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Flows over time provide a natural and convenient description for the dynamics of a continuous stream of particles traveling
from a source to a sink in a network, allowing to track the progress of each infinitesimal particle along time. A basic
model for the propagation of flow is the so-called fluid queue model in which the time to traverse an edge is composed of
a flow-dependent waiting time in a queue at the entrance of the edge plus a constant travel time after leaving the queue.
In a dynamic network routing game each infinitesimal particle is interpreted as a player that seeks to complete its journey
in the least possible time. Players are forward looking and anticipate the congestion and queuing delays induced by others
upon arrival to any edge in the network. Equilibrium occurs when each particle travels along a shortest path.

This paper is concerned with the study of equilibria in the fluid queue model and provides a constructive proof of
existence and uniqueness of equilibria in single origin-destination networks with piecewise constant inflow rate. This is done
through a detailed analysis of the underlying static flows obtained as derivatives of a dynamic equilibrium. Furthermore,
for multicommodity networks, we give a general nonconstructive proof of existence of equilibria when the inflow rates
belong to Lp.

Subject classifications : dynamic equilibrium; flows over time; fluid queues; congestion; networks.
Area of review : Games, Information, and Networks.
History : Received January 2014; revision received August 2014; accepted December 2014.

1. Introduction
Understanding time varying flows on networks is relevant
in contexts where a steady state is rarely observed such as
urban traffic or the Internet. In order to describe the tempo-
ral evolution of such systems, one has to consider the prop-
agation of flow across the network by tracking the position
of each particle along time. In the most basic model, the
so-called fluid queue model, a continuous stream of parti-
cles is injected at a source s and travels towards a sink t
through edges characterized by a latency and a per-time-
unit capacity: flow propagates according to edge dynamics
in which particles arriving to an edge e join a queue with
service rate �e and, after leaving the queue, move along the
edge to reach its head after �e time units.

Flows over time were initially studied in the framework
of optimization. Ford and Fulkerson (1958, 1962) consid-
ered a fluid queue model in a discrete time setting and
designed an algorithm to compute a flow over time carrying
the maximum possible flow from the source s to the sink t
in a given timespan. Gale (1959) then showed the existence
of a flow pattern that achieves this optimum simultane-
ously for all time horizons. These results were extended
to continuous time by Anderson and Philpott (1994) and
Fleischer and Tardos (1998). We refer to Skutella (2009)
for an excellent and up-to-date survey.

When network flows suffer from a lack of coordination
among the participating agents, it is natural to consider
them from a game theoretic perspective. In this setting,

each infinitesimal inflow particle is interpreted as a player
that seeks to complete its journey in the least possible time,
so that equilibrium occurs when each particle travels along
an s-t shortest path. The travel time for a particle entering
the network at any given time must take into account the
queueing delays induced by other particles on the edges
along its path. This requires to anticipate the queue lengths
by the time when an edge will be reached. The follow-
ing example provides some intuition on flow propagation
and dynamic equilibrium in the fluid queue model (precise
definitions will be given in the next section).

Example 1. Consider the network in the figure below with
a constant inflow at the source s equal to u4�5 = 2 for all
times �¾ 0.

�

�

�

�

The inflow u4�5 is smaller than the service rate �a so that
no queue will form on the first edge and a particle departing
at time � reaches the intermediate node r at time lr4�5 =

�+ 1. Thus, a constant flow of 2 arrives at r starting from
time � = 1. This flow must be routed along a shortest path
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and, since �b < �c, at least initially it goes on edge b. Since
the queue rate for this edge is �b = 1, a queue starts to
grow linearly as zb4�5= �− 1 for �¾ 1, and consequently
the travel time zb4�5/�b + �b (queuing plus latency) will
increase until it equalizes �c. This occurs exactly at time
� = 4 when the queue length reaches zb445= 3. From that
point on the flow splits equally between b and c, keeping
a constant queue on edge b and an empty queue on c, so
that both edges have a constant travel time of 4.

To compute the time lt4�5 at which a particle departing
at time � reaches the sink t, we distinguish two cases. For
a departure time � ∈ 60137 the particle arrives at r at time
� + 1 and then follows the edge b where it faces a queue
of length � and an additional latency �b = 1, reaching the
sink at time lt4�5= 2�+2. For �¾ 3 the particle arrives to
r at �+1 as before but spends a constant time 4 traversing
either b or c to reach the sink at time lt4�5 = � + 5. Both
expressions for lt4�5 coincide at the breakpoint � = 3 so
this arrival time function is continuous and increasing, and
no particle overtakes the flow that entered earlier.

The study of flows over time when particles behave self-
ishly has mostly been considered in the transportation liter-
ature. Probably, the first to consider the fluid queue model
as a game was Vickrey (1969), who used it as a tool
for evaluating transport investments to mitigate congestion.
The seminal paper by Friesz et al. (1993) (see also the book
by Ran and Boyce 1996) proposed a general framework to
model dynamic equilibrium using an appropriate variational
inequality. The model supports very general flow propaga-
tion rules and edge dynamics that include the fluid queue
model as a particular case. Unfortunately, in this general
framework little is known in terms of existence, uniqueness,
and characterization of solutions. Under suitable assump-
tions, an existence result was eventually obtained by Zhu
and Marcotte (2000), which however does not apply to
the fluid queue model. Also, Meunier and Wagner (2010)
established the existence of dynamic equilibria using an
alternative specification of the model and exploiting gen-
eral results for games with a continuum of players. A more
detailed discussion of these and related works is postponed
until §6.

Recently, Koch and Skutella (2011) obtained a more spe-
cific and very useful characterization of dynamic equilibria
in the fluid queue model by introducing the concept of
thin flows with resetting. These thin flows characterize the
derivatives of a dynamic equilibrium and can be used to
reconstruct equilibria by integration. While the authors did
not prove the existence of thin flows, the concept was used
to analyze the price-of-anarchy for this class of dynamic
routing games. The fluid queue model has also been con-
sidered recently by Bhaskar et al. (2014) to investigate the
price-of-anarchy in Stackelberg routing games.

OurContribution. This paper considers flows over time
for the fluid queue model as in Koch and Skutella (2011),
and is an outgrowth of our previous work in Larré (2010)

and Cominetti et al. (2011). We provide a construc-
tive proof for the existence and uniqueness of equilibria,
exploiting the key concept of thin flow with resetting intro-
duced by Koch and Skutella: a static flow together with
an associated labeling that characterize the time derivatives
of an equilibrium. We actually consider a slightly more
restrictive definition by adding a normalization condition.
Using a fixed point formulation we show that normalized
thin flows exist, and then we prove that the labeling is
unique. As a by-product, this yields an exponential time
algorithm to compute a normalized thin flow and shows that
this problem belongs to the complexity class Polynomial
Parity arguments on Directed graphs (PPAD), though we
conjecture that it might be solvable in polynomial time.
By integrating these thin flows we deduce the existence of
an equilibrium for the case of a piecewise constant inflow
rate, and we show that the equilibrium is unique within a
natural family of flows over time. Finally, we give a non-
constructive existence proof when the inflow rate belongs
to the space of p-integrable functions Lp with 1 < p < �,
and we discuss how the result extends to multiple origin-
destination pairs.

Organization of the Paper. Section 2 describes the
fluid queue model for flows over time. Section 3 character-
izes the time derivatives of a dynamic equilibrium using the
notion of normalized thin flows with resetting and proves
the existence and uniqueness of the latter. In §4 we exploit
the previous results to give a constructive proof for the
existence of an equilibrium in the case of a piecewise con-
stant inflow rate, and we discuss the uniqueness of this
equilibrium. In §5 we present a nonconstructive existence
result for more general inflow rates, including the case of
multiple origin-destination pairs. Finally, in §6 we compare
our findings with previous results in the literature and state
some open questions. The appendix at the end summarizes
some technical facts used in the paper.

2. A Fluid Queue Model for Dynamic
Routing Games

Throughout this paper we consider a network N = 4G1�1
�1 s1 t1 u5 consisting of a directed graph G with node set
V and edge set E, a vector � = 4�e5e∈E of positive num-
bers representing queue service rates, a vector � = 4�e5e∈E
of nonnegative numbers representing edge travel times, a
source s ∈ V , a sink t ∈ V , and an inflow rate function
u2 � → �+ taken from the set F04�5 of nonnegative and
locally integrable functions which vanish on the negative
axis; that is, u4�5 = 0 for a.e. � < 0. We denote U4�5 =
∫ �

0 u4�5d� the cumulative inflow so that U ∈ACloc4�5, the
space of locally absolutely continuous functions. For the
precise definition of these functional spaces and some of
their basic properties, we refer to the appendix as well as
Leoni (2009, Chapter 3).

A continuous stream of particles is injected at the source
s at a time-dependent rate u4�5 and flows through the net-
work towards the sink t. Particles arriving to an edge e join

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

8.
74

] 
on

 1
5 

Ju
ly

 2
01

5,
 a

t 1
3:

39
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Cominetti, Correa, and Larré: Dynamic Equilibria in Fluid Queueing Networks
Operations Research 63(1), pp. 21–34, © 2015 INFORMS 23

a queue with service rate �e and, after leaving the queue,
travel along the edge to reach its head after �e time units.
Each infinitesimal inflow particle is interpreted as a player
that seeks to complete its journey in the least possible time,
so that equilibrium occurs when each particle travels along
an s-t shortest path. The relevant edge costs for a particle
entering the network at time � must consider the queueing
delays induced by other particles along its path by the time
when each edge is reached. This introduces intricate spatial
and temporal dependencies among the flows that enter the
network at different times, possibly at future dates if over-
taking occurs. The rest of this section makes these notions
more precise.

For simplicity, and without loss of generality, we assume
that there is at most one edge between any pair of nodes
in G, that there are no loops, and that for each node v ∈ V
there is a path from s to v. An edge e ∈ E from node v
to node w is written vw, while the forward and backward
stars of a node v ∈ V are denoted �+4v5 and �−4v5. We
also suppose that the sum of latencies along any cycle is
positive, namely

∑

e∈C �e > 0 for every cycle C in G.

2.1. Flows-Over-Time

The model is formulated in terms of the flow rates on every
edge. A flow-over-time is a pair f = 4f +1 f −5 of arrays of
functions f +

e 1 f −
e ∈F04�5 for each e ∈ E, representing the

rate at which flow enters the tail of e and the rate of flow
leaving the head of e, respectively. We say that f is feasible
if the following flow conservation constraints hold at every
node v 6= t and for almost all times � ∈�

∑

e∈�+4v5

f +

e 4�5−
∑

e∈�−4v5

f −

e 4�5=

{

u4�5 for v=s

0 for v∈V \8s1t90
(1)

The cumulative inflow and cumulative outflow of an edge e
are defined as the ACloc4�5 functions

F +

e 4�5=

∫ �

0
f +

e 4�5d�1

F −

e 4�5=

∫ �

0
f −

e 4�5d�0

2.2. Queue Dynamics and Queuing Delays

An edge e is modeled as a fluid queue with service rate �e
followed by a link with constant travel time �e. The queue
length ze4�5 at any time � is the net flow that has entered
the edge and has not yet left the queue. Accounting for the
time �e required to reach the head of the edge after leaving
the queue, we have

ze4�5= F +

e 4�5− F −

e 4�+ �e50

Throughout the paper we assume that queues operate at
capacity. By this we mean that for almost all � ∈�

f −

e 4�+ �e5=

{

�e if ze4�5 > 01

min8f +
e 4�51 �e9 otherwise.

(2)

This condition can be equivalently stated in terms of the
queue length dynamics

z′

e4�5=

{

f +
e 4�5− �e if ze4�5 > 0

6f +
e 4�5− �e7+ otherwise,

(3)

whose unique solution is given by (see e.g., Prabhu
2002, §1.3)

ze4�5= max
�∈601 �7

∫ �

�
6f +

e 4�5− �e7 d�0 (4)

This formula shows that in a queue that operates at capacity,
the inflow f +

e completely determines the queue length ze,
and therefore the outflow f −

e is also uniquely determined
by (2).

The queueing delay experienced by a particle entering e
at time � before it starts traversing the edge is defined as

qe4�5= min
{

q ¾ 02
∫ �+q

�
f −

e 4� + �e5d� = ze4�5

}

0 (5)

We denote W �
e = 6�1 � + qe4�55 the interval on which the

particle waits in the queue and Qe = 8�2 ze4�5 > 09 the
instants at which the queue is nonempty. Note that for all
�′ ∈W �

e the queue remains nonempty since

ze4�
′5= ze4�5+

∫ �′

�
6f +

e 4�5− f −

e 4� + �e57d�

¾ ze4�5−

∫ �′

�
f −

e 4� + �e5d� > 01

and therefore Qe =
⋃

� W
�
e . The next result shows that in a

queue that operates at capacity the queuing delay is exactly
qe4�5= ze4�5/�e, providing in fact an equivalent character-
ization of operation at capacity.

Proposition 1. Let f +
e 1 f −

e be the inflow and outflow on
edge e with corresponding queue length ze.The queue oper-
ates at capacity if and only if the next three conditions hold
simultaneously:

(a) Capacity constraint: f −
e 4�5¶ �e for almost all �,

(b) Nondeficit constraint: ze4�5¾ 0 for all �,
(c) Queueing delay: qe4�5= ze4�5/�e for all �.

Proof. Suppose the queue operates at capacity. From (2)
we clearly have (a) while (4) implies (b). To prove (c) we
observe that

∫ �+q

�
f −
e 4� + �e5d� ¶ �eq from which it fol-

lows that qe4�5 ¾ ze4�5/�e. On the other hand, since
the queue is nonempty on W �

e , condition (2) implies
f −
e 4� + �e5= �e a.e. � ∈W �

e and then
∫ �+ze4�5/�e

�
f −

e 4� + �e5d� = ze4�51

which yields qe4�5= ze4�5/�e.
Conversely, suppose (a)–(c) hold. From (c) we get

∫ �+qe4�5

�
6f −

e 4� + �e5 − �e7 d� = 0 so that (a) gives
f −
e 4� + �e5 = �e for almost all � ∈ W �

e , and Lemma 8
implies that this equality holds a.e. on

⋃

� W
�
e =Qe proving

the first case of (2). For the second case, (b) and Lemma 9:
(a) ⇒ (c) give that almost everywhere ze4�5 = 0 implies
0 = z′

e4�5= f +
e 4�5−f −

e 4�+�e5 and therefore f −
e 4�+�e5=

min8f +
e 4�51 �e9. �
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2.3. Edge Travel Times

The time at which a particle exits from an edge e can be
computed as the sum of the entrance time �, plus queueing
delay, plus latency, namely

Te4�5= �+
ze4�5

�e
+ �e0 (6)

For notational convenience, we omit the dependence of Te
on the flow f . Clearly Te ∈ACloc4�5 and using (3) we can
compute its derivative almost everywhere as

T ′

e 4�5=















1
�e
f +

e 4�5 if ze4�5 > 01

max
{

11
1
�e
f +

e 4�5

}

otherwise.
(7)

Hence T ′
e 4�5¾ 0 so that Te is nondecreasing and thus par-

ticles traversing e respect FIFO without overtaking. More-
over, all the flow that enters e up to time � exits by time
Te4�5. Indeed, since the queue is nonempty over the inter-
val W �

e , service at capacity implies f −
e 4� + �e5 = �e for

almost all � ∈W �
e and then

F −

e 4Te4�55=

∫ �+�e

0
f −

e 4�5d� +

∫ Te4�5

�+�e

�e d�

= F −

e 4�+ �e5+ ze4�5

= F +

e 4�50 (8)

2.4. Dynamic Shortest Paths

A flow particle entering a path P = 4e11 e21 0 0 0 1 ek5 at time
� will reach the endpoint of the path at the time

lP 4�5= Tek � · · · � Te1
4�51 (9)

Thus, denoting Pw the set of all s-w paths in G, the earliest
time at which a particle starting from s at time � can reach
w is given by

lw4�5= min
P∈Pw

lP 4�50 (10)

These functions correspond to shortest paths with edge
costs that consider the queueing delays along the path at
the appropriate times, taking into account the time it takes
to reach every edge. We refer to them as dynamic shortest
paths.

Since the Te’s are absolutely continuous and nondecreas-
ing, the same holds for their compositions lP and therefore
also for the lw’s (see appendix or Leoni 2009, Chapter 3).
Note also that lw4 · 5 is surjective with lw4�5 → ±� when
� → ±�. Indeed, for � → � this is a consequence of the
inequality lw4�5¾ �, while for � → −� this follows since
all the queues are empty and lw4�5 = � + dsw with dsw

the minimum time from s to w considering only the travel
times �e and no queuing.

The monotonicity of Te together with the nondeficit con-
straints and the fact that the sum of latencies on any cycle
is positive, imply that dynamic shortest paths do not con-
tain cycles, and therefore (10) can also be computed by
solving

lw4�5=







� for w = s1

min
e=vw∈�−4w5

Te4lv4�55 for w 6= s0
(11)

The �-shortest-path graph is defined as the acyclic graph
G� = 4V 1E ′

�5 containing all the shortest paths at time �.
An edge e = vw is in E ′

� if and only if Te4lv4�55¶ lw4�5,
or equivalently Te4lv4�55= lw4�5, in which case it is said to
be active. Note that an inactive edge has Te4lv4�55 > lw4�5,
so by continuity it remains inactive nearby. We also denote
äe the set of all times � at which e is active. Note that E ′

�

and äe depend on the given flow-over-time f .

2.5. Dynamic Equilibrium

A feasible s-t flow-over-time can be interpreted as a
dynamic equilibrium by looking at each infinitesimal inflow
particle as a player that travels from the source to the sink
along an s-t path that yields the least possible travel time.
The following definition makes this notion precise.

Definition 1 (Dynamic Equilibrium). A feasible flow-
over-time f is called a dynamic equilibrium if for each
e = vw ∈E we have f +

e 4�5= 0 for almost all � ∈ lv4ä
c
e5.

The next lemma provides an alternative characterization
of dynamic equilibrium.

Lemma 1. A feasible flow-over-time f is a dynamic equi-
librium iff for all e = vw ∈E and almost all � ∈� we have
f +
e 4�5 > 0 ⇒ � ∈ lv4äe5.

Proof. The condition in the lemma is equivalent to
f +
e 4�5 = 0 for almost all � ∈ lv4äe5

c. Hence, to establish
the result it suffices to show that the sets lv4äe5

c and lv4ä
c
e5

differ on a set of null measure. We note that the first set is
included in the second. Indeed, take any � ∈ lv4äe5

c. Since
lv4 · 5 is surjective we may find � ∈ � with � = lv4�5, and
since � y lv4äe5 it must be the case that � y äe so that
� ∈ lv4ä

c
e5. Now, for each � ∈ lv4ä

c
e5\lv4äe5

c = lv4ä
c
e5 ∩

lv4äe5 we may find � ∈ äc
e and �′ ∈ äe such that � =

lv4�5= lv4�
′5. Since lv4 · 5 is nondecreasing, it follows that

lv4�5 = � for all � between � and �′ and since � 6= �′ we
may take � ∈ � in order to deduce that lv4ä

c
e5\lv4äe5

c ⊂

lv4�5. This shows that the sets lv4äe5
c and lv4ä

c
e5 differ

on a countable set, hence a set of measure zero. �

Remark. A slightly different notion, which we call strong
dynamic equilibrium, was considered in Koch and Skutella
(2011) requiring that e yE ′

� ⇒ f +
e 4lv4�55= 0 for each e =

vw ∈ E and almost all �. This condition implies dynamic
equilibrium (since lv is absolutely continuous and maps
null sets into null sets), and it is in fact strictly stronger as
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illustrated in the example below. The point is that while the
concept of dynamic equilibrium is insensitive to modifica-
tions on sets of measure zero, this is not the case for strong
equilibrium: the composition f +

e 4lv4�55 is not well defined
under the standard identification of functions that coincide
almost everywhere and depends on the representative func-
tion f +

e that is chosen. Indeed, since lv4 · 5 may be constant
over a nontrivial interval, a simple modification of f +

e at
a single point may spoil the almost everywhere condition
with respect to �. Definition 1 avoids this difficulty.

Example 2. Consider the same network as in Example 1
in the introduction with inflow function

u4�5=











4 if 0 ¶ � < 11

0 if 1 ¶ �¶ 21

2 if 2 < �0

The inflow of link a is f +
a 4�5= u4�5 so that a queue builds

up in the interval 60117 and is emptied during 61127, after
which it stays empty (see the left plot below). Thus, the
queue on edge a has a constant throughput equal to 2 and
the outflow, which is also the inflow at the intermediate
node r , is given by

f −

a 4�5=

{

0 for �¶ 11

2 for �¾ 10

1

2

3

1 2 3

�

4 5 1 2 3

�

4 5

z a
(�

)

z b
(�

)

1

2

3

The outflow of edge a is exactly the same as in Example 1
in the introduction, so that the equilibrium flows in edges
b and c are the same as described there. More explicitly,
the inflow and outflow functions are

f +

b 4�5=











0 for � < 11

2 for 1 ¶ � < 41

1 for �¾ 41

f −

b 4�5=

{

0 for � < 21

1 for �¾ 21

f +

c 4�5=

{

0 for � < 41

1 for �¾ 41
f −

c 4�5=

{

0 for � < 81

1 for �¾ 80

For these flows the queue on edge c remains empty at all
times and the queue on edge b evolves as in the right plot
above. A routine calculation shows that these flows yield
a strong dynamic equilibrium with corresponding earliest
time functions

lr4�5=











1 + 2� for 0 ¶ � < 11

3 for 1 ¶ � < 21

1 + � for �¾ 21

lt4�5=



















2 + 4� for 0 ¶ � < 11

6 for 1 ¶ � < 21

2 + 2� for 2 ¶ � < 31

5 + � for �¾ 30

We observe that the edge c is not in E ′
� for any � < 3. If

we modify f +
c 4�5 at just one point by taking f +

c 435 > 0, we
still have a dynamic equilibrium. However, since lr4�5= 3
for all � ∈ 61127 we now have f +

c 4lr4�55 > 0 throughout
this interval, and strong equilibrium fails.

2.6. Queues and Cumulative Flows in a
Dynamic Equilibrium

It is worth noting that at equilibrium all edges with positive
queue must be active. Namely, let E∗

� denote the set of links
with positive queue

E∗

� = 8e = vw ∈E2 ze4lv4�55 > 090 (12)

Proposition 2. If f is a dynamic equilibrium, then E∗
� ⊆E ′

�

and we have

E ′

� = 8e = vw ∈E2 lw4�5¾ lv4�5+ �e91 (13)

E∗

� = 8e = vw ∈E2 lw4�5 > lv4�5+ �e90 (14)

Proof. Let e = vw ∈ E∗
� and consider the largest �′ ¶ �

at which e was active. Equilibrium implies f +
e 4�5 = 0

for almost all � ∈ 4lv4�
′51 lv4�57, so the queue must be

nonempty throughout this interval and (7) gives T ′
e 4�5= 0

almost everywhere. Hence Te is constant in this interval
so that

Te4lv4�55= Te4lv4�
′55= lw4�

′5¶ lw4�51

which yields e ∈E ′
� proving the inclusion E∗

� ⊆E ′
�.

To show (13), we note that for e ∈E ′
� we have

lw4�5= Te4lv4�55¾ lv4�5+ �e

where the inequality follows from definition of Te and the
nondeficit constraints. Conversely, suppose that lw4�5 ¾
lv4�5+ �e. If ze4lv4�55= 0 this yields lw4�5¾ Te4lv4�55 so
that e ∈ E ′

�, whereas in the case ze4lv4�55 > 0 the same
conclusion follows since we already proved that E∗

� ⊆E ′
�.

A similar argument proves (14). For e ∈ E∗
� we have

ze4lv4�55 > 0 and then e ∈ E ′
�, so that lw4�5 = Te4lv4�55 >

lv4�5 + �e. Conversely, if lv4�5 + �e < lw4�5 the inequal-
ity lw4�5 ¶ Te4lv4�55 and the definition of Te yield
ze4lv4�55 > 0. �

Intuitively, at equilibrium any flow routed through an
edge e = vw up to time lv4�5 should reach w before the
optimal time lw4�5. This is, in fact, an equivalent charac-
terization of dynamic equilibrium.
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Theorem 1. Let f be a feasible s-t flow-over-time. The
following are equivalent

(a) f is a dynamic equilibrium;
(b) for each e = vw and all � we have F +

e 4lv4�55 =

F −
e 4lw4�55;
(c) for each e = vw and almost all � we have e yE ′

� ⇒

f +
e 4lv4�55l

′
v4�5= 0.

Proof. For each � consider the interval I� = 4�′1 �7 with
�′ ¶ � the largest time such that Te4lv4�

′55 = lw4�5.
Note that �′ is well defined since lw4�5 ¶ Te4lv4�55 and
Te4lv4�

′55 → −� when �′ → −�. Note also that I� = �

for � ∈äe since in this case �′ = �. We claim that äc
e

coincides with the union of the I�’s. Indeed, for each
� ∈äc

e we have �′ < � and therefore � ∈ I� so that äc
e ⊆

⋃

� I�. Conversely, for �′′ ∈ I� we have by definition of �′

that Te4lv4�
′′55 > lw4�5 ¾ lw4�

′′5 so that �′′ ∈ äc
e and then

⋃

� I� ⊆äc
e .

Now, invoking (8), for each � we have

F +

e 4lv4�55− F −

e 4lw4�55=

∫ lv4�5

lv4�
′5
f +

e 4�5d� ¾ 01 (15)

with equality iff f +
e vanishes almost everywhere on

4lv4�
′51 lv4�57= lv4I�5. Lemma 8 then shows that (b) holds

iff f +
e 4�5= 0 for almost all � ∈

⋃

� lv4I�5= lv4ä
c
e5, proving

(b) ⇔ (a). Similarly, a change of variables (cf. appendix)
allows to rewrite (15) as

F +

e 4lv4�55− F −

e 4lw4�55=

∫ �

�′

f +

e 4lv4z55l
′

v4z5dz¾ 01

with equality iff f +
e 4lv4z55l

′
v4z5 = 0 for almost all z ∈ I�.

By Lemma 8, (b) holds iff this map vanishes almost every-
where on

⋃

� I� =äc
e , proving (b) ⇔ (c). �

Theorem 1(b) above provides a way to synchronize the
flow over time on the different edges by using the depar-
ture time as a common clock. This property motivates the
definition of cumulative flow on an edge at a given time,
consisting of all flow that departed up to that time and
which uses the edge.

Definition 2 (Cumulative Flow). The cumulative flow
induced by a dynamic equilibrium f is defined as x4�5 =

4xe4�55e∈E with xe4�5= F +
e 4lv4�55= F −

e 4lw4�55 for all e =

vw ∈E and � ∈�.

Integrating the flow conservation constraints (1) over the
interval 601 lv4�57, it follows that for each � ∈� the cumu-
lative flow x4�5 is a static s-t flow of value U4�5,

∑

e∈�+4v5

xe4�5−
∑

e∈�−4v5

xe4�5=

{

U4�5 for v=s1

0 for v∈V \8s1t90
(16)

Differentiating, for almost all � we get that x′4�5 is a static
s-t flow of value u4�5 with x′

e4�5= 0 for e yE ′
�.

2.7. Path Formulation of Dynamic Equilibrium

Since the �-shortest path graph G� is acyclic, x′4�5 does not
route flow on cycles. Hence, denoting P the set of simple
s-t paths we may find a decomposition u4�5=

∑

P∈P hP 4�5
into nonnegative path-flows hP 4�5¾ 0 such that

x′

e4�5=
∑

P3e

hP 4�50

Indeed, start with y = x′4�5 and consider the paths P ∈P in
a fixed order setting hP 4�5= mine∈P ye and updating ye ←

ye − hP 4�5 for e ∈ P . This yields a measurable decompo-
sition hP ∈ F04�5 such that hP 4�5 > 0 only for paths that
belong to the �-shortest-path graph G�.

It is appealing to take the latter as the definition of
dynamic equilibrium. The difficulty is to properly define
shortest path since this requires the exit-time functions Te,
which in turn require an appropriate flow-over-time f to be
associated with h= 4hP 5P∈P. Since f depends on how the
flow h propagates along the paths, both f and Te must be
determined simultaneously. This network loading process
typically requires additional conditions to be well defined,
such as an acyclic network structure or when link travel
times are bounded away from zero, which is a natural and
mild assumption (see e.g., Meunier and Wagner 2010, Xu
et al. 1999, Zhu and Marcotte 2000). Since we will not
require network loading until §5, we defer its discussion to
that section.

3. Derivatives of Dynamic Equilibria:
Normalized Thin Flows

The functions xe and lw are absolutely continuous, and
therefore they can be recovered by integrating their deriva-
tives. In this section we characterize these derivatives,
yielding a constructive method to find an equilibrium. Our
characterization is closely related to the notion of thin-flow
with resetting introduced by Koch and Skutella (2011).

Recall that for almost all � the derivative x′4�5 is an
s-t flow of value u4�5 with x′

e4�5 = 0 for e y E ′
�. On the

other hand, clearly l′s4�5 = 1 while for w 6= s we may use
(11) and the rule of differentiation of a (pointwise) min-
imum function, which combined with (7) yields almost
everywhere

l′w4�5= min
e=vw∈E′

�

T ′

e 4lv4�55l
′

v4�5= min
e=vw∈E′

�

�e4l
′

v4�51 x
′

e4�551

where for each e = vw ∈E ′
� we set

�e4l
′

v1 x
′

e5=

{

x′

e/�e if e ∈E∗
� 1

max8l′v1 x
′

e/�e9 if e yE∗
� 0

Since E ′
� is acyclic, this allows to compute l′w4�5 by scan-

ning the nodes w in topological order.
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This discussion motivates the next definition. Let u0 ¾ 0
and 4E∗1E ′5 be a pair of edge sets such that

4H5 E∗
⊆E ′

⊆E with E ′ acyclic and for all v ∈ V

there is an s-v path in E ′.

We denote by K4E ′1 u05 the nonempty, compact, and con-
vex set of all static s-t flows x′ = 4x′

e5e∈E ¾ 0 of value u0

with x′
e = 0 for e y E ′. With each x′ ∈ K4E ′1 u05 we asso-

ciate the unique labels given as above by l′s = 1 and l′w =

mine=vw∈E′ �e4l
′
v1 x

′
e5 for w 6= s. Note that the map x′ 7→ l′

is continuous.

Definition 3 (Normalized Thin Flow). A flow x′ ∈

K4E ′1 u05 is called a normalized thin flow 4NTF5 of value
u0 with resetting on E∗ ⊆ E ′ iff x′

e = 0 for every edge e =

vw ∈E ′ such that l′w <�e4l
′
v1 x

′
e5.

Theorem 2. Let f be a dynamic equilibrium and � ∈ �
such that the right derivatives u0 = 4dU/d�+54�5, l′v =

4dlv/d�
+54�5 and x′

e = 4dxe/d�
+54�5 exist. Then x′ is an

NTF of value u0 with resetting on E∗
� ⊆ E ′

�, with corre-
sponding labels l′.

Proof. Differentiating (16), it follows that x′ is an s-t
flow of value u0. Moreover, if e y E ′

� then e remains
inactive on some interval 6�1 � + �5, so the chain rule
(see appendix) and equilibrium imply that on this interval
x′
e4�5 = f +

e 4lv4�55l
′
v4�5 = 0 a.e., so xe4 · 5 is constant and

x′
e = 0. This proves that x′ ∈K4E ′

�1 u05.
Let us show that l′ are the corresponding labels. Clearly

l′s = 1. For the rest of the argument we distinguish two more
subsets of E ′

�: E∗
+

contains the links e = vw, which have a
queue or are about to build one with ze4�5 > 0 for all � on
a small interval 4lv4�51 lv4�5+ �5, whereas E ′

+
includes the

links without queue at time � but which are active along
a strictly decreasing sequence �n ↓ �. For e ∈E ′

+
we have

lw4�n5 = Te4lv4�n55 ¾ lv4�n5 + �e and lw4�5 = lv4�5 + �e
so that lw4�n5 − lw4�5 ¾ lv4�n5 − lv4�5 and dividing by
�n − � with n→ � we get l′w ¾ l′v. Similarly, for e ∈E ′

�\E
∗
+

we may take �n ↓ � with ze4lv4�n55 = 0 so that lw4�n5 ¶
Te4lv4�n55 = lv4�n5+ �e and we get l′w ¶ l′v. Also, for e =

vw ∈E ′
� the capacity constraint gives for �′ ¾ �

xe4�
′5−xe4�5=

∫ lw4�
′5

lw4�5
f −

e 4�5d�¶�e4lw4�
′5−lw4�551 (17)

which implies l′w ¾ x′
e/�e. Finally, when e ∈ E∗

+
we have

ze4lv4�
′55 > 0 for �′ close to � and as observed after Equa-

tion (5) the queue remains nonempty over 6lv4�
′51 lv4�

′5+

ze4lv4�
′55/�e5 so that (2) implies that f −

e 4�5= �e for almost
all � ∈ 6lv4�

′5+ �e1 lw4�
′55. This readily gives f −

e 4�5 = �e
almost everywhere on a small interval to the right of lw4�5
and then equality holds in (17) for �′ sufficiently close to �,
so that l′w = x′

e/�e for e ∈E∗
+

. In summary
(a) l′w ¾ l′v, for e = vw ∈E ′

+
1

(b) l′w ¶ l′v, for e = vw ∈E ′
�\E

∗
+
1

(c) l′w ¾ x′
e/�e, for e = vw ∈E ′

�1
(d) l′w = x′

e/�e, for e = vw ∈E∗
+
0

Combining (b) and (d) we get l′w ¶ mine=vw∈E′
�
�e4l

′
v1 x

′
e5

with equality if there is some e = vw ∈ E∗
� . To prove the

equality when no edge from E∗
� is incident on w, choose

any �n ↓ � and a sequence of active edges en ∈E ′
�n

, and take
a subsequence with en = vw constant so that e = vw ∈ E ′

+
.

Then (a) and (c) combined give l′w ¾ �e4l
′
v1 x

′
e5. Altogether

this proves l′w = mine=vw∈E′
�
�e4l

′
v1 x

′
e5 for w 6= s.

Let us finally show that x′ is an NTF. Suppose x′
e > 0

on some e = vw ∈ E ′
� with l′w < �e4l

′
v1 x

′
e5. The latter and

(d) imply e y E∗
� , while x′

e > 0 gives xe4�
′5 > xe4�5 for all

�′ > � so e must be active on a sequence �n ↓ � and e ∈E ′
+

.
Then (a) and (c) yield the contradiction l′w ¾ �e4l

′
v1 x

′
e5. �

Theorem 2 derives the existence of NTF’s from a
dynamic equilibrium. To proceed in the other direction, we
study the existence of NTF’s, and then by integration we
reconstruct a dynamic equilibrium.

Theorem 3. Let u0 ¾ 0 and 4E∗1E ′5 satisfying (H). Then
there is an NTF of value u0 with resetting on E∗ ⊆E ′.

Proof. Let K =K4E ′1 u05 and observe that the NTF’s are
precisely the fixed-points of the set-valued map â2 K → 2K

with nonempty convex compact values given by

â4x′5=
{

y′
∈K2 y′

e = 0 for all e ∈E ′ such that
l′w <�e4l

′
v1 x

′
e5
}

with l′ the labels corresponding to x′ and E∗. Since x′ 7→ l′

is continuous, it follows that â is upper-semicontinuous,
and a fixed point x′ ∈ â4x′5 exists by virtue of Kakutani’s
fixed point theorem. �

This result shows that finding an NTF belongs to the
complexity class PPAD. It also suggests a finite (exponen-
tial time) algorithm to compute an NTF: we guess the set
E ′

0 of links e ∈E ′ that satisfy l′w = �e4l
′
v1 x

′
e5, and then solve

max
4x′1 l′5

{

∑

w∈V

l′w2 x
′
∈K4E ′

01 u053 l
′

s = 13 l′w ¶ min
e=vw∈E′

�e4l
′

v1 x
′

e5

}

0

The latter can be restated as a mixed integer linear pro-
gram and solved in finite time. By considering all possible
subsets E ′

0 ⊆E ′, the method eventually finds an NTF.
In general there may exist different NTF’s, each one with

its corresponding labels. We show next that the labels in
all of them coincide.

Theorem 4. Let u0 ¾ 0 and 4E∗1E ′5 satisfying (H). Then
the labels l′ are the same for all NTF’s of value u0 with
resetting on E∗ ⊆E ′.

Proof. Let x′ and y′ be two NTF’s with different labels
l′ 6= h′, and suppose without loss of generality that S =

8v ∈ V : l′v >h′
v9 is nonempty. Consider the net flow across

the boundary of S: since x′ and y′ satisfy flow conserva-
tion, setting bs = u0, bt = −u0 and bv = 0 for v ∈ V \8s1 t9,
we get

x′4�+4S55− x′4�−4S55

=
∑

v∈S

bv = y′4�+4S55− y′4�−4S550 (18)
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For e = vw ∈ �+4S5 we have x′
e ¶ y′

e since otherwise
x′
e > y′

e implies x′
e > 0 and l′w = �e4l

′
v1 x

′
e5 > �e4h

′
v1 y

′
e5¾ h′

w

contradicting w y S. Similarly, x′
e ¾ y′

e for all e = vw ∈

�−4S5 since y′
e > x′

e implies y′
e > 0 and h′

w = �e4h
′
v1 y

′
e5¾

�e4l
′
v1 x

′
e5¾ l′w contradicting w ∈ S. These inequalities and

(18) imply x′
e = y′

e for all e ∈ �4S5, with y′
e = 0 for e ∈

�−4S5 since y′
e > 0 yields a contradiction as before. Since

E ′ is acyclic, we may find w ∈ S with all edges e = vw ∈E ′

belonging to �−4S5. Now, l′w > h′
w ¾ 0 and x′

e = 0 implies
that e y E∗ for all these edges, and then �e4l

′
v1 x

′
e5 = l′v as

well as �e4h
′
v1 y

′
e5 = h′

v, from which we get the contradic-
tion h′

w = minvw∈E′ h′
v ¾ minvw∈E′ l′v = l′w. �

4. Existence and Uniqueness of
Dynamic Equilibria

Koch and Skutella (2011) describe a method to extend an
equilibrium for the case of a constant inflow rate u4�5≡ u0.
Given a feasible flow-over-time f that satisfies the equi-
librium conditions in 601 �k7, the equilibrium is extended
as follows:

(1) Find x′ an NTF of value u0 with resetting on
E∗

�k
⊆E ′

�k
, and let l′ denote the corresponding labels.

(2) Compute �k+1 = �k +� with �> 0 the largest value
with

lw4�k5+�l′w−lv4�k5−�l′v¶�e1 for all e=vwyE ′

�k
1 (19)

lw4�k5+�l′w−lv4�k5−�l′v¾�e1 for all e=vw∈E∗

�k
0 (20)

(3) Extend the earliest-time functions and the flow-over-
time as

lv4�5= lv4�k5+4�−�k5l
′

v1 for v∈V and �∈ 6�k1�k+171

f +

e 4�5=x′

e/l
′

v1 for e=vw∈E and �∈ 6lv4�k51lv4�k+1551

f −

e 4�5=x′

e/l
′

w1 for e=vw∈E and �∈ 6lw4�k51lw4�k+1550

Theorems 3 and 4 imply that x′ in step (1) exists and l′

is unique. Moreover there are finitely many l′, each one
corresponding to a different pair 4E∗

� 1E
′
�5. The � computed

in (2) is strictly positive so that each iteration extends the
earliest-time functions to a strictly larger interval. The con-
ditions (19) and (20) correspond, respectively, to the max-
imum ranges on which the inactive edges remain inactive,
and the positive queues remain positive. Hence, for � ∈

6�k1 �k+15 the pair 4E∗
� 1E

′
�5 remains constant, whereas at

�k+1 this pair changes and we must recompute the NTF.
Note that when l′v = 0 the update of f +

e does not extend its
domain of definition and similarly for f −

e when l′w = 0. As
shown in Koch and Skutella (2011), the extension main-
tains at all times the conditions for dynamic equilibrium in
the strong sense (see Remark after Definition 1).

This extension procedure can be used to establish the
existence of a dynamic equilibrium. Starting from the inter-
val 4−�1 �07 with �0 = 0 and zero flows, the extension
can be iterated as long as required to find a new interval

6�k1 �k+17 with �k+1 > �k at every step k. Eventually, �k may
have a finite limit ��: in this case, since the label func-
tions are nondecreasing and have bounded derivatives, we
can define the equilibrium at �� as the limit point of the
label functions l, and restart the extension process. A stan-
dard argument using Zorn’s lemma shows that a maximal
solution is defined over all �+. Note that the f constructed
above is right-constant.

Definition 4. A function g2 � → � is called right-
constant if for each � ∈ � there is an � > 0 such that g
is constant on 6�1 � + �5. Similarly, g is right-linear if for
each � it is affine on 6�1 �+ �5 for some � > 0.

The extension method works even if the inflow rate func-
tion is piecewise constant, so we have the following exis-
tence result.

Theorem 5. Suppose that the inflow u is piecewise con-
stant, i.e., there is an increasing sequence 4�k5k∈� with
�0 = 0 such that u4 · 5 is constant on each interval
6�k1 �k+15. Then there exists a strong dynamic equilibrium
f that is right-constant and whose label functions l are
right-linear.

Dynamic equilibria in general are not unique. Consider,
for instance, a constant inflow u4�5= �8�¾09 in the network
in Example 1 but with �c = �b. Then all queues remain
empty at all times, and any splitting of the outflow f −

a 4�5=

�8�¾19 among the edges b and c yields a dynamic equi-
librium. Nevertheless, using Theorem 4 one can prove
that the earliest-time functions in all sufficiently regular
dynamic equilibria are the same and coincide with those
given by the constructive procedure.

Theorem 6. Suppose that the inflow u is piecewise con-
stant. Then, the earliest-time functions 4lv5v∈V are the same
for all dynamic equilibria f which are right-continuous.

Proof. When f is right continuous, it follows that the
queue lengths ze4�5, the exit-time functions Te4 · 5, and the
earliest-time functions lv4�5 are right-differentiable every-
where with right-continuous derivatives. Theorem 2 implies
that 4dlv/d�

+54 · 5 are an NTF, and Theorem 4 shows
that these derivatives are unique. Since they can take only
finitely many values, continuity from the right imply that
4dlv/d�

+54 · 5 is right-constant and lv4 · 5 is right-linear. It
follows that any two right-continuous dynamic equilibria
must have the same earliest-time functions. Indeed, if these
functions coincide up to time �, their right derivatives at �
coincide, and since they are right-linear they will also coin-
cide on a nontrivial interval 6�1 �+ �7. This implies that in
fact the functions must coincide throughout �. �

5. Existence of Equilibria for
Inflow Rates in Lp

The previous sections studied dynamic equilibria for a
single origin-destination with piecewise constant inflows.
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We consider next more general inflow rates and then extend
the results to multiple origin-destination pairs. We proceed
as in Friesz et al. (1993) using a variational inequality for a
path-flow formulation of dynamic equilibrium. The analy-
sis is nonconstructive and exploits the following particular
case of the existence result (Brézis 1968, Theorem 24). Let
4X1� · �5 be a reflexive Banach space and � · 1 · � the canon-
ical pairing between X and its dual X∗. If A2 K → X∗

is a weak-strong continuous map defined on a nonempty,
closed, bounded, and convex subset K ⊆ X, then the fol-
lowing variational inequality problem has a solution:

VI4K1A5 Find x ∈K such that �Ax1 y− x�¾ 01
for all y ∈K.

5.1. Variational Inequality Formulation

Let us consider first the case of a single origin-destination
pair st and an inflow rate u ∈ Lp401 T 5 where T is a finite
horizon and 1 <p<�. We extend u4�5≡ 0 outside 601 T 7
so that u may be seen as a function in F04�5. As before,
let P be the set of paths connecting s to t and denote by K
the nonempty, bounded, closed, and convex set of feasible
path-flows given by

K =

{

h ∈ Lp401 T 5P2
∑

P∈P

hP = u and hP ¾ 0

for all P ∈P

}

0 (21)

The space X = Lp401 T 5P is reflexive with dual X∗ =

Lq401 T 5P where 1/p + 1/q = 1. We will show that a
dynamic equilibrium can be obtained by solving the varia-
tional inequality VI4K1A5 with A2 K ⊆X →X∗ such that
AP 4h5 ∈ Lq401 T 5 is the continuous function � 7→ lPh 4�5−�
giving the time required to travel from s to t using path P
under the path-flow pattern given by h, namely, the prob-
lem is to find h ∈K as defined by (21) such that

∑

P∈P

∫ T

0
4lPh 4�5− �54h′

P 4�5−hP 4�55d�¾ 0 ∀h′
∈K0 (22)

To properly define the map A, our first task is to show that
every h ∈K determines a unique feasible flow-over-time f ,
which in turn induces link travel times Te and path travel
times lPh . This is achieved by the network loading proce-
dure described in the next subsection. In §5.3 we establish
the weak-strong continuity of A, and then in §5.4 we con-
clude the existence of a dynamic equilibrium. Finally, §5.5
extends the existence result to multiple origin-destinations.

5.2. Network Loading

The following network loading procedure requires �e > 0
on every link e, which we assume from now on. Let
h = 4hP 5P∈P be a given family of path-flows with hP ∈

F04�5 for all P ∈ P. A network loading is a flow-over-

time f = 4f +1 f −5 together with nonnegative and measur-
able link-path decompositions

f +

e 4�5=
∑

P3e

f +

P1 e4�51

f −

e 4�5=
∑

P3e

f −

P1 e4�51
(23)

such that for all links e = vw and almost all � ∈� one has

f +

P1 e4�5=











hP 4�5 if e is the first link of P1

f −
P1 e∗4�5 if e∗ is the link in P

just before e,
(24)

together with the link transfer equations
∫ Te4�5

0
f −

P1 e4�5d� =

∫ �

0
f +

P1 e4�5d� (25)

where Te is the link travel time induced by f +
e through

Equations (4) and (6). We denote by � the tuple comprising
all the flows f +

e , f +

P1 e, f
−
e , f −

P1 e for e ∈ E and P ∈ P. In
order to prove the existence and uniqueness of a network
loading, we first establish the following technical lemma.

Lemma 2. Let a link-path decomposition of the inflow

f +

e 4�5=
∑

P3e

f +

P1 e4�5

be given over an initial interval 4−�1 �̄7. Then there are
unique outflows f −

P1 e ∈ L�44−�1 Te4�̄575 satisfying (25),
with 0 ¶ f −

P1 e4�5¶ �e for all � ¶ Te4�̄5.

Proof. Since Te maps 4−�1 �̄7 surjectively onto 4−�1
Te4�̄57, it is clear that there is at most one f −

P1 e satisfying
(25) (under the usual identification of functions differing
on a negligible subset of �). To establish the existence let
A ⊆ 4−�1 �̄7 be the set of times � at which the derivative
T ′
e 4�5 exists and is strictly positive, and set

f −

P1 e4Te4�55=

{

f +

P1 e4�5/T
′
e 4�5 for � ∈A1

0 otherwise.

This unambiguously defines f −
P1 e4�5 for all � ¶ Te4�̄5 as a

nonnegative measurable function. Moreover, for � ∈ A we
have
∑

P3e

f −

P1 e4Te4�55= f +

e 4�5/T ′

e 4�5= f −

e 4Te4�55¶ �e1

which implies 0 ¶ f −
P1 e4�5¶ �e for all � ¶ Te4�̄5 so that the

f −
P1 e’s are essentially bounded. Finally, a change of vari-

ables in the integral (see appendix) gives
∫ Te4�5

0
f −

P1e4�5d�=

∫ �

0
f −

P1e4Te4�55T
′

e 4�5d�=

∫ �

0
f +

P1e4�5d�

where we used the equality f −
P1 e4Te4�55T

′
e 4�5 = f +

P1 e4�5,
which follows from the definition of f −

P1 e4�5 when � ∈ A
and from the fact that, almost everywhere, (7) implies that
if T ′

e 4�5= 0 then f +
e 4�5= 0 and therefore f +

P1 e4�5= 0. �
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Proposition 3. Suppose that �e > 0 on all links e. Then
to each path-flow tuple h it corresponds a unique network
loading �.

Proof. Let h = 4hP 5P∈P be a given family of path-flows
and suppose that we have a link-path decomposition sat-
isfying (23)–(25) over an interval 4−�1 �̄7. For �̄ = 0 this
is easy since all flows vanish on the negative axis. By
Lemma 2, the inflow decompositions f +

e 4�5=
∑

P3e f
+

P1 e4�5

over 4−�1 �̄7, together with condition (25), determine
unique link-path decompositions for the outflows f −

e 4�5=
∑

P3e f
−
P1 e4�5 over the interval 4−�1 Te4�̄57. These inter-

vals include 4−�1 �̄ + �7 with � = mine �e > 0, and then
using (24) it follows that the link inflows and their link-path
decompositions have unique extensions to 4−�1 �̄+ �7.
Proceeding inductively it follows that the inflows and out-
flows, together with their link-path decompositions, are
uniquely defined on all of �. �

5.3. Continuity of Path Travel Times

We prove next that the network loading procedure defines
path travel time maps h 7→ lPh that are weak-strong contin-
uous from K ⊂ Lp401 T 5P to the space of continuous func-
tions C4601 T 71�5 endowed with the uniform norm. The
proof is split into several lemmas.

Lemma 3. There exists a constant M ¾ 0 such that all the
flows in the network loading corresponding to any h ∈ K
are supported on 601M7.

Proof. We claim that the queue lengths are bounded by
ze4�5 ¶ z̄ =

∫ T

0 u4�5d�. Indeed, an inductive argument
based on (24) and (25) shows that for each path P and
each link e ∈ P we have

∫

� f
+

P1 e4�5d� =
∫

� hP 4�5d�. Since
ze4�5¶ F +

e 4�5, using (23) we get

ze4�5¶ F +

e 4�5=
∑

P3e

∫ �

0
f +

P1 e4�5d� ¶
∑

P

∫

�
hP 4�5d�

=

∫ T

0
u4�5d�0

This bound implies that the time to traverse a link e is
at most z̄/�e + �e. Denoting by � the maximum of these
quantities over all e ∈E and setting M = T +m� where m
is the maximum number of links in all paths P ∈ P, then
lPh 4�5¶M for all P ∈P and � ∈ 601 T 7. This, together with
(24) and (25), implies in turn that all the flows in a network
loading are supported on the interval 601M7. �

Lemma 4. The maps f +
e 7→ ze and f +

e 7→ Te defined by
(4) and (6) are weak-strong continuous from Lp401M5 to
C4601M71�5.

Proof. The continuity of f +
e 7→ Te is immediate from

that of f +
e 7→ ze. To show the latter, we recall that

Arzela-Ascoli’s theorem implies that the integration map I :
Lp401M5 → C4601M71�5 defined by Ix4�5 =

∫ �

0 x4�5d�

is a compact operator, and hence it is weak-strong contin-
uous. It follows that the map f +

e 7→ ye given by ye4�5 =
∫ �

0 6f
+
e 4�5− �e7 d� is weak-strong continuous, and then the

same holds for f +
e 7→ ze since (4) gives

ze4�5= max
�∈601 �7

{

ye4�5− ye4�5
}

= ye4�5− min
�∈601�7

ye4�5

and the map y 7→ Hy operating on C4601M71�5 as
Hy4�5= min�∈601 �7 ye4�5 is nonexpansive. �
Lemma 5. Let ì denote the set of all the restrictions to
601M7 of the pairs 4h1�5 where h ∈ K and � is the cor-
responding network loading. Then ì is a bounded and
weakly closed subset of Lp401M5k where k is the dimen-
sion of the tuple 4h1�5, namely k = �P� + 2�E� + 2�P��E�.

Proof. From Lemma 3 we know that all flows 4h1�5∈ì
are supported on 601M7, while (24) and Lemma 2 imply
that they are uniformly bounded in Lp401M5. Let us
take a weakly convergent net 4h�1��5 ⇀ 4h1�5 with
4h�1��5∈ì. It is clear that conditions (23) and (24) are
stable under weak limits so that � satisfies these equations.
In order to show (25) it suffices to pass to the limit in

∫ T �
e 4�5

0
f �−

P1 e4�5d� =

∫ �

0
f �+

P1 e4�5d�0 (26)

The right-hand side converges to
∫ �

0 f +

P1 e4�5d� while the
integral on the left can be written as the sum

∫ T �
e 4�5

0
f �−

P1 e4�5d� =

∫ Te4�5

0
f �−

P1 e4�5d� +

∫ T �
e 4�5

Te4�5
f �−

P1 e4�5d�0

The first term on the right converges to
∫ Te4�5

0 f −
P1 e4�5d�

while the second converges to zero. Indeed, letting q =

p/4p− 15, by Hölder’s inequality we have
∣

∣

∣

∣

∫ T �
e 4�5

Te4�5
f �−

P1 e4�5d�

∣

∣

∣

∣

¶ �f �−

P1 e�p
q
√

�T �
e 4�5− Te4�5�

so the conclusion follows since 0 ¶ f �−
P1 e4�5 ¶ �e implies

�f �−

P1 e�p ¶ �e
p
√
M , and according to Lemma 4 we have

T �
e 4�5 → Te4�5. Hence, we may pass to the limit in (26),

which proves that w satisfies (25) and therefore 4h1�5 ∈ì
as was to be proved. �
Lemma 6. The maps h 7→ Te defined by the network
loading procedure are weak-strong continuous from K ⊂

Lp401 T 5P to C4601M71�5.

Proof. Take a weakly convergent net h� ⇀h in K and let
�� be the corresponding network loading. From Lemma 3
we know that the net �� is bounded in Lp401M5, while
Lemma 5 implies that any weak accumulation point of
w� is a network loading for h. Since the latter is unique,
it follows that w� ⇀ w. In particular f �+

e ⇀ f +
e weakly

in Lp401M5 so that the conclusion T �
e → Te strongly in

C4601M71�5 is a consequence of Lemma 4. �
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Lemma 7. For each P ∈P the map h 7→ lPh defined by the
network loading procedure is weak-strong continuous from
K ⊂ Lp401 T 5P to C4601 T 71�5.

Proof. Let P = 4e11 e21 0 0 0 1 ek5. Set Mi = T + i� with �
as in the proof of Lemma 3, and consider the restrictions
Tei 2 601Mi−17→ 601Mi7 so that for all � ∈ 601 T 7

lPh 4�5= Tek � · · · � Te1
4�50 (27)

By Lemma 6 the maps h 7→ Tei are weak-strong continuous,
so the conclusion follows by noting that composition is a
continuous operation. More precisely, the map 4f 1 g5 7→

g � f defined on the spaces

�2 C4601Mi−171 601Mi75×C4601Mi71 601Mi+175

→C4601Mi−171 601Mi+175

is a continuous map (with respect to uniform convergence).
Indeed, consider a strongly convergent net 4f �1 g�5 →

4f 1 g5. Then for each � ∈ 601Mi−17 we have

�g� � f �4�5− g � f 4�5�¶ �g�4f �4�55− g4f �4�55�

+ �g4f �4�55− g4f 4�55�0

The first term on the right can be bounded by �g� − g��,
which tends to 0, while the second term also tends to
zero uniformly in � since g is uniformly continuous and
�f � − f �� tends to zero. �

5.4. Existence of Dynamic Equilibrium for a
Single Origin-Destination

With these preliminary results we may now prove that the
variational inequality VI4K1A5 has a solution, and the cor-
responding network loading gives a dynamic equilibrium.

Theorem 7. Let u ∈ Lp401 T 5 with 1 <p<� and assume
that �e > 0 on every link e. Then there exists a dynamic
equilibrium.

Proof. According to Lemma 7 the map h 7→ A4h5 is
weak-strong continuous from K to X∗ so that the varia-
tional inequality VI4K1A5 has a solution h ∈K. We claim
that the corresponding flow-over-time f given by Proposi-
tion 3 is a dynamic equilibrium. If not, by Theorem 1 we
may find � > 0 and a link e = vw y E ′

� such that for all
� > 0 we have fe4lv4�55l

′
v4�5 > 0 on a subset of positive

measure in 6�1 � + �7. Choose � small enough so that E ′
�

decreases on 6�1 � + �7 and choose P ∈ P with e ∈ P and
hP 4�5 > 0 on a subset I ⊆ 6�1 �+�7 with positive measure.
Take also P ′ ∈ P with all links in E ′

�+� so that P ′ is opti-
mal for each � ∈ 6�1 � + �7 (that is, P ′ is an s-t path in
the �-shortest-path graph G�), and let h′ ∈ K be identical
to h except for � ∈ I where we transfer flow from P to P ′,

that is h′
P 4�5= 0 and h′

P ′4�5 = hP ′4�5 + hP 4�5. A direct
calculation then gives

0 ¶ �Ah1h′
−h� =

∫

601T 7
�Ah4�51h′4�5−h4�5�d�

=

∫

I
4lP

′

h 4�5− lPh 4�55hP 4�5d�0

Since P ′ is optimal for all � ∈ I while P is not (since
e y E ′

�), it follows that lP
′

h 4�5 < lPh 4�5, which yields a
contradiction. �

5.5. Extension to Multiple Origin-Destination Pairs

The extension to multiple origin-destinations is straightfor-
ward. For each pair st ∈ N × N let ust ∈ Lp401 T 5 be the
corresponding inflow (possibly zero) and let Pst be the set
of s-t paths which is assumed nonempty if ust is nonzero.
A feasible flow-over-time is now a family of inflows f +

e =
∑

st f
+
e1 st and outflows f −

e =
∑

st f
−
e1 st satisfying flow con-

servation for each st pair, namely, for all nodes v 6= t and
almost all � ∈�
∑

e∈�+4v5

f +

e1 st4�5−
∑

e∈�−4v5

f −

e1 st4�5

=

{

ust4�5 for v = s1

0 for v ∈ V \8s1 t90
(28)

The definitions of queue lengths, link travel times, and path
travel times remain unchanged, and we only need to intro-
duce the origin-destination optimal times

lst4�5= min
P∈Pst

lP 4�50

Dynamic equilibrium holds when for each pair st and
all e = vw ∈ E we have f +

e1 st4�5 = 0 for almost all � ∈

lsv4�\äs
e5 where äs

e denotes the set of all times � at
which link e = vw is active for origin s, namely lsw4�5 =

Te4lsv4�55.
Denoting P the union of all the Pst’s, the network load-

ing procedure in §5.2 remains unchanged as it did not
depend on having a single origin-destination pair. Also the
results in §5.3 are easily extended by considering K as the
set of path-flows h= 4hP 5P∈P ∈ Lp401 T 5P, which are non-
negative and that satisfy flow conservation for each pair st,
that is
∑

P∈Pst

hP = ust0

For the bound z̄ =
∫ T

0 u4�5d� of the queue lengths in
Lemma 3 it suffices to take u as the sum of all the ust’s.
With these preliminaries, the proof of Theorem 7 is readily
adapted to establish the existence of a dynamic equilibrium
for multiple origin-destinations.

Theorem 8. Let ust ∈ Lp401 T 5 with 1 <p<� the inflows
for multiple origin-destination pairs st ∈ N × N , and
assume that �e > 0 on every link e. Then there exists a
dynamic equilibrium.
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6. Concluding Remarks
Although dynamic traffic assignment has received consid-
erable attention since the seminal work by Merchant and
Nemhauser (1978a, b), the existence and characterization
of dynamic equilibria still poses many challenging ques-
tions. For a review of the literature and open problems we
refer to Peeta and Ziliaskopoulos (2001). Several of the
previous studies have relied on a strict FIFO condition that
requires the exit time functions Te4 · 5 to be strictly increas-
ing. For instance, Friesz et al. (1993) consider a situation
in which users choose simultaneously route and departure
time, with link travel times specified as De4ye5= �eye +�e

where ye = F +
e 4�5 − F −

e 4�5 is the total flow on link e at
time � and �e1�e are strictly positive constants. Strict FIFO
was shown to hold for such linear volume-delay functions,
which allowed to characterize the equilibrium by a vari-
ational inequality, though no existence result was given.
Strict FIFO was also used by Xu et al. (1999) to inves-
tigate the network loading problem, namely, to determine
the link volumes and travel times that result from a given
set of path-flow departure rates. Shortly after, the existence
of equilibria was established by Zhu and Marcotte (2000)
under a strong FIFO condition that holds for linear volume-
delay functions (even in the case �e = 0), assuming in addi-
tion that inflows are uniformly bounded.

Unfortunately, as illustrated by the example in §2.5, strict
FIFO does not hold in our framework and these previous
results do not apply. This is somewhat surprising since we
also consider linear travel times. The subtle difference is
that we consider the queue length ze instead of the total
volume ye on the link. Note that the fluid queue model
could be cast into the linear volume-delay framework by
decomposing each link into a pure queueing segment with
travel time ze/�e (that is, �e = 1/�e, �e = 0), followed by a
link with constant travel time �e (that is, �e = 0, �e = �e).
Strict FIFO fails precisely because the queueing segment
has �e = 0. In this respect it is worth noting that our exis-
tence results do not require strict FIFO, as long as �e > 0,
and Theorem 5 holds even if �e = 0.

A general existence result for dynamic network equilib-
rium beyond strict FIFO was recently presented by Meunier
and Wagner (2010). Their model considers both route
choice and departure time choice and is based on a weak
form of strict FIFO: the travel time Te4 · 5 strictly increases
on any interval on which there is some inflow into the
link. This weaker property does hold in our context, and
the result applies provided that the inflow u4 · 5 belongs
to L�

loc4�5.
An interesting feature of the approach in §4, compared

with previous existence results, is that it provides a way to
construct the equilibrium. In this respect, our work owes
much to Koch and Skutella (2011). There are, however, sev-
eral differences. On the modeling side, we distinguish the
notion of dynamic equilibrium from the stronger dynamic
equilibrium condition (see Remark 1). Both concepts were
used interchangeably in Koch and Skutella (2011), although

they might differ as shown in Example 2. In particular,
our Theorem 1 precises Koch and Skutella (2011, Theo-
rem 1) which characterizes dynamic equilibria, not strong
equilibria. Also, Theorem 2 is an extension of Koch and
Skutella (2011, Theorem 2), which applies to the larger class
of dynamic equilibria and provides a sharper conclusion by
including the normalization condition. The existence and
uniqueness for NTF’s in Theorems 3 and 4 are new, and so is
the subsequent existence and uniqueness of a dynamic equi-
librium in Theorems 5 and 6. To the best of our knowledge,
the latter uniqueness result has not been observed previously
in the literature.

The constructive approach in §4 raises a number of ques-
tions. On the one hand, it would be relevant to know if the
step sizes computed in step (2) of the extension method are
bounded away from 0. In this case the �k’s would not accu-
mulate, and the equilibrium would be computed in finitely
many steps for any given horizon T . A related question
is whether a steady state could eventually be attained with
�= � at some iteration, in which case the algorithm would
be finite. A weaker but still difficult conjecture is whether
the queue lengths ze4 · 5 remain bounded as long as the
capacity of any s-t cut is large enough, for instance larger
than the inflow at any point in time. The difficulty for prov-
ing such a claim is that the flow across a cut can be arbi-
trarily larger than the inflow: the queueing processes might
introduce delay offsets in such a way that the flow entering
the network at different times reaches the cut simultane-
ously at a later date, causing a superposition of flows that
exceeds the capacity of the cut. On the other hand, while
it is easy to give a finite algorithm to compute thin flows
with resetting, the computational complexity of the problem
remains open. A polynomial time algorithm for this would
imply that for piecewise constant inflows one could com-
pute a dynamic equilibrium in polynomial time (in input
plus output).

Another interesting question is whether the constructive
approach in §4 can be adapted to deal with more general
inflows u4�5. More precisely, let N4l1u05 denote the unique
labels in a normalized thin flow of value u0 with resetting
on the set E∗ of all links e = vw with lw > lv + �e, and E ′

the set of links with lw ¾ lv +�e (see Proposition 2). Recall-
ing Theorems 2 and 4, an equilibrium could be computed
by solving the system of ordinary differential equations

l′4�5=N4l4�51u4�55

with initial condition lv405 equal to the minimum s-v travel
time with empty queues. The cumulative flows xe4�5 could
then be recovered by integrating a measurable selection of
the corresponding thin flows. The main difficulty here is
that the map N is discontinuous in l so that the standard
theory and algorithms for ordinary differential equations do
not apply directly. A final open problem is to extend the
constructive approach to multiple origin-destinations.
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Appendix. The Spaces L
p
loc4�5 and ACloc4�5

We denote L
p
loc4�5 the vector space of measurable functions

g2 �→� such that �g4 · 5�p is integrable on every bounded inter-
val. Similarly, ACloc4�5 is the vector space of functions h2 �→�
that are absolutely continuous on every bounded interval. For a
thorough study of absolutely continuous functions we refer to
Leoni (2009, Chapter 3). Here we just summarize a few facts
required in our analysis:

• For all 1 ¶ p¶� we have L
p
loc4�5⊆ L1

loc4�5.
• The primitive of any g ∈ L1

loc4�5 belongs to ACloc4�5. Con-
versely, every h ∈ ACloc4�5 is differentiable almost everywhere
with h′ ∈ L1

loc4�5 and

h4�5= h405+

∫ �

0
h′4�5d�0

• If f 1 g ∈ ACloc4�5 then their product fg and minimum
min8f 1 g9 are also in ACloc4�5.

• If f 1h ∈ ACloc4�5 we do not necessarily have f � h ∈

ACloc4�5, but this holds if either f is Lipschitz or h is monotone.
In both cases the following chain rule holds for almost all y ∈�:

4f �h5′4y5= f ′4h4y55h′4y50

• In particular, if h ∈ ACloc4�5 is monotone and g ∈ L1
loc4�5

we have the change of variable formula

∫ h4b5

h4a5
g4�5d� =

∫ b

a
g4h4y55h′4y5dy0

The following are more specific properties for which we could
not find a reference, so we include a proof.

Lemma 8. Let g2 � → �+ be a nonnegative function in L1
loc4�5

and 84ai1 bi59i∈I a possibly uncountable family of intervals. Then
g vanishes almost everywhere on each 4ai1 bi5 iff it vanishes
almost everywhere on

⋃

i∈I 4ai1 bi5. The statement also holds for
semi-open intervals of the form 6ai1 bi5 or 4ai1 bi7.

Proof. Assume with no loss of generality that all intervals are
nonempty. Since �4A5=

∫

A
g4�5d� defines a regular measure on

the Borel sets A⊆�, for ä =
⋃

i∈I 4ai1 bi5 we have

�4ä5= sup8�4K52 K compact1 K ⊆ä90

Now, each compact K ⊆ ä has a finite subcover K ⊆
⋃n

k=14aik
1 bik 5 so that

�4K5¶
n
∑

k=1

�44aik
1 bik 55=

n
∑

k=1

∫ bik

aik

g4�5d� = 00

It follows that �4ä5= 0, which implies that g4�5= 0 for almost
all � ∈ä and proves the first statement.

The other claims follow, since all three unions differ in count-
ably many elements. Indeed, consider for instance the set N =
⋃

i∈I 6ai1 bi5\
⋃

i∈I 4ai1 bi5. Each point z ∈ N must be an end-
point z = ai with the corresponding interval 4ai1 bi5 disjoint
from N . It follows that if aj ∈ N is another such point, the
corresponding intervals cannot overlap, and therefore there can
be at most countably many. A similar argument shows that
⋃

i∈I 4ai1 bi7\
⋃

i∈I 4ai1 bi5 is countable. �

Remark. Lemma 8 does not hold for closed intervals 6ai1 bi7. In
fact, every function g vanishes almost everywhere on each interval
6x1 x7 for x ∈� but clearly not necessarily on

⋃

x∈�6x1 x7=�.

Lemma 9. Let z ∈ ACloc4�5 with z4�5 = 0 for � < 0. Then the
following are equivalent:

(a) z4�5¾ 0 for all �,
(b) z4�5¶ 0 ⇒ z′4�5¾ 0 for almost all �,
(c) z4�5¶ 0 ⇒ z′4�5= 0 for almost all �.

Proof. Let N be a null set such that z′4�5 exists for all � yN .
[(a) ⇔ (b)] Under (a), for all � y N with z4�5 ¶ 0 we have

z4�5 = 0 so that z′4�5¾ 0, which gives (b). Conversely, suppose
that (b) holds but z4�5 < 0 for some �, and consider the small-
est �′ such that z4 · 5 remains negative on 4�′1 �7. Then z4�′5= 0,
whereas (b) implies z′4�5 ¾ 0 for almost all � ∈ 4�′1 �5 from
which we get the contradiction 0 > z4�5= z4�′5+

∫ �

�′ z
′4�5d� ¾ 0.

[(c) ⇔ (a)] Clearly (c) implies (b), which in turn implies (a).
Conversely, since (a) implies (b), it suffices to show that the set
A = 8� y N2 z4�5¶ 03 z′4�5 > 09 is countable, provided that (a)
holds. Indeed, for each � ∈ A we have z4�5 = 0 and we may
find � > 0 such that z4�′5 > 0 for all �′ ∈ I� = 4�1 � + �5. These
intervals I� do not meet A so they cannot overlap, and therefore
there can be at most countably many. �
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