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1. Introduction

The goal of this article is to study the convergence of an inverse problem for the wave equation, which
consists in recovering a potential through the knowledge of the flux of the solution on a part of the boundary.
This article follows the previous work [2] on that precise topic in the 1-d case.

1.1. The continuous inverse problem

Setting. We will first present the main features of the continuous inverse problem we consider in this article.
Let £2 be a smooth bounded domain of R?, and for T' > 0, consider the wave equation:

Ony — Ay +qy = f, in (0,7) x 12
y = fa, on (0,T) x 012, (1.1)
y(0,-) =4° Ow(0,-) =y, in L

Here, y = y(t,x) is the amplitude of the waves, (y°,y') is the initial datum, ¢ = q(x) is a potential, f is a
distributed source term and fs is a boundary source term.

In the following, we explicitly write down the dependence of the function y solution of (1.1) in terms of ¢
by denoting it y[¢] and similarly for the other quantities depending on gq.

We assume that the initial datum (3°,y') and the source terms f and fs are known. We also assume the
additional knowledge of the flux

A q] = dyylg] on (0,T) x I, (1.2)

where I is a non-empty open subset of the boundary 92 and v is the unit outward normal vector on 0f2.
Note that for this map to be well-defined, we need to give a precise functional setting: for instance, we may
assume (y°,y') € HY(2) x L2(2), f € L*((0,T); L?(£2)), fo € H*((0,T) x 92) and 3°|s0 = fo(t = 0) so
that .# is well-defined for all ¢ € L>°(£2) and takes value in L?((0,T) x 912), see e.g. [27].

This article is about the recovering the potential g from .#[g]. As usual when considering inverse problems,
this topic can be decomposed into the following questions:

o Uniqueness: Does the measurement .#[q] uniquely determine the potential ¢?

o Stability: Given two measurements . [¢%] and .#[q"] which are close, are the corresponding potentials
q® and ¢° close?

e Reconstruction: Given a measurement . [q], can we design an algorithm to recover the potential ¢?

Concerning the precise inverse problem we are interested in, the uniqueness result is due to [11] and we shall
focus on the stability properties of the inverse problem (1.1). The question of stability has attracted a lot
of attention and is usually based on Carleman estimates. There are mainly two types of results: Lipschitz
stability results, see [25,31,32,38,22,1,23,3,35], provided the observation is done on a sufficiently large part
of the boundary and the time is large enough, or logarithmic stability results [4,6] when the observation set
does not satisfy any geometric requirement. We also mention the works [5,12] for logarithmic stability of
inverse problems for other related equations.

Below we present more precisely these two type of results, since our main goal will be to discuss discrete
counterparts in these two cases.

Lipschitz stability results under the Gamma-conditions. Getting Lipschitz stability results for the continuous
inverse problem usually requires the following assumptions, originally due to [18]. We say that the triplet
(£2,I',T) satisfy the Gamma-conditions (see [29]) if
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o (£2,I) satisfies the geometric condition:
Jzg e RV\ 2, {z€00, st. (v —x0) - v(z) >0} C T (1.3)
o T satisfies the lower bound:

T > sup |z — zo. (1.4)
e

In [1], following the works [21,20], the next stability result was proved:

Theorem 1.1. (See [1].) Let m > 0 and consider a potential ¢ € L>(£2) with ||q*| 1= (o) < m, and assume
for some K > 0 the regularity condition

yla"] € H'(0,T5L>(12))  with |[y[q°] HHl(O,T;LOO(Q)) < K, (1.5)

where y[q®] denotes the solution of (1.1) with potential q*. Let us further assume that (£2,1y,T) satisfies
the Gamma-conditions (1.3), (1.4) and the following positivity condition:

- 0
Jop > 0, zuelg|y ()| > ao. (1.6)

Then there exists a constant C > 0 depending on m, K and g such that for all ¢* € L>(82) satisfying
1¢°(| oo (2) < m, we have A[q"] — A |q") € H*(0,T; L*(Iy)), and

1 a a a
5”‘1 *qum(Q) <||.#[q"] *///[qb]HHl(o,T;L?(ro)) < Cllq *quL?(Q)' (1.7)

Besides, if w is a neighborhood of Iy, i.e. for some § > 0, {z € 2, d(z,Iy) < §} C w, we also have
Oyla®] — 0vylq®] € HY((0,T) x w) and

6an - quL2(Q) < [[0ey[a"] - dey[d"] HHl((O,T)Xw) < Cllg" - qb||L2(Q)' (1.8)

Remark 1.2. Note that in Theorem 1.1, we do not give assumptions on the smoothness of the data 3%, 3, f,
fo directly. They rather appear through the bound K in (1.5) in an intricate way. Also note that estimate
(1.8) is not written in [1], but the proof of (1.8) follows line to line the one of (1.7).

Logarithmic stability results under weak geometric condition. Let us now explain what can be done when
the geometric part (1.3) of the Gamma conditions is not satisfied. In this case, to our knowledge, the best
result available is due to [4]. Below, we state a slightly improved version of it:

Theorem 1.3. (See [/}], revisited.) Assume that there exist an open subset I't C 02 of the boundary 012 and
an open subset O of 2 such that:

o Iy CIN and (12, I'1) satisfies the condition (1.3);
o O contains a neighborhood of Iy in (2, i.e. for some § > 0,

{z € 2.d(z 1) <} CO. (1.9)

Let ¢* be a potential lying in the class A(Q, m) defined for @ € L>=(O) and m > 0 by
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AQ,m) = {q € L>(£2), s.t. qlo=Q and ||q| =) < m}. (1.10)

Let y° € HY () satisfying the positivity condition (1.6) and assume that y[q®] satisfies the reqularity condi-
tion

y[q*] € H'(0,T;L>(£2)) nW>'(0,T; L*(£2)). (1.11)

Let o > 0 and M > 0. Then there exists C > 0 such that for T > 0 large enough, for all ¢ € A(Q,m)
satisfying

@ —q° EH&(Q) and ||qafqb||H6(Q) < M, (1.12)
we have M [q*] — #[¢°] € H*(0,T; L*(I)) and
C T 1ta
S| <C[1o <2+ )} . 1.13
e L Gl 7 e e e (19

Besides, the constant C' depends on m in (1.10), M in (1.12), ag in (1.6), a priori bounds on ||y°| (o) +
lyla®]ll 50,7505 (2))nw21 (0,122 (2)) and the geometric setting (1o, 1,0, §2).

To be more precise, [4] states the previous result with & = 1 and under slightly stronger geometric and
regularity conditions. Since Theorem 1.3 states a slightly better result than the one in [4], we will prove it in
Section 3. Similarly as in [4], we will work on the difference y[q®] —y[¢®] and use the Fourier-Bros-Iagoniltzer
transform which links solutions of the wave equation with solutions of an elliptic PDE, but instead of
considering the usual Gaussian transform as in [4] (see also [33,34]), we will consider the one used in [28]
(see also [6,30]). We will thus be led to prove a quantified unique continuation result for an elliptic PDE,
which we derive using a classical Carleman estimate ([19]). Nevertheless, we will do it in a somewhat different
way as the one in [34,30] by constructing one global weight which allows to prove Theorem 1.3 without the
use of iterated three spheres inequalities. The proof of Theorem 1.3 will then be completed by the use of
the stability estimates (1.8).

Objectives. Our goal is to derive counterparts of Theorem 1.1 and Theorem 1.3 for the finite-difference space
approximations of the wave equation discretized on a uniform mesh. In order to give precise statements,
we need to introduce several notations listed in the next section. For simplicity of notations, we make the
choice of focusing on the unit square in the 2-d case

2 =(0,1)2, (1.14)

though our methodology applies similarly in the case of the d-dimensional domains of rectangular form
= H?Zl[aj, b;] (still discretized on a uniform mesh). Note that, even if we stated Theorems 1.1 and 1.3
for smooth bounded domains, both theorems also hold in the case of a domain 2 = (0, 1)2.

1.2. Some notations in the discrete framework

Here, we introduce the notations corresponding to the case of a finite-difference discretization of the wave
equation on a uniform mesh. Let N € N be the number of interior points in each direction, and h = 1/(N+1)
the mesh size. All the notations introduced in the discrete setting will be indexed by the parameter A > 0
to avoid confusion with the continuous case.
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Fig. 1. Main discrete notations in 2 = (0,1) x (0, 1).

Discrete domains. We introduce the following (see also an illustration in Fig. 1):

2, ={h,2h,...,Nh}?, 2, ={0,h,2h,...,Nh,1}?,

002, = ({0} u{1}) x {h,...,Nr}) U ({h,...,Nh} x ({0} U{1})),

Iy ={0} x{h,...,Nh}, Lo ={h,...,Nh} x {0},

Fhflz{l}x{h,...,Nh}, Fng:{h,...,Nh}x{l},

Iy =L, UL,  Li=Lunf, 02, =TI, uly,

=02, 01, Q,0=02,0U1I,, @, =02, 080, (1.15)
Note that this naturally introduces two representations of the discrete set 2,. We will use alternatively

x, € 2y or (i,5) € [0, N + 1]? (where [a,b] = [a,b] N N) to denote the point z;, = (ih,jh), the advantage
of the first writing being its consistency with the continuous model.

Discrete integrals. By analogy with the continuous case, if we denote by fr, = (f(2h))z,en,, respectively
frn= (f(mh))mh6(2;1’ fn= (f(xh))fh,69;27 a discrete function, we will use the following shortcuts:

/fhszi,jzhzivjfi,j; /fhzfﬂiifi,j; /fh=h22N:zN:fi7j- (1.16)
2y

3,j=1 - 1=0 j=1 - i=1 =0
2n 244 22

One should notice that if these symbols are applied to continuous functions or products of discrete and
continuous functions, they have to be understood as the corresponding Riemann sums.

When considering integrals on the boundary 0f2;, we use the natural scale for the boundary and we
define, for fj a discrete function on 02y,

/fh:h > flam). (1.17)

e TR €082,

Subsets. In several places, we will consider open subsets O,w C {2 and we then note O, = O N 2y,
On ={z € 2,d(z,0) <h}N 2y, O;, = {z € 2,3 € [0,h],, 2+ ee, € O} N §2;,, and similarly for the
sets wp, Wy and wy, , (notice that these sets are always non-empty for h small eno7ugh). Integrals on these
discrete approximations of open subsets of 2 are given for f;, discrete functions on O}, as follows:
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/fh:/fhloh, / fo= / fhlo};k, (1.18)
Ohn 2n Ok 25

and similarly for the integrals on wy, wy, ;.
When considering open subsets I' of the boundary 0f2, we will similarly set I}, = I’ N 02, and the
integrals on these discrete approximations of subsets of the boundary will be given by

/th /fhlrh-

I'n 082n

Discrete LP-spaces. We also define in a natural way a discrete version of the LP({2)-norms as follows: for
p € [1,00), we introduce L} (§2;) (vespectively L} (£2, ) the space of discrete functions f = (fi ;)i jen .~
(respectively ¢ € [0, N],j € [1, N]) endowed with the norms

nligian = [ (v Uy o = [ 1), (1.19)
2

Q4

and, for p = oo, ||fh||Lz°(Qh,) = Sup; je[1,N] | fijl, (resp. ||fh||LZ°(Q;71) = SUPje(o,N];j€[1,N] | fii1)-

We define the spaces Lj (£2;, ), Lj (Or) and L} (wy) for open subsets O,w C 2 in a similar way. We also
define discrete norms on parts of the boundary: if I" is an open subset of 912, the space L¥ (I},), (p € [1,00))
is the set of discrete functions f;, defined on I}, endowed with the norm

11y = [ 1507
Iy

Discrete operators. We approximate the Laplace operator by the 5-points finite-difference approximation:
v(i,j) € [1, N]?,

1
(Ahvh)i,j = ﬁ(’UH,Lj =+ Vi j+1 + Vi—1,5 + Vij — 4vi,j)~ (120)

Besides the discrete Laplacian Ay, let us also introduce the following discrete operators:

_ Vi1, + 2005+ Vo1 Vigj1 + 2055 + Vi1

(Mhavn)i; = 1 ; (Mu2vn)ij = 1 ;
+ - _ Vit1,5 + i + - _ Vi Vit
(mh,1vh)i,j = (mh,ﬂh)iﬂ,j = 9 o (mh,zvh)” = (mh,lvh)i+1,j - 9 : )
Vit1j — Vie1j . Vijr1 — Vi1 i
(ah,lvh)i,j = %7 (ah,QUh)i,j = %7 Vi = (8’1,2) 5
+ o= Vit — Vi + (- _ Vig41 —Vij
(ah,lvh)i,j = (8h,lvh)i+1,j = h ; (8h,2vh)i,j = (8h,2vh)i,j+1 - h g
Vit1,j — 2055 + Vie1 Vi1 — 2055 + Vi 51
(Ahjlvh)m- — Jitld h;J : J; (Ah,ZU}L)iJ e h;j —

We finally introduce the following semi-discrete wave operator:
On =0 —Ap =04 — Ap1 — Ao

Spaces of more regularity. We will use the space H}(§2),) of discrete functions f;, defined on §2), endowed
with the norm
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2 _ 2 + 2
HthH}I(!Zh) - Hfh”Li((Th) + k;QHah,kthLﬁ(Q;k)'

We also denote H&h(()h) the set of functions f; defined on {2, and vanishing on 942, endowed with the
above norm.

Note down that Hj (£2;) and H& 1 (£25) denote spaces of functions defined on (2,. We decided to slightly
abuse the notations by denoting them that way, since the topology of these spaces is strong enough to define
the trace operators.

Similarly, when w is a non-empty open subset of {2, we denote by H}(wy) the set of discrete functions
fr defined in @y endowed with the norm

2
1l oy = 1l oy + D2 19wl e o
k=1,2 '

We finally introduce H E(Qh) the set of discrete functions f;, defined on 2, endowed with the norm

2
1full 2oy = IFnll oy + 120 fallT2 () + 18R 2F0lIZ2 0,y + ||‘9ft1‘9;t2thL2(Q;)~

Besides, with an abuse of notations, we will often denote L?(0,T;H}(£2,)) N H'(0,T;L3(§2,)) by
HY(0,T) x 24) and the space H2(0,T: L3 (24)) N H(0, T H} (24)) 1 L2(0, T3 HA(2,)) by H2((0,T) x 2.

Extension and restriction operators. Finally, we shall explain how to compare discrete functions with con-
tinuous ones. In order to do so, we introduce extension and restriction operators.

The first one extends discrete functions by continuous piecewise affine functions and is denoted by ey,.
To be more precise, if fj, is a discrete function (f; ;) jefo,n+1], the extension ey (fx) is defined on [0, 1)? for
(21,2) € [ih, (i + 1)h] x [jh, (j + 1)h] by

—ih —jh _ih —jh
en(fn)(z1,22) = <1— 1 ; ! >(1— 2 h] >fi,j+ <x1 7 ! )(1— 2 hj )fi+1,j

x1 —th\ [ x2 — jh x1 —1th\ (12 — jh
+(1_ 1h )( QhJ )fi’j“—i_( lh >< Zhj )fi+1¢j+1~ (1.21)

This extension presents the advantage of being naturally in H'(£2). The second extension operator is the

piecewise constant extension e (f), defined for discrete functions f5 = ( fig)ijeqng by

en(fn) = fig on [(i = 1/2)h, (i +1/2)h[x[(j = 1/2)h, (j +1/2)h[, i,j € [1,N],
ed(fn) =0 elsewhere. (1.22)
This one is natural when dealing with functions lying in L?(£2) as ||e})(fx)|lr2(2) = [ frll L2 (22,,)- Also note
that easy (but tedious) computations show that e, (f5) converge to f in L2(£2) if and only if €} (f5) converge
to f in L?(92).

We finally introduce restriction operators rp, T5, and 1p 5 where 1 is defined for continuous function

feC(2) by

rn(f) = fa given by f;; = f(ih,jh), Vi, j € [1,N],

i}, for functions f € L2(£2) by
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fu=gs  [[  fenedods, Vije L]

|z1—ih|<h/2
\xz Fh|<h/2

T (f) = fn given by
wlf)=Jn iy = // F(a1, 20) drdas, Vrn = (ih, jh) € 02

|z1—ih|<h/2
oo —jhl<h/2
(x1,22)€E0

and tj, 0 for functions fy € L?(082) b

th00(fa)(xn) = % / fo(z)do  for xj, € O82y,.

|z—zn|<h/2,
T€DS?

1.8. The semi-discrete inverse problem and main results

We discretize the usual 2-d wave equation on {2 = (0, 1)? using the finite difference method on a uniform
mesh of mesh size h > 0. Using the above notations, this leads to the following equation:

Otyn — Aryn + qnyn = fn in (0,T) x £2,
Yn = fon on (0,T) x 082y, (1.23)

yn(0) =42, Owyn(0) =y} in (2.

Here, y, (t, zp,) is an approximation of the solution y of (1.1) in (¢, ), Ay approximates the Laplace operator
and we assume that (y9,y}) are the initial sampled data (y°,y') at xp,, and fo, € L?(0,T; L3 (942,)) and
fn € L*(0,T; L?($2,)) are discrete approximations of the boundary and source terms fy and f.

Our main goal is to establish the convergence of the discrete inverse problems for (1.23) toward the
continuous one for (1.1) in the sense developed in [2]. Let us rapidly present what kind of results should be
expected.

The natural idea to compute an approximation of the potential ¢ in (1.1) from the boundary measurement
A q] is to try to find a discrete potential g5 such that the measurement

AMilan] = Oven(ynlan]) on (0,T) x I (1.24)

where yp,[gn] is the solution of (1.23), and ey, is the piecewise affine extension defined in (1.21), approximates
A [q] defined in (1.2). We are thus asking the following:

if one finds a sequence g, of discrete potentials such that .#},[gp] converges towards .#[q] as h — 0 (in a
suitable topology), can we guarantee that the sequence g, converges (in a suitable topology) towards g ?

As it is classical in numerical analysis — this is the so-called Lax theorem for the convergence of numerical
schemes — such result can be achieved using the consistency and the uniform stability of the problem. In
our context, even if the consistency requires some work, the stability issue is much more intricate since even
in the continuous case it is based on Carleman estimates. Here, stability refers to the possibility of getting
bounds of the form

ek (ah = ah) |l < Cll-#n[ar] = An[an] ] - (1.25)

where e is the piecewise constant extension defined in (1.22), and the norms || - ||« and | - ||+ have to be
precised, for some positive constant C independent of h.
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As we already pointed out in [2] in the 1-d case, a stability estimate of the form (1.25) is far from obvious
and actually, instead of getting an estimate like (1.25), we proposed a slightly modified observation operator
% for which we prove uniform stability estimates and the convergence of the inverse problem.

Hence the main difficulty in obtaining convergence results is to derive suitable stability estimates for the
discrete inverse problem under consideration. We will thus state convergence results for the discrete inverse
problems in the forthcoming Theorem 1.6, while the main part of the article focuses on the proof of stability
estimates for the discrete inverse problem set on (1.23) stated hereafter in Theorems 1.4 and 1.5.

1.8.1. Discrete stability results

Discrete Lipschitz stability. Since we assumed 2 = (0,1)2, the condition (1.3) will be satisfied by a set
I'y € 092 if and only if Iy contains two consecutive edges, and in this case the time 7" in (1.4) can be taken
to be any T > /2. Thus, with no loss of generality, when the Gamma-conditions (1.3), (1.4) are satisfied,
we can focus on the study of the case

2=00,1?2 Ty>Iy = {1} x(0,1)U((0,1) x {1}), T>V2 (1.26)

When the measurement is done on a part of the boundary I satisfying the above conditions, we will prove
the following counterpart of Theorem 1.1:

Theorem 1.4 (Lipschitz stability under Gamma-conditions). Assume that (2,15, T) satisfy the configuration
(1.26). Let m >0, K >0, ag > 0, and gt € Ly (924) with ||}t Lo (0,) < m. Assume also that yj, and the
solution yp[q?] of (1.23) with potential qf satisfy

1}}5‘3/2‘ >ag and ||yn[q;] HHl(O,T;L;L’O(Qh)) = K. (1.27)

Then there exists a constant C = C(T,m, K, ag) > 0 independent of h such that for all ¢% € L3°($2;,) with
||qll;||L’0LO(Qh) < m, the following uniform stability estimate holds:
b b
lah — qhHLi(Qh) < C||tn[ar] — A [a) |‘H1(0,T;L§(1‘o,h))

+ Ch Z ||a]—;kattyh [QZ} - 6}tkattyh [QZ] ||L2(O’T?L}2L(Q}T L)’ (128)
k=1,2 ’

where yp[qb] is the solution of (1.23) with potential q_.
Similarly, if w is a neighborhood of I'y, i.e. there exists 6 > such that

((1,1=06) x (0,1)) U((0,1) x (1 =6,1)) C w, (1.29)

then there exists a constant C' = C(T,m, K, ap, ) > 0 independent of h such that for all ¢ € L$°($2;,) with
||qg||LZO(Qh) < m, the following uniform stability estimate holds:

gt = @il 2 ) < CllOeynlai] = Fewnlar] | s o.r,13 o)

+C Z |95 Oryn [ar] = O3 Oryn [41] HLZ(O,T;L%,(
k=1,2

+Ch Z Haltkattyh [an] — afikattyh [QZ] HLQ(O,T;Lﬁ(Q;k))' (1.30)
k=1,2 ’

W;,h,))
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When comparing Theorem 1.4 with Theorem 1.1, one immediately sees that estimate (1.28) is a reinforced
version of (1.7) due to the additional term

Ch > ||05f Oreyn (5] — O3f Ouryn [ah] 20702 7 ) (1.31)
k=1,2

This was already observed in [2] for the corresponding 1-d inverse problems, and is remanent from the fact
that observability estimates for the discrete wave equations do not hold uniformly if they are not suitably
penalized, see [24,39,14]. Note in particular that as h — 0 and under suitable convergence assumptions, this
term vanishes and allows to recover the left hand side inequality of (1.7) by passing to the limit in (1.28).
Theorem 1.4 is proved in Section 2.4. Following the proof of its continuous counterpart Theorem 1.1, the
main issue is to derive a discrete Carleman estimate for the wave operator (Theorem 2.1), as it was already
done in [2] in the 1-d setting. Though the proof of this discrete Carleman estimate is very close to the one
in 1-d, the dimension 2 introduces new cross-terms involving discrete operators in space that require careful
computations. Note however that our proof also applies in higher dimension when the domain is a cuboid
discretized on uniform meshes as this would involve similar terms. Actually, this has already been done in
the context of elliptic equations, see [8].

Discrete logarithmic stability. Since we limit ourselves to the case 2 = (0,1)2, we may assume that I is
a (non-empty) subset of one edge and that the counterpart of I'y appearing in Theorem 1.3 satisfying the
Gamma conditions (1.3) is formed by two consecutive edges. Due to the invariance by rotation, with no loss
of generality, we may thus assume:

2=(0,12  TLyc{1}x(0,1), In=I;=({1}x(0,1)U((0,1)x{1}). (1.32)

Theorem 1.5 (Logarithmic stability under weak geometric conditions). Assume that the triplet (£2,10,11)
satisfy the geometric configuration (1.32) and the existence of an open set O C {2 such that

o O contains a neighborhood w of I' in §2, i.e. such that (1.29) holds.
o the potential qp is known on 082, and in Oy, where it takes the value Qp € Ly°(Op).

Let ¢f be a potential lying in the class Ap(Qn,m) defined for Qpn € Ly°(Oy) and m > 0 by

Ah(Qh,m) = {qh c Lzo(ﬂh), s.t. qh|(9h = Qh and ||qh||LzC(_Qh) < m} (133)

Let ag > 0, M > 0 and o > 0. Assume also that y) € H} (£2,) and the solution yp[qf] of (1.23) with potential
qy satisfy the conditions

irr)1f|y2| >ap and yp[g®] € H'(0,T; L2 (2,)) N W (0,T; L, (£2)). (1.34)

Then there exist C > 0 and hg > 0 such that for T > 0 large enough, for all h € (0,hg), for all
@b € Ap(Qn,m) satisfying

an = an € Hop(2n) and g = @3l () <M, (1.35)

we have
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C T 14a
a_ b < Op/(te) +O{1 <2+ )}
lai =il iz 00 = O\ g — Al o)
+Ch Y 10 kOeeyn (48] = O Oueom [ah] | 2 0 n2 0 ) (1.36)
k=1,2 '

Besides, the constant C' depends on the constants m, M in (1.35), ag in (1.34), an a priori bound on

”yEL”H}L(Qh) + llynlailll 51 0,15 (20))nw21 (0,102 (2,))» and on the geometric configuration.

When compared with the corresponding continuous result of Theorem 1.3, the stability estimate (1.36)
contains two extra terms: the penalization term (1.31) and the new term Ch'/(1+®),

The proof of (1.36), given in Section 3, follows the same path as in the continuous case and combines the
stability results obtained in the case where the Gamma conditions are satisfied with stability results obtained
for solutions of the wave equation through a Fourier—-Bros—Iagoniltzer transform and a Carleman estimate
for elliptic operators due to [7,8]. Hence, the penalization term (1.31) is remanent from Theorem 1.4. But
the term ChY 1+ comes from the fact that the parameters within the discrete Carleman estimates cannot
be made arbitrarily large and should be at most at the order of 1/h. This fact has already been observed
in several articles in the elliptic case, see [7,8,13], see also [9] in the parabolic case. We also refer to [26] for
a previous work related to the convergence of the quasi-reversibility method.

1.8.2. Discrete convergence results
NThe ’s@bility results of the previous Theorems 1.4 and 1.5 suggest to introduce the observation operators
My, = ,///h{y?l, y}L, fn, fan} defined for h > 0 by
My L (2) — L2(0,T; L2 (Iy)) x L2((0,T) x £2),
an — (8ven (ynlan]), hV zen (Owynlan])) . (1.37)

where yp,[gs] is the solution of (1.23) with potential g, and data 43, yi, fu, fo.n and ey is the piecewise
affine extension defined in (1.21). Corresponding to the case h = 0, we introduce its continuous analogous

% :%{yo’ylafa fa}:
My : L(2) — L2(0,T; L*(Ip)) x L2((0,T) x 1),
q— (0vyla],0), (1.38)

where ylg| is the solution of (1.1). Recall that according to [27], this map My is well defined on L*>(92) for
data

(v°, 4", f. fo) € H'(£2) x L*(22) x L'((0,T); L*(2)) x H"((0,T) x 912),

with 4%]o0 = fa(t = 0), (1.39)

that we shall always assume in the following:
Remark that with these notations, the quantities

[EArARArs HHl((o,T);Li(FO,h)) th Z Haftkattyh (9] — On kOrn [43] HLz((o,T)xn,;k)
k=1,2

and

|-#1[a5) — 4 [a}]

HHl(O,T;L2(F0)) x L2((0,T) x £2)
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are equivalent, uniformly with respect to the parameter h > 0. Hence the stability results in Theorems 1.4
and 1.5 easily recast into stability results for .#},.
Our convergence result is then the following;:

Theorem 1.6 (Convergence of the inverse problem). Let ¢ € H* N L°°(02) and assume that we know qs =
qlon. Let the data (y°,y', f, fa) follow conditions (1.39) and the positivity condition infs |y°| > ag > 0.
Furthermore, assume that the trajectory ylq] solution of (1.1) satisfies

ylg) € H*(0,T; H'(2)) N H'(0,T; H*(12)). (1.40)
We can construct discrete sequences (yg,y}l, In, fa.n), such that if we assume either
o (2,1,,T) satisfy the configuration (1.26), and in this case we define Xy, = L5°(£2p,),
or

o (2,1, I'y) satisfy the configuration (1.32), T > 0 is large enough, q is known on O, neighborhood of
Iy, and takes the value qlo = Q, and we define

X = {an € L* () s.t. qnlo, = Th(Q),
and gqp, extended on 082, by qnlan, = Tho0(qa), belongs to H}ll((lh)},

that we endow with the L°°(£2y) N HL($2y,)-norm,

then
— there exists a sequence (qn)n>0 € Xn of potentials such that

0, (1.41)

hI}ILl_S:(-)lp ||qh||Xh < 007 a‘nd }{E&)Hﬂh[qh} - %O[q]||Hl(O,T;LQ(Fo))XLQ((O,T)XQ) =

— for all sequence (gn)n>0 € Xy, of potentials satisfying (1.41), we have

lim [e7(an) = a| 12y = 0.

Let us briefly comment the assumptions of Theorem 1.6, which might seem much stronger compared to the
ones for the stability results in Theorems 1.4 and 1.5. This is due to the consistency of the inverse problem,
detailed in Lemma 4.3, which requires to find discrete potentials such that the corresponding solutions of
the discrete wave equation (1.23) belongs to H*(0,T; L°°(£2)). But this class is not very natural for the wave
equation, and we will thus rather look for the class H'(0,T; H%(£2)), which embeds into H'(0,T; L>°(£2))
according to Sobolev’s embeddings (since {2 C R?). This is actually the only place in the article which truly
depends on the dimension.

It may also seem surprising to assume the knowledge of ¢ on the boundary even in the configuration
(1.26), for which Theorem 1.4 applies with only an L7°({2;)-norm on the potential. This is actually due
to the fact that the knowledge of g5, is hidden in the regularity assumptions on yq]. Indeed, if y[q] is
smooth and satisfies (1.1), we may write 9yy(0,2) = Ay°(z) — q(x)y°(x) + f(0,z) for all x € 2 and in
particular x € 92, whereas 0yy(0,7) = 9y fo(0,x) for € 9S2. In particular, since y° does not vanish on
the boundary, these two identities imply that g9, can be immediately deduced from the knowledge of Y,
f and f5 for sufficiently smooth solutions, see Remark 4.5.
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Details on the derivation of Theorem 1.6 are given in Section 4, with a particular emphasis on the related
consistency issues. In particular, Lemma 4.3 explains how to derive the discrete data y?, y}, fn and fop
from the data y°, y*, f, fs and qlag-

1.4. Outline

Section 2 will be devoted to the establishment of a uniform semi-discrete hyperbolic Carleman estimates
in two-dimensions, including the boundary observation case in Theorem 2.1 and the distributed observation
case in Theorem 2.2. We will then derive from these tools the discrete stability result of Theorem 1.4.
In Section 3, we will present a revisited version of Theorem 1.3 based on a global elliptic Carleman es-
timate and follow the same strategy to establish the discrete stability result of Theorem 1.5, that relies
on a global uniform semi-discrete elliptic Carleman estimate due to [8]. Finally, Section 4 will gather the
proof of Theorem 1.6, some informations about the Lax type argument, and a detailed discussion about
consistency issues.

2. Application of hyperbolic Carleman estimates

In this section, we discuss uniform Carleman estimates for the 2-d space semi-discrete wave operator
discretized using the finite difference method and applications to stability issues for discrete wave equations.
These discrete results are closely related to the study of the 1-d space semi-discrete wave equation one can
read in [2]. Actually, our methodology (here and in [2]) goes back to the articles [7,8] where uniform Carleman
estimates were derived for elliptic operators.

2.1. Discrete Carleman estimates for the wave equation in a square

The proofs of the results stated here will be presented in Sections 2.2 and 2.3.
Recall that we assume the geometric configuration

2=(0,1° Iy>Iy=({1}x(0,1)U((0,1)x{1}). (2.1)

Carleman weight functions. Let a > 0, 7, = (—a,—a) ¢ 2 =[0,1)%, and B € (0,1). In [-T,T] x [0,1]?, we
define the weight functions ¢ = ¢(t,x) and ¢ = p(t, ) as

w(ta Q]‘) = |$ - J?a|2 - BtZ =+ co, @(ta Q]‘) = eﬂd)(t’z)z (22)
where ¢y > 0 is such that 1 > 1 on [T, T] x [0,1]? and p > 1 is a parameter.

Uniform discrete Carleman estimates: the boundary case. One of the main results of this article is
the following:

Theorem 2.1. Assume the configuration (2.1) for 2 and I'y. Let a > 0, € (0,1) in (2.2) and T > 0. There
exist o > 1, u>1,e >0, hg > 0 and a constant C = C (7o, p, T, e, ) > 0 independent of h > 0 such that
for all h € (0, hg) and T € (79,e/h), for all wy, satisfying

Onwp, € L2 (=T, T; L3 (24)),
wo (1) = wy41,5(t) = wio(t) = win11(t) =0 Vte (=T,T), 4,5 € [0, N +1], (2.3)
U}ZJ(:ET) = Btwi’j(:lzT) =0 V’L,] S [[O,N + 1]],

we have
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T T T
T//ezw’l|8twh|2dt+7 Z / / eQW*L’a}tkwhfdt—l—T‘n’//627%|wh|2dt

‘T o, k=12 "p o, 1o,
T T T
< C/ /62Twh|DhWh|2dt+CT Z / / ezT%{agkwh|2dt+CTh2 Z / / 62”"’1|32'k5’twh|2dt,
T o, k=1,2"p i k=12 " o,
(2.4)
where o, s defined as the approximation of ¢ given by on(t) = rpp(t) fort € [0,T).
Besides, if w,(0,zp) =0 for all xp, € 2y, we also have
T
7'1/2/ezwh(o)|8twh(0,xh)‘2 < C’//eQT“’"|thh|2 dt
2n —T 2
T T
+C7 > / / 2|0y wn|” dt + CTR? S / / 2|9 Dywn|” dt. (2.5)
k=127 % k=127 7
h,k h,k

The proof of Theorem 2.1 will be given later in Section 2.2. It is very similar to the one of [2, Theo-
rem 2.2] but more intricate. The continuous counterpart of Theorem 2.1 is given in [3, Theorem 2.1 and
Theorem 2.10], and very close versions of it can be found in [21,20]. However, two main differences with
respect to the corresponding continuous Carleman estimates appear:

e The parameter 7 is limited from above by the condition 7h < e: this restriction on the range of the
Carleman parameter always appear in discrete Carleman estimates, see [7,8,2,13]. This is related to the fact
that the conjugation of discrete operators with the exponential weight behaves as in the continuous case
only for 7h small enough, since for instance

"0y, (67'“‘0) ~ —70,p only for Th small enough.

e There is an extra term in the right hand-side of (2.4), namely

T
Th? ) / / €270 |0)F  Dywy|” dt (2.6)

k=1,2" -
T 25,

that cannot be absorbed by the left hand-side terms of (2.4). This is not a surprise as this term already
appeared in the Carleman estimates obtained for the waves in the 1-d case, see [2, Theorem 2.2|, and
also in the multiplier identity [24]. As it has been widely studied in the context of the control of discrete
wave equations (see e.g. the survey articles [39,14]), this term is needed since the discretization process
creates spurious frequencies that do not travel at the velocity prescribed by the continuous dynamics (see
also [36]). Also note that this additional term only concerns the high-frequency part of the solutions, since
the operators h@,t 1 h@;{a are of order 1 for frequencies of order 1/h, whereas it can be absorb by the right
hand-side of (2.4) for scale O(1/h'~¢) for all € > 0 by choosing h sufficiently small.

Uniform discrete Carleman estimates: the distributed case. The usual assumption in the distributed case for
getting Carleman estimates in the continuous setting (see [20]) is that the observation set w is a neighborhood
of a part of the boundary satisfying the Gamma condition (1.3). Since in our geometric setting 2 = (0, 1)2,
with no loss of generality we may assume that there exists 6 > 0 such that (1.29) holds. Under these
conditions, we show:
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Theorem 2.2. Assume the configuration (1.29) for w. We then set

wp =2, Nw,  wy =02, No, ke{l,2}

Let a > 0, 8 € (0,1) in (2.2) and T > 0. There exist 70 > 1, u > 1, € > 0, hg > 0 and a constant
C = C(ro,p, T, 8) > 0 independent of h > 0 such that for all h € (0,hg) and T € (79,e/h), for all wy,
satisfying (2.3),

T T T
2
T//e2-r<ph|atwh|2 dt + 7 2 : / / 62“9“ a}irkwh| dt—l—TS / /ezﬂ-cph|wh|2 dt
1o, k=12"p o, T o,

T T
gc//ez‘wwmhwh|2dt+crh2 > / /e%%\a}jkatwh}gdt (2.7)

k=1,2". 7
—T Q2 T o,

T T T
+C’T//627“"h|3twh|2dt+07 Z / /627‘”|3}tkwh}2dt+073//ezw"|wh|2dt,

k=1,2 -
—T wh —-T Wik —T wp

where op(t) = tpp(t) for t € [0,T). Besides, if wy(0,25) =0 for all ), € 2, the term
71/2/eQTW”(O)Iatwh(O,xh)F
On

is also bounded by the right hand side of (2.8).

Of course, Theorem 2.2 shares the same features as Theorem 2.1. Actually, Theorem 2.2 is a corollary of
Theorem 2.1, and we postpone its proof to Section 2.3.

2.2. Proof of the discrete Carleman estimate — boundary case

Proof of Theorem 2.1. The proof of estimate (2.4) is long and follows the same lines as [2, Theorem 2.2].
In particular, the main idea is to work on the conjugate operator

Loy, = eTsoh[Ih(eiﬂphvh). (28)

The precise computation of .%}, already involves tedious computations summed up below:
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Proposition 2.3. The conjugate operator £}, can be written in the following way:

Lyon = v — 27 ppdpb Oy, + T2 0% (90) o — TP @(04)*on — T (O t))vy,
- Z + Ao,k) Ap kv + 270 Z A1 kOn kR — Z (T?uP Ao gy — TP Az gy — TAL ) Un,

k=1,2 k=1,2 k=1,2
(2.9)
where the coefficients Ay are given, for (t,zy) € (=T,T) x 2, and e' = (1,0), e* = (0,1), by
1 k
1 A e—ﬂp(t,xh+ohe )
AL}C(t,(Eh) = 5/[308mk1/1](t,$h+0'h6 )Wdo', (210)
21
2 ) 9 A e—‘rtp(t,a:h-i-ahek)
Az (t,2p) = /(1 - |0|) [90 (02, %) ] (tvxh +ohe )W do, (2.11)
21
1 k
) X ef‘rgo(t,:thrUhe )
AB,k(tvxh) = /(1 - |‘7|) [@(%ﬁﬁ) ](tyfh, +ohe )W dU: (2~12)
-1
p A ef‘rap(t,zh,Jro'hek)
Ay p(t, ) / (1= |0])[@0uyz,¥] (t, z + ohe®) T do, (2.13)
1
h2
Aok = 5 (7’2/}142,,1C — T/LQAgyk — TMA4’]C). (2.14)

In particular, these functions Ay defined on [0,T] x 25, can be extended on [0,T] x 2 in a natural way by
the formulas (2.10)-(2.13) and satisfy the following property: setting

fO,k = Oa fl,k = Saazkwa f2,k = @2(amkw)2a fS,k = @(3%1/})2, f4,k = (Pamkka/J,

for some constants C,, depending on p but independent of T and h, we have
[Aek = ferllczorixny < Cuth, VLE{0,... 4}, VEk € {1,2}. (2.15)

The proof of Proposition 2.3 can be easily deduced from the detailed one in [2, Propositions 2.7, 2.8
and Lemma 2.9, 2.10] and the details are left to the reader. Note in particular that (2.15) implies for all
(£, k) € [0,4] < {1,2},

1Aes = tnferlloeomyng@nn + Y 100 Ack —trds fe, Bl oo (O.T}L3 (2 )
k'=1,2

+[AnAy, ) < Cuth.

Afterwards, one step of the usual way to prove a Carleman estimate is to split .Z}, into two operators 2 1
and .}, o, that, roughly speaking, corresponds to a decomposition into a self-adjoint part and a skew-adjoint
one. To be more precise, using the notations

Ag = A1+ Az 2, Ag = Asq + As 2, Ay =A41 + As 2,

we set
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L1, = Ogep, — Z (14 Ao i) Apgvn + 7202 (9% (000) — Az) vy, (2.16)
k=1,2
Znovn = (a1 — 1)Tp(00ut) — Ag)vp — TH2 (<P|3t¢\2 - A3)Uh
— 27 <<P3t¢8tvh -> Al,kah,kvh)y (2.17)
k=1,2
S+1

Envp, = a1 Tp(oyth — Ag)vp,  with aq = (2.18)

B+2

so that we have £, 1v + £ 2v = Zv + Zpv. Here, %), will be considered as a lower order perturbation
of no interest and the letter #Z states for “reminder”. More precisely, all our computations will be based on
the following straightforward estimate:

T T T

//|$h,1vh|2dt+//|$h72’l}h|2dt+2//fh’lvhfh’zvhdt

~T 2 —T 2 ~T 2
T T

§2//|$hvh|2dt+2//|9zhv|2dt. (2.19)

=T 2 =T 2
In particular, we claim the following proposition, proved in Appendix B:
Proposition 2.4. For any T > 0, there exist u > 1, 719 > 1, €9 > 0 and a constant Cy > 0 such that for all

T € (70,€0/h), for all vy, satisfying vo; = UN+1,j = Vio = Vi N+1 = 0 and v, ;(£T) = O, ;(£T) = 0,Vi, j €
[0, N +1],

T T T T
T//|8tvh|2dt+7' 3 / /|a;kuh12dt+73//|vh|2dt+//|fh,1vh|2dt

e o k=1,2"p o, =T 2 ~T 2
T T T
§Co//|.$hvh|2dt+007 > / /|a,;kvh|2dt+cmh2 > / /|a;katvh}2dt, (2.20)
ST, k=1,2_"p r, k=127
h,k

where the operators £, and £, 1 are defined by (2.8) and (2.16).

The proof of Proposition 2.4 is the core of the derivation of the discrete Carleman estimate and consists
in estimating from below the cross-product f_TT ff?h Ly 1vp Ly ovp dt in (2.19). This is done in two steps:
Computation of the cross-product and computations of the leading order terms coefficients in front of
Vh, OpUp, 8;{,,61);1. The proof of Proposition 2.4 is given in Appendix B.

Actually, this closely follows the proof of [2, Lemma 2.11] corresponding to the 1-d case. The main
novelties with respect to [2, Lemma 2.11] are the following ones:

e Some computations in the cross-product of ., 1vp, and %, 2vp, are new since the term (a1 —1)7u(@0u 1 —
Yok Aar)vp in L2 in (2.17) vanishes in dimension 1. Actually, the coefficient «; is chosen in some range
that depends on the dimension d of the space variable and is required to belong to (258/(8+ d),2/(8 + d)).
Hence, since d =1 in [2], we chose a7 = 1 to simplify the computations.

e There are also new cross-products involving integration by parts of discrete derivatives in different
directions. In particular, besides the 1-d integration by parts formula in [2, Lemma 2.6] that we recall in
Appendix A, we will need the following specific 2-d formula:
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Lemma 2.5 (Discrete integration by part formula). Let vy, gp, be discrete functions depending on the variable
xp, € 0,1)? such that vy, = 0 on the boundary of the square. Then we have the following identity:

1 2
/ghAh,l’Uhah,Q’Uh: 5 /’afj—,lvh} 8h72(m;1gh) — / 6;1vhm;1(8h,2vh)8,jlgh

2 24 s
h? 2
=5 [108,05 s 0o 1), (221
2,

Though the formula (2.21) cannot be found as it is in [2], it can be easily deduced from the integration
by parts formula in Appendix A and the proof is left to the reader.

Furthermore, if we assume v,(0) = 0 in (2, we can compute the following cross-product (it is a
straightforward modification of the computations in [2, p. 586)):

0

0
1 2 1 2
//atvhthUhdt:§/|8t’uh(0)| 3 Z / / m;;k(ﬁtAo,k)w;tkvﬂ dt
2

ST, k=1,2"p e
0 0
+ + + 2’ 2 2 2
+ > Ot kAo k O3 onmif  (Opon) dt — — |0n]28; (92 (040)? — As) dt.
k=1,2_"p P “TQ,
Therefore, based on Proposition 2.3, we easily get
o 0 0
/|8tvh(0)|2 < F//\.,sfh,lvhﬁdt+C\/F//|a,5vh|2dlt
0y =T 02y =T §2,
0 0 0
+Cuth Y / /|8;;kvh]2dt+0#7h > / / \atvh\2dt+cﬂ2//|vh\2dt.
=2 2y =2 Ok —T S

As 7h < 1, applying Proposition 2.4 then immediately yields

T T T
7-1/2/‘6tvh(0)|2§0//|.$hvh|2dt+CT Z / /‘a,zkvhfdt—&—CThQ Z / /‘G,tk@tvhfdt.

2 =T §2 k:1727T F}j—_k k:1727T Q;k

(2.22)

Finally, for wy, satisfying (2.3), we set vy, := e”?rwy,. Remarking that by construction Z,v, = e™?»0Ojwy,
we can apply directly Proposition 2.4. We notice that for 7h < 1,

|wp|*e™#" < Cplon?,
|0ywy, 2™ < Oy (10pvn]? + |vnl?), |3h+7kwh\2e2w" < C#(\a,tkvhﬁ + CHT2|m;,kvh|2)’

{8}tk8tvh|2 < Cﬂ|8}tk8twh|2e2w” + C#T2(|8}tkwh‘2 + |m;;k8tw|2)62wh + C#T4|m;;kw|2€27¢hv

and |8; ,vn|? < Cul8;, wn|?e*™#" on the boundary I}, as wy, vanishes on 842;,. We thus deduce Carleman
estimate (2.4) for 7 large enough and 7h small enough directly from (2.20). Besides, when wp(0) = 0 on
2., then v4(0) = 0 and d,v,(0) = dyw(0)e™ () on 2, hence we conclude (2.5) from (2.22). O
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2.8. Proof of the discrete Carleman estimate — distributed case

Proof of Theorem 2.1. It can be deduced from Theorem 2.1. Indeed, under assumption (1.29), it suffices to
define a cut-off function xy € C°°(£2;0,1]) taking value 1 on 2\ {z € 2, d(z, ) < §/2} and vanishing on
the boundary I'y = ({1} x (0,1)) U ((0,1) x {1}) and to apply the Carleman estimate (2.4) to xpw, with
Xh = rr(x): the boundary terms in (2.4) vanish by construction but we have

On(xpwr) = xaOnwp — 2V xa Vawn — Apxn(2mpws, — wy).

Using that x = 1 on 2\ {z € 2, d(z,Iy) < §/2}, one easily checks that for A small enough, dpxp and Apxn
are supported on w. We thus readily obtain

T T
T//@QT“’hx;QL|8twh|2dt+TZ / / e27¢n

k=1,2"%. 7
—T 2 T,

T
2 T
a,jk(thh)\ dt+7'3//€2 W”xi|wh|2dt
10

IA

T T
C//62T‘phxi|thh\2dt+C//627%(|Vhwh|2+\mhwh|2+|wh|2) dt
1o,

h —T wp,

T
+omh? Y / / 27|90, (enwn) | dt. (2.23)

k=1,2 "
T‘Qh,k

One then easily checks that, for 7h small enough,

T T
//627“”‘(|Vhwh\2+ |mh(wh)|2+|wh|2) dt + Th? Z / / 62T¢h|8}tk8t(><hwh)|2dt

k=1,2" -
—T wp, T“Qh,k

T T
<C Z / /e2T¢h|a,jkwh|2dt+c//e2w|wh|2dt
k=t T‘*’;.k

—T wp,

T T
+ CTh? / /62”"*‘ |Oswp|? dt + CTh? Z / / e27en |8,tk8twh|2 dt.
“T k=120 o
We thus conclude (2.8) only by adding the terms

T T
//eQWh’a}tkwh’zdt—i—T?’//627¢h|wh|2dt
T

= —Tw
Wh,k h

T
T//eQW”'Wtwh\th—l—T Z

ST k=1,2
on both sides of (2.23) and by taking 7 large enough. 0O
2.4. Proof of the uniform Lipschitz stability result

As said in the introduction, Theorem 1.4 is a consequence of the Carleman estimates in Theorems 2.1 and
2.2. Tts statement is very similar to the one of [2, Theorem 3.1] in the 1-d case. With respect to the stability
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estimates obtained in the continuous case in [1] (see also [21,3]), there is the additional term (1.31) which
is remanent from (2.6) corresponding to some non-standard penalization of the discrete inverse problems.

Proof of Theorem 1.4. Let us begin with the identity

T
> / / 105 m (03] = O s [a]| dt = [[0ven (un[ai]) = Oven (wn @) 3 o rorecr
k=1,2"p £

that allows to end the proof of Theorem 1.4 as soon as we obtain the stability estimate (1.28) with ||.#3[q}] —
A )| 0,702 (1)) Teplaced by

T 1/2
(Z / / I@L,kyh[qi‘i]—%,kyh[qﬂI?dt) :
k=1,2

-Trf,

Since the proof follows the one of [2, Theorem 3.1], we only sketch the main steps required.

e Step 1. Energy estimates. We first write classical energy estimates in the context of the semi-discrete
wave equation in (2, like the one written in [2, Lemma 3.3], and apply them to z, = 9:(yn[d}] — ynla?])
that satisfies

Owzn — Apzn + CIZZh = (qz - q%)atyh[qg]v in (07 T) X §2p,
zp =0, on (0,T) x 082y,
(Zh(O),ach(O)) = (07 (QZ - QZ)ZJ}%), in Qh~

We thus get a constant C' = C(T,m) > 0 independent of h and such that for all t € (0,7,
||8;Zh(t)HL,21(Q;) + Hatzh(t)HL%(.Qh) + th(t)HLi(Qh) < CKl|q, - qz”Lﬁ(Qh)’ (2.24)

where [lyn[qy] 1| 1 0,75 L50 (20)) < K-
e Step 2. Choice of the Carleman weight. Since we assumed T > /2, we can find a > 0 and 3 € (0,1)
such that

BT? > sup |z — 2,4|? — inf |z — z4]* = 2 + 4a.
e zef

Therefore, we can choose 1 > 0 such that the Carleman weight function 1 defined in (2.2) satisfies

sup 1/)(t,$) < inf 1/1(0,:5). (2'25)
[t|e(T—n,T),z€ zEN

We then choose a and § as above in the Carleman weight (2.2), and choose p, 79, € > 0 such that Theorem 2.1
holds.

e Step 3. Extension and truncation. We extend the equation in zp on (=T, T), setting zp,(t) = —zp(—t)
for all t € (—=T,0). We also extend 0yyn[g}] as an odd function on (—7,7"). We define the cut-off function
X € C*(R;[0,1]) such that x(£T) = 9yx(£T) =0 and x(¢t) =1 for all t € [-T +n,T —n]. Then wp, = xzn
fulfills the assumptions of Theorem 2.1 and satisfies the following equation:

Ouwn, — Apwy, + @hwp, = uxzn + 20,0z + (66, — ¢f)O0wynlal], in (=T,T) x {24,
wp, =0, on (=T,T) x 082y,
(wr(0), Oywn(0)) = (0, (g5t — a)¥p), in 2,

wh(:I:T) = 0, 8twh(j:T) = 0, in Qh.
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e Step 4. Using the Carleman estimate. We apply Carleman estimates (2.5) and (2.4) to wy, and, using
the expression of Jywy, (0) and Assumption (1.27), we get, for all 7 € (19,¢/h),

T T
\/F/eT‘ph(O)‘qZ—me—i-Tg//ew’”‘|wh|2 dtSC//ezw"|thh|2dt
On

—T 2y —T Q2

+OT Z / / 2T@h‘6 k'th’ dt+CTh2 Z / / 2"'@h|8+ 8twh| dt (226)

k=1,2_" leTQ

The end of the proof finally consists in estimating the term containing Opwp:

T T
//e2T%|thh\2dt§C/ /ezf%@h|qzwh‘2dt+0 / /€2T(‘0h(‘8t2h|2+|2’h‘2) dt

“T “T [tle(T—n,T) 2n

—|—C’// 27"9” —qh)aty[qhﬂ dt. (2.27)

—T 2

The first term of the right hand side of (2.27) can be absorbed by the left hand-side of (2.26) as ¢? is of
bounded L§°(£2;)-norm. In the second term, we bound the weight function by its supremum on [T — n, T
and then use the energy bound (2.24) on zp,. This can then be absorbed by the left hand-side of (2.26) due
to the comparison (2.25) of the weight at time 0 and on (T — 7, T). Finally, since the weight function is
maximal at ¢ = 0, the last term can be bounded by Cf-Qh 627¢’L(0)|q2 — qZ|2 due to the assumption (1.27)
and thus it can also be absorbed by the left hand-side of (2.26). Therefore, taking 7 large enough completes
the proof of Theorem 1.4 in the case of a boundary observation (1.28). The case of a distributed observation
can be deduced similarly from Theorem 2.2 stating a Carleman estimate for a distributed observation. O

3. Application of elliptic Carleman estimates
8.1. Logarithmic stability estimate in the continuous case

The goal of this section is to prove Theorem 1.3. Actually, it is a direct consequence of the following
result, similar to the ones in [28,30]:

Theorem 3.1. Let Iy be a non-empty open subset of 02 and let w be a smooth connected open subset of (2
such that dw N OS2 is an open neighborhood of I'y. Let m > 0 and q € L™ (£2) satisfying ||q||p~ < m. Let
2 >0 and Ry > 0, and assume that { = ((t,x) solves the wave equation

{8ttC_A<+QC:f7 in (=1,T) x £2, (3.1)
¢=0 on (=T, T) x 092, :
for some f € LY(=T,T; L?(£2)) satisfying

f=0 in(-T,T) x {z € 2, d(z,w) < Ry}, (3.2)

and satisfies ¢ € H*((—T,T) x ) with |[¢|| m2((—1,1yx2) < Z-
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Let a > 0. There exists Ty > 0 such that for any T > Ty, there exists a constant C = C(T) > 0 such that

9 T 14a
_ o) < CYllog| 2+ ﬂ . 3.3
Il o781 [ g( T\t (3.3)

Indeed, let us first show how Theorem 3.1 implies Theorem 1.3.

Proof of Theorem 1.3. The idea is to apply Theorem 3.1 to ¢ = 9;(y[q%] — y[q®]), which satisfies the wave
equation

8ttC - AC + qu = (qb - qa)aty[qa]’ (t7 {L') € (07 T) X 'Qv
¢=0, (t,2) € (0,T) x 812, (3.4)
<(07.’L‘) = O7atC(0’ m) = (qb - q“)(az)yo(m), z € {2.

Extending ¢ as an odd function on (=T, T), using the classical energy estimates on 9,¢, the fact that 9;( is
continuous at ¢ = 0 by construction, and recalling assumption (1.12) on ¢® — ¢, we easily get:

ISl 2 (—ryx2) < Cn([l(a” = qb)yOHHg(Q) +(a* - qb)yl1|Lz<g> + (" = ¢")dry[a"] HWLI(O,T;LZ(Q)))
< Cmm(”y0||H1(Q) + ||y1||L2(Q) +||0vy[a"] ||W171(0,T;L2(Q))) + CmM”yOHLoc(Q)

< Cp(m+ M) Hy [q“] (3.5)

‘|W211(0,T;L2(Q))OH1(07T;L°°(Q)) + CmmHyOHHl(Q) =97.

Since the potentials ¢* and ¢® coincide on O by (1.10), and because of (1.9), the source term f = (¢% —
¢")0y[q?] extended to an odd function on (—T),0), satisfies (3.2) for Ry = §/2 and w = {z € 2,d(z,I}) <
0/2 }. Applying Theorem 3.1, we obtain:

9 T+a
dyla*] — 0w [d"]]| 11 S@[lo <2+ )] :
10y [9°] = Oy [a")]] ((—T/8,T/8)xw) 8 18,0051q°] — 0,0y 22 (12 1)
Because w = {z € {2, d(x, ) < 0/2} satisfies the condition (1.9) and is thus a neighborhood of a boundary
satisfying the Gamma-condition (1.3), the use of estimate (1.8) of Theorem 1.1 then completes the proof of
Theorem 1.3. O

Let us now focus on the proof of Theorem 3.1. As we said in the introduction, this result follows from a
suitable use of a Fourier-Bros—Iagoniltzer (FBI) transform to reduce the hyperbolic problem to an elliptic
problem and on an elliptic Carleman estimate.

As in [28,30], we use a FBI transform with a “Gaussian-polynomial” kernel: this ingredient allows us to
improve the exponent in (3.3) to any a > 0 instead of only o =1 as in [4].

Also, our proof shortcuts the one in [30] by using a global Carleman estimate for the elliptic equation,
allowing to get rid of the iterated three spheres inequalities in [30] (see also [4]). Though this does not yield
any particular improvement on the result in the continuous setting, we will follow the same strategy in the
semi-discrete case and that way, we will manage to avoid the iterated use of three spheres inequalities in
the discrete setting, which would induce tedious discussions.

Proof of Theorem 3.1. The proof is rather long and can be split into several steps. Along this proof, the
constants written in large caps may depend on the parameter n € N and T' > 0 and are independent of the
other parameters. But constants with small caps, that will be numbered cg, ¢, (...) have the additional
property that they do not depend on the time parameter T either.

e Step 1. The Fourier Bros lagoniltzer kernmel. In this step, we introduce the FBI kernel follow-
ing [28, p. 473]. Let us set n € N* such that 1/(2n—1) < o« and v = 1 — 1/(2n) (that guarantees
1/(1+ «a) < v < 1). Introduce a function F defined on C as follows:
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1 [ e e
Fz) = — / e*ee ¢ dg. (3.6)
™
According to [28], this function F' is even, holomorphic on C and satisfies, for some positive constants Cp,
Cp, C1, C2:
|F(2)] + [F'(2)] < Coexp(co|S(2)['/7), vz eC, 3.7)
|F(2)| < Coexp(—cy|z|t/7), Vz € C with [S(2)] < 2| R(2)]. .
Then, for A > 1, we introduce
Fy(z) = XTF(MV2),
which, due to (3.7), satisfies the following estimates:
|Ex(2)| + |F(2)] < Cor? exp(coA|S(2)|/7), VzeC, (3.8)
|Fx(2)| < CoNY exp(—ci A|z|'/7), Vz € C with |S(2)] < e2|R(2)]. .

Let us remark that F' defined by (3.6) is the inverse Fourier transform of ¢ — e=¢" so that F) is an
approximation of the identity as A — oo. Finally, notice that by construction, the Fourier transform of

Fy(t) is
Fee =70 () =en(~(£)) 5.9)

e Step 2. The Fourier—Bros—Iagoniltzer transform. Let ¢ be the solution of (3.1). We introduce a cut-off
function n € C°([-T,T); [0, 1]) such that

1 if |t < T/2,
n(t) = .
0 if |t| > 37T/4.

We define the FBI transform of ¢ for s € R, a € [-T/4,T/4] and = € 12 by
Vg A (S, 2) = /FA(a +is — t)n(t)((t, z) dt, (3.10)
R

where i denotes the imaginary unit. Since dsvq x(s,2) =1 [ FA(a+is—t) d;(n(t)¢(t, x)) dt, using integration
by parts, one easily checks that v,  solves the elliptic equation

(—0ss — Ay + @)Vg,n = far IR x 2,
Vg, =0 on R x 942,

where f, » is defined as fo x = farx1 + far2, With (since ¢ satisfies (3.1))

fara(s,z) = /FA(a +is—t) (277'(75)8,5((15, x) +n"(t)C(t, x)) dt,

R

Fana(s,z) = / Fy(a+is — tyn(t) f(t, ) dt.

R
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On the one hand, using that 2n7'0;¢ + 1"’ is supported in {(¢,2) € (=T, T) x {2 s.t. |t| > T/2} and the
second estimate in (3.8) on the kernel Fy, we have

— 1/ _ 1/
| faxill oo (s 5020y < CAZTe 2MT/2) wHCllill((fT,T)xQ) < CA\Te 2T g2, (3.11)

for any T > 12/cq, since a € [-T/4,T/4], |t| > T/2 and since we decided to work for s € [—3, 3] and needed
|s| < eala —t| to apply (3.8).
On the other hand, the first estimate in (3.8) also yields, for c3 = 2-3/7¢,

[vanllFr1((_s,3)x 2y < CAT € MIC i myxy < CAT e P2, (3.12)
and, similarly,

|00 va,x ||%2((—3,3)><F0) < OXMetsh ||8V<||%2((—T,T)><Fo)' (3.13)

o Step 3. Estimating vg x by an observation on (—3,3) x Iy. This step strongly relies on a Carleman
estimate for the following elliptic problem:

{ (=0ss = Ay +q@)w =g in(=3,3) x 2, (3.14)

w=0 on 9((—3,3) x ).

One of the most important points is to suitably choose the Carleman weight. First construct a smooth
function 1o = 1o(z) on @ such that

Vz € @, yo(x) > 0,

info{|Vepol} > 0,

Vo € Ow \ I, to(x) =0 and dythp(z) < 0,
[0l Lo ) < 1/2.

(3.15)

Note that such a function v exists according to the construction in [16] (see also [37, Appendix III]). We
then extend this function 1y as a smooth function ¢ on £ satisfying ||¢|| re(0) < 1. By continuity, there
exists a positive constant R € (0, Ry) such that in the set

wgr = {x € 2, d(z,w) < R},

where the source term f vanishes by assumption (3.2), we have inf, ez {|V¢(z)|} > 0 and such that in
the set

R
€ = {z € £, 3 <d(z,w) < R},
we have, as pictured in Fig. 2,
0 = inf ) > sup . (3.16)
“ 3
We finally define, for p > 1,

¢ = p(s,x) = exp(p(v(z) — s?)), (s,7) € [-3,3] x £2. (3.17)

According to [19] (see also [16,34]) one has the following Carleman estimate for (3.14):
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Fig. 2. Construction of the weight function ¢ (x).

Lemma 3.2 (An elliptic Carleman estimate). There exist u > 1 and a constant C' > 0 such that for all
> 1, for all g € L*((=3,3) x 2) and w solution of (3.14) supported in (—3,3) X wg,

- 2
+ THe S(;VMWHL2((—3,3)xQ)

T ||eww||2m((—3,3)xrz)

< Ol|emg||%s + e, (3.18)

—3,3)x02) ((—=3,3)xTv)’

where the constant C can be taken uniformly with respect to g € L™ (§2) with ||q||p~ < m.

Estimate (3.18) has to be understood as a Carleman estimate with observation on (—3,3) x Iy and in
(—3,3) x (£2\wg). But, as we assumed that w is supported in (-3, 3) X wg, we simply omit the observation
in (—3,3) x (£2\ wg).

Now, introduce smooth cut-off functions xs = xs(s) and xg = xr(x) such that

1 if |s| <2,
xs(s) = and ||xs|lw2em < C,

0 if|s] >3,
and
1 ifd(z,w) < R/2,
x) = and ooy < C.
o) ={ ) e Il o) <
We can then define
Wa (8, 2) = xs(s)xr(T)var(s,z), (s,2) ERx 2 (3.19)

which satisfies

_835_Aa:+ a,A = YGa i _373 XQ7
{( QWa,x = ga,x 0 ( ) (3.20)

Wax =0 on 0((—3,3) x ),
where (using the fact that f, 2 vanishes in wg by assumption (3.2))
Gax = XSXRax1 — 2XROsX50sVa,x — XROssXSVa,x — 2XSVXRVUa X — XSAXRVa -
Thus, Carleman estimate (3.18) can be applied, and gives: for all 7 > 1,

2 2
7 [|e™ wan ||L2((73,3) <o) T 7[|e7* Vs ptwan HLQ((—3,3)><Q)

. 2 - 2
< CHe 909117/\HL2((73,3)x(2) + OTH€ ‘96,jwa7,\HL2((73’3)xp0).
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Since wq,x = va,x o0 (—=1,1) x w and [[xsXr|lw2~®x0) < C, we obtain

2
3||6TWUQ7A||2L2((71,1)Xw) + T|’6vasvxvavA||L2((71,1)><w))

< Clle™* gan 7 (3.21)

. 2
(33w T CTNE0vanl s Zs.5)xry:

Now, we estimate from below the left hand side and from above the right hand side of (3.21). Notice first
that according to (3.16), we can choose €y € (0,1) such that

inf > sup . (3.22)
[s|<eo, €W |s|<3, z€¥
In order to simplify notations, we set
S,= inf ¢, S = sup o, H2,3) = sup ©, Fe = sup . (3.23)
[s|<eo, z€w |s|<3, zef |s|e(2,3), zen |s|<3, ze¥

Remark that, similarly to (3.22), that writes now .7, > %, using the explicit form of ¢ and the fact that
19| o (2) < 1, we have

jw > 5”(273). (324)
Going back to (3.21), on the one hand, for all 7 > 1, the left hand side satisfies,

e’ HU‘W‘”%P((—E(),Eo)XM)) S 7—3HewvaJH2L2((—1,1)><w) + THewVS@vav)\{|i2((—1,1)><w)' (3.25)

On the other hand, the first term of the right hand side in (3.21) can be estimated from above:

(627—5/](2’3) + 627'(5”%?)|

. 2
||€ Saga,)\||LZ((_373)><_Q) = |va,>\”§{1((73,3)><f2) (326)

since OsXs, Ossxs are supported in {s € R, s.t. |s| € (2,3)} and Vg, Axr are supported in %. Plugging
(3.11) and (3.12) into (3.26), we obtain

||€w9a,x||2m((_3 ) < Ce2™7 N2 =20 NI/ 2 | O(2m7 e 4 2re) \Wer g2, (3.27)

Combining now estimates (3.21) with (3.25), (3.13) and (3.27), we get

_ 1/
€2Tj“ < CeZTY/\Q'ye 2c1 M (T/2) “’92

||U(l A“Hl(( €0,€0) XW)
+ 0(627—5”(2’3) + eQTytg))\4’yeC3)\@2
+ CT@zT‘y)\47€csA||8u<||%,2((—T,T)><Fo)' (328)

o Step 4. Estimating ¢ from its FBI transform v, ». Writing ¢ as follows:
C(t,z) = ((t,x) — v (0, 2) + v 2 (0, ),
we obtain that, for t € (=7/8,T/8),

ISl za(—r/s. 28 %0y < [|(t2) = €t @) = ven(0,2)| Lo /8. 7/8) )

+ H a, ) — v (0, z HLQ(( T/8.T/8)xw)" (3.29)
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As already detailed in [30], since vy x(0, ) = F * (n¢)(t), where the convolution is only in the time variable,
we obtain, from (3.9) the following estimate (notice n =1 in (—=77/8,7/8)):

[(t,2) = ¢(t,2) — v (0,2 HL2(( T/8,T/8)xw) = |[n¢ = Fax( C)||L2((—T/8,T/8)><w)

< |1 = FE)F0O 12wy <

‘(5, =l Fmo e )

L2(Rxw)
< )\»YHnCHHl(]RXw) < /\7||C||H1(( T,T)xw)-

Besides, since F) is holomorphic, the map a + is — vg 1 (s, z) is holomorphic in the variable a + is for all
A and z, and the Cauchy formula implies that (see appendix of [4], for some details)

a,z) — v (0, ) <C sup Va A || L2 ((—eo,e0) xw) -
H( ) HLz(( T/8,T/8)xw) — wc(—T/a.T/1) I 122 ((=e0,c0) xw)

Hence, from (3.29), combining the above estimates we get

C
<2 ((—7/8,7/8) x) < F”CHHl((—T,T)Xw) +C  sup |

((—e€0,e0)xw)*
a€(—T/4,T/4)

Having an estimate on v, » in H*((—e€p, €9) X w) at our disposal, we can apply the latter to 8;( and V¢ and

obtain
C
1< E ((—1/8,7/8) %) < FHCHH%(—T,T)m) +C sup [Va, Al 221 ((~co,e0) xe)
a€(~T/4,T/4)
C
< ﬁ.@#‘C sup \|va7)\HH1((_60760)Xw). (330)
a€(~T/4,T/4)

e Step 5. Concluding step. Combining estimates (3.28) and (3.30), we have shown that for all A > 1
and 7 > 1,

HCHHl(( /s, T/S)Xw) <37 @2 +Ce 27(F =)\ 72cl>\(T/2)1/w@

+ Ce—QTﬂw (€2Ty(2,3) + 627%5))\47663)\.@2
+ CT@2T(L¢7]W)/\47663/\HauCH%Z((—T,T)xF0)~ (3.31)

Recalling (3.22) and (3.24), we can choose the Carleman parameter 7 as a linear function of the FBI
parameter A by setting

Cg)\

) 3.32
S —max{ S, 23} 532

T =

With this choice, one should assume A > ., where \, = C—lg(fw —max{.%%,.#(2,3)}), in order to guarantee
(3.31) (since 7 > 1). Thereby, there exist positive constants ¢4, c5, ¢ such that for all A > A,

6—2Tﬂw (627'5”(273) + eQchr;))\4’yeC3)\ S 06—04)\7
27(F =) \2Y g 2 AT/ < M es=2ea(T/D)M7)

TGQT(y*fw))\‘l’YeCs)\ < C€C6)\.
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Obviously, there exists Ty > 0 such that for all T' > Tp, ¢5 < ¢ (T/2)1/’V. Thus, estimate (3.31) yields, for
all T > Ty and A > A,

1 —c —Ac L/ c
€7 (7 /8,7/8) %) < C2° (W +em o e T/2) ) + Ce“XM0uClI T2 1.1y x 1)
or, in a more concise form, for all A > A,,
C CGA/2
I e ((=7/8,7/8) xw) < )\—79 + Ce®=N0uC L2 ((— 1,1y x 1) - (3.33)

Finally, if we define the ratio “data over measurement”

_ 9
10uCll L2 (=1, 17) % 1)

p
and the critical value
1
Ao = . log(2 + p), (3.34)
6

taking A = Ao if A\g > A, we have

1 (2—!—/))1/2).

<
€zt ((—r/8,m/8)%0) < C@([log(Q or T

We can drop the second term of the right hand side since the first term dominates as p — oo (p is bounded
from below by the continuity of the operator z + 9,z from H?((—T,T) x 2) to L*((=T,T) x 91)).
Otherwise, if Ao < A, we take A = A,: In this case, p < exp(csAs) = C, ie. Z < C|0,C||L2((—1,1)x 1) SO
that (3.33) with A = A, yields

9
<1 et ((=1/8.7/8) xw) < CllOuCI L2 (1,1 x 1) < C;.
This concludes the proof of (3.3) since —y < —1/(1+«). O

Remark 3.3. When f vanishes everywhere in (0,7') X {2, no cut-off function x g is needed and one obtains
the following quantification of unique continuation result due to [30, Theorem F| (see also [34] for a = 1):
For all T > 0 large enough, for all ¢ € H?((—T,T) x §2) solution of the wave equation (3.1) with f =0,

__1
1<l 2 (=7, 1) % 2) )] T+a

_ <C _ log|( 2
ity < Ol 082+ o LT

or, equivalently,

1<l &2 (=7, 7)< 2)
I ((=/8,7/8) % 2)

HC||H2((,T’T)XQ) < C’exp(C’AH'O‘) ||6V<||L2((7T,T)><F)7 where A =

Since ¢ in that case is a solution of the wave equation with no source term, this last formulation can be
written in terms of the initial data (¢(0),9;¢(0)) = (¢°,¢Y) € H2 N HE(2) x HE(2):

H (Cov Cl) ||H20Hé(!2)><Hé(Q) <C eXp(CA(lJ+a) 0vCllL2((~7, 1)< 1)

1(Cos €l er2mprg x 112

[[(Co, €)Ml g x 22

where Ay =
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8.2. Uniform stability in the semi-discrete case

The goal of this section is to derive the semi-discrete counterpart of Theorem 3.1. Similarly as in the
continuous case, that will be the main ingredient for the proof of Theorem 1.5.

As specified in the introduction, we limit ourselves to the case 2 = (0,1)2. We may thus assume that I}
is a subset of one edge. Due to the invariance by rotation, with no loss of generality, we may further assume
that this edge is {1} x (0,1).

We claim the following result:

Theorem 3.4. Let 2 = (0,1)% and Iy be a non-empty open subset of the edge {1} x (0,1). Let w be a
connected open subset of (2 with Lipschitz boundary and assume that Ow N OS2 is an open neighborhood of
Iy. Also set wy, = wN 2. Let m > 0 and g, € Li2(£2) satisfying ||qnl|Lse () < m. Let >0 and Ry > 0,
and assume that y, is a solution of the wave equation

{attCh — Al + qnln = fr, in (=T,T) x £2p,

3.35
¢ =0, on (=T, T) x 082y, ( )

for some f, € LY(=T,T; L3(2,)) satisfying fr, = 0 in (=T, T) x {zn € 24, d(zh,w) < Ro}, and satisfies
Ch € HE((T,T) x $21,) with

IChll a2 ((~ryx20) S Z

for some Ry > 0 and 2 independent of h > 0.
Let o > 0. There exist Ty > 0 and hg > 0 such that for any T > Ty, there exists a constant C' independent
of h such that for all h € (0, hy),

9

10 2ChlL2((—7.1):22 (10 1))

1
s
<l et ((—1/8.7/8) xwon) < CZ [10g <2 + ﬂ + Cgnt+) - (3.36)

Before proving Theorem 3.4, let us point out that it differs from Theorem 3.1 by the last term A/ 1+ @
in (3.36). Nonetheless, this term vanishes in the limit 2 — 0 and thus estimate (3.3) can be recovered from
(3.36) when h — 0. But in particular, estimate (3.36) does not state a uniqueness result anymore, but rather
an “almost-uniqueness” result: if 8}; 5Ch vanishes on (—T,T) x Iy for some (}, satisfying the assumptions
of Theorem 3.4, we only have that the norm of ¢, in H} ((=T/8,T/8) x wy) is smaller than Chl/(1+) g,
Due to the definition of 2, this corresponds to the case, where

1S3 (= 8,7/8) xm) < CBY TGl a2 () 20

i.e. functions that are localized outside (—T'/8,T/8) X wy,. This is completely consistent with the presence of
spurious high-frequency modes that are localized, see [36,39,14]. We refer for instance to a counterexample
due to O. Kavian: if wy, denotes the discrete function given by w; ; = (—1)* when i = j and vanishing for
i # j, the function (¢, z,) = exp(2it/h)wp(zp) is a solution of (3.35) with ¢, = 0 and f, = 0 whose
discrete normal derivative on {1} x (1/4,3/4) vanishes identically.

Proof of Theorem 3.4. It follows the same steps as the one of Theorem 3.1. More precisely, Steps 1, 2 and
4 involving the FBI transform in time are left unchanged, but Steps 3 and 5 need to be modified. Indeed,
Step 3 in the proof of Theorem 3.1 is based on the Carleman estimate in Lemma 3.2 and we should thus use
a semi-discrete counterpart. Namely, we use the discrete Carleman inequality proved in [8, Theorem 1.4]
that we rewrite below within our setting and using our notations.
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Fig. 3. Construction of the weight function ¢, (z) when w is a neighborhood of two consecutive edges.

Before stating this result, let us make precise how we choose the weight function. In particular, let us
emphasize that the weight function in [8] is assumed to be CP([—3,3] x §2) for p large enough, and this
cannot be true with the construction we did for the proof of Theorem 3.1, since 2 = (0, 1)? contains corners.
We thus build the weight function g, as follows (here the subscript ‘r’ stands for ‘regularized’): first we

conceive an open subset w, such that w, C {z € 2, d(z,w) < Ry/2 }, w C wy, and dw, \ I'} is smooth (see
Fig. 3). We can then design a smooth weight function 1, such that

vx S ("Tr7 wo,r(z) Z 0’
inf {[ V4o, (2)]} > 0,

Vo € 0w, \ To, Outhor(x) <0, (3.37)
Vo € 0w, \ I'}, or(x) =0,
[Y0,cll Loe (@) < 1/2.

Again, such a function vy, exists according to the construction in [16,37] and it can be extended as a
smooth function v, on {2 satisfying [|¢x 1) < 1. By continuity, there exists R € (0, Ro/2) such that for

the sets
Wy R = {x €N d(z,w,) < R} and %, = {x €N R/2<d(xz,w) < R},
we have
:%{|V1/}r(x)|} >0, and igf Yy > sup ;. (3.38)
T v z

We then define ¢, as in (3.17) but with this function ,: for u > 1,

or = pi(s,2) = exp(p(in(@) —s%))  (s,2) € [-3,3] x L.

Theorem 3.5. (See [8].) Let ¢, be as above and its restriction on the mesh ¢rp = rpp;.
There exist p > 1, C > 0, hg > 0 and g9 > 0 such that for all h € (0,hg), 7 > 1 with Th < &g, for all

gn € L2((—3,3); L ($21)) and wy, solution of
{ (=0ss — Ap +qn)wp, = gn in (=3,3) X 2,
wp, =0 on ((—3,3) x 02,) U ({—3,3} x £2),

supported in (—3,3) X wr R,
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2 2 2
7'3Hewr'hwhuL2(73,3;Li(9h)) + THewr’hvSwhHL2(73,3;L§L(Q,7,)) +7 Z Hewr’haftkwhHL2(73,3;L%L(Q,;,L))
k=1,2

< Cllemern + Cr|| e, ywn (3.39)

2 2
thLQ(—B,S;L,%(_Qh)) ||L2(—3,3;L,3(r0,h))'

Besides, the constant C' can be taken uniformly with respect to qn € Ly°(2n) with ||qn||rze < m.

Remark 3.6. Before going further, let us comment more precisely Theorem 3.5, which cannot be found under
that precise form in [8] and differs from [8, Theorem 1.4] at three levels.

The first issue is that Theorem 1.4 in [8] concerns the case of an observation on the boundary of the
continuous variable, corresponding here to s = +3. Therefore, Assumption 1.3 on the weight function in
[8] is designed to yield observations on the boundary of the continuous variable, and in our case, they are
replaced by the condition Vz € dw, \ Iy, 0,90, (x) < 0 in (3.37). We claim that this condition is enough to
guarantee a Carleman estimate with an observation on the boundary of the discrete variables. This can be
proved following the lines of [8] in that case and looking at the boundary terms denoted Y and estimated in
[8, Lemma 3.7], which are strong enough to absorb the boundary terms in Jy; in [8, Lemma 3.3] on 92\ Ip.

The second issue is that Assumption 1.3 in [8] requires some convexity condition in the neighborhood of
the boundary. But, as mentioned in [10, Remark 1.3], this can be avoided by suitably modifying the proof
of Lemma C.4 in [8].

The third and last issue is that our weight function may degenerate outside (—3,3) X w; g. But, as in
the continuous case, this actually does not come into play as we apply Carleman estimate (3.39) to discrete
functions wy, supported in (—3,3) X wy g.

Note that the main difference in the discrete Carleman estimate of Theorem 3.5 with respect to the one
in Lemma 3.2 is the fact that the parameter 7 is assumed to satisfy 7h < €y. The proof of Theorem 3.1 shall
then be modified to keep track on this restriction. Thus, Step 3 can be done as in the proof of Theorem 3.1,
except that the construction of the cut-off function y g is now based on w;, and the existence of ¢g > 0
such that

inf %(3796) > sup 1/1r(87$)
|s|<eo,xEw: |s|<3,x€%6:

is granted by (3.38). Then, all the constants .7, ., (23), % in (3.23), now denoted ., , ., /(2 3), L%,,

are defined by replacing w by w;, ¢ by ¢, and € by %;. Hence, instead of (3.31), we obtain the following:
for all h € (0, hg), 7 > 1 with 7h < g, for all A > 1,

C ~
”ChH%{l((,T/&T/g)pr,h) < WQQ + CeQT(Y—ﬂwr))\276—2&/\(T/2)1/ 72

+ 0672Tﬂwr (6275’(213) + 627—‘54@)/\47663)‘.@2

27(F = Iy ) V4V pC3 A || 9— 2
+COre?Tl et Hah,QQl||L2(—T,T;L,21(Fo,h,))'
The discussion then follows the same path as in the Step 5 of the proof of Theorem 3.1: the natural choice
is to take 7 as a linear function of A\ as in (3.32). Thereby, we get the following discrete counterpart of
(3.33): there are constants C' > 0 and ¢, > 0 independent of h > 0 such that for all h € (0, hg) and for all
A € (As,e4/h),

C

ce A -
||<h|‘H,1((—T/8,T/8)th,) < F.@ + Ce /2HahA,QChHL2(7T,T;L,21(F0,;L))' (340)

Introducing the ratio



1506 L. Baudouin et al. / J. Math. Pures Appl. 103 (2015) 1475-1522

2

B

Ph
the optimal value of the parameter A is

1
Ao,n = — log(2 + pn),
ce

corresponding to the choice (3.34) in the proof of Theorem 3.1. We then have to discuss the cases Ao, < Ay,
Aon € (A, €«/h) and Ao,p = €« /h. Of course, the first two cases can be handled as in the continuous setting.
There only remains the last case A 5, > €./h. But this corresponds to pj, > exp(cses/h)—2 > exp(cses/h)/2,
for h small enough, which in particular implies

2H81:,2<hHL2(—T,T;L$L(F0,}L)) < 7 exp(—coes/h)-

Thus, taking A = e, /h in (3.40), we obtain

ISk ll 2 (—/8.7/8) %) < CRY D.
This explains the presence of the last term in (3.36). O
We finally conclude this section with the proof of Theorem 1.5.

Proof of Theorem 1.5. As for the proof of Theorem 1.3 from (3.1), it follows immediately by applying
Theorem 3.4 to ¢, = Oyynlg?] — Oynlq?]. The use of estimate (1.30) of Theorem 1.4 then completes the
proof. Details are left to the reader. O

Remark 3.7. Following Remark 3.3, we can derive a quantification of a kind of unique continuation result
for solutions ¢}, of discrete wave equations (3.35) with no source term: For all & > 0 and T' > 0 large enough,
there exists a constant C' independent of h > 0 such that for all {j, solution of the wave equation (3.35)
with f, = 0 and initial data (¢}, () € Hy 0 Hy j,(924) x Hj 1, (2n),

4oy o
B S e &l )H(Cg’le)HHﬁﬁHé,h(nthé,h(Qh)’

(3.41)

H(C}?vci)HH&h(Qh)xLi(Qh) < Ce

0 ~1
H(Ch,Ch)”H}leHé’h(Qh)xHéyh(Qh)

where Ap = or, equivalently,

H(C?L,C;{)IIHéYh(Qm“%(Qh)

(1— CRYO+) )1 (¢S, ch) < e |o,

||HC1),h(Qh)XL}2L(Qh) - h’2C||L2((7T7T)§L}2L(F0,h)).

Note that (3.41) only yields an “almost uniqueness” result in the sense that it does not imply ¢;, = 0 when the
discrete normal derivative 8}; 5Cp vanishes on (=T, T) x I . Recall here that this term is needed as unique
continuation for the discrete wave equations does not hold as shown by the counterexample of O. Kavian
of an eigenfunction of the discrete Laplace operator which is localized on the diagonal of the square.

4. Convergence and consistency issues

This last section is devoted to the proof of the convergence results stated in Theorem 1.6.
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4.1. Convergence results for the inverse problem

We will first state and prove two theorems of convergence under more detailed consistency assumptions.
The feasibility of these assumptions will be studied next. Under the Gamma-conditions, and more specifically
in the geometric setting (1.26), we obtain:

Theorem 4.1 (Convergence under Gamma-conditions). Assume that (2,15, T) satisfies the configuration
(1.26) and that (y°,y*, f, fa) follows the conditions (1.39). Let ¢ € L*(£2) and assume that there exist se-
quences a5 € L (), and WS, yt, frs fo.n) of discrete functions in
L3 (92,)% x LY0,T; L2 ($2y)) x L2(0,T; L2 (942,)) such that

}ZE%HQ?L(QZ) - qHL2(.Q) =0, (4.1)
}jﬂ%H%[QZ] - %[q]||H1(O,T;L2(F0))><L2((O,T)><Q) =0, (4.2)
limsup|gh = g, < o0, (4.3)
tim sup|yn (3] [| 1 0,150 )y < o (4.4)
Jag > 0, Yh >0, i(rzlf|y2| > . (4.5)

Then for all sequence (¢2)n>o of potentials satisfying

0

hrf?jgp||qz|hgo(nh) <00, and }L%H///h lan] — %O[q}HHl(O,T;L2(F0))><L2((07T)><.Q) =

we have

}ILiL%He%(qﬁ) - ‘1HL2(Q) =0.

When no geometric condition on the observation domain is satisfied, we get:

Theorem 4.2 (Convergence under weak geometric conditions). Assume the geometric configuration (1.32)
for (2,1, I'y), the conditions (1.39) for (y°, 4, £, f5), and let O be a neighborhood of I'y. Let ¢ € L>(£2)
and assume that there exist sequences qi € L°(§2,), and (Y2, v}, fu, fon) of discrete functions in
L3 (82,)% x LY(0,T; L3 ($2,)) x L?(0,T; L2(942)) such that (4.1), (4.2) and (4.3) are fulfilled, along with

m}?jgp||yh [47] ||H1(O,T;LZ"(Qh))ﬁw2*1(07T;L;"L(Qh)) < 09, (4.6)
Jay >0, Vh >0, 1(1;15@2‘ >ap and hrilf(l)lpHyQLHH}L(m) < 00. (4.7)
Then for T > 0 large enough, for all sequence (qZ)h>0 of potentials satisfying
@ =qin O, and qf —q)c H&,h(Qh) with lirfrjjblpuqz — quHé’h(Qh) < 00,
hflln_fo‘ip||QZHLgo(nh) <00, and ,&%th{qg} - ;/70[‘1]||H1(0,T;L2(F0))xL?((o,T)xQ) =0,

we have

lim [le, (4) = alf 120 = 0-
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Theorems 4.1 and 4.2 follow from the same arguments and can be proved simultaneously.

Proof of Theorems 4.1 and 4.2. Let ¢ and qz be as assumed in Theorem 4.1 (resp. Theorem 4.2).
One easily gets

N T Tel 7 b _
%ﬂ%”‘ﬁh [an] — An[a) HHl(0,T;L2(FO))xL2((0,T)x(z) =0.
Since one can find m > 0 larger than ||g| () and limsup, o(lg ]l Lse(2,) + 95|22 (2,))> according to

Theorem 1.4, (resp. Theorem 1.5), we get
. b _ . : 0(.b 0 —
;{%qu — qhHL%(Qh) =0, or equivalently, ’llli%Heh (qh) — eh(qﬁ) HL2(Q) =0.
We then conclude by the triangular inequality

e (a) — qHL2(Q) < [|ef (ar) — e%(qﬁ)HH(m + [lei (a7) — qHLZ(.Q)’
since each term in the right hand-side converges to zero as h — 0. O

Of course, Theorems 4.1 and 4.2 are based on the strong assumption that there exists a sequence of po-
tentials g} satisfying suitable convergence assumptions for some (yg, y}b, fn, fa,n) that are not even supposed
to be convergent to their continuous counterpart. This rises the natural question: given (y°,y', f, fa) satis-
fying (1.39), can we guarantee that the natural approximations (v, v}, fu, fo,n) of (v°,y', f, fa) yields the
existence of a sequence of potentials ¢j; satisfying the convergence conditions of Theorem 4.1 or Theorem 4.27

This is the consistency of the inverse problem, and the cornerstone of the proof of Theorem 1.6 once
stability results are proved. These consistency issues are discussed in the following subsection.

4.2. Consistency issues

The difficulty to derive the consistency of the inverse problem is the condition (4.4) (or (4.6) in the case
of Theorem 4.2). Indeed, passing to the limit, it indicates that y[q] should belong to H*((0,T); L°°({2)).
But there is no simple way to guarantee this condition, since the “natural” spaces for the wave equation are
the H*({2)-spaces.

Let us remind the reader that we consider 2 = (0,1)? C R?. We recall this setting here because of its
influence on the Sobolev’s embeddings we will repeatedly use in this last section.

Besides that, as our theorems of stability are given with conditions on y[g] instead of conditions on the
coefficients (y°, 4%, f, f5), we will stick to that approach. We claim the following result:

Lemma 4.3. Assume g € H' N L (82) and that we know qp = qlo. Furthermore, assume that the trajectory
ylq] solution of (1.1) satisfies the regularity given in (1.40). Finally, assume there exists oy > 0 such that
inf5 |y° > .

Then we can construct discrete sequences (y9,yi, fn, fo.n) depending only on (y°,yl, f, fa,qo) such that
the corresponding sequence yp[qn] solution of (1.23) for qn = Tr(q) satisfies conditions (4.1)-(4.7). In par-
ticular, if q is known on some open set O and takes value qlo = Q, we can further impose qn, = th(Q)
mn Oh,

Proof of Theorem 1.6. Taking the discrete sequence (v}, y}, fa, fo.n) given by Lemma 4.3, the sequence
gt = T, (q) satisfies the assumption of Theorem 4.1, or Theorem 4.2 if ¢ is known in some open set O, which
corresponds to the first item of Theorem 1.6. The second item of Theorem 1.6 thus follows immediately
from Theorems 4.1 and 4.2. O



L. Baudouin et al. / J. Math. Pures Appl. 103 (2015) 1475-1522 1509

Proof of Lemma 4.2. We split it in two steps. First, we will construct (y9,y1, fu, fo.n) and gp; second, we
will explain why our construction is suitable for conditions (4.1)—(4.7).

Let us choose § € H' N L>®(2) with dlao = go (note that such G exists since gp is the trace of
g € H' N L*(N) by assumption). We define § = y[g] the solution of (1.1) with potential §. Then,
setting z = y[q] — ¢, it satisfies

Oz —Az+qz=(7—qylg, in(0,T)x £,
z=0, on (0,7) x 912, (4.8)
2(0,-) =0, 0;2(0,-) =0, in £2.
Hence 2z = 042 solves
Optz2 — Azo + qz2 = (7 — ¢)Ouylal, in (0,7) x £2,
29 =0, on (0,T) x 912, (4.9)
22(0,) = (@—a)y’, 9z(0,)=(G—qy', inL
Since (1.40) implies y° € H' N L*>®(2), y* € L*(2) and duylg] € L'(0,T;L*(2)), and since ¢ — § €
H} N L*°(02), we have that 2o = 02 belongs to C([0,T]; HL(£2)) N CL([0,T]; L?(£2)). In particular, since

2(0,-) = 0,2(0,-) = 0, we have z € H2(0,T; H}(02)).
Besides, by differentiating (4.8) once with respect to time, we get that d;z solves

(—A + (j)atz = ((k]~ - q)@ty[q] — 8tttZ S C([O,T],LQ(Q))7 with 8tZ =0 for (t,.’E) S (O,T) x 0f2.

Therefore, by elliptic regularity estimates, see [17, Theorem 3.2.1.2], 8;z € C([0,T]; H*>(£2)), thus z €
HY(0,T; H*(2)).
Recalling that 7 = y[q] — 2z and ylq] satisfies (1.40), § belongs to H?(0,T; H*(£2)) N H*(0,T; H?(2)).
We then define §;, = 71, () and, for ¢, = 7,(q), we set

i = G (0) = Fr (3°), yi = 0uijn(0) = Ta(y'), (4.10)
fn = Ouln — Afn + Guin, fon(t) = gn(t)|og,- (4.11)

Note that this choice immediately implies that conditions (4.1), (4.3) and (4.7) (thus also (4.5)) are satisfied.
We now prove that this construction yields condition (4.6). This is based on the remark that by con-
struction, for ¢, = t1,(q) we have yn[qn] = Un + zn, where zp solves

Owzn — Anzn + qnzn = (Gh — qn)Tn, in (0,T) % 24,

zp =0, on (0,T) x 082y, (4.12)
(21.(0), 021 (0)) = (0,0), in $2;,.
Then 2z, = Oy 2n, solves
Owzan — Anzan + qnzen = (Gn — qn)Oun, in (0,T) x {2y,
2o =0, on (0,T) x 002, (4.13)

(22,1(0), 0:22.1,(0)) = ((Gn — qn)yp> (Gn — an)ys), in 2.
One easily checks that with our construction
Gn — aqn € Hy ,(2,) N LS (21),
gn € H?*(0,T; Hy ($2,)) N H'(0,T; Hy (824)),
Yn € Hy(20) N L2 (), yp € Ly (),
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where all these estimates stand with bounds uniform with respect to A > 0. Hence 23 5, is uniformly bounded
in C([0,T]; Hy 1,(21)) N C* ([0, T]; Lj, (21)) by energy estimates, so that dy25 € C([0,T]; L7 (£2)) and thus
O zp, solves

—Ahatzh + qhatzh = ((jh - qh)atgh — 8tttzh S C([O,T]; Li(gh)) with 8tzh =0on (3'_Qh.
We use the following lemma, whose proof is postponed to Appendix C.

Lemma 4.4. Let wy, € L2(£2) be a solution of
—Apwp + quwp, = gn in 2, and wp, =0 on 0 (4.14)

with gn, € L2(82y) and g, € L (£2,). Let m > 0 and assume lgnllLse(2,) < m. Then, wy € H?n H&)h(ﬂh)
and there exists a constant C' = C(m) > 0 independent of h > 0 such that

lwnllzzamg 20 < Cllgnllez (2.)- (4.15)

Accordingly, 9,2y, is uniformly bounded in C ([0, T]; H? N H&)h((}h)). Thus, yn[qn] = Jn + zn is uniformly
bounded in H2(0,T; H} (£2,)) N H(0,T; L (£2y)), yielding (4.6) (and (4.4)).

We finally focus on the proof of the convergence condition (4.2). As § € H(0,T;H?(R)), 9 is
uniformly bounded in H*(0,T; H(£2)). In particular, for k € {1,2}, 97, g is uniformly bounded in
HY0,T; Hﬁ(ka)), 50 en(0) ,gn) is uniformly bounded in H'(0,T; H'(£2)). Besides, it is easy to check
that, since § € H'(0,T; H*(12)), en(9fF ,gn) strongly converges to 9,9 in H'(0,T; L*(£2)). Hence we get
the strong convergence of eh(ﬁ,ﬁkgjh) to O, 7 in all spaces H'(0,T; H*(£2)) with s < 1. We then remark that

en(0y 19n)
eh(a}fzgh)

Buen(dn) = ( > v on Tk, (4.16)

where v is the normal vector to {2 on I'y. But the sequence eh(ﬁikgh) strongly converges to 0.,y in
H'(0,T; H3*(£2)) and the trace operator is continuous from H3/%(£2) to L?(92) (see [17, Theorem 1.5.2.1]).
Therefore, 0,ep7, strongly converges to 9,y in H(0,T; L?(912)).

One also easily checks that, since § € H?(0,T; H(£2)), the discrete function a;kattgh (k € {1,2})
is uniformly bounded in L*(0,T; L;(£2, ,)). Hence hVen(dugn) strongly converges to 0 as h — 0 in
L2((0,T) x £2).

We then study the convergence of the normal derivative of zj, and of hVey(9y2p). We have seen that zp
is uniformly bounded in H?(0,T; Hg ;,(£21)) 0 H' (0, T; Hj; (§24)). This immediately implies that a}jkaﬁzh is
uniformly bounded in L?(0, T Li(Q}:k)) for k € {1,2} and, following, hVey (diz) strongly converges to 0
in L2((0,T) x £2) as h — 0. Let us then remark that ey (g,) and ey (g, — qr,) respectively converges to ¢, §—q
as h — 0 strongly in L?(£2), weakly in H'(£2) and weakly-+ in L>(£2). Besides, as § € H?(0,T; H'(12)),
en(9n) strongly converges to 7 in H2(0,T; H*(2)) for all s € [0, 1). Following:

en(qn) vy strongly in all LP(£2) with p < oo, (4.17)

—
eh(((jh - qh)gh) h—_}())((j —q)y strongly in H? (0, T; LQ(Q)), (4.18)
(@ — @) (@~ aly’  strongly in L2(12). (4.19)

Easy computations then yields that ey (21,) and e, (9;z,) strongly converge in H((0,T) x §2) to z and 0;z,
where 2z is the solution of (4.8). This can indeed be done in three steps: First show that it converges weakly
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in D'((0,T) x £2) toward z and 0;z; Second, use that the energy estimates imply that the convergence is
actually weak in H'((0,7) x §2) and in particular strong in L%(0,T; LP(£2)) for any p < oo; Third, use the
energy identity to show the convergence of the H'((0,7) x 2) norm.

Hence ey, (97 1.z1) strongly converges to Vz in H'(0,T; L?(2)). Recall that 2 is also uniformly bounded
in H'(0,T; H2(£2;)), so that en(0)f ,zn) is uniformly bounded in H'(0,T; H*(£2)). Thus ey, (0} ;. 21) strongly
converges to Vz in H'(0,T; H3/*(£2)), so that formula (4.16) and the continuity of the trace operator from
H3/%(02) to L?(02) show the strong convergence of d,ep,(2,) to 8,2 in H'(0,T; L?(012)).

Since y[g] = § + 2z, we have proved the convergence (4.2) for the sequence yp[qn] = Gn + zn. O

Remark 4.5. In this proof, let us emphasize that the construction of the sequence of source terms f; and
fa,h in (4.11) is not straightforward. But we point out that this is done explicitly from the knowledge of the
trace gy of ¢ on 0f2.

Note however that this happens because we have chosen to keep a presentation where the assumptions
are set on the trajectory y[q], and not directly on the data (y°,y'), f, fo. But this other choice would not
yield any improvement as the natural space to get y[q] € H'(0,T; L°°(£2)) in 2-d is y[q] € H*(0,T; H*(12)),
or H3((0,T) x £2). According to [27], this would correspond to

W eHNR), yeH R), fe () WRNO,T;H> (), foe H((0,T)x 0%2),
k=0,1,2

with the compatibility conditions

Vloa = fat =0), y'loa = difa(t =0), and (f(t =0) + Ay’ — qv°)|,,, = Oufa(t = 0).

Of course, this latest compatibility condition is very strong and requires in particular the knowledge of ¢
on the boundary, as we also assumed in the approach of Lemma 4.3. But very likely, taking projections of
all these data on the discrete mesh 2, also yields a suitable sequence (yg, y,ll, fn, fo,n) satisfying conditions
(4.2)—(4.7), even if one would have to study in that case the convergence of the discrete wave equations with
non-homogeneous boundary conditions, which to our knowledge has only been done in 1-d so far in [15].

Appendix A. Discrete integration by parts formula in 1-d

For the sake of completeness, we mention the basic discrete integration by parts formula obtained in [2,
Lemma 2.6] in the 1-d setting as they are the main ingredients used to perform integration by parts on 2-d
(and higher dimensional) domains. To do so, we shall make precise some 1-d notations.

We assume that we consider integration by parts on discretized versions of (0,1). For N € N, we introduce
h=1/(N +1) and the discrete sets

(0, D)n = {jh, j € [1,N]}, [0,1)n = {jh,j€[0,N]}, (0,1], = {jh,je[1,N+1]}.

Here, discrete functions fj, are functions fn = (f;);eqo,...,n+13 for which we define

/fh—h Sooh /fh:h > /fh— fi-

0,1)n je{1,--,N} [0,1)5 j€{0,---,N} 0,1]5 je{1,- N+1}

We also introduce the discrete operators for j € {1,...,N}:

(i 1), = (i fo),, = 0D
(ahfh)j:m%hfjil; O fn), = (05 fn) ;0 = fJHh fJ (Anfn); = fir1— Q]j;j“v‘fjfl.
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Lemma A.1 (/2], 1-d discrete integration by parts formulas). Let vy, fr,gn be discrete functions such that
vo = Un4+1 = 0. Then we have the following identities:

. / gn (05 fn) = — / (05 gn) fr + gn+1Sn11 — gofo; (A1)

[0,1)n (0,1]n
h h _

. / n(Onfn) = / (i 9n) (05 fr) = 590(9p f)g = 59841(90 F) o (A-2)

0,1)n (0.1),
2 h? +. 129+

° 2 / grnon(Opvn) = — / |vp|“Ongn + > / }6h 'Uh| Oy 9n; (A.3)
0.1), 0.1) [0.1),

o [ a@w)== [ @F0)@m) - @)+ (00) a0 (A1)
0,1)n [0,1),

. / gnvn(Apvp) = — / (05 o) (mif gn) +% / |vn|* Angn; (A.5)
(0,1)n [0,1)n 0,1)n

1 244 1, .- 2 Tiiar \ 2
grApvpOpvn = —3 / ’8h vh‘ Oy gn + §|(3h U)NH‘ IN+1 — §|(3h v)0| 9o- (A.6)

0.1)n [0,1),

In a square in dimension 2, we will apply Lemma A.1 when doing integrations by part in each direction.
For instance, identity (A.3) easily yields, for k € {1,2}:

h? 2
Q/thh(ah,kvh) = —/(8h,kgh)\vhl2+5 / |07 0n] 05 . 9n-
T2 2 ik

For convenience, we will also use the formula f[o Dn m;fvhfh = f( vpmy, fn, valid for vy, vanishing on the

0,1]p,
boundary, and its consequence

/m;ﬁ)h(a;{fh)(a;gh): / Uh(ahfh)(ahgh)"‘}? / On(Anfr)(Angn), (A7)

0,1)n (0,1)n 0,1)n

whose proof is left to the reader.

Appendix B. Proof of a conjugate Carleman estimate

Proof of Proposition 2.4.

Notations. In this proof, we will use the Landau notation O, (7h) to denote discrete functions of (¢, x)
depending on p satisfying for some constant C,, > 0 that [|O,(Th)| L~ (rx) < Cumh. We will also use the
shortcut O, (1) to denote bounded functions. Moreover, we will write v instead of vj, as no confusion can
occur: here, v is always a discrete function defined on (=T, T) x 2, satistying v(+T,zy) = Opv(£T, x1) = 0
for all xj, € 2, and v(t,x,) =0 for all t € (=T, T) and xj, € 9£2;,. In order to simplify the integrals, we will
also set Qp, = (=T, T) X {24, Qik = (-T,T) x Qik, Xy = (=T,T) x Iy, Eik = (-T,T) x I’,fk and use
the notations

T

NIV I

=T Q;L TQi =T F;L =T Fh &
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In the following we will use the estimates of Proposition 2.3, in particular (2.15), and the discrete
integration by parts formula in Lemma A.1 and Lemma 2.5. Finally, let us emphasize that all the constants
below are independent of h € (0,1) and 7 > 1.

e Step 1. Explicit computations of the cross product. The proof of estimate (2.20) relies first of all on the
computation of the multiplication of each term of %}, jv by each term of .Z}, sv:

/.ﬁ/ph 1U$h ovdt = Z Ly,

n,m=1

where I,,,,, denotes the product between the n-th term of %}, 1 in (2.16) and the m-th term of .2, 5 in (2.17).
We now perform the computation of each I, term.
Computation of I1. As in [2], we integrate by parts in time:

I = (1 = Uri [ B0 — Aa)o

Qn
=(1- al)Tu/ |0y |20(Dpeth — A) + T / O, (M +7 / O,.(Th)|9v|?.
Qn Qn Qn

Here, we used Ay = pAy + O, (Th) and 0y Ay = Ou(pAY) + O, (Th).
Computation of 1. Similarly,

112 = —7'/.112 / 8ttv(<p|8t¢|2 — A3>U
Qn

=TU /|6tv| gp |8t1p|2 | V|2 +T/(’) )|v|? +7‘/(’) (Th)|0:v)?,
Qh Qh

where we used Az = ¢|V¢|? + O, (7h) and 9y As = 9 (0| VY|?) + O, (Th).
Computation of I1z. Using Y, 0n kA1 x = pp| V|2 + @A + O, (Th), O A1k = ey, v0up + O, (Th), and
(A.3), we obtain:

I3 = =274 / O v (np@ﬂ/}@tv - ZALkahJcU)
Qn F

:T,u/\8tv|2<p(8tt¢—l—A1/))+Tu2/|8tv|2g0(\3t1/)|2+|v¢|2) —27#2/atuat¢<pvhv-w
Qn Qn Qn

Z / |ho;f atv|26,jkA1,k+T/OM(Th)|6tv|2+T/atv(ZOH(rh)ah,kv)
k

Qh, k Qn Qn

Computation of Is1. Since Ay = @AY + O, (th) and Ao = O, (Th), we get:

Iy=0101-m T,U/Z (14 Aor) A kv(00sth — Ag)v

Qn

041—].7';1,2/’8 kv| o0 — AY) —l—T/C’) |’U|2—|—TZ / O, (th ‘8 kv|
Qhk Qhk
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Computation of Is. Using Az = p|Vi|* + O, (Th) and (A.5), we obtain

Iop = 71 / Z(l + Ao, k) An kv (@|0]* — As)v
e

= —TILL2Z / ]a,f,cu} o(|0]? — |V )+T/ (Th)|v|? —|—7'Z / . (Th) |3h kv‘ .
Qh k

Qh X Qn

Computation of Is3. We can split this term in two parts as follows:

123—27M/Z 14 Aox)Ap kv 0ptp Opv 27‘#/2 (1+ Aox) AhkU(ZAIZahZU)

Qh Q h

I3, Iozp

For I3 we use Ay = 8,;,93;[’,9 and the zero boundary conditions on v. Setting go x = (1 + Ao k) ¢ O
and using (A.1), we get:

Io3q = —QTMZ / 3h LV 8h k(go katv)

Qh k
= —27‘/12 / ah X 8h k 8tv)mh 190,k — 27‘,112 / ah UMy, k(atv)ah £90,k-
Q;L k Qh k

Noticing that, on the one hand,
_QTMZ / 3h kvﬁh k(atv)mh £90.k = TNZ / ‘ah kU’ O (mh 190, ’f)
Qh k Qh k

= TMZ / ‘8]1 kU’ (N‘P|8t¢|2 + Qﬁattl/} —+ O (Th))
Qh k

and on the other hand (using (A.7)),

—ZTMZ / oy LU 3tv)ah 590k = —QTMZ / On k00 00h kGok — —— Z / Ap k0 Ay kgo.k

Qh K Qh
= 272 /8tv OV v - (Vl/J +0 (Th) —Th? Z / O,(1)Ap voyv,
Qh Qh

the term I3, takes the form
Inzq =11 Z / |8,J{kv’ 0| 0|2 +T/1,Z / ‘Oh kv’ ©Ou) + O, (Th))
Qh k Qh k

—QTp /Btvatzbapvhv (Vw—i-(’) (Th —Th22/0 )Ap VoL
Qn k Qn
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To compute I»3p, we consider the integrals Iog, ¢ indexed by (k, £) € {1,2}? and defined by

Iogp e = =271 /(1 + Ao, k) Ap, VAL 0O v
Qn

When k = ¢, using formula (A.6) with gr = (1 + Ao x)A1k = 0z, (1 + O,(Th)), we obtain

Iggb’k)kzr,u/laftkv‘za,tkgk—Tu / gk‘ﬁikvf—kﬂi / 9k|8;tkv|2

Qh ke ZIT,k Xk
=TU / ’8 Oy (905, 00) + Ou(Th)) — Tt / gk’(“)};kvf—i-Tu / gk|8,tkv{2.
Q;L k E}tk E;,k

When k # ¢, we use Lemma 2.5 with gi ¢ = (1 + Ao ) A1 e:
2
DIsp ke =—TH / |03t 10| On.e (myf gm.e) + 27 / Oy ot 1 (On,¢v) Oy 1 e
Q;)k Ql:,k

[ 10501 o Por i o)
Q@

Tuh?
L TH

Using (A.7) for vy, replaced by 0y ¢v, which vanishes on the boundary X,  as k # ¢, we get:

JA— / 0 10| (92, (902, ) + Ou(rh)) + 27 / B0 O 0 (D (900, ) + Op(7h))
Q;k Qn

T,uh2 Tuh

/ Ap k00,00 (Dgy, (902,1) + Opu(Th)) + / faﬁrkaﬂﬂ o (5, 1)
Qn Qn

Hence we obtain

-[2317 —T}LZ / |82—kv| < Tp Qoaack’l/} Zame @3me¢)+0 (Th))

£k
Y an, 7

+ 27—# / ah 1U8h 27.1(83;1 (5063277[}) + 83?2 (tp@xlq/}) + OH(Th))

+Th2/(9 Ah 1v8h 2’U+Ah 20}, 1’U)+ /|6;[18,T2v| (le chi/))—i—(’) (Th))
Qn Qr
Y [ 1050 o0n, (14 0,71 )+ S [ 1070 00s, (14 Ou(r1).
Zitk E;k

We now remark that 0, (90:,%) + Oz, (90, ) = 21Dy, 0y,1, and that we can write

try? [ On00n20902, 00,00 =20 [ oIV VP ~20 Y [ o sollon ol
Qn Qn k Qu
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Therefore,

1231) = T,UZ / |8}—i_)]€v|2<28¢;C (@ark’l/}) - le(@V¢) + O/L(Th))
k
Qn.k

+ 272 /90|th V¢\2—27u22/|8hkv| gp\@xkz/}|2+r/(’) (Th)On,1v O 2v

Qn k Qn
+Th2/(OM(I>Ah,1Uah,2U+O (1) Ap 2v0h,1v) + AL /‘8 8+2v‘ (div(eVY) + O, (Th))
Qn Qr
_T“Z / |8hkv| (0t + O (Th)) +Tuz /fa}fkv| (©0z, 00 + O (Th)).
¥ o g

Of course, this yields Io3 as Is3 = Io3, + I23p-
Computation of Is;. Using Ay = p?|V1)|2 + O, (Th) and Ag = pAy + O, (Th), one easily obtains:

Iy = (a1 — 1)7%p° / ]2 (0% (0rh)? — As) (¢ Outp — Au)

Qn
= (ay — 1)7p? / [0P@* (10> = [VY[?) (utp — D) + 77 / Op(h)[v]?.
Qn Qn

Computation of I32. Using here Az = ¢|V|> + O, (Th),

i = =t [ W (£ 0)? = A2) (00 — 4o

Qn
— =t [P0~ [V0P) 4 [ Outr)lel
Qn Qn

Computation of Is3. Finally, using (A.3) we get

I33 = —27°p° /(802(5t¢)2 - Az)v<<ﬁ O Opv — ZAl,kah,kv>
K

Qn

— 73 /|v 20, (P10 — As) 9 04) — 70 /|v S0 (A0 — )

3h2

Z/ 10 005 (Auk (92100017 — As)).

Qhk

But we have

3t((<ﬁ2\3t¢|2 - A2)<P3t¢)
= 3up? |0 * (10 ° — |VYI?) + @*0utp (|0:]* — V%) + 20°|0,00?0ptp + Op(7h),
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ZahJc (Ark (£?l0]? — Az))
%

= 3up® VY2 (1092 — [VYI?) + @® A (|0:0]* — V) — @3V - V([VY[?) + Ou(Th),
O (AL (71001 — A2)) = B, (%00, ¥ (10001 — [VU[?)) + Ou(rh) = O, (1),

so that we obtain

15 = 3000 / o2 (10 — [V P2)° + 748 / o2 (Bt — AB) (10 — [V[?)

Qn Qn
2
+ / [0]20% (200 |0:0 % + Vi - V (V) + /oﬂ(m)|v|2 Y / Ou(h)|55 .
Qn koor
Final computation. Gathering all the terms, one can write
[ Horv- Loz =L+ Tow + 1+ Iy (B.1)

Qn

where I, = th |v]2F (1) contains all the terms in |v|? with

F@) = a1 120 (107 — |VY?) (0urh — Av) + 72120 (20,0 VO + Vi - V([V]?))
+ 2738 (|02 — [V 2)? + 780, (7h) + 70,(1);

Iy, contains all the terms involving first-order derivatives of v:

Iy, = 2712 /|8tv|2<,0|8tw|2+27u /\th V2o — dTp? /&vé)ﬂ/}cpvhv Vi

Qn Qn
- / 0 (200t~ an(Ous = ) + 7 [ 1o eo(an(0un - A0) +20,0.,0)
Qh .k

+2m22( [ ol elonur - [ |ah,kv|2so|amw|2) o,
k
Qn

h,k

where Ip, contains all the terms involving O, terms (and a first-order derivative of v);
Ir contains all the boundary terms:

:—TMZ/’(?hkv‘ (¢ 02, + Opu(7h) +TMZ/|8}J{]€’U| (905,00 + O (Th));

+
Zwh,k 2}

1,k

Itycn contains the terms corresponding to the Tychonoff regularization:

Iryen = T“Z/|ha O[* ) A
Qhk

/|h8 10 50| (O ity (L4 Aoa)Arz) + 0 ymif, (1 + Ao2)A1a)).
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e Step 2. Bounding each term from below.
Step 2.1. Dealing with the 0 order terms in v. Since Vi) - V(|V|?) = 4|Ve|? = 16|z — x,|?, A = 4 and
Oyt = —28 and denoting X = |0y1|? — |0,9|?, one can obtain
F) =71 (2uX? — 201 (B4 2)X + 16(1 — B)|z — z4|*) +7°0,(Th) + 7O,(1).
G(¥)

Since z, ¢ 12, inf(g,1)2 [z — 14|? is strictly positive and we have

G() > 2uX? — 201 (B+2)X +¢, with ¢ = 16(1 — ) (31%2 |z — 24]% > 0.

Thus, there exists po > 1 such that for u = ug, G(¥») > 0 uniformly. Therefore, we get ¢g > 0 independent
of h such that

I 220073/|v\2903— (T3O#O(Th)+70#0(1))/|v|2
Qn

Qn
2007'3/|v\2—73(9#0(Th)/|v|2, (B.2)
Qn Qn

where the last line is obtained by bounding ¢ from below by 1 and by taking 7 > 79 to absorb the
O, (1)-term. From now, we fix i = po and we simply write O,, instead of O, .
Step 2.2. Dealing with the first-order derivatives. The first line in Iy, is positive as

1 1
‘/atvatwvhv-w‘ < 5/|atv|2so|atw|2+5/|vhv~vw|2so-
Qn Qn Qn

The second line of I, can be computed explicitly as 09 = —2, Oy, 2, % = 2 and Ay = 4:

200 ¥ — a1(Oup — Atp) = —4B + 200 (2 + B);

1 (Ot — Arp) 4+ 20kt) = =201 (24 B) + 4.
Hence the choice ay = (8 + 1)/(6 + 2) makes each term strictly positive and equal to 2(1 — 3) (recall
B € (0,1)), so that

w/ 00?0 (2041) — a1 (D) — AY)) + WZ / |a,jkv|2¢(a1(att¢ — AY) + 20,,0)
Qn k Qi

=2(1- 5)7'/1,(/ |0;v)? + Z / |3h+7kv|2).
Qn k Qs

We now remark that the third line of Iy, is negligible. Indeed, writing Oy, v = m,, k((’)}f kv), one easily checks
that

2 2
/ ‘8}tkv| @Iﬁwkzﬂz - / |ah,kv|2@|8wkw|2 > — / OM(Th)|a}tk’lJ| .
Qh ke Qn Qh ke

Concerning the terms in Ip,, the only term that needs to be discussed are the ones coming from Ip3:
But using that h2A, , is a discrete operator with norm bounded by 8, we get
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Th? / Ap1v (0,(1)0h,2v + 0,(1)00) + Th? /Ah’gv (0u(1)0h,1v + O, (1)0)
Qn Qn

<c</ |atv|2+§k: / {a,jkv|2+72/|v|2>.

h Qi k Qn

Combining these estimates, for 7 large enough, we obtain constants ¢; > 0, Cy > 0 such that

Iav2617/|8t’0| —l—CﬂZ / ’8 kv‘Q
Qhk
—T/(’) (th) \8tv|2—7'z / O, (th) ’8+kv} — Cp1? /|v\2 (B.3)

Qn Qh X

Step 2.3. The boundary terms. Since min(_r 1)y {00z} > 0 (recall z, ¢ 2), then there exists &1 > 0
such that taking 7h < ey,

|O#(7—h)| S min {(p(t,%)amkl/}(t,f)},

(t,x)e(—=T,T)x 2

so there exists C' > 0 independent of 7 and h such that

Ir > QWZ / |0 0| 900, > CTZ / Exe (B.4)
Ehk Ehk

Step 2.4. The Tychonoff regularization. We have 8;:,61417;6 = 1@l V1?4 ©Opz, 0 + Ou(Th) = O, (1) and
8}tkmh((1 + Ao o) A1) = 1@l0s,¥|? + ¢ Oppath + O, (Th). Thus, for Th small enough, i.e. Th < ey for
some €5 € (0,e1),

(8}-:_2mh1((1+A0 1) A, 2) +8 1M, 2((1+A0 2)Ax, 1)) 0,

and the term involving 6}‘;18;[211 is positive, whereas the other term in Iy is negative. We bound it directly
and get a constant C' > 0 independent of 7 and h such that

Iyen > (JTZ / |noy 00| (B.5)
Qhk

e Step 3. End of the proof of Proposition 2./. Collecting the results (B.2)-(B.5) of Step 2, we have proved
that for 7 > 19 and 7h < &9,

/,Zh 1v$hgv>co7' /|v| +clr/\8tv\ —&-ch / |8,;"kv} — Cyr? /M?
Qhk,

Qn

—CTZ /}ahkv| CTZ/yha O]

+
Ehk Qhk

—T3/O“(Th)"l)|2—T/O#(Th)|at’l)|2—7'z / Ou(Th)|8;;kv|2.
Qn Qn k Qn x
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Therefore, taking 7 large enough so that co7®> > 2Cy7? and 7h small enough such that |O,(7h)| <
min{cg, ¢1,€2}, which defines g9 > 0, we obtain, for some constant Cy > 0,

/|8tv|2+72 / |8;[kv| +T /|v|2
Qh k
<Cl/$h1'0$h2'0+017'2/|8hk1)’ +ClTZ/|h6hk8tv|

Qn.x

From (2.19), there exists Cy > 0 such that

/\@v\Q—&—TZ / ‘3+k0’ + 73 /|v|2 /|92”1hv|
Qhk

<C’2/|fhv|2+02/|,%’hv|2+C27'Z / Extis —i—C’gTZ / |noy 00| (B.6)

E;L—k Q}L k
But
[ 1 <7 [ 1o,
Qn Qn

which can also be absorbed by the left hand side of (B.6) by taking 7 large enough, thus yielding to
(2.20). O

Appendix C. Proof of an elliptic regularity result

Proof of Lemma 4.4. Multiplying Eq. (4.14) by wy, using the discrete Poincaré’s inequality, one easily
obtains that

wy, € Hy,(2,)  with lwnllaz , (2n) < Cllgnllzz (2u), (C.1)

for some constant C' = C'(m) > 0 independent of h > 0. Accordingly, replacing g5 by gn — gnwp, we are
reduced to the case ¢ = 0, that we assume from now.

Since 2, = (hZ)? N (0,1)2, we first propose to extend wy, a priori defined on the discrete domain 2,
to Qextn = (RZ)? N (—1,2)? as follows. First, for z;, € {(0,0),(1,0),(1,1),(0,1)}, we set wy(xn) = 0.
Then, for z, = (xp,1,n,2) € [0,1] X (=1,2) N Lexs,n, We set Wp(z) = —wh(Th1, —Th,2) for z, 2 € (—1,0)
and wp(zn) = —wp(zn1,1 — (x2n — 1)) for zp 2 € (1,2). This defines @y, on [0,1] x (—1,2) N Pexs,n. We
then extend it for x, = (21,5, %2,n) € Qexs,n by setting wp(xp) = —Wp(—xp,1,T2,n) for zp1 € (—1,0) and
Wp(zp) = —Wp(1 — (xp1 — 1), zn2) for z1 € (1,2). We do a similar extension g of g5 on {2ex n taking
care of choosing g, = 0 on 942, U {(0,0),(1,0),(1,1),(0,1)}.

We thus have constructed a solution w;, of

—Ahﬁ)h = gh in Qext,h and ’u~)h =0on 8Qext,h- (02)
We then choose a function y € C2°((—1,2)?) such that x = 1 on [0, 1] and we multiply (C.2) by —x, A1 p0p,

with xp, = rp(x): After some integrations by parts where all the boundary terms vanish due to the choice
of x, we obtain:



L. Baudouin et al. / J. Math. Pures Appl. 108 (2015) 1475-1522 1521

~ ~ 12
/Xh|Ah,1wh|2+ / i mit X051 0 5|

Qext,h Qext,h

_ ~ ~ + + ot + .+ + ot + ot =~
== / XhGnBn,1Wn + / 8h,2xh6h,2whmh,2Ah71wh - / 8h,1mh,2Xhmh,1ah,2whah,1ah,Qwh‘
Qext,h Qext,h Qext,h

(C.3)

Of course, since x = 1 on [0, 1]2, the left hand-side of (C.3) is bounded from below by

2 + ot 2
1A 1whl7s ) + Hah,13h,2whHL§(rz_h)'

On the other hand, using that @, and g, are symmetric extensions of wy and g, the right hand-side of
(C.3) is bounded from above by

C(”Qh”Li(nh) + ”wh”Héyh(Qh))(”Ah,lwhHLi(Q_h) + ||8}—£18i-:2wh||Lﬁ(Q_h))’

for some constant C independent of A > 0. We thus obtain

[ A wnl L2 (2 + ||8itlaft2wh“[,i(n_h) < Cllgnllez an + lwnllmg , ()
which, together with (C.1) and —Ap, 2wy, = (gn, — gnwn) + Ap 1wy, yields (4.15). O
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