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ABSTRACT

Upper main-sequence stars, white dwarfs, and neutron stars are known to possess stable, large-scale magnetic
fields. Numerical works have confirmed that stable magnetohydrodynamic equilibria can exist in non-barotropic,
stably stratified stars. On the other hand, it is unclear whether stable equilibria are possible in barotropic stars,
although the existing evidence suggests that they are all unstable. This work aims to construct barotropic equilibria
in order to study their properties, as a first step to test their stability. We have assumed that the star is a perfectly
conducting, axially symmetric fluid, allowing for both poloidal and toroidal components of the magnetic field. In
addition, we made the astrophysically justified assumption that the magnetic force has a negligible influence on the
fluid structure, in which case the equilibrium is governed by the Grad–Shafranov equation, involving two arbitrary
functions of the poloidal flux. We built a numerical code to solve this equation, allowing for an arbitrary
prescription for these functions. Taking particularly simple, but physically reasonable choices for these functions
with a couple of adjustable parameters, all of the equilibria found present only a small (10%) fraction of the
magnetic energy stored in the toroidal component, confirming previous results. We developed an analytical model
in order to study in more detail the behavior of the magnetic energy over the full range of parameters. The model
confirms that the toroidal fraction of the energy and the ratio of toroidal to poloidal flux are bounded from above
for the whole range of parameters.
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1. INTRODUCTION

In contrast to the magnetic fields of low-mass stars (e.g., the
Sun), magnetic fields in upper main-sequence stars, white
dwarfs, and neutron stars are quite stable on timescales
comparable to their life times. However, not all of these stars
are actually “magnetic,” in the sense that massive stars and
white dwarfs follow a bimodal distribution in which only a
fraction within 5–20% of each star type stands out for having
strong magnetic fields when compared to the remaining 90%
(Liebert et al. 2003; Ferrario & Wickramasinghe 2006; Aurière
et al. 2007; Kawka et al. 2007; Donati & Landstreet 2009;
Wade et al. 2014). Throughout this work, we will be interested
in the stable fields in upper main-sequence stars, white dwarfs,
and neutron stars.

From a theoretical point of view, the persistence of magnetic
fields in massive stars and compact remnants motivates the
interest in what physical conditions are involved in sustaining
such equilibria. Both analytical and numerical studies have
generally pointed out that stable equilibrium configurations
require a poloidal component of the magnetic field to stabilize a
toroidal one, and vice versa (Prendergast 1956; Braithwaite &
Spruit 2004; Braithwaite & Nordlund 2006; Akgün
et al. 2013), while purely poloidal and purely toroidal
equilibria undergo intrinsic instabilities related to their
geometries (Markey & Tayler 1973; Tayler 1973; Wright
1973; Flowers & Ruderman 1977; Kiuchi et al. 2008; Ciolfi
et al. 2011; Lasky et al. 2011; Marchant et al. 2011). The
simulations of Braithwaite and collaborators showed that
initially random fields often evolve naturally into nearly
axisymmetric, toroidal-poloidal “twisted-torus” configurations
on short (Alfvén) timescales.

In addition, an important ingredient to consider is that the
matter within the stars considered is non-barotropic, that is, the
pressure is a function of mass density and another

thermodynamic quantity, which is conserved in a fluid element
if the latter is perturbed from its equilibrium position
(Reisenegger 2009). This second thermodynamic variable
accounts for stable stratification, i.e., stability against con-
vective motion. On short timescales, massive stars and white
dwarfs are stratified by entropy gradients, while in neutron stars
this role is played by a varying chemical composition. Stable
stratification could be a crucial ingredient in stabilizing these
equilibria, inhibiting radial motions and hence suppressing
fluid instabilities occurring within these stars, as supported by
recent numerical simulations (Mitchell et al. 2014). As a matter
of fact, it has recently been suggested that a plausible condition
of dynamical stability for these magnetized stars can be
expressed as

< ( )a E E E E2 0.8, (1)mag grav pol mag

where E Emag grav is the magnetic-to-gravitational energy ratio,
E Epol mag is the fraction of magnetic energy stored in the
poloidal component, and a is a pure number accounting for
how stratified the star is (Braithwaite 2009; Akgün et al. 2013).
The additional fact that all of these objects are expected to
contain a gravitational energy much larger than the magnetic
energy (Reisenegger 2009) would imply that the toroidal
component can be stabilized by a much weaker poloidal field,
but the converse is not true. This is of particular relevance in
the context of energy released by magnetars, where it has been
claimed that a much stronger internal toroidal field would
account for observed outbursts emitted from these objects
(Thompson & Duncan 1996).
Stable stratification, although crucial on short timescales,

could be eroded if some processes change either entropy or
chemical composition. In massive stars and white dwarfs, heat
conduction is too slow to significantly change entropy during
their life time. For neutron stars, the stable stratification could
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be overcome by changing the chemical composition by means
of β-decay and/or ambipolar difusion (Goldreich & Reiseneg-
ger 1992; Pethick 1992; Reisenegger 2009), making them
effectively barotropic over long timescales.

On the other hand, and despite their lack of realism,
barotropic equations of state have often been assumed to
describe the matter within upper main-sequence stars, white
dwarfs and neutron stars (Yoshida & Eriguchi 2006; Haskell
et al. 2008; Lander & Jones 2009; Ciolfi et al. 2009; Fujisawa
et al. 2012; Pili et al. 2014; Bucciantini et al. 2015), because of
the expected simplicity as a very first approximation to the
realistic state of matter. Yet, it is important to identify correctly
when one is actually modeling a barotropic fluid. The local
adiabatic index of the fluid, rG = ¶ ¶P( ln ln )X , where X is
the specific entropy (or another quantity conserved in fast fluid
displacements), will not generally be equal to the analogous
index describing the equilibrium, g r= d P dln ln . If G = γ,
we say that the fluid is barotropic. A single-species, non-
interacting degenerate Fermi gas, for example, does possess a
barotropic equation of state, which in limiting cases of
nonrelativistic and ultrarelativistic particles reduces to poly-
tropes with G = γ = 5/3 and G = γ = 4/3, respectively.

Barotropy strongly restricts the allowed range of possible
equilibrium configurations and, as discussed, does not strictly
represent the realistic stably stratified matter within these
objects on short (Alfvén) timescales. Moreover, the question
whether magnetic equilibria in barotropic stars can be stable or
not is being answered negatively by recent studies (Lander &
Jones 2012; Mitchell et al. 2014).

Several authors (Ciolfi et al. 2009; Lander & Jones 2009;
Fujisawa et al. 2012; Gourgouliatos et al. 2013; Bucciantini et al.
2015; Pili et al. 2014) have explored the possible axially
symmetric equilibria in barotropic stars, generally finding that
the fraction of the total magnetic energy corresponding to the
toroidal component, E Etor mag, is at most a few %, even in cases
of comparable poloidal and toroidal magnetic field strength.
Since stable stratification, which is absent in the barotropic case,
is expected to be a key piece in the stability of the stars
considered here, and given such a small fraction of toroidal
energy apparently inherent to barotropic configurations, it is
likely that all of these equilibria are dynamically unstable, as
supported by recent simulations (Lander & Jones 2012; Mitchell
et al. 2014). More recent works (Ciolfi & Rezzolla 2013;
Fujisawa & Eriguchi 2013) have shown, however, that higher
fractions E Etor mag are actually possible, making a more
extensive survey of these equilibria relevant. Studying properties
of barotropic equilibria could also be relevant considering the
scenario in which neutron stars would reach an effectively
barotropic state after overcoming stable stratification by means
of dissipative processes, as already discussed.

The present work is focused on obtaining a wide range of
barotropic equilibria, paying attention to their main properties.
In addition, these results may be considered as a starting point
to study in more detail whether magnetic fields in barotropic
stars can be stable or not. This paper is organized as follows.
Section 2 presents the formalism used to construct barotropic
equilibria, in order to introduce the notation used throughout
this paper. In Section 3 we solve numerically the resulting
equilibrium equation. We summarize the tests carried out
to check our code and present the main results obtained.
Section 4 expands the analysis of barotropic equilibria,
introducing an asymptotic, analytical model to explore

equilibrium configurations beyond numerical simulations.
Finally, Section 5 presents the conclusions of this paper.

2. MAGNETIC EQUILIBRIA IN BAROTROPIC STARS

We assumed that the star is a perfectly conducting fluid. In
the ideal magnetohydrodynamic (MHD) approximation, the
dynamical equilibrium of a star is described by the Euler
equation,

r = - - Y + ´J BP
c

0
1

, (2)

where P, ρ, Y, B, J , and c are the fluid pressure, mass density,
gravitational potential, magnetic field, electric current density,
and speed of light, respectively, so that the last term in
Equation (2) is the Lorentz force per unit volume. Throughout
this work, a spherical coordinate system q fr( , , ) with origin at
the center of the star is used to describe all quantities. Also, we
assumed that the current density drops toward the stellar
surface and vanishes outside, as expected since the mass
density and the charged-particle density do so. For simplicity,
we considered axially symmetric magnetic stars. The magnetic
field may then be expressed as the sum of a poloidal and a
toroidal component, each determined by a single scalar
function (Chandrasekhar & Prendergast 1956),

a q f b q f  = + = ´ +B B B r r( , ) ( , ) , (3)pol tor

where f q = fe r sin , ei being the orthonormal basis of the
coordinate system, with q f=i r{ , , }. By Ampère’s law, the
electric current density reads

b f a f  = ´ - DJ
π

c

4 * , (4)

where the Laplacian-like “Grad–Shafranov operator”

q
q

q
q q q
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(5)
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was introduced. For an axisymmetric equilibrium, the azi-
muthal component of the magnetic force must vanish, which is
imposed by demanding that β be a function of α only, β = β
(α). This implies that both α and β are constant along poloidal
field lines. Also, notice that, since the poloidal component is
perpendicular to the toroidal one by construction, one can
always split the magnetic energy in terms of the energy stored
in each component,

ò ò= + = +
B B

E E E
π

dV
π

dV
8 8

, (6)mag pol tor
pol
2

tor
2

where the integration is carried out over all space.

2.1. Magnetic Field Outside the Star

Since we demanded vacuum outside the star, β has to be a
constant there (see Equation (4)). This constant must be zero in
order to have a finite magnetic field along the axis. Also, it is
needed that

aD =* 0, (7)

which is a linear, homogeneous partial differential equation,
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whose general solution after separating variables is

åa q q q= é
ëê + ù

ûú
=

¥
+ -r a r b r P( , ) sin (cos ), (8)

ℓ
ℓ

ℓ
ℓ

ℓ
ℓ

1

1 1

where P x( )ℓ
m is the associated Legendre polynomial of the

order of ℓ with azimuthal index m. Since the magnetic field
must vanish far from the star, aℓ= 0 for all values of ℓ, and

åa
q

q=
=

¥

b
r

P
sin

(cos ), (9)
ℓ

ℓ ℓ ℓ
1

1
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q
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q
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=
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B
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( 1)
(cos ), (10)r

ℓ

ℓ
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1

2
0
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q= -
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=q
=

¥

+
B

r r

ℓb

r
P

1

sin
(cos ) (11)

ℓ

ℓ

ℓ ℓ
1

2
1

outside the star.

2.2. Magnetic Field Inside the Star: the GS Equation

Throughout this work, we considered a barotropic equation
of state, r=P P ( ), in which case if we divide Equation (2) by
ρ and take the curl of the result, the Lorentz force per unit mass
must be the gradient of a certain axisymmetric scalar function
c qr( , ), r c=f π[ 4 ]mag , where the factor π4 is introduced
for convenience. Replacing the decomposition of Equation (3)
in the Lorentz force, it turns out that χ must be a function of α
as well. Hence c c a = ¢ , and the so-called Grad–
Shafranov equation (hereafter GS, Grad & Rubin 1958;
Shafranov & Leontovich 1966),

a b a b a r qc aD + ¢ + ¢ =r* ( ) ( ) sin ( ) 0, (12)2 2

is obtained, whereD* is the Grad–Shafranov operator given by
Equation (5). In the latter, a prime indicates derivative with
respect to the argument. In this way, for given functions β(α)
and c a( ), the GS equation may be solved for the unknown α.
This can be done self-consistently with the Poisson equation
(relating the gravitational potential and the density profile) and
the Euler equation, provided an equation of state. Imposing
appropriate boundary conditions at the surface, this procedure
gives α, which determines the magnetic field inside the star.
This approach has been successfully used to get (numerical)
barotropic equilibria (Lander & Jones 2009; Fujisawa
et al. 2012), but in what follows we will briefly discuss an
additional, useful approximation which allowed us to obtain
suitable equilibria with less calculations.

It is clear that the magnetic field can deform the star, so that
ρ is in principle affected by α. Nevertheless, the fact that the
magnetic energy stored in the stars considered is much smaller
than their gravitational energy (Reisenegger 2009) suggests
that this deformation is correspondingly small, so the density
profile appearing in Equation (12) can be taken to an excellent
approximation to be as in the non-magnetic case. This
approximation has been already considered (Ciolfi
et al. 2009; Gourgouliatos et al. 2013). One advantage of this
approach is that the results can be scaled to any (small) field
strength, which is not true for the “self-consistent” one. Thus,
in this work we looked for barotropic equilibria by solving the
GS equation for a given density profile r r= r( )0 , having been
particularly interested in comparing these two approaches.

2.3. Variational Principle

Alternatively, the GS equation can also be obtained by
extremizing the functional òa = I dV[ ] with respect to the
scalar function α, where the Lagrangian density is

q
a b a r qc a= é

ëê - - ù
ûú

πr
r

1

8 sin
( ) 2 sin ( ) , (13)

2 2
2 2 2 2

subject to the condition that da must vanish at the stellar
surface, i.e., homogeneous Dirichlet boundary conditions. This
expression generalizes that given by Monaghan (1976).

2.4. Boundary Conditions

Maxwell’s equation  =B· 0 imposes that the radial
component of the magnetic field be continuous across the
surface. Also, the θ and ϕ components of the magnetic field
must be continuous in order to avoid surface currents. In terms
of α, the continuity of Br demands that a q¶ ¶ be continuous,
which in turn implies that α itself must be continuous,

åa q a q q q= =
=

¥

R R
b

R
P( , ) ( , ) sin (cos ), (14)

ℓ

ℓ

ℓ ℓin out
1

1

where we have introduced the expansion for α outside, while
a qr( , )in is a solution of the GS equation inside the star. Using
the completeness of the set P x{ ( )}ℓ

m , one can extract the
coefficients bℓ appearing in Equation (14) in terms of the value
of α at the surface, leading to

=
+
+

b R
ℓ

ℓ ℓ
I

2 1

2 ( 1)
, (15)ℓ

ℓ
ℓ

where Iℓ stands for the integral

ò q a q qºI P R d(cos ) ( , ) . (16)ℓ

π

ℓ
0

1

This choice of the coefficients bℓ ensures that Br i: continuous.
Continuity of qB implies that

å
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q q

q q

¶
¶

=
¶
¶

= -

=-
+
+

= = =

¥

=

¥

r r R

ℓb

R
P

R

ℓ

ℓ
P I

1
sin (cos )

1 2 1

2 2
sin (cos ) , (17)
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ℓ
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in out

1

1

1

1

where in the last equality we have replaced the expression for
bℓ found in Equation (15). Finally, in order to have fB be
continuous, we demanded that β = 0 at the surface, as
explained in more detail in the next subsection.

2.5. Particular Choices for the Magnetic Functions

As mentioned, β(α) is an arbitrary function of α only.
However, its shape is physically constrained as follows. Since
β = 0 outside and β is constant along poloidal field lines, it has
to be zero along poloidal field lines closing outside the star.
That is, the toroidal field may lie only in regions where the
poloidal field lines close inside the star. A particularly simple
choice to achieve this is to set

b a a a a a
a a

=
ì
í
ïï

îïï

-
<

l ⩾s
( )

( ) if

0 if ,
(18)surf surf

surf

where s and λ are free parameters, while a aº R π( , 2)surf is
the value of α(r, θ) at the surface of the star on the equator,

3

The Astrophysical Journal, 802:121 (12pp), 2015 April 1 Armaza, Reisenegger, & Valdivia



which is also the value of α along the longest poloidal field line
closing inside the star. This choice has already been used by
previous authors (Ciolfi et al. 2009; Lander & Jones 2009;
Fujisawa et al. 2012; Lander & Jones 2012; Akgün et al. 2013;
Gourgouliatos et al. 2013). It is fundamental to notice that
geometrically one does not know a priori where to locate the
boundary between the volume with and without toroidal field.
Also, αsurf is not a given parameter, but it has to be determined
while solving the GS equation. We set l = 1.1 in order to
compare with previous works. It is expected that higher values
of λ result in smaller contributions of the ββ′ term in the GS
equation, leading to a smaller toroidal field strength, although it
turns out that there are no significant differences in the
configurations when using larger λ. The parameter s, instead,
plays a significant role in the configurations obtained, so a
separate subsection will be devoted to this dependence.
Throughout this work, we also chose

c a¢ = k( ) (constant ). (19)

3. NUMERICAL TESTS AND RESULTS

We developed a finite-difference code to solve the GS
equation for arbitrary choices of the functions b a( ), c a¢( ), and
r r( )0 . Our code solves for α on a polar grid of Nr points in the
r-direction and Nθ points in the θ-direction, corresponding to
the inside of the star, and it matches the solution smoothly to
the multipolar expansion of Equation (9). Since the infinite
sum defining the multipolar expansion outside cannot be
performed numerically, we truncate it to a maximum multipole
ℓmax, defined at the beginning of the method. The details of our
code are summarized in the Appendix.

We solved the GS equation for different density profiles,
considering the particular function β(α) given in Equation (18)
and normalized our results so that c a¢ = =k( ) 1. We also
normalized distances to stellar radius and density profiles to
r =(0) 1. The results can be easily scaled to other
normalizations.

3.1. Tests Performed to our Code

After obtaining numerical solutions, we tested whether they
are actually solutions by finding that, for resolutions Nr= 200
and =qN 300, the inequality

a b b rc q e aD + ¢ + ¢∣ ∣ ⩽r* sin (20)2 2
max

held for e = -∣ ∣ 10 8 on each point on the grid. Here amax is the
maximum value of α reached by the corresponding equilibrium
over the space. This inequality held for all equilibria obtained
with this resolution, while better accuracy was obtained for
higher resolutions, as expected. Regarding boundary condi-
tions, we confirmed that the coefficients that define α outside
the star were consistently calculated by getting that the
inequality

a a e+⩽ 1 (21)in out

held on each point on the surface, with e = -∣ ∣ 10 6 for
Nr = 200, =qN 300. We also tested that the radial derivative

of α remained continuous by obtaining that the inequality

a a
e a
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ççç
¶
¶
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ø
÷÷÷ -
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è
ççç
¶
¶

ö
ø
÷÷÷

= =
⩽

r r
(22)

r r

in

1

out

1
max

held for e = -∣ ∣ 10 8 on each point on the surface, again, for
Nr= 200 and =qN 300. For the two latter tests, better
resolutions improved the accuracy, but large (>60) values of
s in the prescription of β(α) yielded values of e -∣ ∣ ⩾ 10 3, in
both cases.
Regarding the number of multipoles outside the star, one

could think that, since the multipolar expansions extend to
= ¥ℓ , the larger ℓmax, the more accuracy one gets. However,

for a fixed resolution, we found that the accuracy when
calculating the multipolar coefficients drops off after passing a
certain critical value of ℓmax. Since we expect that the equilibria
we are looking for have higher multipoles, we are interested in
finding an optimal ℓmax. After repeating the previous tests for
different resolutions, we found that ~ qℓ N0.1max gives the best
results, so we fixed this parameter to that value.
We tested our code against known analytical solutions of the

GS equation, corresponding to purely poloidal fields (for which
β = 0 identically). Here we present a test using the purely
poloidal field with (Gourgouliatos et al. 2013)

a q
q

q
=

ì

í

ïïïïïï

î

ïïïïïï

é

ë
ê
ê - +

ù

û
ú
ú <

>

r

B R

x x x
x

x
x

( , )

35

16

21

8

15

16
sin , 1

sin

2
, 1,

(23)
p

2

2 4 6
2

2

where ºx r R and Bp is the magnetic field at the pole. This

configuration is obtained by choosing r r= -r r R( ) (1 )c0
2 2 ,

where rc is the central density. For this case, we found that

a a e a- ⩽ (24)num anal max

with e = ´ -∣ ∣ 2 10 5 on each point on the grid, for Nr = 200
and =qN 300. This excellent agreement increased the
confidence in our numerical scheme.
We compared some of our equilibria with those obtained by

Gourgouliatos et al. (2013) in the context of Hall equilibria in
neutron star crusts. In terms of physics, the derivation and the
physical interpretation of some quantities involved are quite
different, but the mathematical form of the equation is exactly
the same. Gourgouliatos’ code is based on a Gauss–Seidel
method on a cylindrical grid extending outside the star as well,
and assuming as exterior boundary condition a dipolar field at
the boundary of the grid. Table 1 summarizes this comparison,
in which we display the toroidal-to-poloidal energy ratio for
different values of s. As seen, both codes agree for all equilibria
tested.

Table 1
Fraction of Energy (in %) Stored in the Toroidal Component of the Magnetic

Equilibria Obtained by the Code of K. N. Gourgouliatos (Gourgouliatos
et al. 2013) vs. Those Obtained in this Work, Using the Twisted-torus

Configuration Given by Equation (18), and Assuming r r= -r r R( ) (1 )c0
2 2

and k = 1, for Nr = 200 and =qN 300 in Our Code

s = 5 10 15 20 25 30

Gourgouliatos 0.15 0.60 1.4 2.3 3.2 3.9
This Work 0.14 0.57 1.3 2.2 3.1 3.7

4
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3.2. Magnetic Polytropes

Keeping the same form of β(α) given in Equation (18), we
also found configurations using density profiles derived from
non-magnetic equilibria with a polytropic relation between
pressure and density,

r r= é
ë

ù
û
+( )P r K r( ) ( ) , (25)

n
0 0 0

1 1

where K is a constant depending on physical parameters of the
star, and n is the polytropic index. As known, polytropes of
index ⩾n 5.0 are not of physical interest as the star extends to
infinity. Moreover, non-magnetic polytropes with >n 3.0 are
known to be unstable against radial perturbations (see for
example Shapiro & Teukolsky 1983). Thus we restricted
ourselves to obtain configurations up to n = 3.0, although, as
said before, the code accepts any density profile.

As illustrated in Figure 1 for the particular case of n = 2
polytropes, for small and moderate values of s, we found that
the strength of the poloidal component is almost one order of
magnitude higher than the toroidal one, while the poloidal field
itself is around 10 times stronger near the center of the star
compared to the field at the surface. For the latter range of s, the
configurations are mostly dipolar, with almost negligible
relative amplitude of higher multipoles. A higher value of s
produces a configuration with a more substantial contribution
of higher multipoles, although the dipole still dominates. As
expected, increasing s also increases the relative strength of the
toroidal field with respect to the poloidal one, so, eventually,
the amplitude of the toroidal field becomes comparable to the
poloidal one. However, as Figure 2 illustrates, the volume
where the toroidal component is present shrinks in all cases,
forming a thin ring of nearly circular cross section tangent to

the surface of the star, a result already reported in the literature
(Lander & Jones 2009; Fujisawa et al. 2012; Gourgouliatos
et al. 2013; Pili et al. 2014). Mathematically, this shrinkage can
be understood as follows: in the GS equation, the term

qrc¢r sin2 2 is an explicit function of the position but not of α
when c¢ = constant. In that case, and considering that bb¢
increases when choosing a larger s, the term aD* must become
more negative because qrc¢r sin2 2 remains the same regard-

less of s. In turn, the term aD* is similar to the Laplacian of α
(recall Equation (5)), that is, it depends on the curvature of α,

so the larger aD∣ ∣* is, the more compact the poloidal lines are
and the steeper α the maximum in α will be. The circular shape
of the cross section occurs because, in the limit of

cross section area radius of the ring, the toroidal current
flowing along the ring is locally a straight line around which,
since there is no matter to deform them, poloidal lines must
form circular rings. This result is in agreement with the
numerical results of Lander & Jones (2009), Fujisawa et al.
(2012), Gourgouliatos et al. (2013), Pili et al. (2014), and
Bucciantini et al. (2015), although Ciolfi et al. (2009) find a
different behavior.

3.3. Fraction of the Energy in the Toroidal Component

Table 2 shows the fraction of toroidal energy for the
magnetic polytropes described before. In all cases, this fraction
is only a few percent of the total energy. Moreover, Figure 3
suggests that E Etor mag is bounded by a maximum value when
plotted as a function of the parameter s, regardless of the
density profile (see also Ciolfi et al. 2009; Lander & Jones
2009; Fujisawa et al. 2012; Gourgouliatos et al. 2013, and Pili
et al. 2014). Table 3 shows the values of smax at which the
maxima occur.
The existence of a maximum value for E Etor pol can be

understood in terms of two competing effects: for low values of
s, the poloidal field is hardly affected by the weak toroidal field.
Thus, the volume containing the latter does not change much
with s, »E constantpol , and bµ µE stor

2 2, so

=
+

» µ
E

E

E

E E

E

E
s , (26)tor

mag

tor

pol tor

tor

pol

2

i.e., the toroidal ratio increases quadratically as a function of s.
As s increases more, so does the toroidal field, and the
dependence with s becomes less trivial. Since the region where
this component lies shrinks, the volume integral defining Etor
will stop increasing at some smax and the toroidal fraction will
start to decrease. In other words, the interplay between
increasing ∣ ∣Btor

2 while shrinking the volume where it is
present produces an upper bound for E Etor mag. These results
are qualitatively still true for other equations of state (Fujisawa
et al. 2012) and when relativistic effects are included (Ciolfi
et al. 2009; Pili et al. 2014).

3.4. On the Validity of “Weak” Magnetic Field

All our calculations are based on the assumption of a weak
magnetic field, in the sense that the magnetic forces do not
exert a significant effect on the stellar structure, i.e., to first
order, those forces do not deform the primarily spherical shape
of the star. Making use of this assumption, we took the simpler
approach of obtaining magnetic equilibria by solving the GS
equation only, assuming a fixed spherical density profile

Figure 1. Magnetic field along the axis and the equator for n=2 polytropes,
assuming c a¢ =( ) 1 and b a( ) given in Equation (18). Top: s = 10. Bottom:
s = 60. For these cases, we took Nr = 400 and =qN 500.
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Figure 2. Magnetic field of barotropic stars with polytropic equations of state, for c a¢ =( ) 1 and β(α) given in Equation (18). The dashed line is the surface, while
solid lines are poloidal field lines corresponding to a0.2 surf , a0.4 surf , a0.6 surf , a0.8 surf , asurf , and a1.1 surf , where a a= R π( , 2)surf . The color map represents for
b q q q= fr r B r( , ) sin ( , ). The axes are measured in units of the stellar radius. For these cases, we took Nr = 400 and =qN 500.

6

The Astrophysical Journal, 802:121 (12pp), 2015 April 1 Armaza, Reisenegger, & Valdivia



coming from a non-magnetic background star, instead of
solving self-consistently the whole system of equations (Euler
equation + Poisson equation + Maxwell equations) provided an
equation of state r=P P ( ), i.e., obtaining not only a qr( , ) but
also the fluid quantities, as functions of position. It is natural to
wonder about the accuracy of the simpler approach used
throughout this work compared to the self-consistent scheme.
The latter method was already used by Lander & Jones
(2009, 2012, hereafter L&J) in the same astrophysical context.
Table 4 exhibits a comparison of the fraction of toroidal energy
for equilibria obtained by L&J versus our work, for two
different polytropic indices. With these values, we can estimate
the expected discrepancy in neglecting the effect of the
magnetic field on the fluid as ~ -E E 10mag grav

3, which is in
acceptable agreement with the relative error shown in Table 4.
Since the magnetic field strength needed to generate a
minimum distortion on the fluid is at least one order of
magnitude above the fields for the objects considered here, then
the approximation discussed should hold for the whole relevant
range of magnetic fields. This has the implication of
enormously simplifying the process of finding barotropic
equilibria.

4. ASYMPTOTIC, ANALYTIC SOLUTIONS

Numerical instabilities arise when increasing s beyond a
value ∼65 (for fixed c¢ = 1) and our code has convergence
problems. This occurs because more points on the grid are
needed to resolve the toroidal volume, which becomes smaller.
In this section we overcome this difficulty by introducing an
asymptotic model for large s, which allows us to study the
global properties of the equilibria in the limit ¥⟶s .

In order to motivate the model, we note that the term
qrc¢r sin2 2 in the GS equation approaches zero as one

approaches the stellar surface, because it is proportional to ρ,
which is expected to decrease monotonically until it vanishes at
the surface. Thus, it is also expected that, as the volume
occupied by the toroidal field shrinks and gets close to the
surface, this term becomes significantly smaller in magnitude

than the other two inside the volume, so that aD* and bb¢
roughly cancel each other. In fact, from our simulations we
confirmed that

qr

a

qr
bbD

~
¢

-

∣ ∣
r rsin

*

sin
10 (27)

2 2 2 2
3

for s 60 (again, we normalize c¢ = 1). In this way, one can

expect that the relation

a bbD + ¢ »* 0 (28)

will become more and more accurate inside the toroidal volume
when increasing s. This is the central idea of the field model we
are introducing: for large s, we assume that Equation (28) is
valid, and solve for α under that approximation. Of course,
when α is determined, the problem is solved and then one can
obtain expressions for the toroidal flux, energy, and so on. The
problem is even simpler if we recall that the volume where the
toroidal field lies not only shrinks but also becomes a toroid
regardless of the density profile. Because of this, we introduce a
new coordinate system g( , ) on the meridional half plane of
the star, see Figure 4. From our simulations, it turns out that the
smaller the volume, the more independent α is with respect to
the angle γ, so that for a sufficiently large s, we can assume that

Table 2
Fraction of Energy (in %) Stored in the Toroidal Component of Magnetic

Equilibria with Polytropic Equation of State Studied in this Work

s = 10 20 30 40 50 60

n = 1.0 0.657 2.24 3.29 3.60 3.63 3.61
n = 1.5 1.47 3.70 4.20 4.06 3.83 3.63
n = 2.0 2.43 4.69 4.52 4.05 3.65 3.35
n = 2.5 3.27 5.19 4.43 3.71 3.21 2.87
n = 3.0 3.78 5.34 4.02 3.12 2.59 2.25

Note. For these cases, we took Nr = 400 and =qN 500.

Figure 3. Fraction of energy stored in the toroidal component of the magnetic
field as function of the parameter s, for different polytropic equilibria explored
in this work. For these cases, we took Nr = 400 and Nθ = 500. Inset: blow-up
of the region around the maximum for n = 1.

Table 3
Maximum Fraction (in %) of Magnetic Energy Stored in the Toroidal

Component for Different Polytropes, as Functions of s. smax is the Value of s at
Which These Maxima Occur

n = 1.0 1.5 2.0 2.5 3.0

E E( )tor mag max 3.64 4.20 4.76 5.21 5.52

smax 47.5 29.9 22.7 19.0 17.0

Note. For these cases, we took Nr = 400 and Nθ = 500.

Table 4
Fraction of Toroidal Energy E Etor mag (in %) Obtained in This Work vs. Those

Obtained by Lander & Jones (2009, 2012)

1.1 s k L&J this work

n = 1 10 1.574 0.586 0.596
20 1.39 2.07 2.05
30 1.254 3.18 3.16
40 1.189 3.56 3.57
50 1.157 3.55 3.64

n = 3 10 3.24 3.87 3.89
20 2.55 5.30 5.32
25 2.46 4.62 4.69

Note. The models calculated by L&J assume a mass = M M1.4 and radius

R = 10 km, with a resulting average magnetic field ´4.5 1016 G for n = 1 and

´1.0 1016 G for n = 3. In our simulations, we took Nr = 400 and =qN 500.
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α does not depend on γ, but only on ϵ, therefore the GS
operator reads (recall Equation (5))

a a
aD » =

æ
è
ççç

ö
ø
÷÷÷ 




d

d

d

d
* 1

, (29)2

where we have used that q » »r rsin constant ( )max . Using
the function b a( ) of Equation (18), Equation (28) inside the
toroidal volume can be written as

h
h

æ
è
ççç

ö
ø
÷÷÷ = - l-

u

d

du
u

d

du

1
, (30)2 1

where we have defined the dimensionless function η so that
a a a a h- = -( )surf max surf , with amax being the maximum
value of α (reached at q= =r r π, 2max , or = 0), and the
dimensionless radius

l a aº - l- u s( ) . (31)1 2
max surf

1

Equation (30) is a second-order ordinary differential equation
for h h= u( ), hence two boundary conditions are needed to
solve it. First, and by definition, it is clear that h =(0) 1. Also,
h¢ =(0) 0, where the prime stands for the derivative with
respect to the argument. This is because α (and thus η) has a
smooth maximum at = 0. Equation (30) must be integrated
until the boundary of the toroidal volume, corresponding to
a a= surf , or h =u( ) 0surf , where usurf is the first root of h u( ), a
number to be determined. For >u usurf there is no toroidal
field, so this equation (and its solution) is valid for ⩽u usurf
only. Equation (30) accepts analytical solutions for a few
exponents λ. For l = 1 2, the unique solution satisfying the
boundary conditions is h = -u u( ) 1 42 , with =u 2surf . For
l = 1. the equation becomes a Bessel equation of order zero,
with unique solution h =u J u( ) ( )0 , »u 2.4048surf being the
first root. For all other values of λ, the equation is nonlinear,
with no obvious analytical solution, so we wrote a fourth-order
Runge–Kutta code to solve it numerically. Of course, usurf is a
pure number, depending on the value of λ and on nothing else.

4.1. Toroidal Quantities

Under the above assumptions, formulae for the toroidal flux
and energy are readily obtained. By definition, the toroidal flux
through a meridional plane is

ò
b

l
a a

F »

= -l l-


 



r
π d

π q

r s

( )
2

2
( ) , (32)

tor
0 max

max
max surf

2

surf

where we defined

ò hºn
nq u du, (33)

u

0

surf

a pure number. The toroidal energy can be computed as

ò
b

l
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»

= -l
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π r d

π q

r

( )

8
4

2
( ) . (34)

tor
0

2
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2

2
max

2

max
max surf

2

surf

In principle, we are interested in obtaining analytical
expressions as functions of the parameter s. In Equations (32)
and (34), amax, asurf , and rmax (which to first approximation
equals the radius R) depend implicitly on s, so it is desirable to
obtain these dependences. This can be done as follows. First,
let us consider the hypothetical case in which the toroidal field
is effectively concentrated in an infinitesimally thin loop at
the surface along the equator of the star. This would be the
“ ¥⟶s ” case. This limit of an infinitesimally thin loop is
analogous to the problem of a thin, circular current loop.
Outside this loop, α is given by the solution of the GS equation
for a purely poloidal field, namely,

å

å
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d q q

q q
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R
f r P r R
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R

r
P r R

( ) sin (cos )

sin (cos ) ,

(35)ℓ
ℓ

ℓ

ℓ ℓ

ℓ
ℓ

ℓ

ℓ

1

1

1
1

1

1

where dℓm is the Kronecker delta and

ò xr x x x= -( )f r
k

r
r d( )

3
( ) , (36)

r

0

3 3

where c¢ = k (a constant) regulates the amplitude of the
magnetic field (Gourgouliatos et al. 2013). The coefficients aℓ
and bℓ must be fixed using boundary conditions. Continuity of
α at r = R implies

d- =a f R b( ) . (37)ℓ ℓ ℓ1

This also ensures continuity of the radial component of the
magnetic field. This time, however, the tangential component
of the magnetic field is not continuous at the boundary r= R,
but it has a discontinuity due to the presence of a thin loop
carrying a current I, with current density

d q d= - fJ e
I

R
r R(cos ) ( ) . (38)

Here d x( ) is the Dirac delta function. This current comes from a
singular toroidal field, which produces an azimuthal current

Figure 4. New coordinate system introduced to describe the volume where the
toroidal field lies when increasing s beyond smax (the cross section of the toroid
is exaggerated for visualization).
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density

a
q

bb
q

= ´ = -
D

=
¢

f fB
π

c
J

r r

4
( )

*

sin sin
, (39)

where in the last equality we have used Equation (28). The
second boundary condition to impose is

a a
q d q

¶
¶

-
¶
¶

= -
+ -r r

πI

c

4
sin (cos ). (40)

R R

By direct replacement of the respective expressions for a¶ ¶r
for <r R and for >r R, one can extract the coefficients by
standard mathematical tools in order to finally get

d=
+ ¢

+
+

a
f R Rf R πIR

c

P

ℓ ℓ

( ) ( )

3

2 (0)

( 1)
, (41)ℓ ℓ

ℓ
1

1

from which bℓ can be obtained from Equation (37). Thus, if I is
known, the problem in this case is completely determined.

The motivation behind pointing out this hypothetical case is
what follows. The general solution in Equation (35) is of
course also valid outside the toroidal region when the latter is a
thin (but not infinitesimally thin) loop. In that case, however,
the coefficients are not readily obtained as we would have to
impose boundary conditions in a cumbersome geometry,
assuming that the solution to the GS equation inside the
toroidal volume is precisely that satisfying Equation (30).
Nevertheless, as the parameter s increases, the coefficients
should eventually converge to those in Equation (41). There-
fore, in the limit of a thin toroidal volume with finite cross
section, it is expected that the solution to the GS equation will
be that in Equation (35) with coefficients aℓ and bℓ given
approximately by those in (41), where I is the current along the
thin toroidal region. If this is the case, the current I flowing can
be easily obtained using the asymptotic model developed in
this section. By definition, and recalling Equation (39), we get
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2 1
max surf

surf

where we have replaced »r Rmax . Equation (42) implies that in
this approximation, I, and hence the coefficients, are implicit
functions of s. The asymptotic solution of the GS equation for
large s, outside the toroidal volume, is that given in
Equation (35), where the coefficients are approximately

d
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1

So, with this procedure, we can write an approximate solution
α for the GS equation in terms of its maximum value amax and
its value asurf at the surface between the region with and

without toroidal field. In addition, α and its derivatives must be
continuous across the latter surface, i.e.,

a a= - ( )R π, 2 (45)surf surf

and

a a a-
=

¶
¶

-l-
( )q

r
R π, 2 , (46)max surf

surf
2 1 surf

respectively. Introducing the explicit form of the coefficients aℓ
in the expansion for α (Equation (35)), Equations (45) and
(46) read
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respectively, where we have redefined rºf r k R f r R( ) ˜ ( )c
4

and then dropped the tilde. Also, we have introduced the
parameter = x Rsurf and the function
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Here F a b c z( , , , )2 1 is the Gauss hypergeometric function, so
that F(z) converges for <∣ ∣z 1, while ¢ -F x(1 ) means
derivative ¢F z( ) evaluated at = -z x1 . The interesting point
with the previous formulæ is that Equations (47) and (48)
allow to write both amax and asurf in terms of the parameter
= x Rsurf , which is an implicit function of s. Once one solves

for a x( )max and a x( )surf , along with Equation (31) evaluated at
surf ,

l a a= - l- u s( ) , (50)surf
1 2

max surf
1

surf

where usurf is a pure number, one gets the equations needed to
write Ftor and Etor as a function of s. Since by construction the
poloidal flux equals aπ2 , we can define the quantity

aF = π2pol max, which is the maximum poloidal flux reached
by the configuration, and take the ratio F Ftor pol. Using (32),
we get

l
a a

a
F
F

=
-

-lq

u

x

x

x x

x1

( ) ( )

( )
, (51)tor

pol
1 2

surf

max surf

max

which turns out to be an explicit function of = x Rsurf . This
equation can be combined with

l a a
=

- l-( )
s

u

R x x x( ) ( )
, (52)surf

1 2
max surf

1

(see Equation (50)) which is also an explicit function of x, to
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obtain a parametric relation between s and F Ftor pol.
Equation (51) allows to compare this model with the
simulations.

4.2. The Model Versus the Simulations

As discussed, the limit of having an infinitesimally thin
toroidal volume is reached when ⟶x 0, or ¥⟶s . Figure 5
displays F Ftor pol versus s obtained from Equations (51) and
(52), as well as from the numerical simulations. In all cases, as
s increases, the asymptotic model approaches the numerically
obtained curve, in good agreement with the approximations
assumed within the model. Having tested the model with the
simulations, the question whether E Etor mag is bounded over
the full range of s can be answered. In this case, there is no
trivial expression for Epol as one should in principle integrate
the asymptotic solution over all space outside the thin toroidal
volume, and add the contribution inside the torus. This would
demand non-trivial integration limits for the former integral,
although the latter can be easily computed with the model
of this section. In order to estimate the poloidal energy, we
can use the known result for a circular loop of radius rmax

having a circular cross section of radius surf , with  rsurf max

(e.g., Jackson 1975)

= »
é
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2
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4
ln

8 7

4
, (53)pol

2
2

surf

which diverges in the limit ⟶ R 0surf . The toroidal energy,
on the other hand, goes to zero as ⟶x 0, so the fraction
E Etor pol also vanishes in that limit. The conclusion is that
E Etor pol, as a function of s, does possess a maximum value,
and then decreases monotonically to zero. This would mean
that all the configurations with b a( ) as given in Equation (18)
and c a¢ =( ) constant are restricted to have a small (10%)
fraction of the magnetic energy stored in the toroidal
component. This choice has been the most used in the
literature, so if one were interested in obtaining higher
fractions, one should explore other prescriptions for c a¢( )
(and perhaps for b a( ) as well).

5. SUMMARY AND CONCLUSIONS

We have developed a numerical code to model axially
symmetric magnetic stars in ideal MHD equilibrium, allowing
for both poloidal and toroidal component of the magnetic field,
in a barotropic fluid. We presented several tests to check its
accuracy, including comparisons with previous works in this
area, finding a good agreement with them. From these
comparisons, we showed that, for magnetic field strengths up to
~1016 G, and assuming polytropic equations of state, the simpler
approach of solving the resulting GS equation describing the
equilibrium, and imposing a density profile derived from a non-
magnetic equilibrium, gives essentially the same results as when
obtaining equilibria with the self-consistent scheme of solving
not only for the magnetic field, but also for the fluid quantities
provided an equation of state describing the fluid.
Using our code, we found a relatively wide range of

barotropic equilibria whose magnetic fields combine an internal
toroidal field and a poloidal field extending to the exterior of
the star as well. Fixing c a¢ =( ) constant, numerical equilibria
described by the piecewise function b a( ) in Equation (18) are
poloidal-dominated, in the sense that the fraction of magnetic
energy stored in the toroidal component of the magnetic field is
10%, even for configurations with comparable poloidal and
toroidal magnetic field strength. Our numerical simulations also
confirm previous results showing a maximum value of this
fraction as a function of the parameter s appearing in b a( ).
These properties do not depend significantly on the density
profile assumed, which in this work varied between several
very different polytropes.
Numerical simulations break down for large values of s

(65). In order to obtain results beyond this limitation, we
developed an analytical model which reproduces the behavior
of the numerical solutions for large toroidal field. This model
was able to mimic the main global properties in this regime,
finding that both the fractions of magnetic fluxes and energies
do have a maximum when plotted against s, and decay to zero
when s goes to infinity.
It is likely that functions providing a larger region of poloidal

field lines closing inside the star give larger toroidal energy, as
proposed by Ciolfi & Rezzolla (2013). This is something we
can readily explore as our code accepts arbitrary functions
b a( ) and c a¢( ). Also, having obtained barotropic equilibria

Figure 5. Ratio of magnetic fluxes of the two components of the magnetic
field, as a function of the parameter s, for different polytropic equations of state.
The solid line are numerical simulations, while the dashed line is the evaluation
of Equations (51) and (52) corresponding to the analytic model.
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allows to study their stability. This can be done either through
time-dependent MHD simulations using the configurations we
have obtained as initial condition, or by means of analyzing the
change of the energy in the system when slightly perturbing the
fluid inside the star, in an analogous treatment to that for non-
barotropic, stably stratified stars followed by Akgün
et al. (2013).
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APPENDIX
DETAILS ON OUR NUMERICAL CODE

We are interested in obtaining the function a qr( , ) that
solves the generalized GS equation,

a q a q q a q b a b a

qr c a

D =- º ¢

+ ¢

F r r F r r

r r

* ( , , ( , )), ( , , ( , )) ( ) ( )

sin ( ) ( ). (A.1)2 2
0

We do this by writing a discrete (finite-difference) version of
this equation and solving the resulting system of algebraic
equations. We discretize the space inside the star into a polar
grid of Nr regular intervals in the radial direction and qN in the
angular direction, of length Dr and qD each, respectively. On
this grid, each point is labeled by a pair (i, j), with coordinates
= Dr i ri and q q= Djj . Points along the axis are those with

j= 0 (northern hemisphere) and = qj N (southern hemisphere)
and points on the surface of the star correspond to =i Nr. Any
quantity qq r( , ) evaluated on a point (i, j) is labeled as

qºq q r( , )i j i j, . The discretized GS equation reads

a a a a a a
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,

where we use central difference for the derivatives. This
algebraic equation is valid for = ¼ -i N1, , ( 1)r ,
= ¼ -qj N1, , ( 1). The value of α at points lying on the axis

(ai,0, a qi N, and a j0, ) must remain fixed equal to zero, providing
a boundary condition. Thus Equation (A.2) actually gives

- -qN N( 1)( 1)r algebraic equations for the -qN N( 1)r
unknown variables ai j, , = ¼i N1, , r , = ¼ -qj N1, , ( 1), so
( -qN 1) additional equations are required in order to close the
system, which are obtained from the boundary conditions at the
stellar surface. Demanding continuity of the radial derivative of
α gives the required number of equations,
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(see Equation (17)). Variables a +N j1,r , standing for the value of
α at points just outside the star, can be calculated by assuming

that α outside the star is written by the multipolar expansion in
Equation (9) (with aℓ= 0),

a a q= + D+ ( )R r, , (A.4)N j j1, outr

again, for = ¼ -qj N1, , ( 1), where we have introduced the
parameter ℓmax because we cannot perform the sum to infinity.
The integral Iℓ defined in Equation (16), and involved in
expansions gj and aout, can be calculated through Simpson’s
rule and using the points at the surface, aN j,r . This gives
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r

so qN must be chosen as an even natural number. Of course,
using this form of the expansions, we are explicitly assuming
continuity of α and its derivative with respect to θ.
When introducing the explicit form of Iℓ in terms of the

a ¢sN j,r , Equation (A.3) gives -qN( 1) new independent
equations relating part of the -qN N( 1)r unknowns on the
grid, so a consistent solution of the algebraic equations may be
carried out. The final system of equations to solve is

a a a a a a
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for = ¼ -i N1, ( 1)r , = ¼ -qj N1, , ( 1), and
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for = ¼ -qj N1, , ( 1), where
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It is important to notice that, despite the number of equations
and unknowns are equal, the system is still nonlinear as

q aF r( , , ) is in general nonlinear in α. We developed a code in
Mathematica 9.0 to solve the nonlinear, algebraic system of
Equations in (A.6) and (A.7). Our code is based on a
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generalized Newton’s method of the form

a a a- + =+( )( )J G 0, (A.11)G i j
n

i j
n

i j
n

i j
n

,
( )

,
( 1)

,
( )

,
( )

where =G 0i j, , = ¼i N1, , r , = ¼ -qj N1, , ( 1), is the
system of (nonlinear) equations to be solved, aJ ( )G i j, is the
Jacobian of the system G, and n is an index denoting the -n th
iteration. The aim is to solve for the +n( 1)th step given the
nth one, starting from an initial seed ai j,

(0) until certain
convergence criterion is achieved, namely,

a a a-+ ⩽  , (A.12)i j
n

i j
n

i j
n

,
( 1)

,
( )

,
( )

for all i and j, where ϵ is an arbitrary small number. Notice that,
in doing so, Equation (A.11) is a linear system of equations,
easily solved by standard methods of linear algebra when the
Jacobian is non-singular. Once the system G is solved, we can
compute back the coefficients bℓ that determine α outside the
star, in this way obtaining α everywhere.
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