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a b s t r a c t

Supervised learning algorithms have been proposed as a suitable alternative to model
updating methods in structural damage assessment, being Artificial Neural Networks the
most frequently used. Notwithstanding, the slow learning speed and the large number of
parameters that need to be tuned within the training stage have been a major bottleneck
in their application. This article presents a new algorithm for real-time damage assess-
ment that uses a linear approximation method in conjunction with antiresonant
frequencies that are identified from transmissibility functions. The linear approximation
is handled by a statistical inference model based on the maximum-entropy principle.
The merits of this new approach are twofold: training is avoided and data is processed in a
period of time that is comparable to the one of Neural Networks. The performance of the
proposed methodology is validated by considering three experimental structures: an
eight-degree-of-freedom (DOF) mass-spring system, a beam, and an exhaust system of a
car. To demonstrate the potential of the proposed algorithm over existing ones, the
obtained results are compared with those of a model updating method based on parallel
genetic algorithms and a multilayer feedforward neural network approach.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of structural damage assessment is to detect and characterize damage at the earliest possible stage, and to
estimate how much time remains before maintenance is required, the structure fails or the structure is no longer functional.
Damage assessment has a tremendous potential for life-safety and/or economic benefits, this generates a wide interest in
the civil, mechanical and aerospace engineering fields.

A global technique called vibration-based damage assessment [1] has been rapidly expanding over the last few years.
The basic idea is that vibration characteristics (natural frequencies, mode shapes, damping, frequency response function, etc)
are functions of the physical properties of the structure. Thus, changes to the material and/or geometric properties due to
damage will cause detectable changes in the vibrations characteristics. Many studies have demonstrated that vibration
measurements are sensitive enough to detect damage even if it is located in hidden or internal areas [2].

Vibration-based damage assessment methods are classified as model-based or non-model based. Non-model-based
methods detect damage by comparing the measurements from the undamaged and damaged structures, whereas model-
based methods locate and quantify damage by correlating an analytical model with test data from the damaged structure.
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Non-model-based methods usually provide the first two levels of damage assessment (detection and location), whereas
model-based methods can achieve up to the third level (quantification). Additionally, model-based methods are particularly
useful for predicting the system response to new loading conditions and/or new system configurations (damage states),
allowing damage prognosis [3].

Model-based damage assessment requires the solution of a nonlinear inverse problem, which can be accomplished using
supervised learning algorithms as neural networks or by global optimization algorithms. The most successful applications
are model updating methods based on global optimization algorithms [4–8]. Model updating is an inverse method that
identifies the uncertain parameters in a numerical model and is commonly formulated as an inverse optimization problem.
In model updating-based damage assessment, the algorithm uses the differences between the models of the structure that
are updated before and after the presence of damage to localize and determine the extent of damage. The basic assumption
is that the damage can be directly related to a decrease of stiffness in the structure. However, these algorithms are
exceedingly slow and the damage assessment process is achieved via a costly and time-consuming inverse process, which
presents an obstacle for real-time damage assessment applications. Real-time damage assessment allows to continuously
monitor the state of a structure, which is critical to avoid catastrophic failures. For example, many catastrophic collapses of
wind turbines could have been avoided if the damage had been detected and the turbines had been stopped in time [9].

To reduce the time required to assess damage, supervised learning algorithms have been proposed as an alternative to
model updating. The objective of supervised learning is to estimate the structure's health based on current and past samples.
Supervised learning can be divided into two classes: parametric and non-parametric. Parametric approaches assumed a
statistical model for the data samples. A popular parametric approach is to model each class density as Gaussian [10].
Nonparametric algorithms do not assume a structure for the data. The most frequently nonparametric algorithms used in
damage assessment are Artificial Neural Networks [11–14]. A trained neural network can potentially detect, locate and quantify
structural damage in a short period of time. Hence, it can be used for real-time damage assessment.

There are different types of network architectures, among which multilayer feedforward networks are the most
frequently used. Although once the network is already trained it can process data very quickly, the slow learning speed and
the large number of parameters that need to be tuned within the training stage have been a major bottleneck in their
application [14]. Gupta et al. [15,16] presented a new nonparametric method, which generalizes linear approximation by
using the maximum-entropy (max-ent) principle [17] for statistical inference. A similar approach is adopted by Erkan [18]
for semi-supervised learning problems, where a decision rule is to be learned from labeled and unlabeled data. Recently,
max-ent methods have become quite popular in the computational mechanics community as a powerful tool for numerical
solution of PDEs [19,20], and their applications in the solution of ill-posed inverse problems have also been explored, which
includes damage assessment applications [21,22]. By using max-ent linear approximation methods, training is avoided and
data is processed in a period of time that is comparable to the one of Neural Networks. In addition, it only requires one
parameter to be selected. Hence, max-ent linear approximation methods become very appealing for real-time health
monitoring applications. Gupta [15] demonstrated the application of the max-ent linear approximation approach to color
management and gas pipeline integrity problems. In the present paper, we demonstrate the applicability in structural
damage identification.

An important aspect of structural damage assessment is the selection of an appropriate measure of the system response.
The idea of using directly the frequency response functions (FRFs) has attracted many researchers [23]. Among all the
dynamic responses, the FRF is one of the easiest to obtain in real-time, as the in situ measurement is straightforward.
Nevertheless, FRFs have the disadvantage that they cannot be identified from output-only modal analysis; thus the
measurement of the excitation force is always required. For structures in real conditions, it often becomes very difficult to
measure the excitation force. Thus, a critical issue is to reduce the dependence upon measurable excitation forces.
An alternative to FRFs are transmissibility functions. They relate the responses at two sets of co-ordinates. Consequently,
they do not involve the measurement of excitation forces. The only condition is that the location of the excitation force must
be known.

The majority of the research in transmissibility-based damage identification are data-based approaches for damage
detection and localization. Chesné and Deraemaeker [24] presented a review of them, in addition to a study of the feasibility
of transmissibility functions for damage detection and localization. The researchers concluded that extreme care should be
taken when using transmissibility functions in an unsupervised manner, i.e. without knowing how they will be affected by
damage, because damage localization is not always guaranteed. The first study of transmissibility functions as indicators of
structural damage was presented by Worden [25]. The researcher showed for a simple lumped-parameter system that
transmissibilities are able to detect small stiffness changes. Since then, the research group leaded by Worden and Manson
have done extensive research in this topic [26]. In [27], the researchers used a representative aircraft skin panel to
investigate the sensitivity of transmissibility features to damage. Damage detection is achieved via a statistical outlier
analysis. This algorithm was later compared with the performance of density estimations and auto-associative neural
networks in [28]. The feature vector was constructed from transmissibility data, selecting spectral lines centered at a
particular peak and then using PCA to reduce the dimension of the data set. Outlier analysis and neural networks prove to be
more sensitive to damage. Manson et al. [29,30] tested the performance of the outlier analysis technique to detect damage
in an inspection panel of a Gnat aircraft. Damage was introduced as holes and saw-cuts across the panel. To achieve the next
step of damage assessment, i.e. localization, Pierce et al. [31] proposed an interval-based classification network.
Experimental transmissibility data was collected from a series of undamaged and damaged scenarios. The performance
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of the network was evaluated with unseen test data, obtaining a classification rate of 91%. Around the same time as Worden,
Zhang et al. [32] presented a methodology to detect experimental damage using changes in the transmissibility functions.
Transmissibility functions were derived from structural translations and from curvatures, being the last ones the most
sensitive to damage. Johnson and Adams [33] have also studied the use of transmissibility functions for detecting, locating
and quantifying damage. They demonstrated that since transmissibility functions are determined solely by the system
zeroes (antiresonant frequencies), they are potentially better indicators of localized damage. These results were used to
develop a framework for transmissibility-based damage identification using smart sensor arrays [34]. The damage feature is
constructed based on the changes of the logarithms of transmissibility functions due to damage. Maia et al. [35] presented a
method for computing the transmissibility matrix from responses only. They showed that transmissibility functions are
sensitive to damage making them a possible approach for damage assessment. A similar approach was used to explore the
ability of a transmissibility method for detecting and localizing damage [36]. The researchers concluded that it is possible to
detect sensitive changes to damage but further research is needed. In a later work, Maia et al. [37] compared two damage
indicators constructed with transmissibly functions and with frequency response functions. They concluded that the
method based on transmissibility measurements is much more sensitive for the detection and relative quantification of
damage.

Transmissibility functions have also been used in model updating. Steenackers et al. [38] proposed to use transmissibility
measurements instead of frequency response functions in model updating. The researchers updated the finite element
model of a mobile substation support structure using driving point transmissibility poles. Driving point transmissibility
poles correspond to the resonances of the structure when the excitation degree of freedom is constrained. This is equivalent
to the antiresonant frequencies of the driving point frequency response function. The authors concluded that the finite
element model updated with transmissibility information is equivalent to the model updated with FRFs or operational
modes. Hence, transmissibility functions are a good alternative in model updating when the excitation force is not
measured. Meruane [39] presented a model updating and damage assessment algorithm that uses antiresonant frequencies
derived from transmissibility data. Antiresonance frequencies correspond to the dips in FRFs and consequently to the dips
and peaks in transmissibility functions. Hence, it is possible to identify antiresonance frequencies using transmissibility
information. Transmissibility functions seem to be quite promising in diverse fields such as output-only modal analysis [40–42],
model updating and damage assessment.

The primary contribution of this research is the development of a novel real-time damage assessment algorithm that
uses a linear approximation method in conjunction with antiresonant frequencies that are identified from transmissibility
functions. The linear approximation is handled by a statistical inference model based on the maximum-entropy principle
[17]. The merits of this new approach are twofold: training is avoided and data is processed in a period of time that is
comparable to the one of Neural Networks. The performance of the proposed methodology is validated by considering three
experimental structures: an eight-degree-of-freedom (DOF) mass-spring system, a beam, and an exhaust system of a car.
To demonstrate the potential of the max-ent linear approximation method over existing ones, results obtained via the max-
ent formalism are compared with those of a model updating method based on parallel genetic algorithms [39] and a
multilayer feedforward neural network approach [14].

The remainder of this work is structured as follows: Section 2 provides general antecedents and related research on the
max-ent linear approximation method. Section 3 describes the setting up of the database. Sections 4 presents the case
studies and the damage assessment results using three approaches: feedforward neural networks, model updating with
parallel genetic algorithms and max-ent linear approximation. Finally, conclusions and forthcoming work are presented in
Section 5.

2. Linear approximation with maximum-entropy principle

The main problem of vibration-based damage assessment is to ascertain the presence, location and severity of structural
damage given a structure's dynamic characteristics. This principle is illustrated in Fig. 1; the vibration characteristics of the
structure, which in this case correspond to antiresonant frequencies, act as the input to the algorithm, and the outputs are
the damage indices of each element in the structure.
Experimental structure Transmissibility functions

X

Feature
vector

Damage 
assessment 
algorithm

Ŷ

Estimated
damage

Fig. 1. Scheme of the damage assessment algorithm.
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Let the observation vector Yj ¼ fYj
1;Y

j
2;…;Yj

mgARm represents the jth damage state of a structure, wherem is the number
of structural elements. Let the feature vector Xj ¼ fXj

1;X
j
2;…;Xj

ngARn represent a set of characteristics parameters of the
structure (antiresonant frequencies) associated to the damage state Yj. The variables X and Y have joint distribution PX;Y .
A set of k independent and identically distributed samples be drawn from PX;Y , these samples represent the database
ðX1;Y1Þ; ðX2;Y2Þ;…; ðXk;YkÞ. The central problem in supervised learning is to form an estimate of PYjX , i.e. given a certain
feature X to estimate the corresponding observation Y. Let Ŷ denote the estimated value of Y. Linear approximation takes
the N nearest neighbors to a test point X and uses a linear combination of them to represent X as

X¼ ∑
N

j ¼ 1
wjðXÞXjðXÞ; ∑

N

j ¼ 1
wjðXÞ ¼ 1; ð1Þ

where w1;w2;…;wN are weighting functions, and X1ðXÞ;X2ðXÞ;…;XNðXÞ are the N closest neighbors to a test point X out of
the database set. The equations given in (1) can be expressed as the following system of linear equations:

Aw¼ b; ð2Þ

with A¼

X1
1 X2

1 … XN
1

X1
2 X2

2 … XN
2

⋮ ⋮ ⋱ ⋮
X1
n X2

n … XN
n

1 1 … 1

2
6666664

3
7777775
ðnþ1Þ�N

; b¼

X1

X2

⋮
Xn

1

2
6666664

3
7777775
ðnþ1Þ�1

; w¼

w1

w2

⋮
wN

2
66664

3
77775
N�1

After w is obtained from (2), Ŷ is estimated as

Ŷ ¼ ∑
N

j ¼ 1
wjðXÞYjðXÞ; ð3Þ

where Y1ðXÞ;Y2ðXÞ;…;YNðXÞ are the corresponding observations to the N selected neighbors. To solve the linear system
given in (2), the number of unknowns Nmust equal the number of constraints nþ1. Often there are more than nþ1 samples
that are relevant to estimate a test point X (N4nþ1). Thus, the system of linear equations becomes undetermined. The
system (2) is very common in computational mechanics (see for instance, [19]) to construct basis functions for
approximation of field variables in Partial Differential Equations (PDEs) and for curve and surface fitting in computational
geometry (see for instance, [43]). Typically, when (2) is undetermined, its solution is tackled via an unconstrained
optimization technique of the family of least-squares. However, these methods produce some negative weights, which lacks
physical meaning. An alternative that produces positive weights is obtained via the maximum-entropy (max-ent)
variational principle [17].

The notion of entropy in information theory was introduced by Shannon as a measure of uncertainty [44]. Later, on using
the Shannon entropy, Jaynes [17] postulated the maximum-entropy principle as a rationale means for least-biased statistical
inference when insufficient information is available. The maximum-entropy principle is suitable to find the least-biased
probability distribution when there are fewer constraints than unknowns and is posed as follows:

Consider a set of N discrete events fx1;…; xNg. The possibility of each event is pi ¼ pðxiÞA ½0;1� with uncertainty � ln pi.
The Shannon entropy HðpÞ ¼ �∑N

i ¼ 1pi ln pi is the amount of uncertainty represented by the distribution fp1;…; pNg. The
least-biased probability distribution and the one that has the most likelihood to occur is obtained via the solution of the
following optimization problem (maximum-entropy principle):

max
pARN

þ
HðpÞ ¼ � ∑

N

i ¼ 1
pi lnðpiÞ

" #
; ð4aÞ

subject to the constraints:

∑
N

i ¼ 1
pi ¼ 1; ∑

N

i ¼ 1
pigrðxiÞ ¼ 〈grðxÞ〉; ð4bÞ

where RN
þ is the non-negative orthant and 〈grðxÞ〉 is the known expected value of functions gr(x) (r¼ 0;1;…;m), with

g0ðxÞ ¼ 1 being the normalizing condition.
The optimization problem (4) assigns probabilities to every xi in the set. Now, assume that the probability pi has an initial

guess mi known as a prior, which reduces its uncertainty to � ln piþ lnmi ¼ � lnðpi=miÞ. An alternative problem can be
formulated by using this prior in (4) [45]:

max
pARn

þ
HðpÞ ¼ � ∑

N

i ¼ 1
pi ln

pi
mi

� �" #
; ð5aÞ
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subject to the constraints:

∑
n

i ¼ 1
pi ¼ 1; ∑

n

i ¼ 1
pigrðxiÞ ¼ 〈grðxÞ〉: ð5bÞ

In (5), the variational principle associated with ∑N
i ¼ 1pi lnðpi=miÞ is known as the principle of minimum relative (cross)

entropy [46,47]. Depending upon the prior employed, the optimization problem (5) will favor some xi in the set by assigning
more probability to them, and eventually, assigning non-zero probability (pi40) to a selected number of xi (ioN) in the set.
It can be easily seen that if the prior is constant, the Shannon–Jaynes entropy functional (4) is recovered as a particular case.
The max-ent approach is demonstrated next by means of two dice experiments.

Example 2.1. A fair dice is thrown. The set of possible outcomes are the events f1;2;3;4;5;6g. Since the dice is fair, we infer
that all the events have equal possibility 1/6 of being the outcome. Taking the expectation of the outcome yields

E¼ 1
6
� 1þ1

6
� 2þ1

6
� 3þ1

6
� 4þ1

6
� 5þ1

6
� 6¼ 3:5:

If this expectation is viewed as the constraint in the max-ent problem (4), the set of possibilities previously inferred is
exactly predicted by max-ent. The result is shown in Fig. 2.

Example 2.2. A biased dice is thrown. The set of possible outcomes are the events f1;2;3;4;5;6g. A guess is made on each
outcome via the following set of prior possibilities w¼ f0:1;0:1;0:1;0:1;0:5;0:1g. On considering these priors, the
expectation of the outcome yields

E¼ 0:1 � 1þ0:1 � 2þ0:1 � 3þ0:1 � 4þ0:5 � 5þ0:1 � 6¼ 4:1:

If this expectation is viewed as the constraint in the max-ent problem (5), the set of ‘most honest’ possibilities assigned by
max-ent is p¼ f0:1;0:1;0:1;0:1;0:5;0:1g, which is exactly the guess, as expected. The result is depicted in Fig. 3.

Because of its general character and flexibility, we adopt the relative entropy approach for our problem, where the
probability pi is replaced with the weighting function wi of the linear approximation problem posed in (1). This reads

max
wARN

þ
H wð Þ ¼ � ∑

N

i ¼ 1
wi Xð Þln wiðXÞ

miðXÞ

� �" #
; ð6aÞ

subject to the constraints:

∑
N

i ¼ 1
wiðXÞ ~X

i ¼ 0; ∑
N

i ¼ 1
wiðXÞ ¼ 1; ð6bÞ
1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Expectation

P
ro

ba
bi

lit
y

p1 p2 p3 p4 p5

Fig. 2. Throwing a fair dice. If the dice is fair, max-ent assigns equal possibilities to all events.
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Fig. 3. Throwing a biased dice. If the dice is biased, max-ent assigns the most probable possibility to each event.
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where ~X
i ¼Xi�X has been introduced as a shifted measure for stability purposes. A typical prior distribution is the smooth

Gaussian [48]

miðXÞ ¼ expð�βi‖ ~X
i
‖2Þ; ð7Þ

where βi ¼ γ=h2i ; γ is a parameter that controls the radius of the Gaussian prior at Xi, and therefore its associated weight
function; and hi is a characteristic n-dimensional Euclidean distance between neighbors that can be distinct for each Xi.
In view of the optimization problem posed in (6) for supervised learning, maximizing the entropy chooses the weight
solution that commits the least to any one in the database samples [16].

The solution of the max-ent optimization problem is handled by using the procedure of Lagrange multipliers, which
yields [45]

wi Xð Þ ¼ ZiðX;λnÞ
ZðX;λnÞ

; ZiðX;λnÞ ¼mi Xð Þexpð�λn � ~X iÞ; ð8Þ

where ZðX;λnÞ ¼∑jZjðX;λnÞ, ~X
i ¼ ½ ~Xi

1… ~X
i
N �T and λn ¼ ½λn1…λnN�T.

In (8), the Lagrange multiplier vector λn is the minimizer of the dual optimization problem posed in (6) [45]

λn ¼ arg min
λARN

ln ZðX;λÞ; ð9Þ

which gives rise to the following system of nonlinear equations:

fðλÞ ¼∇λ ln ZðλÞ ¼ � ∑
N

i
wiðXÞ ~X

i ¼ 0; ð10Þ

where ∇λ stands for the gradient with respect to λ. Once the converged λn is found, the weight functions are computed from (8).

3. Construction of the database

Database samples are generated using a numerical (finite element) model of the structure. Two approaches are used to
overcome the dependency on the accuracy of the numerical model. The first is to update the numerical model using
experimental data from the undamaged structure. The numerical models corresponding to the three case studies were
updated using the algorithm described in [39]. The second is to define an input parameter that considers the initial errors in
the numerical model, thus avoiding the need for an accurate numerical model. This goal is achieved using the changes in the
data instead of their absolute values [49]. With the validated numerical model, the database is built as follows:
1.
 Define a set of damage scenarios to be used in the database.

2.
 Set j¼1.

3.
 Parameterize the jth scenario with an observation vector Yj.

4.
 Build the numerical model associated with the jth scenario.

5.
 Construct a feature vector Xj using the antiresonant frequencies derived from the numerical model.

6.
 Add the pair of vectors ðXj;YjÞ to the database, set j¼ jþ1 and go to step 3.
3.1. Feature vector

The jth feature vector Xj contains the experimental changes in the antiresonant frequencies with respect to the intact
case:

Xj ¼ ωD
1;1�ωU

1;1

ωU
1;1

;
ωD

2;1�ωU
2;1

ωU
2;1

;…;
ωD

n1 ;1
�ωU

n1 ;1

ωU
n1 ;1

;…;
ωD

nr ;r�ωU
nr ;r

ωU
nr ;r

( )
; ð11Þ

The superscripts D and U refer to damaged and undamaged, respectively, and ωi;r is the ith antiresonant frequency of the rth
Frequency Response Function (FRF). Experimental antiresonances are identified from transmissibility measurements using
the algorithm presented in [39].

3.2. Observation vector

The jth observation vector Yj contains damage indices represented by elemental stiffness reduction factors, defined as
the ratio of the stiffness reduction to the initial stiffness. The stiffness matrix of the damaged structure, Kd, is expressed as a
sum of element matrices multiplied by reduction factors:

Kd ¼ ∑
m

i ¼ 1
ð1�Yj

iÞKi; ð12Þ
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where Ki is the stiffness matrix of the ith element. Thus, Yj
i ¼ 0 indicates that the ith element is undamaged, whereas

0oYj
io1 implies partial damage and Yj

i ¼ 1 complete damage.

3.3. Distribution of patterns

The distribution of patterns in the database plays a crucial role in the success of the algorithm. The relationship between
antiresonant frequencies and different damage levels is not linear. Therefore, the algorithm might not be able to interpolate
data. In this study, the patterns were generated by considering single damage scenarios with eight damage levels distributed
as 0, 20, 40, 60, 80, 90, 95 and 99.9%.

4. Application cases

The results of the max-ent linear approximation algorithm are compared with those obtained by a multilayer
feedforward neural network approach [14] and a model updating method based on parallel genetic algorithms [39]. The
neural network was trained with the same database used for the max-ent linear approximation method, but polluted with
1.0% random noise to minimize false damage detection due to experimental noise [14]. The procedure to assess the
experimental damage using the max-ent linear approximation is implemented as follows:
1.
 Perform an experimental test of the damaged structure and identify the antiresonant frequencies.

2.
 Construct the feature test point X using Eq. (11).

3.
 Read the feature vectors in the database.

4.
 Select parameter βi in the Gaussian prior given in (7), so that k neighbours contribute to the solution.

5.
 Solve the system of nonlinear equations presented in (10).

6.
 Compute the weight functions from (8).

7.
 Read the observation vectors in the database and estimate the experimental damage from (3).
The next sub-sections present each application case and the results obtained by the three approaches.

4.1. Eight-DOF spring-mass system

The structure shown in Fig. 4 consists of an eight-DOF spring-mass system. Los Alamos National Laboratory (LANL)
designed and constructed this system to study the effectiveness of various vibration-based damage identification techniques [50].
Eight translatingmasses connected by springs form the system. Eachmass is a disc of aluminiumwith a diameter of 76.2 mm and a
thickness of 25.4 mm. The masses slide on a highly polished steel rod and are fastened together with coil springs. The positions of
the springs and masses are designated sequentially, with the first ones being closest to the shaker attachment.

In the undamaged configuration, all springs are identical and have a linear stiffness coefficient. Damage was simulated by
replacing the fifth spring with another spring that has a lower stiffness (55% stiffness reduction). Acceleration was measured
horizontally at each mass yielding eight measured DOFs. The structure was excited randomly by an electro-dynamic shaker.
x8              x7              x6                    x5                     x4                     x3                    x2                     x1         

m8            m7 m6 m5 m4 m3 m2 m1 f(t)

k7              k6             k5                     k4                     k3                    k2                     k1                  

Fig. 4. Experimental eight-degrees-of-freedom system.
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Fig. 5. Damage identification results for the eight-degrees-of-freedom mass-spring system using different values for γ in the Gaussian prior.
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Fig. 6. Identification of experimental damage in the eight DOF mass-spring system using two algorithms: linear approximation with maximum entropy
and model updating with parallel genetic algorithms.
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Twenty-eight antiresonant frequencies were identified from the transmissibility measurements.
The numerical model was built in Matlabs with springs and concentrated masses. The initial parameters were as

follows:
�
 Mass 1: 559.3 g (This mass is greater than the others due to the hardware required to attach the shaker.)

�
 Masses 2–8: 419.4 g

�
 Spring constants: 56.7 kN/m.
In the undamaged case, the maximum difference between the experimental and numerical antiresonances was 3.7%. The
database samples were created using the seven springs as possible locations for damage, resulting in 56 patterns.

During the set-up of the damage identification algorithm, the only parameter that needs to be selected in the max-ent
computation is γ for the Gaussian prior. This parameter controls the radius of the weight functions associated with those
feature vectors Xj that contribute to the approximation at the feature test vector X. Therefore, it determines the number of
neighbors to the test point. In addition, the weights associated with the active neighbors are determined up on their
distances to the test point. The closer the distance, the larger the weight. Fig. 5 shows the damage assessment results using
the values γ ¼ 1, 100, 800 and 1600. An horizontal line indicates the actual stiffness reduction. In each case there are 57, 46, 6
and 2 neighbors contributing to the final solution, respectively. These results indicate that using a larger value of γ results in
more accurate solutions. Nevertheless, if γ is too high there might not be enough neighbors to build the approximation.

Fig. 6 shows the results for the experimental damage case using γ ¼ 800. The results are compared with those obtained
using model updating and neural networks methods. The three methods were able to correctly identify the experimental
damage represented by a 55% stiffness reduction in element 5, although the neural network identifies a small false damage
at element 2. In terms of time, the model updating approach required 206 s to yield a solution, the linear approximation
required 0.2 s, whereas the neural network required only 0.09 s. It should be noted that linear approximation and neural
network algorithms can reach a solution in less than a second, which can be considered real-time for structural damage
assessment problems.

4.2. Experimental beam

In the second experimental case, the structure consisted of a steel beam with a rectangular cross-section. The beam
measured 1 m in length and had a cross-sectional area of 25� 10 mm2. As shown in Fig. 7, soft springs suspend the
structure to simulate a “free-free” boundary condition. A shaker excites the beam at one end, and the response is measured
by 11 accelerometers. Both the excitation force and the measured responses are in the horizontal direction. In this direction,



Fig. 8. Numerical model of the beam and element numbering.

Fig. 9. Saw cuts introduced into the beam.

Table 1
Damage scenarios introduced into the beam.

Damage scenario Distance from the left end (mm) Element number Saw cut length (mm)

1 450 9–10 3
2 685 14 7
3 810 17 15

Fig. 7. Experimental beam.
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antiresonant frequencies are more sensitive to the experimental damage. Thirty-six antiresonant frequencies were
identified from the transmissibility measurements.

The numerical model was built in Matlabs with 2D beam elements. The model featured 20 beam elements and 40
degrees of freedom, as shown in Fig. 8. In the undamaged case, the maximum difference between the experimental and
numerical antiresonances was 3.63%. Shadowed elements represent possible locations of damage, resulting in 18 damage
locations and 144 patterns.

The structure was subjected to three different damage scenarios containing single cracks. Cracks were introduced into
the structure by saw cuts, as illustrated in Fig. 9. Table 1 summarizes the damage scenarios indicating the distance from the
left-end to the cut, the corresponding element in the numerical model, and the cut length. In the first damage scenario the
cut is in between elements 9 and 10.

The parameter γ in the Gaussian prior is selected so 6 neighbors contribute to the solution. Fig. 10 shows the results of the
experimental damage identified by three approaches: neural network, model updating and linear approximation. An arrow
indicates the actual damage location. In the first damage scenario, the only approach that detected a damage in the actual
location is the max-ent linear approximation, detecting 8% stiffness reduction in elements 9 and 10. In the second and third
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Fig. 10. Identification of experimental damage in the beam using two algorithms: linear approximation with maximum entropy and model updating with
parallel genetic algorithms.
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damage scenarios, damage is correctly located by the three approaches. Although with the neural network approach
damage quantification is not accurate and a few false damages are detected.

In terms of time, the model updating approach requires approximately 900 s to assess the experimental damage, the
linear approximation requires 0.3 s, whereas the neural network requires only 0.1 s.
4.3. Car exhaust system

The structure consists of a car exhaust system as shown in Fig. 11. The dimensions are length: 2.3 m and width: 0.45 m.
The exhaust pipe has a diameter of 38 mm. The structure is suspended by soft springs and is excited randomly by an
electrodynamic shaker. The response is captured by 16 accelerometers. The test is performed in a frequency range of
0–512 Hz with a frequency resolution of 0.25 Hz.

The numerical model shown in Fig. 12 was built in Matlabs with 2D beam elements and concentrated inertias for the
masses. The model has 47 beam and 5 inertia elements, with 144 degrees of freedom. Thirty-two antiresonances were
identified from the transmissibility functions. All of them are used during the model updating process. The maximum
difference between the experimental and numerical antiresonances after updating was 7.6%.

A single fatigue crack with three increasing levels of damage is introduced to the structure. Fig. 13(a) shows the crack,
which is located in element 31, close to the welded connection between elements 30 and 31 and covers around 60% of the
pipe perimeter. The fatigue test is done again twice to grow the crack. Fig. 13(b) shows the second damage level; here the



Fig. 11. Experimental set-up of the car exhaust system.
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Fig. 12. Finite element model and element numbering of the car exhaust system.

Fig. 13. Three levels of damage introduced to the car exhaust system.
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structure has already failed due to unstable crack propagation. The open crack covers around 70% of the perimeter. The last
damage level is shown in Fig. 13(c). The crack covers around 85% of the perimeter.

Elements 18–47 are considered possible locations of damage, giving 30 damage locations and 240 patterns.
The parameter γ in the Gaussian prior is selected so six neighbors patterns contribute to the solution. Fig. 14 shows the

results of the experimental damage identified by the three approaches: neural network, model updating and linear
approximation. An arrow indicates the actual damage location. In the three damage scenarios, the damage is correctly
identified by the linear approximation and the model updating approaches. Though, in the first case the damage detected by
the linear approximation approach is closer to the actual location. On the other hand, the neural network technique, instead
of detecting one large damage, it detects two to three medium damages at locations near the actual one.

In terms of time, the model updating approach requires approximately 1800 s to assess the experimental damage in each
case, the linear approximation approach requires 0.7 s, whereas the neural network requires only 0.2 s.
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Fig. 14. Identification of experimental damage in the car exhaust system using two algorithms: linear approximation with maximum entropy and model
updating with parallel genetic algorithms.
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5. Conclusions

This article presented a new supervised learning algorithm for real-time damage assessment that uses a linear
approximation method in conjunction with antiresonant frequencies that are identified from transmissibility functions.
The linear approximation is handled by a statistical inference model based on the maximum-entropy principle. The
performance of the proposed methodology was validated by considering three experimental structures: an eight-DOF mass-
spring system, a beam, and an exhaust system of a car.

To demonstrate the potential of the proposed algorithm over existing ones, the obtained results are compared with those
of a model updating method based on parallel genetic algorithms and a multilayer feedforward neural network approach.
The results show that the neural network was the fastest in assessing damage, but quantification was not accurate. The
model updating, on the other hand, provides accurate results, but it requires between 3–30 min to assess damage. The max-
ent linear approximation combines the best of both; it provides a fast and accurate damage assessment. In the three
structures, the max-ent linear approximation was successful in assessing the experimental damage. The detected damage
closely corresponds to the experimental damage in all cases, obtaining results very similar to those of a model updating
approach in a processing time equivalent to neural networks. Hence, the proposed algorithm provides the possibility of
continuously monitoring the state of a structure.

The three structures used to validate the damage assessment algorithm are unidimensional in nature. Although the
exhaust system is a 2D structure, it behaves similar to an unidimensional structure. Thus, more research is needed to test the
performance of the proposed algorithm with 2D and 3D structures.
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The max-ent linear approximation method, as presented, is able to accurately assess single damage scenarios. Further
research is needed to adapt this algorithm to cases with multiple damage scenarios.
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