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In this paper, a mechanical model is proposed to estimate the static response (stiffness, residual capacity,
deformed configuration, strain/strain distribution within cross-section, and deformation capacity) of a
rope asymmetrically damaged. In this study, damage corresponds to the complete rupture of one or more
rope components in a particular rope cross-section location. In the proposed model, the damaged rope is
assumed to behave as a nonlinear beam under biaxial bending and axial load with Bernoulli0s kinematic
hypothesis. Biaxial bending arises from the unbalanced radial contact forces within rope cross-section,
which are related to the initial helical geometry configuration of the rope components, due to the asym-
metric damage distribution. An efficient and robust iterative cross-sectional numerical algorithm is
implemented to estimate the asymmetric damaged rope capacity curve, stress and strain distributions
throughout rope cross-section and rope geometry deformation for a prescribed axial displacement of
the rope. The results given by the proposed model are found to be in good agreement with available static
tension tests on asymmetrically damaged small-scale (ropes diameter equal to 6 mm) polyester ropes
and their corresponding 3D finite element (FE) simulations with lower computational cost. Additionally,
compared to the solutions obtained by previous analytical models reported in the literature, the range of
applicability associated to the degree of damage to rope cross-section (number of broken rope compo-
nents) is extended.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Ropes are employed in many engineering applications including
cranes, lifts, mine hoisting, bridges, cableways, electrical conduc-
tors, offshore mooring systems and so on. This wide range of usage
demands ropes manufactures to provide different configurations of
ropes suited for different purposes, having a different number and
arrangement of rope components within the rope cross-section,
and rope components can be made of different materials such as
metal, natural and synthetic fibers [1,2].

Mechanical demands, abrasion, and environmental interaction
(corrosion, ultra-violet light, chemical, and heat exposures, etc.)
degrade the properties of the individual rope components contin-
uously during rope operational service. This degradation process,
that represents how damage in a rope evolves, could result in the
complete rupture of one of more rope component and eventually
will lead to rope failure. Damage to ropes, which could start during
rope transportation and installation, is complex and different for
each rope application, revealing the local operating parameters
and the characteristics of the rope selected [3].

The understanding of the interaction of the factors that induce
damage to rope and their dependence on the rope operational con-
ditions are essential to estimate rope service life at the design stage
and to establish the appropriate rope inspection methods and dis-
card criteria. Hence, the service life of a rope can be greatly
extended by following a planned program of installation, opera-
tion, maintenance, and inspection [3]. In this context, damage-tol-
erance property (i.e., the ability of a rope to withstand damage), is
an essential parameter for rope design, rope evaluation during
operational service, and for developing discard criteria according
to rope usage based on the residual strength and deformation
capacity that the damaged rope can sustain.

Several experimental [4–12] and theoretical [13–18] studies
have shown that the impact of the presence of broken rope compo-
nents on overall rope response (stiffness, residual strength and
deformation capacity) depends on the length of the rope, number
of broken rope components (degree of damage) and their distribu-
tions throughout rope cross-section (symmetric and asymmetric)
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and along the rope length, and rope construction. These studies
have mainly been conducted on steel wire ropes and synthetic
fiber ropes. In particular, if the rope length, type of rope construc-
tion, and location of the damaged cross-section are fixed, above
studies conclude that the effect of rope components breaks on rope
response is not always directly proportional to the equivalent loss
of cross-sectional area (the so-called net area effect) and asymmet-
ric damage distribution induces a lateral displacement of the rope
and a non-uniform strain (and stress) distribution throughout rope
cross-section, resulting in premature failure (deformation capac-
ity) of the asymmetrically damaged rope relative to the intact rope.
In addition, depending on the location of the broken components
throughout damaged cross-section (inner or outer cross-section
layers) potential strain localization around the failure region can
develop due to the contact interaction among the unbroken and
broken rope components, and as a result, a weaken cross-section
acts over a localized region. The existence of this weaken cross-sec-
tion can also cause the premature failure of rope components and
reduce the rope failure strain and the maximum load a damaged
rope is capable of resisting.

In this paper a simply mechanical model is proposed to estimate
the deformed configuration, stress–strain distribution within cross-
section and the capacity curve of an asymmetrically damaged rope
subjected to axisymmetric loading conditions. This model assumes
that an asymmetrically damaged rope behaves as a nonlinear beam
under biaxial bending and axial load with Bernoulli0s kinematic
hypothesis neglecting the potential incremental contribution of
broken rope components to overall rope response due to frictional
forces (strain localization around the failure region effect) [16].
Comparisons with available static tension tests on asymmetrically
damaged small-scale (ropes diameter equal to 6 mm) polyester
(PET) ropes [10], previous analytical model reported in the
literature [13,15], and 3D finite element (FE) simulations [18] are
performed to validate the proposed model.
2. Numerical and analytical models

In this section, the main results presented in [18] are summa-
rized in which 3D FE simulations (numerical models) were carried
out to estimate the effect of asymmetric damage distribution to
rope cross-section on rope response. The conclusions of these
numerical simulations were used as the basis for developing a sim-
plified and computational less expensive analytical model that
allows predicting static behavior of asymmetric damaged rope,
motivated by the computationally intensive 3D FE simulations.
The formulation of this analytical model is presented in detail in
this section.
2.1. Motivation: numerical models (FE simulations)

Beltran and Vargas [18] developed 3D FE models using the com-
mercial software ANSYS for a particular PET rope component con-
struction (hereafter referred as ropes) tested to failure (static
capacity test) by Li et al. [10]: 6 mm diameter rope comprised of
eight helical components (second layer of the rope) wound around
a straight core (first layer of the rope), with initial pitch distance p0

and helix angle h0 (angle between the longitudinal axis of the rope
and local axis of the rope components) equal to 81 mm and 9.5�
respectively. For modeling purpose, tested ropes geometry has
one hierarchical structure identified (helical components wound
around a central straight core) which defines the level of the rope
geometry which in this case is one (i.e. one-level rope). These
one-level two-layer ropes had initial lengths (L0) equal to
610 mm (approximately 8p) and they were damaged prior loading
by cutting a prescribed number of rope components (degree of
damage) at ropes midspan that were distributed symmetrically
and asymmetrically within rope cross-sections.

The boundary conditions of each 3D FE model considered one
end section of the rope fully clamped and at the other end an axial
displacement history is specified and the cross-section is pre-
vented from rotating. For the particular case of asymmetrically
damaged ropes, 3D FE simulations demonstrated that these ropes
deflect laterally inducing a non-uniform axial strain distribution
throughout rope cross-sections and a reduction in their residual
strengths and deformation capacities relative to the net area effect
concept (model that just neglects the contribution to rope response
of the broken components). In order to illustrate the above general
conclusions (details can be found in [18]), the deformed configura-
tion and axial strain (natural strain) distribution throughout rope
cross-section and along the rope length for the rope W12 given
by 3D FE simulations are depicted in Fig. 1. The notation used to
identify a particular cross-section is as follows: Wij where W refers
to the cross-section and the indices i and j refer to the broken rope
components (i and j vary from 0 to 9) based on the undamaged
rope cross-section (Wu) also shown in the figure (Fig. 1a and b).
The degree of asymmetry of the cross-section is quantified by a
scalar quantity termed the index of asymmetry (IA), which cap-
tures the shift of the center of stiffness of the rope cross-section
from its centroid due to the asymmetry of damage distribution
as explained in Appendix A [18]. As the values of the parameter
IA vary in a nonlinear fashion with respect to the rope axial strain
due to the nonlinearity of the constitutive law of the PET rope com-
ponents, its initial value, (IA)0, is considered as a representative
measure of the degree of asymmetry of the rope cross-section as
discussed in [18].

To be consistent with previous researchers [10,11,17,18], mea-
sured and predicted damaged rope axial load-axial strain curves
are plotted up to the maximum load and its corresponding strain,
that represent the onset of damaged rope failure in which the sub-
sequent fracture process of the rope cross-section is not part of this
study. Consequently, these pairs of data are assumed to be the fail-
ure axial loads and failure axial strains of the analyzed ropes. This
assumption is supported by several experimental and analytical
research studies available in the literature ([11,19–22]) that
conclude that after the rope reaches its maximum tensile, it
experiences softening in a very small region of the plane axial
load–strain in comparison to the region that the rope develops
its maximum capacity.

Based on the results shown in Fig. 1c, the maximum axial
strains are developed in the adjacent rope components to broken
components (shown in gray color) and the minimum values are
developed in the opposite rope components. Based on the conclu-
sions drawn in [18], the gradient of the axial strain distribution
throughout damaged rope cross-section increases as the (IA)0

(hereafter referred as IA) value gets larger, in which the ratios
between the maximum and minimum strain values at the onset
of ropes failure, for example, are 1.15, 1.20 and 1.30 for ropes
W1, W12 (shown in Fig. 1c), and W1234, respectively. As a reference,
this ratio value for the case of an initially undamaged rope (Wu) is
1.11. Consequently, due to the increasing gradient in the axial
strain distribution, an increasing additional reduction of the resid-
ual strength relative to the net area effect (reduction in rope
strength is proportional to the loss of cross-sectional area) occurs
while the deformation rope capacity (failure strain) decreases com-
pared to the intact rope value: maximum additional reduction of
the residual strength is close to 10% for rope W1234; and for the
same rope, 7% in reduction of failure axial strain value relative to
the intact rope (Table 1).

For the particular rope construction studied in [18], unbroken
rope components of an asymmetric damaged rope develop con-
stant axial strain values along the ropes lengths which suggests
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Fig. 1. (a) Rope cross-section and nomenclature of its components; (b) rope W12; (c) Deformed configuration and strain distribution within rope cross-section and along rope
length of rope W12 given by 3DFE simulation.

Table 1
Summary of the results given by the 3D FE simulations: asymmetric damaged ropes.

Rope (IA)0 Axial strain at failure Residual strength (kN) Lateral deflection (mm)

Exp. Data 3D FE model Exp. Data 3D FE model Net area effect model e = 0.025 e = 0.071

Wu 0 0.115–0.127 0.117 22.3–25.6 23.5 – –
W136 0.093 0.097–0.114 0.115 12.2–17 15.6 15.7 0.23 0.27
W1 0.16 0.119–0.12 0.115 19.6–20.5 20.7 20.9 0.4 0.45
W12 0.31 – 0.112 – 17.7 18.3 0.93 1.02
W123 0.44 0.079–0.11 0.11 9.7–11.5 14.7 15.7 1.5 1.61
W1234 0.54 – 0.109 – 11.9 13.1 1.96 2.08
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that the damaged responses of the ropes analyzed in this study are
length-independent (illustrated in Fig. 1c with the particular rope
W12), except near the ropes ends where axial strain distribution
strongly depends on the boundary conditions of the rope. Lastly,
the lateral deflection of a rope, whose direction is represented by
the arrows in Fig. 1c relative to its initial straight configuration
for the rope W12, increases as the degree of asymmetry of the rope
cross-section gets bigger as presented in Table 1 for two rope axial
(natural) strain (e) values (0.025 and 0.071). The maximum lateral
deflection reported is for rope W1234 (e = 0.071) which value is
equal to 2.08 mm, which is about 35% of the rope diameter and
the deflection-to-rope length ratio is equal to 0.0035 that can be
considered a small perturbation of the initial rope geometry.
Although 3D FE simulations predict that the asymmetric damaged
distribution to rope cross-section slightly perturb the initial rope
geometry, its effect on rope residual strength and rope deformation
capacity should be properly considered in order to estimate rope
service life at the design stage and to establish the appropriate rope
inspection methods and discard criteria as previously commented.
Despite 3D FE models provide accurate details and good estimation
on asymmetrically damaged rope response, they demand a high
computational cost [18]. Hence, the use of simpler and computa-
tionally cheaper analytical models that can provide comparable
results relative to 3D FE simulations can be more attractive for rope
design and performance prediction.

2.2. Proposed analytical model

The description of a proposed simplified mechanical model
developed to account for the loss of symmetry of rope cross-sec-
tion due to the failure of individual rope components is presented
hereafter in detail. It is assumed that the response of an asymmet-
ric damaged rope can be accurately predicted by uncoupled biaxial
rope responses (i.e., two uniaxial bending analyses). Therefore, the
proposed model is based on the equations that govern the response
of a nonlinear planar beam considering Bernoulli0s kinematic
hypothesis (plane sections of a beam remain plane and normal to
its centroidal axis after deformation) and assumptions adopted
based on the results given by 3D FE simulations previously men-
tioned. In the following, the proposed model is referred as NLBM
(nonlinear beam model).

Consider the geometry of deformation (assuming Bernoulli0s
kinematic hypothesis) and the equilibrium of a planar (xy plane)
rope segment [x, x + Dx] as shown in Fig. 2 where u(x) is the dis-
placement of the centroid in the axial direction; v(x) is the dis-
placement of the centroid in the transverse direction; k(x) is the
rotation of the normal to the cross-sectional plane (not shown in
the figure); H(x) and Vy(x) are the horizontal and vertical forces rel-
ative to the axial and transverse direction of the undeformed rope;
Mzz(x) is the bending moment around z axis; and h(n), qy(n), and
mzz(n) are distributed axial force, transverse force and bending
moment respectively along the rope segment.

From the balance of forces in the axial and transverse directions,
the moment equilibrium about the point P (Fig. 2), and considering
the limit as Dx ? 0, the following equilibrium equations are
obtained [23]

dH
dx
þ hðxÞ ¼ 0 ð1Þ

dVy

dx
þ qyðxÞ ¼ 0 ð2Þ

dMzz

dx
þ Vy 1þ du

dx

� �
� H

dv
dx
þmzzðxÞ ¼ 0 ð3Þ

Considering that the slopes of the deformed longitudinal axis of the
rope (beam) are small compared to unity, small angle approxima-
tion assumption is used in this study. Hence, rope curvature can
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Fig. 3. Radial equilibrium in an asymmetric damaged rope cross-section.
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be approximated by the second derivative of the lateral displace-
ment v(x) (respect to the initial rope configuration); and by using
the Bernoulli0s kinematic hypothesis and the secant formulation
to estimate the bending stiffness [24], the moment–curvature rela-
tionship for a rope is given by

Mzz ¼ ðEIzzÞsec
d2v
dx2 ð4Þ

where (EIzz)sec is the secant bending stiffness of the cable respect to
the z-axis. In the above equation, it is assumed that the relative slip
among rope components is prevented; thus rope components are
bent around the rope neutral axis (i.e., stick state [24]). Combining
the first derivative of Eqs. (3) to (2) and (4) along with the fact that
axial strain is constant along rope components (Fig. 1), which
implies that d2u(x)/dx2 = 0, and considering the absence of distrib-
uted axial force h(n) and bending moment mzz(n), lead to the follow-
ing fourth order differential equation

ðEIzzÞsec
d4v
dx4 � qyðxÞ 1þ duðxÞ

dx

� �
� HðxÞd

2v
dx2 ¼ 0 ð5Þ

Similarly, the differential equation that governs the rope deflection
w(x) in the xz plane is given by

ðEIyyÞsec
d4w

dx4 � qzðxÞ 1þ duðxÞ
dx

� �
� HðxÞd

2w

dx2 ¼ 0 ð6Þ

where qz(x) is the distributed force along the rope length in the z
direction and (EIyy)sec is the secant bending stiffness of the cable
respect to the y-axis

The values of the distributed forces qy(x) and qz(x) are estimated
based on the same assumption established in [15]: radial forces
exerted on rope core are not in equilibrium due to the loss of sym-
metry of the rope cross-section. Hence, considering the helical nat-
ure of the rope components that lay in the second layer of the rope,
net transverse forces in both xy and xz planes, qy(x) and qz(x)
respectively, act perpendicular to rope longitudinal (centroidal)
axis inducing a lateral deflection in the �y1 direction as shown in
Fig. 3, in which y1 is the axis of symmetry of the damaged rope
cross-section. Neglecting the shear forces in rope components,
the value of the radial line body force X2 can be estimated as [25]

X2 ¼ j2T2 ð7Þ

where j2 and T2 is the curvature and tensile load of a helical rope
component located in layer 2, for a given value of the rope axial
strain e. In order to illustrate the process to compute the aforemen-
tioned transverse forces, the particular case of the damaged rope
cross-section shown in Fig. 3 is analyzed assuming that the unbro-
ken rope components are mainly in radial contact with the rope
core. The radial line body force rope component 4 is unbalanced
due to the failure of rope component 8 (Fig. 3). Hence, the net line
transverse forces along the longitudinal axis of the rope in both xy
and xz planes are given by

qy ¼
�j2T2 cos u

cos h2
ð8aÞ

qz ¼
�j2T2 sin u

cos h2
ð8bÞ

where u is the swept angle of the rope components and h2 is the
helix angle of the rope components of the second layer. Thus, for
any type of asymmetric damage distribution to rope cross-section,
the net transverse forces qy(x) and qz(x) can be expressed as:

qy ¼ �KðeÞ cos u ð8cÞ

qz ¼ �KðeÞ sin u ð8dÞ

where de function K(e) captures the unbalanced transverse force in
the y1 direction as already illustrated in Eqs (8a) and (8b) projected
on the longitudinal axis of the rope [16]. In order to capture the
dependence of the z1y1 plane (Fig. 3) on the helical nature of rope
components in the initial rope configuration, the swept angle u is
related to the position along the rope longitudinal axis x throughout
the relationship u = (2px/p), where p is the pitch distance of rope
components. As such, the damaged rope is analyzed with a constant
cross-section in which the axes zy and z1y1 (principal axes of the
cross-section) coincide and the helical nature of rope components
in the initial rope configuration is captured by the net transverse
forces qy(x) and qz(x).

The boundary conditions specified to the rope model are similar
to the ones defined in the 3D FE models [18] and during the ropes
tests [10] which are depicted in Fig. 4, where the notation (�)0 = d(�)/
dx is used for the first derivate:

� Section A (x = 0) of the rope is fully clamped: vx=0 = 0; wx=0 = 0;
v0x=0 = 0; and w0x=0 = 0.
� At section B (x = L) an axial displacement history is specified

(ux=L = Du) where L is the updated rope length; and the cross-
section is prevented from rotating and laterally deflecting:
vx=L = 0; wx=L = 0; v0x=L = 0; and w0x=L = 0.

The Eqs. (5) and (6) have closed-form solutions for a given value
of rope axial strain e, considering the general expressions for the
forces qy(x) and qz(x) given in Eqs. (8c) and (8d) respectively. The
general solution for v(x) and w(x) are given by

vðxÞ ¼ az

bzc2 þ c4 cosðcxÞ þ C1
e
ffiffiffiffi
bz

p
x

bz
þ C2

e�
ffiffiffiffi
bz

p
x

bz
þ C4xþ C3 ð9Þ

wðxÞ ¼ ay

byc2 þ c4 sinðcxÞ þ C5
e
ffiffiffiffi
by

p
x

by
þ C6

e�
ffiffiffiffi
by

p
x

by
þ C8xþ C7 ð10Þ



qy 

qy 
qz 

qz 

Fig. 4. Sketch of the loads and boundary conditions of the model.
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where az(e) = �K(e)(1 + Du/L)/(EIzz)sec; ay(e) = �K(e)(1 + Du/L)/
(EIyy)sec; bz(e) = H(e)/(EIzz)sec; by(e) = H(e)/(EIyy)sec; and c = 2p/p.
Accounting for the boundary conditions previously specified, the
expressions for the parameters Ci (i = 1, . . ., 8) are

C1 ¼ 0; C2 ¼ 0; C4 ¼ 0; C3 ¼ �
az

bzc2 þ c4 ð11aÞ

C5 ¼ �
Laybye�L

ffiffiffiffi
by

p

cðc2 þ byÞ 2e�L
ffiffiffiffi
by

p
þ L

ffiffiffiffiffi
by

p
þ L

ffiffiffiffiffi
by

p
e�L

ffiffiffiffi
by

p
� 2

� � ð11bÞ

C6 ¼ �
Layby

cðc2 þ byÞ 2e�L
ffiffiffiffi
by

p
þ L

ffiffiffiffiffi
by

p
þ L

ffiffiffiffiffi
by

p
e�L

ffiffiffiffi
by

p
� 2

� � ð11cÞ

C7 ¼ �
Layðe�L

ffiffiffiffi
by

p
� 1Þ

cðc2 þ byÞ 2e�L
ffiffiffiffi
by

p
þ L

ffiffiffiffiffi
by

p
þ L

ffiffiffiffiffi
by

p
e�L

ffiffiffiffi
by

p
� 2

� � ð11dÞ

C8 ¼ �
2ayðe�L

ffiffiffiffi
by

p
� 1Þ

cðc2 þ byÞ 2e�L
ffiffiffiffi
by

p
þ L

ffiffiffiffiffi
by

p
þ L

ffiffiffiffiffi
by

p
e�L

ffiffiffiffi
by

p
� 2

� � ð11eÞ

Based on the Bernoulli0s kinematics hypothesis, the assumption of
small lateral displacements, small strains, and small rotations for
each iterative procedure at each step of the proposed numerical
algorithm later explained; and the expressions for the transverses
displacements v(x) and w(x) given by Eqs. (9) and (10) respectively,
the displacement field of a generic point at section x can be referred
to the displacements u(x), v(x) and w(x) of the centroid at same sec-
tion as follows

uxðxÞ ¼ uðxÞ � y
dvðxÞ

dx
þ z

dwðxÞ
dx

ð12aÞ

uyðxÞ ¼ vðxÞ ð12bÞ

uzðxÞ ¼ wðxÞ ð12cÞ

where ux(x), uy(x), and uz(x) denote the displacements in the x, y,
and z directions respectively (Fig. 3) of the generic point ((z,y) loca-
tion at rope cross-section) under consideration. In this formulation,
the effect of the angle of twist of the cable on its lateral deflections
v(x) and w(x) is neglected. Consequently, the axial strain et of the
generic point is estimated as

etðxÞ ¼
duxðxÞ

dx
ð13Þ

As previously stated, the particular application of the proposed
model presented in this study is focused on PET asymmetrically
damaged ropes. The nonlinear constitutive response of the rope
components is directly obtained from the experimental data
reported in [10]. As such, the degradation of the mechanical proper-
ties of the PET rope components experienced when they are
subjected to stretching is properly accounted for [26]. A polynomial
function up to the fifth degree is used to express the normal stress
rt of a generic point as a function of its normal strain et, having the
following form

rtðetÞ ¼ rt max

X5

k¼1

ck
et

et max

� �k
" #

ð14Þ

where the coefficients ck are constitutive parameters that are chosen
to provide a best fit to measured data for rope components; and
rtmax (897 MPa) and etmax (0.117; natural strain) are the maximum
stress and strain at the onset of rope component failure respectively.

In the following an iterative cross-sectional displacement con-
trol algorithm developed based on the solutions of Eqs. (5) and
(6) to asses the capacity curves of asymmetrically damaged ropes
is presented for each increment of the rope axial displacement,
in which the unbroken rope components are assumed to behave
as fiber elements (i.e., they only develop uniaxial state of stress).
This algorithm proceeds with the following steps for the jth incre-
mental step of the analysis:

Step 1: Given a rope axial displacement increment value Duj, an
initial horizontal force value Hj

i (i = 0), considering the initial
helical geometry of the rope components (i.e., straight rope)
and their individual contribution to rope axial load (discrete
formulation), is estimated as follows

uj ¼ uj�1 þ Duj ð15aÞ

Hi
j ¼

X
k

Akrk
uj

L0
cos2 ðh0Þk

� �
cos ðh0Þk ð15bÞ

where uj is the total rope axial displacement in the jth incremen-
tal step of the analysis; rk is the normal stress as a function of
the axial strain computed from Eq. (14) considering the centroid
of the kth unbroken rope component as the generic point t and Ak

is the cross-sectional area of the kth unbroken rope component.
For simplicity, in the above equation, the linearized strain–
displacement equation for rope components is utilized [27].
Step 2: Compute the net transverse forces (qy)j

i(x, ej) and (qz)j
i

(x, ej) through Eqs. (8c) and (8d) respectively, considering the
corresponding cross-section damage distribution to evaluate
the function Kj

i(ej) also considering the initial helical geometry
of the rope components.
Step 3: Determine the lateral deflections (i.e. the updated rope
configuration (i ? i + 1)) v(x)j

i+1 and w(x)j
i+1 through Eqs. (9)–

(11e) for the total rope axial displacement given in the jth
incremental step of the analysis uj (Eq. (15a)). To this end, use
an initial average secant modulus (Esec)0 (i = 0) defined as

ðEsecÞ0 ¼

X
k

ðAEðek0ÞÞk
� �
X

k

Ak

ð16Þ
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where subscript k accounts for the unbroken rope components
and ek0 is the axial strain of the kth unbroken rope component
for an arbitrary small rope axial strain value computed consider-
ing straight rope configuration.
Step 4: The displacement field uxk(x)j

i+1, vk(x)j
i+1 and wk(x)j

i+1 is
computed for the kth unbroken rope component through Eq.
(12) considering the centroid of each unbroken rope component
as the generic point (coordinates (zk, yk)). Based on this dis-
placement field, the curvature of each unbroken rope compo-
nent can be calculated in its deformed configuration. Let
(nk)j

i+1 = (uxk(x)j
i+1, vk(x)j

i+1, wk(x)j
i+1) be the updated (i ? i + 1)

position vector of the kth unbroken rope component; hence
its updated curvature is given by [28]

ðjkÞiþ1
j ¼

ððnkÞ
0iþ1
j � ðnkÞ

0iþ1
j ÞððnkÞ

00iþ1
j � ðnkÞ

00iþ1
j Þ�ððnkÞ

0iþ1
j � ðnkÞ

00iþ1
j Þ

2h i1=2

ððnkÞ
0iþ1
j � ðnkÞ

0iþ1
j Þ

3=2

ð17Þ

where (�)00 = d2(�)/dx2 is used for the second derivate.
Step 5: Compute the axial strain value (ek)j

i+1 for the kth unbro-
ken rope component also considering its centroid as the generic
point using Eq. (13). The expression for ux(x) (uxk(x)j

i+1) given by
Eq. (12a) is multiplied by the factor cos2hk to account the helical
shape of the kth unbroken rope component. This factor
assumes, based on the results given by 3D FE models, that the
deformed configuration of the unbroken rope components
obtained from Eqs. (9) and (10) is close to a circular helix as
shown in Fig. 5. In this figure, for a wide range of IA values
(W136, W1, W123, and W1234 ropes), it is shown that ropes curva-
tures in their deformed configurations computed from adjusted
first order circular helix curves match quite well (ratios values
close to 1) with the curvatures obtained from Eq. (17), in which
the normalized curvatures for each rope are represented in the
horizontal axis. For computational purposes, it is assumed that
the lateral deflection of the rope induces a helix radius change
of each rope component as proposed in [15]. As such, the value
the updated value of the helix angle hk is obtained from the
expression tan(hk)j

i+1 = 2p(Rhk)j
i+1/p(ej), where (Rhk)j

i+1 is the
equivalent helix radius of the kth unbroken rope component
in its deformed configuration for the iteration (i + 1) (distance
from the centroid of the rope core to the centroid of the rope
component) and p(ej) is the updated pitch distance related to
the rope axial strain ej at the jth incremental step of the
analysis.
Step 6: The normal stress for the kth unbroken rope component
(rk)j

i+1 is calculated using Eq. (14) considering its centroid as the
generic point. It is assumed that the normal stress is distributed
uniformly throughout rope component cross-section; thus, the
axial force developed by the kth unbroken rope component is
given by (Tk)j

i+1 = Ak(rk)j
i+1.

Step 7: Compute the updated horizontal force value Hj
i+1

(i ? i + 1) as follows
0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
Normalized Curvature

(H
el

ix
 C

ur
va

tu
re

)/(
D

ef
or

m
ed

 
R

op
e 

C
ur

va
tu

re
)

W136
W1
W123
W1234

Fig. 5. Curvature of deformed rope configurations versus helical shape curvature.
Hiþ1
j ¼

X
k

ðTkÞiþ1
j cos ðhkÞiþ1

j

" #
ð18Þ

Step 8: Compute the error value of the horizontal force (errH)j
i+1

as

ðerrHÞiþ1
j ¼

jHiþ1
j � Hi

jj
Hi

j

ð19Þ

where | | is the modulus function. If the value of (errH)j
i+1 is less

than a prescribed tolerance (5E-4 used in this study) the horizon-
tal force value for the jth increment in axial displacement Duj is
Hj

i+1, and a new analysis is performed for the (j + 1)th increment
in axial displacement Duj+1. If not, compute an average secant
modulus (Esec)j

i+1 and repeat from Step 2 to Step 8 considering
the updated values of the deformation geometry of the unbroken
rope components. The expression to compute (Esec)j

i+1 is given by

ðEsecÞiþ1
j ¼

X
k

ðAEðekÞÞk
� �iþ1

jX
k

Ak

ð20Þ

which is a necessary value to solve the Eqs. (5) and (6) accounting
for the rope deformed configuration in the (i + 1) iteration during
the jth analysis step.

3. Numerical examples and discussion

The validation of the proposed model is presented in a concise
manner. To this end, comparisons between rope axial load and
rope axial strain curves obtained from 3D FE simulations, NLBM
(proposed model), two linear models reported in the literature
[13,15] and experimental data [10] are shown in Fig. 6 for three
(W136, W1, and W123) of the five ropes analyzed in this study. The
linearity of the aforementioned analytical models is meant to the
linearization of the strain–displacement equation for rope compo-
nents and the assumption of linear deflection theory (axial loads
and transverse deflections are uncoupled). Damaged cross-sections
have been incorporated to the plots as a reference in which broken
rope components are colored gray.

Predicted curves obtained from Lanteigne (Appendix B) and
MacDougall and Bartlett (M-B) (Appendix C) linear models for
ropes W136 and W1 are almost identical and consequently they
show similar behavior when compared with 3D FE simulations
curves: good correlation of the rope tangent stiffness but they
underestimate both rope residual strength and rope axial failure
strain in about 10%. Experimental data curves of rope W1 are
slightly softener than the aforementioned predicted curves in
which the underestimation of rope residual strength and rope axial
failure strain increases to 15%. For the case of experimental curves
of rope W136, two of them (Exp. data 2 and Exp. data 3 curves)
failed earlier and Exp. data 1 curve is stiffer than all the predicted
curves and the associated measured residual strength and rope
axial failure strain values are overestimated by the Lanteigne and
M-B models in 17% and 8% respectively. These two linear analytical
models do not provide satisfactory results for greater degree of
asymmetry of the type of damaged rope cross-sections considered
in this study (IA > 0.16, value for W1 rope) due to the large curva-
tures and large lateral deflection of the ropes estimated. In these
cases, asymmetric damaged ropes responses became considerable
more flexible than 3D FE and experimental curves because oppo-
site unbroken rope components to damage develop compression
stresses [29] as discussed later in the paper (Fig. 10).

For the case of the predicted curves obtained from the NLBM,
they are slightly stiffer than the curves predicted by Lanteigne,
M-B and 3D FE models comparing quite well with Exp. data 1
curves for both W136 (IA = 0.09) and W123 (IA = 0.44), although
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W123.

90 J.F. Beltrán, E. De Vico / Engineering Structures 86 (2015) 84–98
the latter fails earlier probably due to a progressive damage of rope
components around rope terminations as reported by the
researcher who conducted the tests [10]. The other two experi-
mental curves of rope W123 (Exp. data 2 and exp. data 3) bound
the predicted responses (3D FEM and NLBM curves), but reaching
smaller axial failure strain values probably for the same reason
previously mentioned. Two experimental curves (Exp. data 1 and
Exp. data 2) of rope W1 and NLBM curve match very close up to
a rope axial strain value equal to 0.06; for greater strain values,
these curves start diverging being the NLBM curve an upper bound
for experimental curves. Contrary to the results given by the Lan-
teigne and M-B models, NLBM simulations provide better esti-
mates for a broader degree of asymmetry values (IA values)
when compared to the results extracted from a traditional and well
accepted 3D FE approach. In Tables 2 and 3, a summary of the
residual ropes strengths and failure axial strains is provided for
IA values that range from 0.09 (W136 rope) to 0.54 (W1234 rope)
respectively, including the values associated to the intact rope
(Wu). The NLBM simulations overestimate in a range of [8%, 12%]
the residual strength, in which the lower bound is related to the
comparison of the W136 rope and the upper bound to the W1234

rope; and overestimate as well in less than 2% the failure axial
strain relative to 3D FE models results. If the net area effect model
is used to estimate the residual strength value of a particular dam-
aged rope, the contribution to rope response of the broken rope
components is just neglected and the intact rope response curve
is multiplied by the parameter qA that represents the remaining
cross-sectional area of the rope. In the following paragraphs, the
relationship between the variation of the residual rope strength
and failure axial strain values provided by the numerical and ana-
lytical models and the parameter qA is analyzed in detail.

In order to establish the dependency of the residual strengths
predicted by the analytical and numerical models considered in
this study on the remaining cross-sectional area of the damaged
ropes, two net area effect curves are included in Fig. 7a. Net area
1 curve considers the intact rope response curve given by the 3D
FE model and the Net area 2 curve the intact rope response curve
provided by a model based on the linearized strain–displacement
equation for rope components that assumes that rope components
only develop tensile load [24]. This distinction is necessary due to
the fact that, as already stated, the analytical models (Lanteigne,
M-B, and NLBM) rely on the linearization of the strain–displace-
ment equation and uniaxial rope components behavior, neglecting
friction forces and local contact deformations (assumption vali-
dated in [26]); forces and deformations considered by the 3D FE
model formulation [18]. As a result, predicted intact rope strength
given by the 3D FE model is overestimated in about 6% by the lin-
earized model as shown in Fig. 7a for a value of qA equal to 1. 3D FE
model and NLBM curves have similar behavior when comparing
with their corresponding net area effect curves: they slightly devi-
ate (residual strength values decrease almost linearly with the rope
cross-sections) from their corresponding net area effect curves
(Net area 1 for 3D FE curve and Net area 2 for NLBM curve), pre-
senting a discontinuity at qA = 0.66 due to the fact that ropes
W136 and W123 have the same number of broken components but
differing in their distribution throughout rope cross-section lead-
ing to a greater IA value for rope W123 (0.44) than for rope W136

(0.092) which results in an additional relative reduction of the rope
residual strength of 6% and 4% for the 3D FE model and NLBM
respectively. Thus, for both models their corresponding net area
effect curves accurately estimate the residual strength of ropes
with IA values less than 0.44 and also both models capture the
dependency of the residual strength value on the degree of asym-
metry of the cross-section. For IA values greater than 0.44, both
models slightly increase their deviation with respect to their corre-
sponding net area effect curves reaching values equal to 10% and
5% for the 3D FE model and NLBM respectively, for rope W1234

(IA = 0.54). Conversely, Lanteigne and M-B curves substantially
deviate from their net area effect curve (Net area 2) for the entire
range of IA values considered for these two models ([0.092–0.31])
except for rope W136 (IA = 0.092) whose deviation value reached is
close to 15%. As a reference, experimental data are also plotted in
this figure [10]. Their average values deviate from the net area
effect curve (Net area 1) in less than 10% for values of IA 6 0.16
(ropes W136 and W1). Conversely, for rope W123 (IA = 0.44) average
reduction in rope strength deviate from linearity significantly
reaching values close to 30% [18]. As previously stated, however,
researcher who conducted the tests reported that some of these
specimens fail earlier near ropes terminations [10].

In Fig. 7b the dependency of the rope failure axial strain as a
function of the degree of asymmetry (IA value) of the rope cross-
section is presented. In general, the predicted values given by the
3D FE, NLBM, Lanteigne, and M-B models have a similar trend: as
the value of IA increases, the value of the rope failure strain
decreases. The values predicted by the NLBM match quite well (dif-
ference is less than 2%) with the values given by the 3D FE models
for the entire range of index of asymmetry (IA) considered ([0.092–
0.54]). For a large IA value (i.e., 0.54 for rope W1234) the reduction
of the rope failure strain relative to the intact case (0.117) is 7%. On
the other hand, values predicted by the Lanteigne, and M-B models
compare quite well between each other, but they underestimate in
about 10% the values predicted by the 3D FE models that are used
as references as previously discussed. Comparisons between
experimental data and the predicted values given by the 3D FE
model were extensively discussed in reference [18], but they are



Table 2
Summary of the rope residual strength values for asymmetric damaged ropes.

Rope (IA)0 Exp. data 3D FE model Lanteigne model M-B model NLBM

Wu 0 22.3–25.6 23.5 24.9 25 25
W136 0.093 12.2–17 15.6 14.3 14.2 16.8
W1 0.16 19.6–20.5 20.7 18.2 18.2 22.3
W12 0.31 – 17.7 13.0 12 19.4
W123 0.44 9.7–11.5 14.7 – – 16.2
W1234 0.54 – 11.9 – – 13.3

Table 3
Summary of the failure of the failure axial strain values at the onset of failure for
asymmetric damaged ropes.

Rope (IA)0 Exp. data 3D FE
model

Lanteigne
model

M-B
model

NLBM

Wu 0 0.115–
0.127

0.117 0.117 0.117 0.117

W136 0.093 0.097–
0.114

0.115 0.104 0.104 0.115

W1 0.16 0.119–0.12 0.115 0.104 0.104 0.115
W12 0.31 – 0.112 0.1 0.097 0.114
W123 0.44 0.079–0.11 0.11 – – 0.111
W1234 0.54 – 0.109 – – 0.11
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also included in this figure for completeness. The measured values
are well predicted by both 3D FE and NLBM models for values of IA
less than 0.16 (ropes W136 and W1) within a range of �4% to +13%.
For values of IA greater than 0.16 (rope W123), average measured
value is overestimated by the numerical and analytical models in
25%. It is important to point out, however, that in reference [18]
was mentioned that some difficulties experienced during rope
testing (rope load was unevenly distributed in rope terminations
resulting in premature rope failure [10]) as the IA value increased
that may explain the variability of the results and the difference
between predicted and measured values for some of the ropes
tested.

The stress distributions throughout asymmetric damaged rope
cross-section predicted by the numerical and analytical models
are compared from Figs. 8–10, in which three ropes are selected
to carry out these comparative analyses: W136, W1, and W12. Com-
parisons are intended to establish the validity of the analytical
models (Lanteigne, M-B, and NLBM) when compared with the
results given by the 3D FE models considered as reference. As in
the case of the computation of the displacement field of the unbro-
ken rope components (Step 4 of the numerical algorithm), the cen-
troid of these components is considered as the generic
(representative) point to compute their tensile stress estimated
by the analytical models. Conversely, as the 3D FE models predict
a gradual variation in the strain/stress distribution throughout
unbroken rope components cross-sections as commented in
Fig. 1, the maximum and minimum values are plotted for compar-
ison purposes and also to define a range of values that allow deter-
mining the accuracy of the estimated values given by the analytical
models (hereafter referred as admissible values).

Based on Figs. 8–10, tensile stress distribution throughout
asymmetric damaged rope cross-section predicted by all models
has the same pattern (analysis also valid for the axial strain distri-
bution): closer components to damage are more stressed than the
components on the opposite side. This gradient in the stress distri-
bution can be attributed to the lateral deflection of the rope that
induces additional bending stresses in the rope components, con-
clusion that is supported with the discussion provided in the fol-
lowing paragraphs. For notation purposes, the unbroken
components numbered m and n of the rope Wij are cited in the text
as Wij,mn. Lanteigne and M-B models predict comparable tensile
stress values for the unbroken rope components of the selected
ropes, except for the components W12,56 (Fig. 10) in which the Lan-
teigne model gives considerable higher values. Both models have
similar tendency when compared with the values given by the
3D FE models: overestimate tensile stress values of rope compo-
nents that are adjacent to damage in about 20%; predicted tensile
stress values of rope components close to the rope centroid are
within the range values defined by the 3D FE simulations; and
underestimate stress values of the components that are on the
opposite side to damage in about 20% for component W1,5

(IA = 0.16 for rope W1) and 15% and over 100% for components
W12,82 and W12,65 (IA = 0.31 for rope W12), respectively. Thus, the
stress gradient throughout damaged rope cross-section estimated
by these two models is higher than the gradient estimated by
the 3D FE models and as the IA rope value increases, the underes-
timation of the tensile stress of the components on the opposite
side to damage increases as well. In fact, for ropes with greater
IA values (W123, W1234), rope components on the opposite side to
damage start developing compressive load resulting in a more flex-
ible damaged rope response relative to 3D FE and NLBM simula-
tions as previously commented. Based upon their formulations,
Lanteigne and M-B models do not account for the nonlinearity in
equations of equilibrium (effect of axial load on flexural behavior
of the rope in this case); thus large lateral deflections are predicted
leading to high compressive load due to bending.

Conversely to the results provided by Lanteigne and M-B mod-
els previously discussed, the unbroken components tensile stress
values provided by the NLBM lay in the ranges of the admissible
values defined the 3D FE models for all the ropes presented in this
figure (IA values e [0.093, 0.31]), matching quite well with the
upper values of the aforementioned ranges for the entire range of
the rope axial strain values as already discussed in Fig. 6 (capacity
curves). It is important to point out, that additional numerical sim-
ulations, not shown here to avoid repeated and extensive analyses,
have carried out for ropes W123 (IA = 0.44) and W1234 (IA = 0.54) in
which the same previous comparison pattern between the unbro-
ken rope component tensile stress values given by the 3D FE and
NLBM models is found [29].
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Fig. 8. Tensile stress values of the unbroken components of rope W136.
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Fig. 9. Tensile stress values of the unbroken components of rope W1.
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Fig. 10. Tensile stress values of the unbroken components of rope W12.
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In Fig. 11 comparisons of the deformed configuration of the
ropes W136 and W1 estimated by the 3D FE, NLBM, and M-B models
are presented for two rope axial strain values (e = 0.031 and 0.071).
The deformed configuration of an asymmetrically damaged rope
estimated by the proposed model (NLBM) is based on the solutions
of the governing equations given by the Eqs. (9) and (10) and for
the case of the M-B model is given by Eq. (C1) (Appendix C). These
two ropes were selected for comparisons purposes because the
three aforementioned models give similar results in terms of the
capacity curves and stress (strain) distributions throughout rope
cross-sections according to the analyses already presented. The
deformed configurations of both ropes given by the M-B model
are plotted only around the failure region (ropes midspans)
because Eq. (C1) does not account for rope boundary conditions.
These estimates largely overestimate the ones predicted by the
3D FE models, in which the overestimation of the maximum lateral
deflection value is about 300% for ropes W136 and W1. Conversely,
deflected ropes shapes and values (computed by the summation of
the deflections in both xy and xz planes) predicted by NLBM are
comparable to the values predicted by the 3D FE simulations. In
fact, based upon the results summarized in Table 4 for a wide rope
axial strain range (from 0.012 to 0.106), NLBM model underesti-
mates rope lateral deflection values for low level of rope axial
strain values (0.024 as an upper limit) for most of the ropes ana-
lyzed except for rope W1234, whose deflected shape is, in general,
overestimated by the NLBM model. For greater rope axial strain
values, the ropes deformed configurations start getting overesti-
mated by the results provided by the NLBM model, but signifi-
cantly less than those estimated by the M-B model. If the ratio of
the values given by both 3D FE and NLBM models are computed
for the entire range of rope axial strain earlier specified, it turns
out that in an average sense the maximum ropes lateral deflections
values are overestimated in the range [12%, 20%] for all the ropes
analyzed (W136, W1, W12, W123, and W1234), in which the values
of the central thirds of the ropes are considered to avoid ropes ends
effects especially for ropes with low IA values, as explained later in
the paper. For rope axial strain values close to ropes failures (see
Table 2), however, the deflected shape values can be overestimated
up to 35% of the references values (3D FE simulations).
Based on the values reported in Table 4, values given by both 3D
FE and NLBM models have the same trend: as the IA rope value
increases (ropes are arranged in increasing order of their IA values
in Table 4), the rope lateral deflection increases as well. This con-
clusion suggests that the effect on the lateral displacements in
planes xy and xz, according to Eqs. (9) and (10) respectively, of lar-
ger H(e) (rope axial force) values (W136 values relative to W1 and
W12 values) does not compensate the increment of the function
K(e) with increasing values of IA, which determines the net trans-
verse forces qy(x) and qz(x) acting on rope cross-section defined
in Eqs. (8c) and (8d) respectively. On the other hand, for a particu-
lar asymmetric damaged rope (fixed IA, Izz, and Iyy values), as the
value of the axial rope strain (e) increases, the magnitude of the
function K(e) increases more rapidly than the magnitude of H(e)
and consequently, larger lateral displacements are developed by
the rope (see expressions for az(e), ay(e), bz(e), and az(e) in Eqs.
(9) and (10)). When comparing the deflection ropes values esti-
mated by the NLBM and the 3D FE simulations, it is important to
emphasize that the magnitude of the lateral deflections predicted
by the NLBM model is proportional to the value of the function
K(e) represented by the parameters az(e), ay(e), in Eqs. (9) and
(10) respectively. For simplicity, the values of the function K(e)
are computed assuming only radial contact between rope compo-
nents as previously stated (Eqs. (7)–(8d)). Smaller values of this
function, and consequently smaller values of the lateral deflections
of the ropes comparable to the ones given by the 3D FE models,
would be computed if contact between rope components were
defined in both radial and circumferential directions as considered
in the 3D FE simulations ([18]).

Despite of the moderate overestimation of the values of the
deformed configurations of the ropes previously discussed and
unlike the results given by the M-B model, the shape of the
deformed configuration of an asymmetric damaged rope is accu-
rately predicted by the NLBM model that accounts for the rope
boundary conditions (Fig. 11). The rope deforms laterally describ-
ing a curve similar to a circular helix, as discussed in Step 5 of
the numerical algorithm proposed, in which the original longitudi-
nal axis of the rope is shifted in the direction of the damage. In fact,
away from the rope ends, in the xy plane, the rope describes a



Fig. 11. Deformed configuration of ropes: (a) W136 and (b) W1.

Table 4
Ropes maximum lateral deflections given by 3D FE and NLBM models.

Rope strain 3D FE models NLBM model

W136 W1 W12 W123 W1234 W136 W1 W12 W123 W1234

0.012 0.21 0.33 0.78 1.25 1.60 0.17 0.29 0.70 1.20 1.64
0.024 0.24 0.42 0.96 1.51 1.96 0.21 0.38 0.86 1.42 1.90
0.048 0.25 0.45 1.02 1.61 2.08 0.28 0.49 1.08 1.72 2.24
0.072 0.26 0.45 1.03 1.61 2.09 0.32 0.57 1.21 1.92 2.46
0.095 0.27 0.46 1.04 1.63 2.10 0.35 0.63 1.33 2.10 2.68
0.106 0.28 0.47 1.06 1.65 2.12 0.37 0.67 1.41 2.22 2.83
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projection of a circular helical curve around a longitudinal axis par-
allel to the reference (undeformed) one whereas in the xz plane the
rope also describes a projection of a circular helical curve but
around an inclined longitudinal axis relative to the reference one
due to the presence of the no null exponential and linear terms
in Eq. (10). This characteristic of the deformed configuration of
an asymmetric damaged rope is depicted in Fig. 12 for ropes
W136 and W1234. Based on the 3D FE simulations results, boundary
conditions play a crucial role in rope deformed configuration for
ropes with low IA values. In Fig. 12(a and b), for example, the peaks
of the projected helix curves (i.e. helix radius) in xy and xz planes
that represent the deformed configuration of rope W136

(IA = 0.091, least IA value considered in this study) decrease as
approaching to the rope ends, phenomena that is not captured
by the NLBM model that predicts curves with constant amplitudes
as rope deformed configuration in both planes. As the IA rope value
increases, the boundary conditions effect on rope deformed config-
uration is only localized in rope sections located at x = 0, and x = L
(updated rope length) owing to 3D FE simulations estimate helix
curves with constant amplitudes (similar to NLBM model) as rope
deformed configuration as shown in Fig. 12(c and d) for rope W1234

with IA value equal to 0.54 (maximum value considered in this
study). More details in the evolution of the impact of boundary
conditions on rope deformed configuration as the IA rope value
increases can be found in [29].

Consequently, in terms of the geometry of deformation of the
ropes and based on the results given by both 3D FE and NLBM
models, the asymmetry in damage distribution to rope cross-sec-
tion induces a small perturbation of the original first order circular
helical geometry of the rope components in which the rope compo-
nents of the second layer and the core developed approximately a
second and first order circular helix curve respectively. The maxi-
mum lateral deflection-to-rope initial length ratio (perturbation
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Fig. 12. Plane lateral deflection of ropes: (a) and (b) W136 rope; (c) and (d) W1234 rope.
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parameter) can be used as a measure of the perturbation induced
by the asymmetric damage distribution on rope initial configura-
tion. Considering the maximum deflections values provided by
the 3D FE and NLBM models and the rope axial strain range
[0.012, 0.106] specified in Table 4, the ranges of this perturbation
parameter defined by these two models are [0.00034, 0.0035]
and [0.00027, 0.0046] respectively. As extensible discussed in this
paper, the results given by these two models agree quite well
between each other; thus, considering the range of the perturba-
tion parameter values defined by the NLBM model (values defined
by the 3D FE models is a subset of this range), it can be concluded
that as the perturbation parameter values be small, initial rope
configuration is slightly perturbed by the asymmetric damage dis-
tribution. Hence, for computational purposes, and also supported
by the analyses presented in Fig. 5, the deformed configuration
of rope components of the second layer can be accurately esti-
mated by a first order circular helix curve. It is interesting to point
out that the M-B model gives comparable results with both 3D FE
and NLBM models only for ropes W136 and W1 although much lar-
ger values of the perturbation parameter are estimated. In these
cases, the overestimation and the underestimation of the tensile
stress of the adjacent and opposite rope components to damage
respectively (Figs. 8 and 9) compensate each other resulting in a
good correlation among the predicted capacity curves (3D FE,
NLBM, and M-B models) and with experimental data as discussed
in Fig. 6a and b.

It is worth to mention that the computational efficiency of the
proposed algorithm is very high relative to the results given by
the 3D FE nonlinear simulations. For each point of the estimated
capacity curves, considering all the damaged ropes analyzed, the
required number of iterations to meet the convergence criterion
(Step 8 of the proposed algorithm) is less or equal than five.
Although 3D FE nonlinear simulations provide a possibility for very
precise analyses of damaged rope behavior, they require a couple
of hours to complete them (compute an n-points capacity curve
(n ranges from 30 to 100), stress/strain states, and deformed con-
figuration of the rope of a 885,000 degrees of freedom models)
on a standard multi-core processor computer (quad-core
3.4 GHz-16 Gb RAM) while the proposed algorithm needs less than
one minute for the same analyses providing accurate results as
previously commented. The robustness of the present algorithm
is confirmed by the fact that all the capacity curves and deformed
configurations associated to the damaged ropes analyzed, which
accounts for a wide range of IA values, were accurately estimated
(relative to 3D FE results and experimental data) and they con-
verged after few iterations (less or equal than five) [30].

Although the proposed mechanical model was validated for
small-scale one-level two-layer ropes, they are qualified to exam-
ine solely the impact of asymmetric damage distribution on rope
response in which the results obtained can give an insight if the
asymmetric damage distribution can be ignored in the analysis of
damaged ropes. The associated iterative algorithm can be readily
extended for the case of asymmetrically damaged multilayered
one-level ropes (larger ropes), considering the appropriate value
of the unbalanced transverse force as described in [16], if broken
components belong to the outermost layer. If damage is localized
in inner layers or the damaged rope has a multilevel geometry,
interaction among rope components may induce strain localization
around the damage zone making the response of the damaged rope
length dependent as extensively discussed in [9,16,18] among oth-
ers. In the latter, not only the damage distribution (degree of asym-
metry) should be accounted for, but also the length of the rope,
damage location within rope cross-section and rope length, and
contact pattern between rope components.

Additionally, damage assessment guidelines require damage
tolerance documentation of the rope components. For the particu-
lar example of a fiber rope of the parallel subrope type used for
mooring applications, the residual strength of a damaged rope is
estimated by using the summation principle in which rope behav-
ior is determined by the behavior of a subrope which is formed by
strands (small ropes) that can have helical construction. Mechani-
cal damage occurs at strands level and the proposed model can be
utilized to estimate their residual strengths for a variety of damage
distribution in the absence of experimental data [31].
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4. Conclusions

In this paper, a simplified mechanical model to account for the
effect of asymmetric damage distribution to rope cross-section on
overall static rope response is presented. In this model the asym-
metric damaged rope is assumed to behave as a nonlinear beam
with Bernoulli0s kinematic hypothesis with uncoupled biaxial
bending response (i.e., two uniaxial bending analyses), subjected
to axial loading and a transverse uniform force resulting from the
net radial force acting on rope cross-section due to the initial heli-
cal geometry of rope components along with the loss of cross-sec-
tion symmetry. An efficient and robust iterative cross-sectional
numerical algorithm is implemented to estimate rope capacity
curve, stress and strain distributions throughout rope cross-section
and rope geometry deformation for a prescribed axial displace-
ment of the rope.

An extensive study is carried out on small-scale asymmetric
damaged polyester ropes (ropes diameter equal to 6 mm) whose
IA values range from 0.093 to 0.54 Predicted results given by the
proposed model (NLBM) overestimate in a range of [8%, 12%] the
residual strength and in less then 2% the failure axial strain relative
to the results given by 3D FE nonlinear simulations. In terms of the
rope geometry deformation, the asymmetric damaged rope sub-
jected to tensile load laterally deflects inducing additional bending
stresses in unbroken rope components. The NLBM model overesti-
mates the maximum lateral defection in an average range of [12%,
20%] whereas predicted normal stress and strain values in unbro-
ken rope components are bounded when compared with 3D FE
results. As the value of the IA index increases, rope initial geometry
perturbation increases as well, and consequently, an additional
reduction over the percentage of loss of cross-sectional area in
the residual rope strength occurs. The NLBM and 3D FE models,
however, suggest that for IA values less than 0.44, rope residual
strength can be satisfactory estimated based upon the net area
effect model. Regarding to the rope failure axial strain, both models
provide very similar results in which this parameter decreases as
the IA value increases, reaching a maximum reduction around 8%
(for IA = 0.54) relative to the intact rope value. Two linear models
reported in the literature, included in this study for validation pur-
poses of the proposed model, only provide accurate results in
terms of the capacity curves and tensile stress (strain) developed
by the unbroken rope components for ropes with low values of
the IA index (less than 0.16); thus, the NLBM model is applicable
with satisfactory results to ropes with greater degree of
asymmetry.

Further comparisons with experimental data of bigger ropes
(or rope components) are needed to verify the assumptions
made and establish the range of applicability of the proposed
model (NLBM). Additionally, while the NLBM can be used to
obtain a reasonable estimate of the static response of asymmet-
ric damaged ropes, improvements such as the evaluation of the
effect of torsion on stress/strain distribution, comparative analy-
ses with damaged ropes comprised of materials different than
polyester, include the potential strain localization around the
damage zone and the corresponding variation of the axial strain
along the rope length due to frictional effects, and relative slip-
page among rope components due to rope curvature are still
needed before it can be reliably used for detailed design calcula-
tions and to develop specific guidelines on damage evaluation
and discard criteria. Despite these limitations, and based on
the preliminary results presented in this paper and the lower
computational cost than the 3D FE models involved, the pro-
posed model seems to be a promising computational tool for
estimating residual strengths and deformation capacities of
asymmetric damaged ropes.
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Appendix A

Index of asymmetry

The index of asymmetry (IA) parameter is defined as [18]

IA ¼ 1� r0 � eðeÞ
r0 þ eðeÞ ðA1Þ

where r0 is the rope radius and e(e) is the distance from the centroid
of the rope to the location of the center of stiffness of rope cross-
section for a particular value of the axial rope strain e. The expres-
sions needed to compute the function e(e) are the following:

A ¼
X
n2Q

An ðA2Þ

Sn ¼
1
An

ZZ
Xn

dr
de

dX for n 2 Q ðA3Þ

xn ¼
1

SnAn

ZZ
Xn

dr
de

x0dX for n 2 Q ðA4Þ
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1
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Xn

dr
de

y0dX for n 2 Q ðA5Þ

S ¼ 1
A

X
n2Q

SnAn ðA6Þ

x ¼ 1
SA

X
n2Q

SnAnxn ðA7Þ

y ¼ 1
SA

X
n2Q

SnAnyn ðA8Þ

e ¼ eðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ðA9Þ

where n identifies rope components of the rope which are grouped
in the subset Q; An (Xn) is the cross-sectional area of component n;
Sn and S are the axial stiffness of the component n and rope respec-
tively; (xn, yn) and (x, y) are the coordinates of the center of the stiff-
ness of the component n and rope respectively. The discrete nature
of the above equations is consistent with the discrete formulation of
the proposed mechanical model (NLBM) as discussed in Section 2.2
of this paper.

B. Lanteigne’s model

Lanteigne [13] studied the response of cables under static load-
ing conditions that include any combination of tension, torsion and
bending. The deformation geometry of the cable is linearized and
the axial strain values of its components are linear dependent on
axial elongation, axial rotation, and curvature specified for the



Table B1
Stiffness coefficients for Lanteigne’s model.
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Fig. C1. (a) Damaged rope cross-section; (b) axial strain at each unbroken wire.
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cable, assuming Bernoulli0s kinematic hypothesis. Thus, the equi-
librium equation for the cable is given by the following relation

F

MT

MB

2
64

3
75 ¼

AE kFMT kFMB

kFMT JG kMT MB

kFMB kMT MB IE

2
64

3
75

Du=L0

Dx=L0

Dw=L0

2
64

3
75 ðB1Þ

where F is the tensile load, MT is the torsional moment, MB is the
bending moment, Du is a uniform elongation, Dx is the axial rota-
tion angle, Dw is the bending angle, and L0 is the initial length of the
cable. The stiffness coefficients are given in Table B1.

where the subscripts c and n refer to the core of the cable and to
a particular layer of it, kn is the number of component in layer n, An

and En are the cross-section and Young’s modulus of components
in layer n respectively, hn is the helix angle of components in layer
n, and Rn and rn are the radius of layer n and radius of components
that lay in layer n.

For an asymmetric damage distribution, the term kFMB does not
vanish. If the values of Du/L0 and Dx/L0 are prescribed (displace-
ment control analysis) and the value of MB is equal to zero, the
value of Dw/L0 can be obtained from Eq. (B1). Performing a
cross-sectional analysis, the axial strain ein and normal stress rin

of the ith component of layer n are computed in terms of Du/L0,
Dx/L0, and Dw/L0. Adding up (discrete formulation) the contribu-
tions from all unbroken components, the capacity curve of asym-
metric damage rope can be estimated.

C. MacDougall and Barlett’s model

MacDougall and Bartlett [15] proposed a mechanical model to
include the effects of asymmetric damage to cross-section on the
static response of a seven wire prestressing tendon (wire rope) uti-
lized in posttensioned concrete structures. The development of this
linear analytical model only considers the failure of a single outer
wire (wire 5 (gray color) in Fig. C1a) and it is based on the assump-
tion that the rope deflects laterally due to the fact that radial forces
exerted on its core are not in equilibrium in the initial rope config-
uration. This lateral deflection is controlled by the new radial equi-
librium configuration in which the rope develops a helix curve
around its original longitudinal axial. Thus, for some rope compo-
nents the helix radius increases and for others decreases inducing
additional (positive and negative) axial elongation and local bend-
ing in them. The rope deflection (dp) perpendicular to its axis at a
distance x from the wire break for a prescribed rope axial strain
Du/Dx is given by

dpðxÞ ¼
1
2

Rh

sin2 h
cos2 h

Du
Dx
� ebðxÞ

	 

ðC1Þ

where eb is the axial strain in the broken due to interwire friction, Rh

is the helix radius, and h is the helix angle. The axial strain value in
each unbroken wire is given by (Fig. C1a)

e4;6ðxÞ ¼ cos2 h
Du
Dx
þ sin2 h

Rh

dpðxÞ
2

ðC2Þ

e1;3ðxÞ ¼ cos2 h
Du
Dx
� sin2 h

Rh

dpðxÞ
2

ðC3Þ

e2ðxÞ ¼ cos2 h
Du
Dx
� sin2 h

Rh
dpðxÞ ðC4Þ

where the first term of the above equations corresponds to the axial
rope strain as if the rope were undamaged (rope geometry deforma-
tion linearized) and the second terms is related to the effect of the
lateral rope deflection due to asymmetric damage distribution,
Based on the above equations, the axial strain distribution within
a damaged rope cross-section with one outer component broken
is depicted in Fig. C1(b), considering that strain recovery does not
occur (i.e., eb = 0). Knowing the strain field throughout damaged
cross-section, normal stress field is computed through the constitu-
tive law of the material and subsequently, accounting for the contri-
bution of all unbroken components, the capacity curve of the
damaged tendon is estimated.
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