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On the treatment of non-solvable implicit constitutive relations in solid mechanics
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Abstract. We report results concerning the treatment of elastic bodies described by implicit constitutive relations which
are not solvable, in the sense of expressing the stresses as functions of the strains or vice versa. Motivated by the theory
of generalized hyperelastic materials, which applies also to polyatomic crystals, the field equations to be solved for a body
described by a non-solvable implicit constitutive relation in the above sense are lied down. In addition to the momentum
equation, auxiliary variables come into play. These variables are accompanied by an equation governing them. We specialize
to the case of an isotropic constitutive relation and give some conditions in order for a broad subclass of an isotropic body
to be a generalized material. Then, we lay down the field equations for such a body.
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1. Introduction

In the recent years, Rajagopal et al. [10,14–18] proposed constitutive relations for elastic bodies, which
cannot be classified as either Cauchy or Green elastic bodies [21]. If S is the second Piola–Kirchhoff stress
tensor and C is the right Cauchy–Green deformation tensor, one of such new relations correspond to:

G(S,C) = 0. (1.1)

One application of such general theories is in the study of some subclasses of constitutive relations, where
the strains are small, stresses are arbitrarily large, and the relation between these two variables is in
general nonlinear (see, for example, [7,8,19]). Other applications can be found in biomechanics, see, for
example, [22].

Conditions for the solvability of an implicit constitutive relation in the sense of expressing stresses
as functions of strains or vice versa are reported on [20]. In a recent work, [6] attention is focused on
the field equations written in terms of the stresses solely. The present contribution is connected with the
latter work in the sense that we lay down the field equations for a body described by a non-solvable
implicit constitutive relation. The motivation stems from the work of Pitteri and Zanzotto [3, p. 339].
These authors state that when an implicit constitutive relation is not solvable, in the sense of expressing
the stresses as functions of the strains or vice versa, auxiliary variables naturally come into play. This
observation comes from earlier works of Cardin and Cardin–Spera [1,2], where the idea of generalized
hyperelastic materials is introduced. Even though the latter framework is introduced for the geometrical
desingularization in ideal holonomic constraints, it can also be applied to bodies described by an implicit
constitutive relation. Interestingly, to the class of generalized bodies belong materials described by an
implicit constitutive relation [13–15]. It is worth stressing that another important application of such a
theory is for polyatomic crystals [4,5].

In this note, we utilize the framework of Cardin [1] for generalized hyperelastic materials for the
case of non-solvable implicit constitutive relations. By a non-solvable constitutive relation, it is meant
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that an equation, for example, of the form (1.1), which in components (in Cartesian coordinates) is
written1

GAB(S,C) = 0, A,B = 1, 2, 3, (1.2)

cannot be solved for C as a function of S or vice versa. In the theory of Cardin in addition to the mo-
mentum equation, auxiliary variables come into play, together with an equation that has the role of a
field equation, which when solved renders the required values of the auxiliary parameters.

The article is structured as follows. Section 2 presents some basic kinematic relations, while Sect. 3
gives a short summary of the main elements of the theory of Cardin [1], where the idea of a general-
ized hyperelastic material plays a vital role. In Sect. 4, we apply this approach to the case of implicit
constitutive relations. We give necessary and sufficient conditions for a body described by an implicit
constitutive relation to be seen as a generalized hyperelastic material in the sense of Cardin. Then, we
apply the Maslov–Hormander theorem according to which there exist a real function (in a local sense),
which depends not only on the deformation gradient, but also on a set of auxiliary variables as well. This
function fulfills two equations, since it is a Morse family [1]: the momentum equation and an additional
equation governing the auxiliary parameters. Section 5 treats the case of an isotropic body. Necessary
and sufficient conditions for such a body to be a generalized hyperelastic material in the sense of Cardin
[1] are given. Essentially, these are constraints on the scalar functions of the implicit constitutive relation.
For a broad class of isotropic bodies, we give some sufficient conditions for their fulfillment. In addition
to the momentum equation, there is a new equation ruling the auxiliary variables. The article ends up in
Sect. 6 with some concluding remarks.

2. Basic equations: kinematics and field equations

Let x denotes the position of a particle X of a body B in the current configuration Bt. Let X the position
of the same particle in the reference configuration Br. It is assumed that for any instant t there exist a
one to one function χ such that x = χ(X, t). The deformation gradient F and the right Cauchy–Green
deformation tensors are defined as:

F =
∂χ

∂X
, C = FTF, (2.1)

where we assume that J = detF > 0.
If σ denotes the Cauchy stress tensor, then in the quasi-static case, this tensor has to satisfy the

equilibrium equation:
divσ + ρb = 0, (2.2)

where b is the body force, ρ the mass density, and div is the divergence operator defined in terms of x.
The first and second Piola–Kirchhoff stress tensors, denoted by T and S, respectively, are defined as:

T = JσF−T, S = F−1T. (2.3)

The equilibrium Eq. (2.2) can be expressed in an alternative form in the reference configuration as:

DivT + ρrbr = 0, (2.4)

where br is the pull-back version of the body forces b and ρr = Jρ is the mass density in the reference
configuration. The divergence operator Div is now defined in terms of X. More details about the different
definitions and equations presented here can be found, for example, in [24].

1 We use capital characters as index for the reference configuration and lower case characters for the current
configuration.
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3. Generalized hyperelastic materials

We present a short description of Cardin’s approach [1], where the idea of a generalized hyperelastic
material is introduced. Let T denote the first Piola–Kirchhoff stress tensor while F : Lin+ → R is the
deformation gradient, Lin+ = {F ∈ Lin : detF>0}. One can endow the cotangent space T ∗(Lin+) with
the normal symplectic structure induced by the 2-form dΩ, Ω being the Liouville 1-form on T ∗(Lin+)

Ω = TiLdFiL, dΩ = dTiL ∧ dFiL. (3.1)

The Lagrangian submanifolds of the manifold (T ∗(Lin+),dΩ) are those submanifolds satisfying certain
conditions. For our purposes, it suffices to say that a Lagrangian submanifold Λ for which the composed
map

Λ →J T ∗(Lin+) →πLin+
Lin+ (3.2)

is of maximum rank
rankD(πLin+ ◦ J ) = 9(= max), (3.3)

corresponds to a standard hyperelastic body; namely the following relation holds:

T =
∂W (F)

∂F
. (3.4)

We note that in Eq. (3.2) J stands for the inclusion map J : Λ → T ∗(Lin+) while πLin+ : T ∗(Lin+) →
Lin+.

When the transversality condition of Eq. (3.3) fails, we can define a generalized hyperelastic body as
a Lagrangian submanifold Λ of T ∗(Lin+). In such a case, the Maslov–Hormander’s theorem [9,12] for
the local parametrization of Lagrangian submanifolds shows that locally there exists a function W (F,p),
such that Λ is described by the pair (F,S) ∈ T ∗(Lin+) satisfying

T =
∂W (F,p)

∂F
, 0 =

∂W (F,p)
∂p

. (3.5)

The field equations are then

Div
∂W

∂F
+ ρrbr = 0,

∂W

∂p
= 0. (3.6)

Thus, in addition to the momentum Eq. (3.6)1, one more Eq. (3.6)2 is added that governs the auxiliary
parameters p. Failure of the transversality condition means

rankD(πLin+ ◦ J ) < 9(= max). (3.7)

4. Application to implicit constitutive relations

Cardin [1] highlighted the application of the above framework to bodies described by an implicit consti-
tutive relation (see also [14,15]) in Cartesian coordinates:2

GAB(S,C) = 0. (4.1)

According to Cardin, a body described by Eq. (4.1) is a Lagrangian submanifold when

{GAB , GCD} = 0, (4.2)

where

{GAB , GCD} =
∂GAB

∂SEF

∂GCD

∂CEF
− ∂GAB

∂CEF

∂GCD

∂SEF
(4.3)

2 We have modified the original equations given by Cardin, by replacing T and F by the conjugate pair S, C.
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is the Poisson bracket canonically associated to the symplectic 2-form Ω. The tranversality condition here
is

rank(D(S,C)G|G=0) = 9. (4.4)

When this condition fails, the Maslov–Hormander theorem renders the local existence of a Morse family
W (F,p) such that

S =
∂W (C,p)

∂C
, 0 =

∂W (C,p)
∂p

.

Failure of the transversality condition means that the implicit constitutive relation cannot be solved to
give stresses as functions of the strains or vice versa. The field equations derived from the above framework
are in the absence of body forces

Div
(

∂W

∂C

)
= 0,

∂W

∂p
= 0.

Remark. We note that when the equilibrium equation is written with respect to the second Piola–Kirchhoff
stress tensor, S, the divergence is taken with respect to the right Cauchy–Green deformation tensor, C.
The same equation written using the first Piola–Kirchhoff stress tensor utilizes the referential metric for
calculating the divergence [11].

5. Application to isotropic bodies

In this section, we consider an implicit constitutive relation and use the results presented in Sect. 3 for
an isotropic body, where (1.1) becomes [14,15,23,25]:

G(S,C) = α0I + α1S + α2C + α3S2 + α4C2 + α5(SC + CS)
+α6(S2C + CS2) + α7(C2S + SC2) + α8(S2C2 + C2S2). (5.1)

The functions αi, i = 0, 1, 2, . . . , 8 are scalar functions that depend on the invariants

trS, trC, tr(S2), tr(C2), tr(S3), tr(C3), tr(CS), tr(S2C),
tr(SC2), tr(S2C2). (5.2)

In order for a body described by Eq. (5.1) to be a Lagrangian submanifold in the sense of Cardin [1], the
Poisson bracket (4.3) should equal to zero.

Let us consider as an example the particular case when in Eq. (5.1) α6, α7, α8 are equal to zero; namely
when we have the simplified constitutive law of the form

G(S,C) = α0I + α1S + α2C + α3S2 + α4C2 + α5(SC + CS). (5.3)

We can see that this particular constitutive relation includes, as a special case, the definition of a Cauchy
elastic body, for which we have (if αi = 0, i = 1, 3, 5 and if αj = αj(C), j = 0, 2, 4):

S = α0I + α2C + α4C2,

while if αi = αi(S), i = 0, 1, 3 and if αj = 0, j = 2, 4, 5 we obtain the new class of elastic bodies:

C = α0I + α1S + α3S2.

For Eq. (5.1), the constraint of the vanishing of the Poisson bracket renders, after a lengthy calculation,
Eq. (A.1) of the “Appendix”. Essentially, this condition is a necessary and sufficient condition for the
body to be a Lagrangian submanifold. Conditions sufficient for its fulfillment are the vanishing of each
bracket separately, namely Eq. (A.2) of the “Appendix”. Application of the Maslov–Hormander theorem
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then renders the existence of an isotropic function W = W (CAB , pA), such that for the field equations it
holds (if there are no body force)

Div
(

∂W

∂C

)
= 0,

∂W

∂p
= 0. (5.4)

The unknown variables in this case are the pair C and p. Essentially, in addition to the momentum
equation, we have an equation to find the auxiliary variables; this is Eq. (5.4)2 which has to be solved in
parallel with Eq. (5.4)1.

Since the function W is isotropic in its arguments, we have for a complete and irreducible representa-
tion (see [23])

W (C,p) = W (trC, tr(C2), tr(C3),p · p,p · (Cp),p · (C2p)). (5.5)
Therefore, for the quantities that appear in Eq. (5.4) we take

∂W

∂p
= φ0p + φ1Cp + φ2C2p, (5.6)

and
∂W

∂C
= φ3I + φ4C + φ5C2 + φ6p ⊗ p + φ7p ⊗ Cp, (5.7)

where φi = φi(trC, tr(C2), tr(C3),p·p,p·(Cp),p·(C2p)). So, collectively for an isotropic body described
by Eq. (5.3) one has to solve the following system of equations

Div(φ3I + φ4C + φ5C2 + φ6p ⊗ p + φ7p ⊗ Cp) = 0,

φ0p + φ1Cp + φ2C2p = 0.
(5.8)

6. Conclusions

We studied a general class of implicit constitutive relations for elastic bodies presenting some conditions
which when satisfied there exists a scalar function W depending on the deformation C and an auxiliary
vector field p. The stress tensor S can then be expressed locally in the usual manner as the derivative
of W with respect to C and participates in the standard form of the momentum equation. Additionally
to the momentum equation, an equation ruling the auxiliary variables should be solved in these cases.
These additional degrees of freedom are the price one pays when working with a real implicit constitutive
relation.

Appendix A

The Poisson bracket of Eq. (4.3) for the constitutive relation of Eq. (5.3) renders

∂α1

∂SEF

∂α0

∂CEF
[SABICD − IABSCD] +

∂α0

∂SEF

∂α2

∂CEF
[IABCCD − CABICD]

+α2

[
∂α0

∂SCD
IAB − ∂α0

∂SAB
ICD

]
+

∂α0

∂SEF

∂α4

∂CEF
[IABCCP CPD − CANCNBICD]

+α4

[
∂α0

∂SCD
IABCPD +

∂α0

∂SPD
IABCCP − CNB

∂α0

∂SAN
ICD − CAN

∂α0

∂SNB
ICD

]

+
∂α0

∂SEF

∂α5

∂CEF
[IABSCP CPD − CANSNBICD + IABCCP SPD − SANCNBICD]

+α5

[
∂α0

∂SPD
IABSCP +

∂α0

∂SCP
− SAN

∂α0

∂SNB
ICD − SNB

∂α0

∂SAN
ICD

]
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+
∂α1

∂SEF

∂α2

∂CEF
[SABCCD − CABSCD] + α2

[
∂α2

∂SAB
− ∂α1

∂SAB
SCD

]

+
∂α1

∂SEF

∂α4

∂CEF
[SABCCP CPD − CANCNBSCD]

+α4

[
∂α1

∂SCP
SABCPD +

∂α1

∂SPD
− CNB

∂α1

∂SAN
SCD − CAN

∂α1

∂SNB
SCD

]

+
∂α1

∂SEF

∂α5

∂CEF
[SABSCP CPD + SABCCP SPD − SANCNBSCD − CANSNBSCD]

+α5

[
∂α1

∂SPD
SABSCP +

∂α1

∂SCP
SABSPD − SAN

∂α1

∂SNB
SCD − SNB

∂α1

∂SAN
SCD

]

+α1

[
∂α0

∂CAB
ICD − ∂α0

∂CCD
IAB

]
+ α1

[
∂α0

∂CAB
CCD − ∂α0

∂CCD
CAB

]

+α1

[
∂α4

∂CAB
CCP CPD − ∂α4

∂CCD
CANCNB

]

+α1

[
∂α5

∂CAB
SCP CPD +

∂α5

∂CAB
CCP CPD − ∂α5

∂CCD
SANCNB − ∂α5

∂CCD
CANSNB

]

+
∂α3

∂SEF

∂α0

∂CEF
[SANSNBICD − IABSCP SPD] +

∂α3

∂SEF

∂α2

∂CEF
[SANSNBCCD − CABSCP SPD]

+α2

[
∂α3

∂SCD
SANSNB − ∂α3

∂SAB
SCP SPD

]

+
∂α3

∂SEF

∂α4

∂CEF
[SANSNBCCP CPD − CANCNBSCP SPD]

+α4

[
∂α3

∂SCP
SANSNBCPD +

∂α3

∂SPD
SANSNBCCP − CNB

∂α3

∂SAN
SCP SPD − CAN

∂α3

∂SNB
SCP SPD

]

+
∂α3

∂SEF

∂α5

∂CEF
[SANSNBSCP CPD + SANSNBCCP SPD − SANCNBSCP SPD − CANSNBSCP SPD]

+α5

[
∂α3

∂SPD
SANSNBSCP +

∂α3

∂SCP
SANSNBSPD − SAN

∂α3

∂SNB
SCP SPD − SNB

∂α3

∂SAN
SCP SPD

]

+α3

[
SNB

∂α0

∂CAN
ICD + SAN

∂α0

∂CNB
ICD − ∂α0

∂CCP
IABSPD − ∂α0

∂CPD
IABSCP

]

+α3

[
SNB

∂α0

∂CAN
CCD + SAN

∂α0

∂CNB
CCD − ∂α0

∂CCP
CABSPD − ∂α0

∂CPD
CABSCP

]

+α3

[
SNB

∂α4

∂CAN
CCP CPD + SAN

∂α4

∂CNB
CCP CPD − ∂α4

∂CCP
CANCNBSPD − ∂α4

∂CPD
CANCNBSCP

]

+α3α4 [IACSPBCPD − IACCPBSPD] + α3α4 [SAP IBDCCP − CAP SCP IBD]

+α3

[
SNB

∂α5

∂CAN
SCP CPD + SNB

∂α5

∂CAN
CCP SPD + SAN

∂α5

∂CNB
SCP CPD + SAN

∂α5

∂CNB
CCP SPD

− ∂α5

∂CCP
SANCNBSPD − ∂α5

∂CPD
SANCNBSCP − ∂α5

∂CCP
CANSNBSPD − ∂α5

∂CPD
CANSNBSCP

]

+
∂α5

∂SEF

∂α0

∂CEF
[SANCNBICD + CANSNBICD − IABSCP CPD − IABCCP SPD]

+
∂α5

∂SEF

∂α2

∂CEF
[SANCNBCCD + CANSNBCCD − CABSCP CPD − CABCCP SPD]
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+α2

[
α5

∂SCD
SANCNB +

∂α5

∂SCD
CANSNB − ∂α5

∂SAB
SCP CPD − ∂α5

∂SAB
CCP SPD

]

+
∂α5

∂SEF

∂α4

∂CEF
[SANCNBCCP CPD + CANSNBCCP CPD − CANCNBSCP CPD − CANCNBCCP SPD]

+α4

[
∂α5

∂SCP
SANCNBCPD +

∂α5

∂SPD
SANCNBCCP +

∂α5

∂SCP
CANSNBCPD +

∂α5

∂SPD
CANSNBCCD

+ −CNB
∂α5

∂SAN
SCP CPD − CNB

∂α5

∂SAN
CCP SPD − CAN

∂α5

∂SNB
SCP CPD − CAN

∂α5

∂SNB
CCP SPD

]

+α5

[
∂α5

∂SPD
SANCNBSCP +

∂α5

∂SCP
SANCNBSPD +

∂α5

∂SPD
CANSNBSCP +

∂α5

∂SCP
CANSNBSPD

−SAN
∂α5

∂SNB
SCP CPD − SAN

∂α5

∂SNB
CCP SPD − SNB

∂α5

∂SAN
SCP CPD − SNB

∂α5

∂SAN
CCP SPD

]

+α5

[
CNB

∂α0

∂CAN
ICD + CAN

∂α0

∂CNB
ICD − ∂α0

∂CCP
IABCPD − ∂α0

∂CPD
IABCCP

]

+α5

[
CNB

∂α2

∂CAN
CCD + CAN

∂α2

∂CNB
CCD − ∂α2

∂CCP
CABCPD − ∂α2

∂CPD
CABCCP

]

+α5

[
CNB

∂α4

∂CAN
CCP CPD + CAN

∂α4

∂CNB
CCP CPD − ∂α4

∂CCP
CANCNBCPD − ∂α4

∂CCP
CANCNBCCP

]

+α5

[
CNB

∂α5

∂CAN
SCP CPD + CNB

∂α5

∂CAN
CCP SPD + CAN

∂α5

∂CNB
SCP CPD + CAN

∂α5

∂CNB
CCP SPD

− ∂α5

∂CCP
SANCNBCPD − ∂α5

∂CPD
SANCNBCCP − ∂α5

∂CCP
CANCNBCCP − ∂α5

∂CPD
CANSNBCCP

]

+α2
5 [IACCPBSPD + CAP IBDSCP − SAP IBDCCP − IACSPBCPD] = 0. (A.1)

Essentially, this condition is a necessary and sufficient condition for the body to be a Lagrangian sub-
manifold. Conditions sufficient for its fulfillment are the vanishing of each bracket separately, namely

SABICD − IABSCD = 0, IABCCD − CABICD = 0,

∂α0

∂SCD
IAB − ∂α0

∂SAB
ICD = 0, IABCCP CPD − CANCNBICD = 0,

∂α0

∂SCD
IABCPD +

∂α0

∂SPD
IABCCP − CNB

∂α0

∂SAN
ICD − CAN

∂α0

∂SNB
ICD = 0,

IABSCP CPD − CANSNBICD + IABCCP SPD − SANCNBICD = 0,

∂α0

∂SPD
IABSCP +

∂α0

∂SCP
− SAN

∂α0

∂SNB
ICD − SNB

∂α0

∂SAN
ICD = 0,

SABCCD − CABSCD = 0,
∂α2

∂SAB
− ∂α1

∂SAB
SCD = 0,

SABCCP CPD − CANCNBSCD = 0,

∂α1

∂SCP
SABCPD +

∂α1

∂SPD
− CNB

∂α1

∂SAN
SCD − CAN

∂α1

∂SNB
SCD = 0,

SABSCP CPD + SABCCP SPD − SANCNBSCD − CANSNBSCD = 0,

∂α1

∂SPD
SABSCP +

∂α1

∂SCP
SABSPD − SAN

∂α1

∂SNB
SCD − SNB

∂α1

∂SAN
SCD = 0,

∂α0

∂CAB
ICD − ∂α0

∂CCD
IAB = 0,

∂α0

∂CAB
CCD − ∂α0

∂CCD
CAB = 0,
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∂α4

∂CAB
CCP CPD − ∂α4

∂CCD
CANCNB = 0,

∂α5

∂CAB
SCP CPD +

∂α5

∂CAB
CCP CPD − ∂α5

∂CCD
SANCNB − ∂α5

∂CCD
CANSNB = 0,

SANSNBICD − IABSCP SPD = 0, SANSNBCCD − CABSCP SPD = 0,

∂α3

∂SCD
SANSNB − ∂α3

∂SAB
SCP SPD = 0,

SANSNBCCP CPD − CANCNBSCP SPD = 0,

∂α3

∂SCP
SANSNBCPD +

∂α3

∂SPD
SANSNBCCP − CNB

∂α3

∂SAN
SCP SPD − CAN

∂α3

∂SNB
SCP SPD = 0,

SANSNBSCP CPD + SANSNBCCP SPD − SANCNBSCP SPD − CANSNBSCP SPD = 0,

∂α3

∂SPD
SANSNBSCP +

∂α3

∂SCP
SANSNBSPD − SAN

∂α3

∂SNB
SCP SPD − SNB

∂α3

∂SAN
SCP SPD = 0,

SNB
∂α0

∂CAN
ICD + SAN

∂α0

∂CNB
ICD − ∂α0

∂CCP
IABSPD − ∂α0

∂CPD
IABSCP = 0,

SNB
∂α0

∂CAN
CCD + SAN

∂α0

∂CNB
CCD − ∂α0

∂CCP
CABSPD − ∂α0

∂CPD
CABSCP = 0,

SNB
∂α4

∂CAN
CCP CPD + SAN

∂α4

∂CNB
CCP CPD − ∂α4

∂CCP
CANCNBSPD − ∂α4

∂CPD
CANCNBSCP = 0,

IACSPBCPD − IACCPBSPD = 0, SAP IBDCCP − CAP SCP IBD = 0,

SNB
∂α5

∂CAN
SCP CPD + SNB

∂α5

∂CAN
CCP SPD + SAN

∂α5

∂CNB
SCP CPD + SAN

∂α5

∂CNB
CCP SPD

− ∂α5

∂CCP
SANCNBSPD − ∂α5

∂CPD
SANCNBSCP − ∂α5

∂CCP
CANSNBSPD − ∂α5

∂CPD
CANSNBSCP = 0,

SANCNBICD + CANSNBICD − IABSCP CPD − IABCCP SPD = 0,

SANCNBCCD + CANSNBCCD − CABSCP CPD − CABCCP SPD = 0,

α5

∂SCD
SANCNB +

∂α5

∂SCD
CANSNB − ∂α5

∂SAB
SCP CPD − ∂α5

∂SAB
CCP SPD = 0,

SANCNBCCP CPD + CANSNBCCP CPD − CANCNBSCP CPD − CANCNBCCP SPD = 0,

∂α5

∂SCP
SANCNBCPD +

∂α5

∂SPD
SANCNBCCP +

∂α5

∂SCP
CANSNBCPD +

∂α5

∂SPD
CANSNBCCD

+ −CNB
∂α5

∂SAN
SCP CPD − CNB

∂α5

∂SAN
CCP SPD − CAN

∂α5

∂SNB
SCP CPD − CAN

∂α5

∂SNB
CCP SPD = 0,

∂α5

∂SPD
SANCNBSCP +

∂α5

∂SCP
SANCNBSPD +

∂α5

∂SPD
CANSNBSCP +

∂α5

∂SCP
CANSNBSPD

−SAN
∂α5

∂SNB
SCP CPD − SAN

∂α5

∂SNB
CCP SPD − SNB

∂α5

∂SAN
SCP CPD − SNB

∂α5

∂SAN
CCP SPD = 0,

CNB
∂α0

∂CAN
ICD + CAN

∂α0

∂CNB
ICD − ∂α0

∂CCP
IABCPD − ∂α0

∂CPD
IABCCP = 0,

CNB
∂α2

∂CAN
CCD + CAN

∂α2

∂CNB
CCD − ∂α2

∂CCP
CABCPD − ∂α2

∂CPD
CABCCP = 0,

CNB
∂α4

∂CAN
CCP CPD + CAN

∂α4

∂CNB
CCP CPD − ∂α4

∂CCP
CANCNBCPD − ∂α4

∂CCP
CANCNBCCP = 0,

CNB
∂α5

∂CAN
SCP CPD + CNB

∂α5

∂CAN
CCP SPD + CAN

∂α5

∂CNB
SCP CPD + CAN

∂α5

∂CNB
CCP SPD
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− ∂α5

∂CCP
SANCNBCPD − ∂α5

∂CPD
SANCNBCCP − ∂α5

∂CCP
CANCNBCCP − ∂α5

∂CPD
CANSNBCCP = 0,

IACCPBSPD + CAP IBDSCP − SAP IBDCCP − IACSPBCPD = 0. (A.2)
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