
h((−T/8,T/8)×ωh) ≤

C

λγ
D + Cec6λ/2

∥∥∂−
h,2ζh

∥∥
L2(−T,T ;L2

h(Γ0,h)). (3.40)

Introducing the ratio
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ρh = D

‖∂−
h,2ζh‖L2(−T,T ;L2

h(Γ0,h))
,

the optimal value of the parameter λ is

λ0,h = 1
c6

log(2 + ρh),

corresponding to the choice (3.34) in the proof of Theorem 3.1. We then have to discuss the cases λ0,h ≤ λ∗, 
λ0,h ∈ (λ∗, ε∗/h) and λ0,h ≥ ε∗/h. Of course, the first two cases can be handled as in the continuous setting. 
There only remains the last case λ0,h ≥ ε∗/h. But this corresponds to ρh ≥ exp(c6ε∗/h) −2 ≥ exp(c6ε∗/h)/2, 
for h small enough, which in particular implies

2
∥∥∂−

h,2ζh
∥∥
L2(−T,T ;L2

h(Γ0,h)) ≤ D exp(−c6ε∗/h).

Thus, taking λ = ε∗/h in (3.40), we obtain

‖ζh‖H1
h((−T/8,T/8)×ωh) ≤ ChγD .

This explains the presence of the last term in (3.36). �
We finally conclude this section with the proof of Theorem 1.5.

Proof of Theorem 1.5. As for the proof of Theorem 1.3 from (3.1), it follows immediately by applying 
Theorem 3.4 to ζh = ∂tyh[qah] − ∂tyh[qbh]. The use of estimate (1.30) of Theorem 1.4 then completes the 
proof. Details are left to the reader. �
Remark 3.7. Following Remark 3.3, we can derive a quantification of a kind of unique continuation result 
for solutions ζh of discrete wave equations (3.35) with no source term: For all α > 0 and T > 0 large enough, 
there exists a constant C independent of h > 0 such that for all ζh solution of the wave equation (3.35)
with fh = 0 and initial data (ζ0

h, ζ
1
h) ∈ H2

h ∩H1
0,h(Ωh) ×H1

0,h(Ωh),

∥∥(ζ0
h, ζ

1
h

)∥∥
H1

0,h(Ωh)×L2
h(Ωh) ≤ CeCΛ1+α

h

∥∥∂−
h,2ζ

∥∥
L2(−T,T ;L2

h(Γ0,h)) + Ch1/(1+α)∥∥(ζ0
h, ζ

1
h

)∥∥
H2

h∩H1
0,h(Ωh)×H1

0,h(Ωh),

(3.41)

where Λh =
‖(ζ0

h,ζ
1
h)‖H2

h
∩H1

0,h(Ωh)×H1
0,h(Ωh)

‖(ζ0
h,ζ

1
h)‖H1

0,h(Ωh)×L2
h
(Ωh)

or, equivalently,

(
1 − Ch1/(1+α)Λh

)∥∥(ζ0
h, ζ

1
h

)∥∥
H1

0,h(Ωh)×L2
h(Ωh) ≤ CeCΛ1+α

h

∥∥∂−
h,2ζ

∥∥
L2((−T,T );L2

h(Γ0,h)).

Note that (3.41) only yields an “almost uniqueness” result in the sense that it does not imply ζh ≡ 0 when the 
discrete normal derivative ∂−

h,2ζh vanishes on (−T, T ) ×Γ0,h. Recall here that this term is needed as unique 
continuation for the discrete wave equations does not hold as shown by the counterexample of O. Kavian 
of an eigenfunction of the discrete Laplace operator which is localized on the diagonal of the square.

4. Convergence and consistency issues

This last section is devoted to the proof of the convergence results stated in Theorem 1.6.
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4.1. Convergence results for the inverse problem

We will first state and prove two theorems of convergence under more detailed consistency assumptions. 
The feasibility of these assumptions will be studied next. Under the Gamma-conditions, and more specifically 
in the geometric setting (1.26), we obtain:

Theorem 4.1 (Convergence under Gamma-conditions). Assume that (Ω, Γ0, T ) satisfies the configuration 
(1.26) and that (y0, y1, f, f∂) follows the conditions (1.39). Let q ∈ L∞(Ω) and assume that there exist se-
quences qah ∈ L∞

h (Ωh), and (y0
h, y

1
h, fh, f∂,h) of discrete functions in

L2
h(Ωh)2 × L1(0, T ; L2

h(Ωh)) × L2(0, T ; L2
h(∂Ωh)) such that

lim
h→0

∥∥e0
h

(
qah
)
− q

∥∥
L2(Ω) = 0, (4.1)

lim
h→0

∥∥M̃h

[
qah
]
− M̃0[q]

∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω) = 0, (4.2)

lim sup
h→0

∥∥qah∥∥L∞
h (Ωh) < ∞, (4.3)

lim sup
h→0

∥∥yh[qah]∥∥H1(0,T ;L∞
h (Ωh)) < ∞, (4.4)

∃α0 > 0, ∀h > 0, inf
Ωh

∣∣y0
h

∣∣ ≥ α0. (4.5)

Then for all sequence (qbh)h>0 of potentials satisfying

lim sup
h→0

∥∥qbh∥∥L∞
h (Ωh) < ∞, and lim

h→0

∥∥M̃h

[
qbh
]
− M̃0[q]

∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω) = 0

we have

lim
h→0

∥∥e0
h

(
qbh
)
− q

∥∥
L2(Ω) = 0.

When no geometric condition on the observation domain is satisfied, we get:

Theorem 4.2 (Convergence under weak geometric conditions). Assume the geometric configuration (1.32)
for (Ω, Γ0, Γ+), the conditions (1.39) for (y0, y1, f, f∂), and let O be a neighborhood of Γ+. Let q ∈ L∞(Ω)
and assume that there exist sequences qah ∈ L∞

h (Ωh), and (y0
h, y

1
h, fh, f∂,h) of discrete functions in

L2
h(Ωh)2 × L1(0, T ; L2

h(Ωh)) × L2(0, T ; L2
h(∂Ωh)) such that (4.1), (4.2) and (4.3) are fulfilled, along with

lim sup
h→0

∥∥yh[qah]∥∥H1(0,T ;L∞
h (Ωh))∩W 2,1(0,T ;L2

h(Ωh)) < ∞, (4.6)

∃α0 > 0, ∀h > 0, inf
Ωh

∣∣y0
h

∣∣ ≥ α0 and lim sup
h>0

∥∥y0
h

∥∥
H1

h(Ωh) < ∞. (4.7)

Then for T > 0 large enough, for all sequence (qbh)h>0 of potentials satisfying

qbh = qah in Oh and qah − qbh ∈ H1
0,h(Ωh) with lim sup

h→0

∥∥qbh − qah
∥∥
H1

0,h(Ωh) < ∞,

lim sup
h→∞

∥∥qbh∥∥L∞
h (Ωh) < ∞, and lim

h→0

∥∥M̃h

[
qbh
]
− M̃0[q]

∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω) = 0,

we have

lim
h→0

∥∥e0
h

(
qbh
)
− q

∥∥
L2(Ω) = 0.
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Theorems 4.1 and 4.2 follow from the same arguments and can be proved simultaneously.

Proof of Theorems 4.1 and 4.2. Let qah and qbh be as assumed in Theorem 4.1 (resp. Theorem 4.2).
One easily gets

lim
h→0

∥∥M̃h

[
qah
]
− M̃h

[
qbh
]∥∥

H1(0,T ;L2(Γ0))×L2((0,T )×Ω) = 0.

Since one can find m > 0 larger than ‖q‖L∞(Ω) and lim suph→0(‖qah‖L∞
h (Ωh) + ‖qbh‖L∞

h (Ωh)), according to 
Theorem 1.4, (resp. Theorem 1.5), we get

lim
h→0

∥∥qah − qbh
∥∥
L2

h(Ωh) = 0, or equivalently, lim
h→0

∥∥e0
h

(
qbh
)
− e0

h

(
qah
)∥∥

L2(Ω) = 0.

We then conclude by the triangular inequality∥∥e0
h

(
qbh
)
− q

∥∥
L2(Ω) ≤

∥∥e0
h

(
qbh
)
− e0

h

(
qah
)∥∥

L2(Ω) +
∥∥e0

h

(
qah
)
− q

∥∥
L2(Ω),

since each term in the right hand-side converges to zero as h → 0. �
Of course, Theorems 4.1 and 4.2 are based on the strong assumption that there exists a sequence of po-

tentials qah satisfying suitable convergence assumptions for some (y0
h, y

1
h, fh, f∂,h) that are not even supposed 

to be convergent to their continuous counterpart. This rises the natural question: given (y0, y1, f, f∂) satis-
fying (1.39), can we guarantee that the natural approximations (y0

h, y
1
h, fh, f∂,h) of (y0, y1, f, f∂) yields the 

existence of a sequence of potentials qah satisfying the convergence conditions of Theorem 4.1 or Theorem 4.2?
This is the consistency of the inverse problem, and the cornerstone of the proof of Theorem 1.6 once 

stability results are proved. These consistency issues are discussed in the following subsection.

4.2. Consistency issues

The difficulty to derive the consistency of the inverse problem is the condition (4.4) (or (4.6) in the case 
of Theorem 4.2). Indeed, passing to the limit, it indicates that y[q] should belong to H1((0, T ); L∞(Ω)). 
But there is no simple way to guarantee this condition, since the “natural” spaces for the wave equation are 
the Hs(Ω)-spaces.

Let us remind the reader that we consider Ω = (0, 1)2 ⊂ R
2. We recall this setting here because of its 

influence on the Sobolev’s embeddings we will repeatedly use in this last section.
Besides that, as our theorems of stability are given with conditions on y[q] instead of conditions on the 

coefficients (y0, y1, f, f∂), we will stick to that approach. We claim the following result:

Lemma 4.3. Assume q ∈ H1 ∩L∞(Ω) and that we know q∂ = q|∂Ω. Furthermore, assume that the trajectory 
y[q] solution of (1.1) satisfies the regularity given in (1.40). Finally, assume there exists α0 > 0 such that 
infΩ |y0| ≥ α0.

Then we can construct discrete sequences (y0
h, y

1
h, fh, f∂,h) depending only on (y0, y1, f, f∂ , q∂) such that 

the corresponding sequence yh[qh] solution of (1.23) for qh = r̃h(q) satisfies conditions (4.1)–(4.7). In par-
ticular, if q is known on some open set O and takes value q|O = Q, we can further impose qh = r̃h(Q)
in Oh.

Proof of Theorem 1.6. Taking the discrete sequence (y0
h, y

1
h, fh, f∂,h) given by Lemma 4.3, the sequence 

qah = r̃h(q) satisfies the assumption of Theorem 4.1, or Theorem 4.2 if q is known in some open set O, which 
corresponds to the first item of Theorem 1.6. The second item of Theorem 1.6 thus follows immediately 
from Theorems 4.1 and 4.2. �
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Proof of Lemma 4.2. We split it in two steps. First, we will construct (y0
h, y

1
h, fh, f∂,h) and qh; second, we 

will explain why our construction is suitable for conditions (4.1)–(4.7).
Let us choose q̃ ∈ H1 ∩ L∞(Ω) with q̃|∂Ω = q∂ (note that such q̃ exists since q∂ is the trace of

q ∈ H1 ∩ L∞(Ω) by assumption). We define ỹ = y[q̃] the solution of (1.1) with potential q̃. Then,
setting z = y[q] − ỹ, it satisfies⎧⎪⎨⎪⎩

∂ttz − Δz + q̃z = (q̃ − q)y[q], in (0, T ) ×Ω,

z = 0, on (0, T ) × ∂Ω,

z(0, ·) = 0, ∂tz(0, ·) = 0, in Ω.

(4.8)

Hence z2 = ∂ttz solves⎧⎪⎨⎪⎩
∂ttz2 − Δz2 + q̃z2 = (q̃ − q)∂tty[q], in (0, T ) ×Ω,

z2 = 0, on (0, T ) × ∂Ω,

z2(0, ·) = (q̃ − q)y0, ∂tz2(0, ·) = (q̃ − q)y1, in Ω.

(4.9)

Since (1.40) implies y0 ∈ H1 ∩ L∞(Ω), y1 ∈ L2(Ω) and ∂tty[q] ∈ L1(0, T ; L2(Ω)), and since q − q̃ ∈
H1

0 ∩ L∞(Ω), we have that z2 = ∂ttz belongs to C([0, T ]; H1
0 (Ω)) ∩ C1([0, T ]; L2(Ω)). In particular, since 

z(0, ·) = ∂tz(0, ·) = 0, we have z ∈ H2(0, T ; H1
0 (Ω)).

Besides, by differentiating (4.8) once with respect to time, we get that ∂tz solves

(−Δ + q̃)∂tz = (q̃ − q)∂ty[q] − ∂tttz ∈ C
(
[0, T ];L2(Ω)

)
, with ∂tz = 0 for (t, x) ∈ (0, T ) × ∂Ω.

Therefore, by elliptic regularity estimates, see [17, Theorem 3.2.1.2], ∂tz ∈ C([0, T ]; H2(Ω)), thus z ∈
H1(0, T ; H2(Ω)).

Recalling that ỹ = y[q] − z and y[q] satisfies (1.40), ỹ belongs to H2(0, T ; H1(Ω)) ∩H1(0, T ; H2(Ω)).
We then define ỹh = r̃h(ỹ) and, for q̃h = r̃h(q̃), we set

y0
h = ỹh(0) = r̃h

(
y0), y1

h = ∂tỹh(0) = r̃h
(
y1), (4.10)

fh = ∂ttỹh − Δỹh + q̃hỹh, f∂,h(t) = ỹh(t)|∂Ωh
. (4.11)

Note that this choice immediately implies that conditions (4.1), (4.3) and (4.7) (thus also (4.5)) are satisfied.
We now prove that this construction yields condition (4.6). This is based on the remark that by con-

struction, for qh = r̃h(q) we have yh[qh] = ỹh + zh, where zh solves⎧⎪⎨⎪⎩
∂ttzh − Δhzh + qhzh = (q̃h − qh)ỹh, in (0, T ) ×Ωh,

zh = 0, on (0, T ) × ∂Ωh,

(zh(0), ∂tzh(0)) = (0, 0), in Ωh.

(4.12)

Then z2,h = ∂ttzh solves⎧⎪⎨⎪⎩
∂ttz2,h − Δhz2,h + qhz2,h = (q̃h − qh)∂ttỹh, in (0, T ) ×Ωh,

z2,h = 0, on (0, T ) × ∂Ωh,

(z2,h(0), ∂tz2,h(0)) = ((q̃h − qh)y0
h, (q̃h − qh)y1

h), in Ωh.

(4.13)

One easily checks that with our construction

q̃h − qh ∈ H1
0,h(Ωh) ∩ L∞

h (Ωh),

ỹh ∈ H2(0, T ;H1
h(Ωh)

)
∩H1(0, T ;H2

h(Ωh)
)
,

y0
h ∈ H1

h(Ωh) ∩ L∞
h (Ωh), y1

h ∈ L2
h(Ωh),
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where all these estimates stand with bounds uniform with respect to h > 0. Hence z2,h is uniformly bounded 
in C([0, T ]; H1

0,h(Ωh)) ∩C1([0, T ]; L2
h(Ωh)) by energy estimates, so that ∂tttzh ∈ C([0, T ]; L2

h(Ωh)) and thus 
∂tzh solves

−Δh∂tzh + qh∂tzh = (q̃h − qh)∂tỹh − ∂tttzh ∈ C
(
[0, T ];L2

h(Ωh)
)

with ∂tzh = 0 on ∂Ωh.

We use the following lemma, whose proof is postponed to Appendix C.

Lemma 4.4. Let wh ∈ L2
h(Ωh) be a solution of

−Δhwh + qhwh = gh in Ωh and wh = 0 on ∂Ωh (4.14)

with gh ∈ L2
h(Ωh) and qh ∈ L∞

h (Ωh). Let m > 0 and assume ‖qh‖L∞
h (Ωh) ≤ m. Then, wh ∈ H2

h ∩H1
0,h(Ωh)

and there exists a constant C = C(m) > 0 independent of h > 0 such that

‖wh‖H2
h∩H1

0,h(Ωh) ≤ C‖gh‖L2
h(Ωh). (4.15)

Accordingly, ∂tzh is uniformly bounded in C([0, T ]; H2
h ∩H1

0,h(Ωh)). Thus, yh[qh] = ỹh + zh is uniformly 
bounded in H2(0, T ; H1

h(Ωh)) ∩H1(0, T ; L∞
h (Ωh)), yielding (4.6) (and (4.4)).

We finally focus on the proof of the convergence condition (4.2). As ỹ ∈ H1(0, T ; H2(Ω)), ỹh is 
uniformly bounded in H1(0, T ; H2

h(Ωh)). In particular, for k ∈ {1, 2}, ∂∓
h,kỹh is uniformly bounded in 

H1(0, T ; H1
h(Ω±

h,k)), so eh(∂∓
h,kỹh) is uniformly bounded in H1(0, T ; H1(Ω)). Besides, it is easy to check 

that, since ỹ ∈ H1(0, T ; H2(Ω)), eh(∂∓
h,kỹh) strongly converges to ∂xk

ỹ in H1(0, T ; L2(Ω)). Hence we get 
the strong convergence of eh(∂∓

h,kỹh) to ∂xk
ỹ in all spaces H1(0, T ; Hs(Ω)) with s < 1. We then remark that

∂νeh(ỹh) =
( eh(∂∓

h,1ỹh)
eh(∂∓

h,2ỹh)

)
· ν on Γ±, (4.16)

where ν is the normal vector to Ω on Γ±. But the sequence eh(∂∓
h,kỹh) strongly converges to ∂xk

ỹ in 
H1(0, T ; H3/4(Ω)) and the trace operator is continuous from H3/4(Ω) to L2(∂Ω) (see [17, Theorem 1.5.2.1]). 
Therefore, ∂νehỹh strongly converges to ∂νy in H1(0, T ; L2(∂Ω)).

One also easily checks that, since ỹ ∈ H2(0, T ; H1(Ω)), the discrete function ∂+
h,k∂ttỹh (k ∈ {1, 2}) 

is uniformly bounded in L2(0, T ; L2
h(Ω−

h,k)). Hence h∇eh(∂ttỹh) strongly converges to 0 as h → 0 in
L2((0, T ) ×Ω).

We then study the convergence of the normal derivative of zh and of h∇eh(∂ttzh). We have seen that zh
is uniformly bounded in H2(0, T ; H1

0,h(Ωh)) ∩H1(0, T ; H2
h(Ωh)). This immediately implies that ∂+

h,k∂ttzh is 
uniformly bounded in L2(0, T ; L2

h(Ω−
h,k)) for k ∈ {1, 2} and, following, h∇eh(∂ttzh) strongly converges to 0

in L2((0, T ) ×Ω) as h → 0. Let us then remark that eh(qh) and eh(q̃h−qh) respectively converges to q, q̃−q

as h → 0 strongly in L2(Ω), weakly in H1(Ω) and weakly-∗ in L∞(Ω). Besides, as ỹ ∈ H2(0, T ; H1(Ω)), 
eh(ỹh) strongly converges to ỹ in H2(0, T ; Hs(Ω)) for all s ∈ [0, 1). Following:

eh(qh)−→
h→0

q strongly in all Lp(Ω) with p < ∞, (4.17)

eh
(
(q̃h − qh)ỹh

)
−→
h→0

(q̃ − q)ỹ strongly in H2(0, T ;L2(Ω)
)
, (4.18)

eh
(
(q̃h − qh)y0

h

)
−→
h→0

(q̃ − q)y0 strongly in L2(Ω). (4.19)

Easy computations then yields that eh(zh) and eh(∂tzh) strongly converge in H1((0, T ) ×Ω) to z and ∂tz, 
where z is the solution of (4.8). This can indeed be done in three steps: First show that it converges weakly 
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in D′((0, T ) × Ω) toward z and ∂tz; Second, use that the energy estimates imply that the convergence is 
actually weak in H1((0, T ) ×Ω) and in particular strong in L2(0, T ; Lp(Ω)) for any p < ∞; Third, use the 
energy identity to show the convergence of the H1((0, T ) ×Ω) norm.

Hence eh(∂∓
h,kzh) strongly converges to ∇z in H1(0, T ; L2(Ω)). Recall that zh is also uniformly bounded 

in H1(0, T ; H2
h(Ωh)), so that eh(∂∓

h,kzh) is uniformly bounded in H1(0, T ; H1(Ω)). Thus eh(∂∓
h,kzh) strongly 

converges to ∇z in H1(0, T ; H3/4(Ω)), so that formula (4.16) and the continuity of the trace operator from 
H3/4(Ω) to L2(∂Ω) show the strong convergence of ∂νeh(zh) to ∂νz in H1(0, T ; L2(∂Ω)).

Since y[q] = ỹ + z, we have proved the convergence (4.2) for the sequence yh[qh] = ỹh + zh. �
Remark 4.5. In this proof, let us emphasize that the construction of the sequence of source terms f̃h and 
f̃∂,h in (4.11) is not straightforward. But we point out that this is done explicitly from the knowledge of the 
trace q∂ of q on ∂Ω.

Note however that this happens because we have chosen to keep a presentation where the assumptions 
are set on the trajectory y[q], and not directly on the data (y0, y1), f, f∂ . But this other choice would not 
yield any improvement as the natural space to get y[q] ∈ H1(0, T ; L∞(Ω)) in 2-d is y[q] ∈ H1(0, T ; H2(Ω)), 
or H3((0, T ) ×Ω). According to [27], this would correspond to

y0 ∈ H3(Ω), y1 ∈ H2(Ω), f ∈
⋂

k=0,1,2

W k,1(0, T ;H2−k(Ω)
)
, f∂ ∈ H3((0, T ) × ∂Ω

)
,

with the compatibility conditions

y0|∂Ω = f∂(t = 0), y1|∂Ω = ∂tf∂(t = 0), and
(
f(t = 0) + Δy0 − qy0)∣∣

∂Ω
= ∂ttf∂(t = 0).

Of course, this latest compatibility condition is very strong and requires in particular the knowledge of q
on the boundary, as we also assumed in the approach of Lemma 4.3. But very likely, taking projections of 
all these data on the discrete mesh Ωh also yields a suitable sequence (y0

h, y
1
h, fh, f∂,h) satisfying conditions 

(4.2)–(4.7), even if one would have to study in that case the convergence of the discrete wave equations with 
non-homogeneous boundary conditions, which to our knowledge has only been done in 1-d so far in [15].

Appendix A. Discrete integration by parts formula in 1-d

For the sake of completeness, we mention the basic discrete integration by parts formula obtained in [2, 
Lemma 2.6] in the 1-d setting as they are the main ingredients used to perform integration by parts on 2-d 
(and higher dimensional) domains. To do so, we shall make precise some 1-d notations.

We assume that we consider integration by parts on discretized versions of (0, 1). For N ∈ N, we introduce 
h = 1/(N + 1) and the discrete sets

(0, 1)h =
{
jh, j ∈ �1, N�

}
,

[
0, 1)h =

{
jh, j ∈ �0, N�

}
, (0, 1

]
h

=
{
jh, j ∈ �1, N + 1�

}
.

Here, discrete functions fh are functions fh = (fj)j∈{0,···,N+1} for which we define
ˆ

(0,1)h

fh = h
∑

j∈{1,···,N}
fj ,

ˆ

[0,1)h

fh = h
∑

j∈{0,···,N}
fj ,

ˆ

(0,1]h

fh = h
∑

j∈{1,···,N+1}
fj .

We also introduce the discrete operators for j ∈ {1, . . . , N}:

(
m+

h fh
)
j

=
(
m−

h fh
)
j+1 = fj+1 + fj

2 ;

(∂hfh)j = fj+1 − fj−1 ;
(
∂+
h fh

)
=

(
∂−
h fh

)
= fj+1 − fj ; (Δhfh)j = fj+1 − 2fj + fj−1

.
2h j j+1 h h2
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Lemma A.1 ([2], 1-d discrete integration by parts formulas). Let vh, fh, gh be discrete functions such that 
v0 = vN+1 = 0. Then we have the following identities:

•
ˆ

[0,1)h

gh
(
∂+
h fh

)
= −

ˆ

(0,1]h

(
∂−
h gh

)
fh + gN+1fN+1 − g0f0; (A.1)

•
ˆ

(0,1)h

gh(∂hfh) =
ˆ

[0,1)h

(
m+

h gh
)(
∂+
h fh

)
− h

2 g0
(
∂+
h f

)
0 −

h

2 gN+1
(
∂−
h f

)
N+1; (A.2)

• 2
ˆ

(0,1)h

ghvh(∂hvh) = −
ˆ

(0,1)h

|vh|2∂hgh + h2

2

ˆ

[0,1)h

∣∣∂+
h vh

∣∣2∂+
h gh; (A.3)

•
ˆ

(0,1)h

gh(Δhvh) = −
ˆ

[0,1)h

(
∂+
h vh

)(
∂+
h gh

)
−
(
∂+
h v

)
0g0 +

(
∂−
h v

)
N+1gN+1; (A.4)

•
ˆ

(0,1)h

ghvh(Δhvh) = −
ˆ

[0,1)h

(
∂+
h vh

)2(
m+

h gh
)

+ 1
2

ˆ

(0,1)h

|vh|2Δhgh; (A.5)

•
ˆ

(0,1)h

ghΔhvh∂hvh = −1
2

ˆ

[0,1)h

∣∣∂+
h vh

∣∣2∂+
h gh + 1

2
∣∣(∂−

h v
)
N+1

∣∣2gN+1 −
1
2
∣∣(∂+

h v
)
0

∣∣2g0. (A.6)

In a square in dimension 2, we will apply Lemma A.1 when doing integrations by part in each direction. 
For instance, identity (A.3) easily yields, for k ∈ {1, 2}:

2
ˆ

Ωh

ghvh(∂h,kvh) = −
ˆ

Ωh

(∂h,kgh)|vh|2 + h2

2

ˆ

Ω−
h,k

∣∣∂+
h,kvh

∣∣2∂+
h,kgh.

For convenience, we will also use the formula 
´
[0,1)h m

+
h vhfh =

´
(0,1]h vhm

−
h fh, valid for vh vanishing on the 

boundary, and its consequence
ˆ

[0,1)h

m+
h vh

(
∂+
h fh

)(
∂+
h gh

)
=

ˆ

(0,1)h

vh(∂hfh)(∂hgh) + h2

4

ˆ

(0,1)h

vh(Δhfh)(Δhgh), (A.7)

whose proof is left to the reader.

Appendix B. Proof of a conjugate Carleman estimate

Proof of Proposition 2.4.
Notations. In this proof, we will use the Landau notation Oμ(τh) to denote discrete functions of (t, xh)

depending on μ satisfying for some constant Cμ > 0 that ‖Oμ(τh)‖L∞(L∞
h ) ≤ Cμτh. We will also use the 

shortcut Oμ(1) to denote bounded functions. Moreover, we will write v instead of vh as no confusion can 
occur: here, v is always a discrete function defined on (−T, T ) ×Ωh satisfying v(±T, xh) = ∂tv(±T, xh) = 0
for all xh ∈ Ωh and v(t, xh) = 0 for all t ∈ (−T, T ) and xh ∈ ∂Ωh. In order to simplify the integrals, we will 
also set Qh = (−T, T ) × Ωh, Q±

h,k = (−T, T ) × Ω±
h,k, Σh = (−T, T ) × Γh, Σ±

h,k = (−T, T ) × Γ±
h,k and use 

the notations

ˆ

Qh

=
T̂

−T

ˆ

Ωh

,

ˆ

Q±

=
T̂

−T

ˆ

Ω±

,

ˆ

Σh

=
T̂

−T

ˆ

Γh

,

ˆ

Σ±

=
T̂

−T

ˆ

Γ±

.

h,k h,k h,k h,k
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In the following we will use the estimates of Proposition 2.3, in particular (2.15), and the discrete 
integration by parts formula in Lemma A.1 and Lemma 2.5. Finally, let us emphasize that all the constants 
below are independent of h ∈ (0, 1) and τ ≥ 1.
• Step 1. Explicit computations of the cross product. The proof of estimate (2.20) relies first of all on the 
computation of the multiplication of each term of Lh,1v by each term of Lh,2v:

ˆ

Qh

Lh,1vLh,2v dt =
3∑

n,m=1
Inm,

where Inm denotes the product between the n-th term of Lh,1 in (2.16) and the m-th term of Lh,2 in (2.17). 
We now perform the computation of each Inm term.
Computation of I11. As in [2], we integrate by parts in time:

I11 = (α1 − 1)τμ
ˆ

Qh

∂ttv(ϕ∂ttψ −A4)v

= (1 − α1)τμ
ˆ

Qh

|∂tv|2ϕ(∂ttψ − Δψ) + τ

ˆ

Qh

Oμ(1)|v|2 + τ

ˆ

Qh

Oμ(τh)|∂tv|2.

Here, we used A4 = ϕΔψ + Oμ(τh) and ∂ttA4 = ∂tt(ϕΔψ) + Oμ(τh).
Computation of I12. Similarly,

I12 = −τμ2
ˆ

Qh

∂ttv
(
ϕ|∂tψ|2 −A3

)
v

= τμ2
ˆ

Qh

|∂tv|2ϕ
(
|∂tψ|2 − |∇ψ|2

)
+ τ

ˆ

Qh

Oμ(1)|v|2 + τ

ˆ

Qh

Oμ(τh)|∂tv|2,

where we used A3 = ϕ|∇ψ|2 + Oμ(τh) and ∂ttA3 = ∂tt(ϕ|∇ψ|2) + Oμ(τh).
Computation of I13. Using 

∑
k∂h,kA1,k = μϕ|∇ψ|2 + ϕΔψ + Oμ(τh), ∂tA1,k = μϕ∂xk

ψ∂tψ + Oμ(τh), and 
(A.3), we obtain:

I13 = −2τμ
ˆ

Qh

∂ttv

(
ϕ∂tψ∂tv −

∑
k

A1,k∂h,kv

)

= τμ

ˆ

Qh

|∂tv|2ϕ(∂ttψ + Δψ) + τμ2
ˆ

Qh

|∂tv|2ϕ
(
|∂tψ|2 + |∇ψ|2

)
− 2τμ2

ˆ

Qh

∂tv ∂tψ ϕ∇hv · ∇ψ

− τμ

2
∑
k

ˆ

Q−
h,k

∣∣h∂+
h,k∂tv

∣∣2∂+
h,kA1,k + τ

ˆ

Qh

Oμ(τh)
∣∣∂tv∣∣2 + τ

ˆ

Qh

∂tv

(∑
k

Oμ(τh)∂h,kv
)
.

Computation of I21. Since A4 = ϕΔψ + Oμ(τh) and A0,k = Oμ(τh), we get:

I21 = (1 − α1)τμ
ˆ

Qh

∑
k

(1 + A0,k)Δh,kv(ϕ∂ttψ −A4)v

= (α1 − 1)τμ
∑
k

ˆ

Q−

∣∣∂+
h,kv

∣∣2ϕ(∂ttψ − Δψ) + τ

ˆ

Qh

Oμ(1)|v|2 + τ
∑
k

ˆ

Q−

Oμ(τh)
∣∣∂+

h,kv
∣∣2.
h,k h,k
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Computation of I22. Using A3 = ϕ|∇ψ|2 + Oμ(τh) and (A.5), we obtain

I22 = τμ2
ˆ

Qh

∑
k

(1 + A0,k)Δh,kv
(
ϕ|∂tψ|2 −A3

)
v

= −τμ2
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2ϕ(|∂tψ|2 − |∇ψ|2
)

+ τ

ˆ

Qh

Oμ(τh)|v|2 + τ
∑
k

ˆ

Q−
h,k

Oμ(τh)
∣∣∂+

h,kv
∣∣2.

Computation of I23. We can split this term in two parts as follows:

I23 = 2τμ
ˆ

Qh

∑
k

(1 + A0,k)Δh,kv ϕ ∂tψ ∂tv

︸ ︷︷ ︸
I23a

−2τμ
ˆ

Qh

∑
k

(1 + A0,k)Δh,kv

(∑
�

A1,�∂h,�v

)
.

︸ ︷︷ ︸
I23b

For I23a we use Δh,k = ∂−
h,k∂

+
h,k and the zero boundary conditions on v. Setting g0,k = (1 + A0,k) ϕ ∂tψ

and using (A.1), we get:

I23a = −2τμ
∑
k

ˆ

Q−
h,k

∂+
h,kv ∂

+
h,k(g0,k∂tv)

= −2τμ
∑
k

ˆ

Q−
h,k

∂+
h,kv ∂

+
h,k(∂tv)m

+
h,kg0,k − 2τμ

∑
k

ˆ

Q−
h,k

∂+
h,kvm

+
h,k(∂tv)∂

+
h,kg0,k.

Noticing that, on the one hand,

−2τμ
∑
k

ˆ

Q−
h,k

∂+
h,kv∂

+
h,k(∂tv)m

+
h,kg0,k = τμ

∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2∂t(m+
h,kg0,k

)

= τμ
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2(μϕ|∂tψ|2 + ϕ∂ttψ + Oμ(τh)
)
,

and on the other hand (using (A.7)),

−2τμ
∑
k

ˆ

Q−
h,k

∂+
h,kvm

+
h,k(∂tv)∂

+
h,kg0,k = −2τμ

∑
k

ˆ

Qh

∂h,kv∂tv∂h,kg0,k − τμh2

2
∑
k

ˆ

Qh

Δh,kv∂tvΔh,kg0,k

= −2τμ2
ˆ

Qh

∂tv ∂tψϕ∇hv ·
(
∇ψ + Oμ(τh)

)
− τh2

∑
k

ˆ

Qh

Oμ(1)Δh,kv∂tv,

the term I23a takes the form

I23a = τμ2
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2ϕ|∂tψ|2 + τμ
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2(ϕ∂ttψ + Oμ(τh)
)

− 2τμ2
ˆ

∂tv∂tψϕ∇hv ·
(
∇ψ + Oμ(τh)

)
− τh2

∑
k

ˆ
Oμ(1)Δh,kv∂tv.
Qh Qh
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To compute I23b, we consider the integrals I23b,k,� indexed by (k, �) ∈ {1, 2}2 and defined by

I23b,k,� = −2τμ
ˆ

Qh

(1 + A0,k)Δh,kvA1,�∂h,�v.

When k = �, using formula (A.6) with gk = (1 + A0,k)A1,k = ϕ∂xk
ψ(1 + Oμ(τh)), we obtain

I23b,k,k = τμ

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2∂+
h,kgk − τμ

ˆ

Σ+
h,k

gk
∣∣∂−

h,kv
∣∣2 + τμ

ˆ

Σ−
h,k

gk
∣∣∂+

h,kv
∣∣2

= τμ

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2(∂xk
(ϕ∂xk

ψ) + Oμ(τh)
)
− τμ

ˆ

Σ+
h,k

gk
∣∣∂−

h,kv
∣∣2 + τμ

ˆ

Σ−
h,k

gk
∣∣∂+

h,kv
∣∣2.

When k �= �, we use Lemma 2.5 with gk,� = (1 + A0,k)A1,�:

I23b,k,� = −τμ

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2∂h,�(m+
h,kgk,�

)
+ 2τμ

ˆ

Q−
h,k

∂+
h,kvm

+
h,k(∂h,�v)∂

+
h,kgk,�

+ τμh2

2

ˆ

Q−
h

∣∣∂+
h,k∂

+
h,�v

∣∣2∂+
h,�

(
m+

h,kgk,�
)
.

Using (A.7) for vh replaced by ∂h,�v, which vanishes on the boundary Σh,k as k �= �, we get:

I23b,k,� = −τμ

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2(∂x�
(ϕ∂x�

ψ) + Oμ(τh)
)

+ 2τμ
ˆ

Qh

∂h,kv ∂h,�v
(
∂xk

(ϕ∂x�
ψ) + Oμ(τh)

)

+ τμh2

2

ˆ

Qh

Δh,kv∂h,�v
(
Δxk

(ϕ∂x�
ψ) + Oμ(τh)

)
+ τμh2

2

ˆ

Q−
h

∣∣∂+
h,k∂

+
h,�v

∣∣2∂+
h,�

(
m+

h,kgk,�
)
.

Hence we obtain

I23b = τμ
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2(∂xk
(ϕ∂xk

ψ) −
∑
��=k

∂x�
(ϕ∂x�

ψ) + Oμ(τh)
)

+ 2τμ
ˆ

Qh

∂h,1v∂h,2v
(
∂x1(ϕ∂x2ψ) + ∂x2(ϕ∂x1ψ) + Oμ(τh)

)

+ τh2
ˆ

Qh

Oμ(1)(Δh,1v ∂h,2v + Δh,2v∂h,1v) + τμh2

2

ˆ

Q−
h

∣∣∂+
h,1∂

+
h,2v

∣∣2(div(ϕ∇ψ) + Oμ(τh)
)

− τμ
∑
k

ˆ

Σ+
h,k

∣∣∂−
h,kv

∣∣2ϕ∂xk
ψ
(
1 + Oμ(τh)

)
+ τμ

∑
k

ˆ

Σ−
h,k

∣∣∂+
h,kv

∣∣2ϕ∂xk
ψ
(
1 + Oμ(τh)

)
.

We now remark that ∂x1(ϕ∂x2ψ) + ∂x2(ϕ∂x1ψ) = 2μϕ∂x1ψ∂x2ψ, and that we can write

4τμ2
ˆ

∂h,1v∂h,2vϕ∂x1ψ∂x2ψ = 2τμ2
ˆ

ϕ|∇hv · ∇ψ|2 − 2τμ2
∑
k

ˆ
|∂h,kv|2|∂xk

ψ|2.

Qh Qh Qh
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Therefore,

I23b = τμ
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2(2∂xk
(ϕ∂xk

ψ) − div(ϕ∇ψ) + Oμ(τh)
)

+ 2τμ2
ˆ

Qh

ϕ|∇hv · ∇ψ|2 − 2τμ2
∑
k

ˆ

Qh

|∂h,kv|2ϕ|∂xk
ψ|2 + τ

ˆ

Qh

Oμ(τh)∂h,1v ∂h,2v

+ τh2
ˆ

Qh

(
Oμ(1)Δh,1v∂h,2v + Oμ(1)Δh,2v∂h,1v

)
+ τμh2

2

ˆ

Q−
h

∣∣∂+
h,1∂

+
h,2v

∣∣2(div(ϕ∇ψ) + Oμ(τh)
)

− τμ
∑
k

ˆ

Σ+
h,k

∣∣∂−
h,kv

∣∣2(ϕ∂xk
ψ + Oμ(τh)

)
+ τμ

∑
k

ˆ

Σ−
h,k

∣∣∂+
h,kv

∣∣2(ϕ∂xk
ψ + Oμ(τh)

)
.

Of course, this yields I23 as I23 = I23a + I23b.
Computation of I31. Using A2 = ϕ2|∇ψ|2 + Oμ(τh) and A4 = ϕΔψ + Oμ(τh), one easily obtains:

I31 = (α1 − 1)τ3μ3
ˆ

Qh

|v|2
(
ϕ2(∂tψ)2 −A2

)
(ϕ∂ttψ −A4)

= (α1 − 1)τ3μ3
ˆ

Qh

|v|2ϕ3(|∂tψ|2 − |∇ψ|2
)
(∂ttψ − Δψ) + τ3

ˆ

Qh

Oμ(τh)|v|2.

Computation of I32. Using here A3 = ϕ|∇ψ|2 + Oμ(τh),

I32 = −τ3μ4
ˆ

Qh

|v|2
(
ϕ2(∂tψ)2 −A2

)(
ϕ|∂tψ|2 −A3

)
= −τ3μ4

ˆ

Qh

|v|2ϕ3(|∂tψ|2 − |∇ψ|2
)2 + τ3

ˆ

Qh

Oμ(τh)|v|2.

Computation of I33. Finally, using (A.3) we get

I33 = −2τ3μ3
ˆ

Qh

(
ϕ2(∂tψ)2 −A2

)
v

(
ϕ∂tψ ∂tv −

∑
k

A1,k∂h,kv

)

= τ3μ3
ˆ

Qh

|v|2∂t
((
ϕ2|∂tψ|2 −A2

)
ϕ∂tψ

)
− τ3μ3

ˆ

Qh

|v|2
∑
k

∂h,k
(
A1,k

(
ϕ2|∂tψ|2 −A2

))

+ τ3μ3h2

2
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2∂+
h,k

(
A1,k

(
ϕ2|∂tψ|2 −A2

))
.

But we have

∂t
((
ϕ2|∂tψ|2 −A2

)
ϕ∂tψ

)
= 3μϕ3|∂tψ|2

(
|∂tψ|2 − |∇ψ|2

)
+ ϕ3∂ttψ

(
|∂tψ|2 − |∇ψ|2

)
+ 2ϕ3|∂tψ|2∂ttψ + Oμ(τh),
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∑
k

∂h,k
(
A1,k

(
ϕ2|∂tψ|2 −A2

))
= 3μϕ3|∇ψ|2

(
|∂tψ|2 − |∇ψ|2

)
+ ϕ3Δψ

(
|∂tψ|2 − |∇ψ|2

)
− ϕ3∇ψ · ∇

(
|∇ψ|2

)
+ Oμ(τh),

∂+
h,k

(
A1,k

(
ϕ2|∂tψ|2 −A2

))
= ∂xk

(
ϕ3∂xk

ψ
(
|∂tψ|2 − |∇ψ|2

))
+ Oμ(τh) = Oμ(1),

so that we obtain

I33 = 3τ3μ4
ˆ

Qh

|v|2ϕ3(|∂tψ|2 − |∇ψ|2
)2 + τ3μ3

ˆ

Qh

|v|2ϕ3(∂ttψ − Δψ)
(
|∂tψ|2 − |∇ψ|2

)
+ τ3μ3

ˆ

Qh

|v|2ϕ3(2∂ttψ|∂tψ|2 + ∇ψ · ∇
(
|∇ψ|2

))
+ τ3

ˆ

Qh

Oμ(τh)|v|2 + τ
∑
k

ˆ

Q+
h,k

Oμ(τh)
∣∣∂+

h,kv
∣∣2.

Final computation. Gathering all the terms, one can write
ˆ

Qh

Lh,1vLh,2v = Iv + I∂v + IΓ + ITych, (B.1)

where Iv =
´
Qh

|v|2F(ψ) contains all the terms in |v|2 with

F(ψ) = α1τ
3μ3ϕ3(|∂tψ|2 − |∇ψ|2

)
(∂ttψ − Δψ) + τ3μ3ϕ3(2∂ttψ|∇ψ|2 + ∇ψ · ∇

(
|∇ψ|2

))
+ 2τ3μ4ϕ3(|∂tψ|2 − |∇ψ|2

)2 + τ3Oμ(τh) + τOμ(1);

I∂v contains all the terms involving first-order derivatives of v:

I∂v = 2τμ2
ˆ

Qh

|∂tv|2ϕ |∂tψ|2 + 2τμ2
ˆ

Qh

|∇hv · ∇ψ|2ϕ− 4τμ2
ˆ

Qh

∂tv ∂tψ ϕ∇hv · ∇ψ

+ τμ

ˆ

Qh

|∂tv|2ϕ
(
2∂ttψ − α1(∂ttψ − Δψ)

)
+ τμ

∑
k

ˆ

Q−
h,k

|∂+
h,kv|2ϕ

(
α1(∂ttψ − Δψ) + 2∂xkxk

ψ
)

+ 2τμ2
∑
k

( ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2ϕ|∂xk
ψ|2 −

ˆ

Qh

|∂h,kv|2ϕ|∂xk
ψ|2

)
+ IOμ

,

where IOμ
contains all the terms involving Oμ terms (and a first-order derivative of v);

IΓ contains all the boundary terms:

IΓ = −τμ
∑
k

ˆ

Σ+
h,k

∣∣∂−
h,kv

∣∣2(ϕ∂xk
ψ + Oμ(τh)

)
+ τμ

∑
k

ˆ

Σ−
h,k

∣∣∂+
h,kv

∣∣2(ϕ∂xk
ψ + Oμ(τh)

)
;

ITych contains the terms corresponding to the Tychonoff regularization:

ITych = −τμ

2
∑
k

ˆ

Q−
h,k

∣∣h∂+
h,k∂tv

∣∣2∂+
h,kA1,k

+ τμ

2

ˆ
−

∣∣h∂+
h,1∂

+
h,2v

∣∣2(∂+
h,2m

+
h,1

(
(1 + A0,1)A1,2

)
+ ∂+

h,1m
+
h,2

(
(1 + A0,2)A1,1

))
.

Qh
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• Step 2. Bounding each term from below.
Step 2.1. Dealing with the 0 order terms in v. Since ∇ψ · ∇(|∇ψ|2) = 4|∇ψ|2 = 16|x − xa|2, Δψ = 4 and 

∂ttψ = −2β and denoting X = |∂tψ|2 − |∂xψ|2, one can obtain

F(ψ) = τ3μ3ϕ3 (2μX2 − 2α1(β + 2)X + 16(1 − β)|x− xa|2
)︸ ︷︷ ︸

G(ψ)

+τ3Oμ(τh) + τOμ(1).

Since xa /∈ Ω, inf(0,1)2 |x − xa|2 is strictly positive and we have

G(ψ) ≥ 2μX2 − 2α1(β + 2)X + c, with c = 16(1 − β) inf
(0,1)2

|x− xa|2 > 0.

Thus, there exists μ0 ≥ 1 such that for μ = μ0, G(ψ) > 0 uniformly. Therefore, we get c0 > 0 independent 
of h such that

Iv ≥ 2c0τ3
ˆ

Qh

|v|2ϕ3 −
(
τ3Oμ0(τh) + τOμ0(1)

) ˆ
Qh

|v|2

≥ c0τ
3
ˆ

Qh

|v|2 − τ3Oμ0(τh)
ˆ

Qh

|v|2, (B.2)

where the last line is obtained by bounding ϕ from below by 1 and by taking τ ≥ τ0 to absorb the 
Oμ0(1)-term. From now, we fix μ = μ0 and we simply write Oμ instead of Oμ0 .

Step 2.2. Dealing with the first-order derivatives. The first line in I∂v is positive as∣∣∣∣ˆ
Qh

∂tv ∂tψ ϕ∇hv · ∇ψ

∣∣∣∣ ≤ 1
2

ˆ

Qh

|∂tv|2ϕ|∂tψ|2 + 1
2

ˆ

Qh

|∇hv · ∇ψ|2ϕ.

The second line of I∂v can be computed explicitly as ∂ttψ = −2β, ∂xkxk
ψ = 2 and Δψ = 4:

2∂tt ψ − α1(∂ttψ − Δψ) = −4β + 2α1(2 + β);

α1(∂ttψ − Δψ) + 2∂kkψ = −2α1(2 + β) + 4.

Hence the choice α1 = (β + 1)/(β + 2) makes each term strictly positive and equal to 2(1 − β) (recall 
β ∈ (0, 1)), so that

τμ

ˆ

Qh

|∂tv|2ϕ
(
2∂ttψ − α1(∂ttψ − Δψ)

)
+ τμ

∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2ϕ(α1(∂ttψ − Δψ) + 2∂kkψ
)

= 2(1 − β)τμ
(ˆ
Qh

|∂tv|2 +
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2).
We now remark that the third line of I∂v is negligible. Indeed, writing ∂h,kv = m−

h,k(∂
+
h,kv), one easily checks 

that
ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2ϕ|∂xk
ψ|2 −

ˆ

Qh

|∂h,kv|2ϕ|∂xk
ψ|2 ≥ −

ˆ

Q−
h,k

Oμ(τh)
∣∣∂+

h,kv
∣∣2.

Concerning the terms in IOμ
, the only term that needs to be discussed are the ones coming from I23:

But using that h2Δh,k is a discrete operator with norm bounded by 8, we get
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∣∣∣∣τh2
ˆ

Qh

Δh,1v
(
Oμ(1)∂h,2v + Oμ(1)∂tv

)
+ τh2

ˆ

Qh

Δh,2v
(
Oμ(1)∂h,1v + Oμ(1)∂tv

)∣∣∣∣
≤ C

(ˆ
Qh

|∂tv|2 +
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2 + τ2
ˆ

Qh

|v|2
)
.

Combining these estimates, for τ large enough, we obtain constants c1 > 0, C0 > 0 such that

I∂v ≥ c1τ

ˆ

Qh

|∂tv|2 + c1τ
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2

− τ

ˆ

Qh

Oμ(τh)|∂tv|2 − τ
∑
k

ˆ

Q−
h,k

Oμ(τh)
∣∣∂+

h,kv
∣∣2 − C0τ

2
ˆ

Qh

|v|2. (B.3)

Step 2.3. The boundary terms. Since min(−T,T )×Ω{ϕ∂xk
ψ} > 0 (recall xa /∈ Ω), then there exists ε1 > 0

such that taking τh ≤ ε1, ∣∣Oμ(τh)
∣∣ ≤ min

(t,x)∈(−T,T )×Ω

{
ϕ(t, x)∂xk

ψ(t, x)
}
,

so there exists C > 0 independent of τ and h such that

IΓ ≥ −2τμ
∑
k

ˆ

Σ+
h,k

∣∣∂−
h,kv

∣∣2ϕ∂xk
ψ ≥ −Cτ

∑
k

ˆ

Σ+
h,k

∣∣∂−
h,kv

∣∣2. (B.4)

Step 2.4. The Tychonoff regularization. We have ∂+
h,kA1,k = μ ϕ|∂xk

ψ|2 + ϕ∂xkxk
ψ + Oμ(τh) = Oμ(1) and 

∂+
h,km

+
h,�((1 + A0,�)A1,k) = μ ϕ|∂xk

ψ|2 + ϕ ∂xkxk
ψ + Oμ(τh). Thus, for τh small enough, i.e. τh ≤ ε2 for 

some ε2 ∈ (0, ε1), (
∂+
h,2m

+
h,1

(
(1 + A0,1)A1,2

)
+ ∂+

h,1m
+
h,2

(
(1 + A0,2)A1,1

))
> 0,

and the term involving ∂+
h,1∂

+
h,2v is positive, whereas the other term in ITych is negative. We bound it directly 

and get a constant C > 0 independent of τ and h such that

ITych ≥ −Cτ
∑
k

ˆ

Q−
h,k

∣∣h∂+
h,k∂tv

∣∣2. (B.5)

• Step 3. End of the proof of Proposition 2.4. Collecting the results (B.2)–(B.5) of Step 2, we have proved 
that for τ ≥ τ0 and τh ≤ ε2,

ˆ

Qh

Lh,1vLh,2v ≥ c0τ
3
ˆ

Qh

|v|2 + c1τ

ˆ

Qh

|∂tv|2 + c1τ
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2 − C0τ
2
ˆ

Qh

|v|2

−Cτ
∑
k

ˆ

Σ+
h,k

∣∣∂−
h,kv

∣∣2 − Cτ
∑
k

ˆ

Q−
h,k

∣∣h∂+
h,k∂tv

∣∣2

−τ3
ˆ

Qh

Oμ(τh)|v|2 − τ

ˆ

Qh

Oμ(τh)|∂tv|2 − τ
∑
k

ˆ

Q−

Oμ(τh)
∣∣∂+

h,kv
∣∣2.
h,k
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Therefore, taking τ large enough so that c0τ3 > 2C0τ
2 and τh small enough such that |Oμ(τh)| ≤

min{c0, c1, ε2}, which defines ε0 > 0, we obtain, for some constant C1 > 0,

τ

ˆ

Qh

|∂tv|2 + τ
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2 + τ3
ˆ

Qh

|v|2

≤ C1

ˆ

Qh

Lh,1vLh,2v + C1τ
∑
k

ˆ

Σ+
h,k

∣∣∂−
h,kv

∣∣2 + C1τ
∑
k

ˆ

Q−
h,k

∣∣h∂+
h,k∂tv

∣∣2.
From (2.19), there exists C2 > 0 such that

τ

ˆ

Qh

|∂tv|2 + τ
∑
k

ˆ

Q−
h,k

∣∣∂+
h,kv

∣∣2 + τ3
ˆ

Qh

|v|2 +
ˆ

Qh

|L1,hv|2

≤ C2

ˆ

Qh

|Lhv|2 + C2

ˆ

Qh

|Rhv|2 + C2τ
∑
k

ˆ

Σ+
h,k

∣∣∂−
h,kv

∣∣2 + C2τ
∑
k

ˆ

Q−
h,k

∣∣h∂+
h,k∂tv

∣∣2. (B.6)

But
ˆ

Qh

|Rhv|2 ≤ Cτ2
ˆ

Qh

|v|2,

which can also be absorbed by the left hand side of (B.6) by taking τ large enough, thus yielding to 
(2.20). �
Appendix C. Proof of an elliptic regularity result

Proof of Lemma 4.4. Multiplying Eq. (4.14) by wh, using the discrete Poincaré’s inequality, one easily 
obtains that

wh ∈ H1
0,h(Ωh) with ‖wh‖H1

0,h(Ωh) ≤ C‖gh‖L2
h(Ωh), (C.1)

for some constant C = C(m) > 0 independent of h > 0. Accordingly, replacing gh by gh − qhwh, we are 
reduced to the case qh = 0, that we assume from now.

Since Ωh = (hZ)2 ∩ (0, 1)2, we first propose to extend wh a priori defined on the discrete domain Ωh

to Ωext,h = (hZ)2 ∩ (−1, 2)2 as follows. First, for xh ∈ {(0, 0), (1, 0), (1, 1), (0, 1)}, we set w̃h(xh) = 0. 
Then, for xh = (xh,1, xh,2) ∈ [0, 1] × (−1, 2) ∩ Ωext,h, we set w̃h(xh) = −wh(xh,1, −xh,2) for xh,2 ∈ (−1, 0)
and w̃h(xh) = −wh(xh,1, 1 − (x2,h − 1)) for xh,2 ∈ (1, 2). This defines w̃h on [0, 1] × (−1, 2) ∩ Ωext,h. We 
then extend it for xh = (x1,h, x2,h) ∈ Ωext,h by setting w̃h(xh) = −w̃h(−xh,1, x2,h) for xh,1 ∈ (−1, 0) and 
w̃h(xh) = −w̃h(1 − (xh,1 − 1), xh,2) for xh,1 ∈ (1, 2). We do a similar extension g̃h of gh on Ωext,h taking 
care of choosing g̃h = 0 on ∂Ωh ∪ {(0, 0), (1, 0), (1, 1), (0, 1)}.

We thus have constructed a solution w̃h of

−Δhw̃h = g̃h in Ωext,h and w̃h = 0 on ∂Ωext,h. (C.2)

We then choose a function χ ∈ C∞
c ((−1, 2)2) such that χ = 1 on [0, 1]2 and we multiply (C.2) by −χhΔ1,hw̃h

with χh = rh(χ): After some integrations by parts where all the boundary terms vanish due to the choice 
of χ, we obtain:
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ˆ

Ωext,h

χh|Δh,1w̃h|2 +
ˆ

Ωext,h

m+
h,1m

+
h,2χh

∣∣∂+
h,1∂

+
h,2w̃h

∣∣2
= −

ˆ

Ωext,h

χhg̃hΔh,1w̃h +
ˆ

Ωext,h

∂+
h,2χh∂

+
h,2w̃hm

+
h,2Δh,1wh −

ˆ

Ωext,h

∂+
h,1m

+
h,2χhm

+
h,1∂

+
h,2wh∂

+
h,1∂

+
h,2w̃h.

(C.3)

Of course, since χ = 1 on [0, 1]2, the left hand-side of (C.3) is bounded from below by

‖Δh,1wh‖2
L2

h(Ωh) +
∥∥∂+

h,1∂
+
h,2wh

∥∥2
L2

h(Ωh).

On the other hand, using that w̃h and g̃h are symmetric extensions of wh and gh, the right hand-side of 
(C.3) is bounded from above by

C
(
‖gh‖L2

h(Ωh) + ‖wh‖H1
0,h(Ωh)

)(
‖Δh,1wh‖L2

h(Ωh) +
∥∥∂+

h,1∂
+
h,2wh

∥∥
L2

h(Ωh)

)
,

for some constant C independent of h > 0. We thus obtain

‖Δh,1wh‖L2
h(Ωh) +

∥∥∂+
h,1∂

+
h,2wh

∥∥
L2

h(Ωh) ≤ C
(
‖gh‖L2

h(Ωh) + ‖wh‖H1
0,h(Ωh)

)
,

which, together with (C.1) and −Δh,2wh = (gh − qhwh) + Δh,1wh, yields (4.15). �
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