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It was recently shown that a large value of the tensor to scalar ratio r implies a constraint on the minimum
value of the sound speed cs of primordial curvature perturbations during inflation that is stronger than
current bounds coming from non-Gaussianity measurements. Here we consider additional aspects related
to the measurement of B modes that may provide additional leverage to constrain the sound speed
parametrizing noncanonical models of inflation. We find that a confirmation of the consistency relation
r ¼ −8nt between the tensor to scalar ratio r and the tensor spectral index nt is not enough to rule out
noncanonical models of inflation with a sound speed cs different from unity. To determine whether inflation
was canonical or not, one requires knowledge of additional parameters, such as the running of the spectral
index of scalar perturbations α. We also study how other parameters related to the ultraviolet completion of
inflation modify the dependence of r on cs. For instance, we find that heavy degrees of freedom interacting
with curvature fluctuations generically tend to make the constraint on the sound speed stronger. Our results,
combined with future observations of primordial Bmodes, may help to constrain the background evolution
of noncanonical models of inflation.
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I. INTRODUCTION

The recent claim that the tensor to scalar ratio r might be
of order ∼0.1, as implied by BICEP2 detection of primor-
dial B modes [1], has reinvigorated the debate about the
fundamental nature of inflation [2–6] among early universe
cosmologists. Although BICEP2 results have been subject
to revision [7–11], the prospects of living in a universe that
owes its structure to a large-scale inflationary phase has
driven us to clarify the role of inflation as the mechanism to
generate primordial fluctuations [12–15]. In Ref. [16], for
instance, it was argued that a large value of r favors a
substantially large and negative running of the spectral
index, necessary to accommodate the upper bound on r
inferred from Planck data [17,18]. This in turn, would
prevent quantum fluctuations dominate over the classical
evolution of the inflaton, precluding the possibility of
having eternal inflation [19].
Another important consequence of having a large tensor

to scalar ratio is that the inflaton must have had super-
Planckian excursions in field space [20,21]. For this to be
possible without fine-tuning, one requires the presence of
a (shift) symmetry at the effective single field theory level,
descending from an ultraviolet (UV) complete theory,
presumably involving the existence of several degrees
of freedom gravitationally coupled together. Building a
satisfactory UV theory embedding inflation, in a well
established framework such as supergravity and/or string
theory—incorporating a shift symmetry—constitutes one
of the long-standing challenges within the study of early

universe cosmology [22–28]. A large value of r (say, in
the range 0.01–0.1) would rule out a large class of models,
and would provide an important hint toward the mass
scale characterizing the geometry of fundamental theories
incorporating inflation [29–34]. In addition, it could give
us important information about the structure of couplings
between the inflaton field and the standard model [35,36].
Interestingly, a large value of r opens up the possibility

of placing new constraints on parameters that were pre-
viously thought to remain degenerate at the level of two-
point correlation functions measured in cosmic microwave
background (CMB) experiments. Indeed, it is well known
that, to lowest order in slow roll, the tensor to scalar ratio is
determined by a combination of the slow-roll parameter ϵ
[defined in Eq. (3)] and the sound speed cs of adiabatic
perturbations, as

r ¼ 16ϵcs: ð1Þ
Depending on the measured value of r, Eq. (1) gives us
different possible values for ϵ and cs as shown in Fig. 1.
The degeneracy between ϵ and cs implied by Eq. (1) may
be resolved with the help of measurements of non-
Gaussianity [37,38], which currently imply cs > 0.02
[39,40]. However, the authors of Ref. [41] found that a
large value of r grants the possibility of placing a stronger
lower bound on cs (see also [42] for another analysis on the
degeneracy implied by cs). The crucial observation leading
to this result is that the lapse of time between the horizon
crossings of scalar and tensor modes implied by cs ≠ 1

PHYSICAL REVIEW D 91, 063525 (2015)

1550-7998=2015=91(6)=063525(12) 063525-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.063525
http://dx.doi.org/10.1103/PhysRevD.91.063525
http://dx.doi.org/10.1103/PhysRevD.91.063525
http://dx.doi.org/10.1103/PhysRevD.91.063525


comes together with a sizable running of the Hubble
parameter H, modifying the way that r depends on both
cs and ϵ, giving us back [43,44]

r ¼ 16ϵcse2ϵ ln cs : ð2Þ

Here, the quantity 2ϵ ln cs is due to the running of the
Hubble parameter H between the two horizon crossing
times. Because 2ϵ ln cs can take values of order 1 without
violating the slow-roll condition ϵ ≪ 1, one deduces from
(2) that cs is bounded from below, as shown in Fig. 2.
In particular, (2) implies that cs > 0.14 for the range of
values r > 1.3. Moreover, one sees that bounds on cs are
stronger than current non-Gaussian constraints as long as
r > 0.01 [45].
Models with cs ≠ 1 appear in a number of different

contexts where inflation is driven by a nontrivial fluid [47]
as typically found in low energy compactifications of string
theory [48,49]. For example, in multifield models, curva-
ture perturbations are forced to propagate with a sound
speed cs < 1 whenever heavy fields interact with the
inflaton as a result of turns of the inflationary trajectory

in field space [50–58]. More generally, the sound speed
plays a central role in the effective field theory approach to
inflation [59,60] which provides a systematic parametriza-
tion of departures from the standard single field canoni-
cal case.
The mere fact that cs could be different from 1 requires

physics beyond the canonical single field paradigm in
which slow-roll inflation is based. It is therefore sensible to
expect additional parameters related to the physics under-
lying cs ≠ 1, due to operators that belong to the UV
completion of the effective theory describing inflation
[61]. For instance, in the case of heavy fields interacting
with the inflaton, one expects a nonvanishing running of the
sound speed s ¼ _cs=Hcs [62] together with additional
nontrivial operators affecting the dynamics of the inflaton
that are turned on when cs ≠ 1 [63–65].
The aim of this paper is to study additional effects on

Eq. (2) to those considered in Ref. [41] implied by the
running of slow-roll parameters. In particular, we pay
special attention to the effects on (2) coming from the
running of ϵ during the lapse of time between the horizon
crossing of scalar and tensor modes. We find that the
dependence of r on the running of ϵ is such that a
confirmation of the consistency relation r ¼ −8nt between
the tensor to scalar ratio r and the tensor spectral index nt is
not enough to rule out noncanonical models of inflation
with a sound speed cs ≠ 1. As a consequence, to determine
whether inflation was canonical or not with the help of
B-mode measurements, one requires knowledge of addi-
tional parameters, such as the running of the spectral index
of scalar perturbations α.
In addition, we study the effects on (2) implied by

operators that take a role in the UV completion of infla-
tionary theories with nontrivial sound speeds, which is
motivated by the well-known example of models where
heavy fields interact with the inflaton, implying a variety of
additional effects that appear along with a sound speed
different from unity [63–65]. To this extent, we adopt the
effective field theory of inflation perspective [59] and study
the consequences of UV physics on CMB observables by
taking into account operators in the action for curvature
perturbation that are turned on when cs ≠ 1. We find that
these operators modify substantially the inference of a
lower bound on the sound speed, in such a way that heavy
degrees of freedom interacting with the inflaton generically
tend to make the constraint on the sound speed stronger.
This article is organized as follows: In Sec. II we review

the dependence of the power spectra of scalar and tensor
modes on different inflationary parameters. Then, in
Sec. III we discuss the constraints on the speed of sound
inferred by the results obtained in Sec. II. In Sec. IV we
discuss the effects of UV operators affecting the evolution
of fluctuations on the constraints on cs. Finally, in Sec. V
we discuss our results and provide some concluding
remarks. We have left the more technical discussion for

FIG. 1 (color online). The figure shows the contour plot for r in
the ϵ-cs plane, obtained from Eq. (1). The dashed line corre-
sponds to the case for r ¼ 0.1.

FIG. 2 (color online). The figure shows the contour plot for r in
the ϵ-cs plane, obtained from Eq. (2). The dashed line shows the
case r ¼ 0.1, which implies a lower bound cs > 0.09.
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the Appendix, where we deduce various of the expressions
dealt with in the body of our work.

II. THE TENSOR TO SCALAR RATIO

Single field slow-roll inflation is realized by a universe in
a quasi–de Sitter phase characterized by a steady evolution
of the Hubble parameter H ≡ _a=a (where a is the scale
factor). To ensure this, one demands

ϵ ≪ 1; ϵ≡ −
_H
H2

: ð3Þ

The quantity ϵ is the usual first slow-roll parameter, and to
parametrize its time evolution it is customary to define a
second slow-roll parameter η as

η≡ _ϵ

Hϵ
: ð4Þ

To ensure that ϵ ≪ 1 for a sufficiently long time, one
demands the additional condition jηj ≪ 1. The sound speed
cs at which adiabatic perturbations propagate also plays a
role in determining the value of inflationary observables.
To parametrize its time dependence it is useful to define

s ¼ _cs
Hcs

; ð5Þ

and ask jsj ≪ 1 to stay consistent with the requirements of
slow-roll evolution of the background [66]. The amount of
information stored in Eqs. (3), (4), and (5) allows us to
derive the power spectra for scalar and tensor perturbations.
In theAppendix we review the standard perturbation theory
used to study the dynamics of fluctuations at leading order
in terms of the slow-roll parameters, and derive the power
spectra for scalar and tensor modes. In what follows we
quote the necessary results from the Appendix to discuss
the computation of the tensor to scalar ratio r.

A. Computation of r

Assuming that the universe was driven by a single fluid,
it is straightforward to derive that the scalar power
spectrum, to first order in the slow-roll parameters, is
given by [67]

PRðkÞ ¼
H2

0

8π2ϵ0c0

�
1 − ð2ϵ0 þ η0 þ s0Þ ln

�
kc0
a0H0

�

þ ð2ϵ0 þ η0 þ s0ÞC − 2ðϵ0 þ s0Þ
�
; ð6Þ

where C≡ 2 − ln 2 − γ ≃ 0.73 (γ being the Euler-
Mascheroni constant). This expression assumes units such
that m2

Pl ¼ 1, and is derived in Appendix. The zeroth order
value of the power spectrum is scale independent, and is

given by H2
0=8π

2ϵ0c0. The corrections inside the square
brackets are due to departures from a de Sitter space-time
given in terms of slow-roll parameters, and imply a scale
dependent piece proportional to lnðkc0=a0H0Þ. The 0-label
informs us that all background quantities are evaluated at
the same (conformal) time τ0. To evaluate the amplitude,
we need to choose a pivot scale, which constitutes a
reference scale with which any other scale may be
compared. One alternative consists in choosing

ks ¼
a0H0

c0
; ð7Þ

which is referred to as the sound horizon crossing con-
dition. With this choice, k ¼ ks labels the mode that had a
wavelength that coincided with the sound horizon c0=H0

at conformal time τ0. The amplitude of the power spectrum
for that precise mode is then given by

PRðksÞ ¼
H2

0

8π2ϵ0c0
½1þ ð2ϵ0 þ η0 þ s0ÞC − 2ðϵ0 þ s0Þ�:

ð8Þ

On the other hand, the spectral index evaluated at the pivot
scale is

nR − 1≡ d lnPR

d ln k

����
ks

¼ −ð2ϵ0 þ η0 þ s0Þ þOðϵ20Þ; ð9Þ

where Oðϵ20Þ denotes contributions that are of second order
in the slow-roll parameters. A similar derivation may be
carried out to deduce the form of the tensor power
spectrum. One finds, again, to first order in the slow-roll
parameters, that this quantity is given by

PhðkÞ ¼
2H2

h

π2

�
1 − 2ϵh ln

�
k

ahHh

�
þ 2ϵhðC − 1Þ

�
: ð10Þ

This time, we have used the label h to denote that
background quantities are evaluated at a time τh not
necessarily equal to τ0. To correctly compare quantities,
we need to evaluate the tensor spectrum PhðkÞ at the same
pivot scale ks as we did with the scalar spectrum. To do this,
it is convenient to adjust τh in such a way that ks ¼ ahHh,
or equivalently,

Hh

H0

¼ a0
ahc0

: ð11Þ

This relation reminds us of the fact that if c0 ≠ 1, then
scalar and tensor modes crossed the horizon at different
times τ0 and τh. We shall examine this statement in more
details in a moment. To continue, the amplitude of the
tensor power spectrum for the tensor mode of comoving
wavelength k ¼ ks is
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PhðksÞ ¼
2H2

h

π2
½1þ 2ϵhðC − 1Þ�; ð12Þ

whereas the spectral index of tensor perturbations is
given by

nt ≡ d lnPh

d ln k

����
ks

¼ −2ϵh þOðϵ2hÞ: ð13Þ

We may now compute the tensor to scalar ratio evaluated at
k ¼ ks, which is given by r ¼ PhðksÞ=PRðksÞ, and reads

r ¼ 16ϵ0c0

�
Hh

H0

�
2

½1þ 2ϵhðC − 1Þ

− ð2ϵ0 þ η0 þ s0ÞC þ 2ðϵ0 þ s0Þ�: ð14Þ

To obtain a useful expression for the tensor to scalar ratio
we need to make sense of quantities evaluated at the
different conformal times τ0 and τh. To proceed, let us go
back to Eq. (11) and count the number of e-folds ΔN ¼
Nh − N0 between the two horizon exits (recall that e-folds
are defined as N ≡ ln a). One finds that

ΔN ¼ ln

�
H0

Hh

�
− ln c0: ð15Þ

On the other hand, because of Eq. (3), we see that

ln

�
H0

Hh

�
¼ −

Z
N0

Nh

ϵðNÞdN ¼ ϵ0
η0

½eη0ΔN − 1�; ð16Þ

where we have used the fact that ϵðNÞ ¼ ϵ0eη0ðN−N0Þ, as
long as we treat η0 as a constant (which is justified since the
running of η only contributes higher order effects in slow
roll). Putting together Eqs. (15) and (16), we find

ΔN þ ln c0 ¼
ϵ0
η0

½eη0ΔN − 1�: ð17Þ

We immediately see thatΔN ∼ − ln c0. However, given that
− ln c0 may attain large values in the range c0 ≪ 1, we are
forced to admit the possibility that −ϵ0 ln c0 and −η0 ln c0
could both reach values of order 1 (without implying a
violation of the slow-roll conditions). This implies that we
cannot expand the exponential of Eq. (17) in powers of
η0ΔN to derive a simple expression for ΔN. Despite this,
we can analytically solve Eq. (17) to obtain

ΔN ¼ − ln c0 −
1

η0
½ϵ0 þWð−ϵ0e−ϵ0−η0 ln c0Þ�; ð18Þ

where WðxÞ is the Lambert-W function, defined as the
solution of the equation x ¼ WðxÞeWðxÞ. Putting all of these
results together back in Eq. (14), we finally obtain

r ¼ 16ϵ0c0e−2ðΔNþln c0Þ½1þ 2ϵ0eη0ΔNðC − 1Þ
− ð2ϵ0 þ η0 þ s0ÞC þ 2ðϵ0 þ s0Þ�; ð19Þ

where we have used the additional relation between ϵh
and ϵ0:

ϵh ¼ ϵ0eη0ΔN: ð20Þ
Equation (19) gives us r as a function of ϵ0, η0, c0 and s0.
However, we may reduce the number of parameters enter-
ing this expression by using Eq. (9) and introducing the
observed value of the spectral index 1 − nR ¼ 0.04
[17,68]. This means that ΔN is a function of c0, ϵ0 and
s0 given by

ΔN ¼ − ln c0 −
1

1 − nR − 2ϵ0 − s0
× ½ϵ0 þWð−ϵ0e−ϵ0−ð1−nR−2ϵ0−s0Þ ln c0Þ�; ð21Þ

with the understanding that the value of nR is fixed by
observations.

B. Adding a measurement of the tensor spectral index nt
Let us recall that nt gives us the value of ϵh, which differs

from ϵ0 in the event that the sound speed cs is much smaller
than 1. In fact, putting together Eqs. (20) and (17), we see
that a measurement of nt would reduce the number of
parameters that ΔN depends on, giving us

ΔN ¼ −
ln c0

1 − ðϵ0 þ nt=2Þ= ln ð− 2ϵ0
nt
Þ : ð22Þ

This relation allows us to reduce the dependence of r down
to ϵ0 and c0, returning

r ¼ 16ϵ0c0 exp

�
−2 ln c0

1 − ln ð− 2ϵ0
nt
Þ=ðϵ0 þ nt=2Þ

�
ð1þ � � �Þ;

ð23Þ

where the ellipses � � � stand for the same slow-roll correc-
tions of Eq. (19), which may also be expressed in terms of
ϵ0 and c0 (and the observed values of nR and nt).
Equation (23) is one of our main results. It gives the
dependence of r in terms of the parameters ϵ0 and c0
provided that nR and nt are known.

III. CONSTRAINTS ON THE SOUND SPEED

We now examine the constraints on the possible values
of the sound speed cs implied by Eq. (19). We first consider
the simple case in which the sound speed cs remains
constant, that is s ¼ 0, and then move on to consider how
these constraints are affected by additional considerations
(such as the constraint on the running of the spectral index).
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Figure 3 shows the contour plots for r in the ϵ-cs plane
obtained from Eq. (19) after replacing s0 ¼ 0 in Eq. (21).
The case r ¼ 0.1 has been highlighted by the dashed
contour. We see that this plot differs substantially from
the one shown in Fig. 2 based on Eq. (2), and does not
imply a lower bound on cs. This is due to the nonvanishing
value of η0 affecting the running of ϵ from the scalar
horizon exit time τ0 to the tensor horizon exit time τh.
As emphasized in [41], to obtain a bound on cs taking into
account a nonvanishing value of η0 requires one to consider
the additional constraint on the running of the scalar
spectral index α. We examine this point in Sec. III C.

A. The consistency relation

In canonical models of inflation (cs ¼ 1) the tensor to
scalar ratio r and the spectral index of tensor modes nt
reduce to

r ¼ 16ϵ0; nt ¼ −2ϵ0: ð24Þ
These results lead to the well-known consistency relation:

r ¼ −8nt: ð25Þ
As we have seen, in the case of noncanonical models of
inflation, the tensor to scalar ratio rmay be written in terms
of ϵ0, c0 and nt as in Eq. (23). On the other hand, the tensor
spectral index is determined by the value of ϵ at the time
tensor horizon crossing (that is ϵh) as expressed in Eq. (13).
This implies that the consistency relation (25) may be
satisfied even for c0 ≠ 1 as long as the following relation is
satisfied:

−
2ϵ0
nt

c0 exp

�
2 ln c0

1 − ln ð− 2ϵ0
nt
Þ=ðϵ0 þ nt=2Þ

�
¼ 1: ð26Þ

In other words, a measurement of the tensor spectral index
does not eliminate the degeneracy between ϵ and cs as
usually thought. The origin of this degeneracy is the

running of ϵ between the two horizon crossing times.
Notice that if there is no running of ϵ between the two
horizon exits, one has ϵh ¼ ϵ0 (that is η0 ¼ 0) from where
one sees that nt ¼ −2ϵ0. Plugging this back into (26) one
obtains c0 ¼ 1, implying no distinction between the two
horizon crossing times. Figure 4 shows the allowed values
of c0 and ϵ0 that satisfies the consistency relation (25) for
various values of r, which marginally differs from the
contour plots of Fig. 3. On the other hand, it should be
noticed that in order to satisfy the consistency relation
(25), one requires that the speed of sound has a running
respecting s0¼ð1−nRÞ−2ϵ0−η0, coming from Eq. (9).
This implies

s0 ¼ ð1 − nRÞ − 2ϵ0 þ
1

ΔN
ln

�
−
2ϵ0
nt

�
; ð27Þ

where ΔN is given by (22). In Sec. III C we further
consider the effects of the running of the scalar spectral
index α on this analysis.

B. Running sound speed

Let us now consider the case in which the sound speed cs
is allowed to evolve, parametrized by a nonvanishing value
of s. Figure 5 shows the contour plot for s in the ϵ-cs plane,
in the particular case r ¼ 0.1. The dashed curve corre-
sponds to s ¼ 0. We see that the presence of a fixed
nonvanishing value of s does not introduce a drastic change
on the relation between ϵ and cs. A negative running of the
sound speed (s < 0) tends to increase the value of cs for a
fixed value of ϵ. Next, we may consider the realistic
possibility in which s depends on ϵ. For instance, the
authors of Ref. [62] studied a multifield model where the
inflaton trajectory consisted of an almost constant turn that,
thanks to the interaction between the inflaton and heavy
fields orthogonal to the trajectory, the sound speed of
adiabatic perturbations was characterized by a running of
the form s ¼ −ϵ=4. Motivated by this example, we choose

FIG. 3 (color online). The figure shows the contour plot for r in
the ϵ-cs plane, obtained from Eq. (19) assuming that s0 ¼ 0. The
dashed line shows the case for r ¼ 0.1.

FIG. 4 (color online). The figure shows the contour plot for r in
the ϵ-cs plane, obtained from Eq. (23) satisfying the consistency
relation r ¼ −8nt. The dashed line shows the case for r ¼ 0.1.
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to model the dependence of s on ϵ by the following simple
parametrization:

sðϵÞ ¼ λϵ; ð28Þ
where λ is a constant. Figure 6 shows the contour plot for λ
in the ϵ-cs plane in the particular case r ¼ 0.1. The dashed
curve corresponds to λ ¼ 0. We see that the dependence of
cs on ϵ is drastically affected by λ. In this particular
example, where r ¼ 0.1, we find that for values λ≲
−1.2 one recovers a lower bound on cs given by
cs ≥ 0.9. Thus, as a general rule, we find that a negative
running implies stronger lower bounds on cs for a fixed
value of ϵ. Moreover, if the running is proportional to ϵ, one
finds configurations with lower bounds on cs.

C. Including the running of the spectral index α

A crucial aspect of the analysis performed in Ref. [41]
was to take into account current constraints on the running
α of the spectral index nR − 1 of scalar perturbations. It is
customary to define the running α through the following
parametrization of the scalar power spectrum:

PRðkÞ ¼ P0

�
k
k�

�
nR−1þ1

2
α lnðk=k�Þþ���

; ð29Þ

where k� is a pivot scale. Then, α is found to have the
following dependence on other slow-roll parameters:

α ¼ −2ϵη − ηδη − sδs; ð30Þ

where δη and δs are slow-roll parameters required to satisfy
jδj ≪ 1, and defined as

δη ¼
_η

Hη
; δs ¼

_s
Hs

: ð31Þ

Current observations impose the constraint [17]

jαj ≤ 2 × 10−2: ð32Þ
(See also [68] for the latest update from Planck, which
slightly modifies this constraint.) Given that α depends on
many slow-roll parameters (30), in principle, it is possible
to satisfy (32) in several ways by conveniently adjusting δη
and δs. However, as observed in [41], in order to respect the
hierarchical structure involved in the slow-roll expansion,
the main contribution to (30) must be given by the first term:

α≃ −2ϵη: ð33Þ
Combining this expression with (32), one obtains

ϵ0jη0j < 10−2: ð34Þ
Then, by setting η0 ¼ 10−2=ϵ0 in Eqs. (19) and (18) one
obtains new restrictions on the possible values of cs and ϵ.
The resulting contour plot for r in the ϵ-cs plane is shown
in Fig. 7, where it is possible to see that for the reference
value r ¼ 0.1, the speed of sound has a lower bound
cs > 0.1 [69]. On the other hand, the combined data sets
from BICEP2 and Planck tend to favor a negative running

FIG. 5 (color online). The figure shows the contour plot for s0
in the ϵ-cs plane, obtained from Eq. (19) for the particular case
r ¼ 0.1. The dashed line shows the case for s0 ¼ 0.

FIG. 6 (color online). The figure shows the contour plot for λ in
the ϵ-cs plane, obtained by putting together Eqs. (19) and (28), for
the particular case r ¼ 0.1. The dashed line corresponds to the
case λ ¼ 0.

FIG. 7 (color online). The figure shows the contour plot for r in
the ϵ-cs plane, obtained from Eq. (19) taking into account the
constraints on the running α. The dashed line shows the case for
r ¼ 0.1.
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α, which in turn, imposes stronger constraints on cs.
For instance, following the analysis of Ref. [16], we
obtain the bounds cs > 0.25 at 68% confidence level, and
cs > 0.2 at 95% confidence level, corroborating the bound
of Ref. [41].
To finish this section, let us examine how Eq. (33) affects

our determination of cs in the case where nt is already
known. Putting together Eqs. (20), (22) and (33), we see
that

α ¼ −
2ϵ0
ln c0

�
ln

�
−
2ϵ0
nt

�
− ðϵ0 þ nt=2Þ

�
: ð35Þ

This relation allows us to break the degeneracy between c0
and ϵ0 provided that α is known (and assuming that δη and
δs are negligible).

IV. PARAMETRIZING ADDITIONAL
UV PHYSICS

As already emphasized in the Introduction, once we
accept the possibility of having cs ≠ 1, we should admit a
variety of additional operators proportional to 1 − c2s
that have their origin on the same UV physics responsible
for a nontrivial propagation of adiabatic perturbations
[59,61–63,70]. The aim of this section is to include the
effects of such UV degrees of freedom on the bounds of cs.
One way of proceeding is to parametrize the effects of UV
physics by including new operators in the quadratic action
of adiabatic curvature fluctuations R, in the following
manner:

SUV ¼
Z

d4xa3
ϵð1 − c2sÞ

M2

�
β1
a2c2s

_R∇2 _Rþ c2sβ2
a4

R∇4R
�
;

ð36Þ

where M is a mass scale characterizing the new degrees of
freedom, but not necessarily the cutoff scale at which they
become operative [62], and β1 and β2 are dimensionless
coefficients parametrizing the UV physics. We have
inserted the global factor 1 − c2s, to incorporate the fact
that one should recover single field canonical inflation in
the limit cs → 1. It is then straightforward to deduce that
the interaction picture Hamiltonian taking into account
these new operators is given by

HI ¼ −
1 − c2s
2a2M2

Z
x
½β1u0I∇2u0I þ c4sβ2u∇4u�; ð37Þ

where
R
x ≡

R
d3x, u ¼ zR and z ¼ a

ffiffiffi
ϵ

p
=cs. Using the

results of Appendix it is then possible to deduce that the
scalar power spectrum receive new contributions given by

ΔPUV

P0

¼ ð1 − c2sÞH2
0

4c20M
2

ðβ1 þ 5β2Þ: ð38Þ

Thus, we see that the leading effect of these new terms is to
modify the amplitude of the scalar power spectrum, which
now is given by

PRðkÞ ¼
H2

0

8π2ϵ0c0

�
1 − ð2ϵ0 þ η0 þ s0Þ ln

�
c0k
a0H0

�

þ ð2ϵ0 þ η0 þ s0ÞC − 2ðϵ0 þ s0Þ þ
1 − c20
4c20

β

�
;

ð39Þ

where β≡ ðβ1 þ 5β2ÞH2
0=M

2. On the other hand, tensor
modes are not affected by the new terms in Eq. (36), and we
are allowed to use Eq. (10) to characterize them. We may
now proceed to compute the tensor to scalar ratio using the
same procedure of Sec. II, to obtain

r ¼ 16ϵ0c0e−2ðΔNþln c0Þ
�
1þ 2ϵ0eη0ΔNðC − 1Þ

− ð1 − nRÞC þ 2ðϵ0 þ s0Þ −
1 − c20
4c20

β

�
; ð40Þ

where ΔN is given by (21). It is worth mentioning that
models of inflation with a single heavy field of mass
parameter M, interacting with curvature perturbations
corresponds to the particular case β1 ¼ 1 and β2 ¼ 0, in
the limit H2

0 ≪ M2 [55,64]. Because the term proportional
to β contains the factor c−20 − 1, Eq. (40) tells us that even a
very small value of the parameter β can have a large impact
on the dependence of r on the sound speed cs. This term
quickly dominates the square bracket in Eq. (40) at small
values of c0, implying a breakdown of our expansion.
Despite this, we may draw the following simple conclu-
sion: A positive value of β implies much stronger lower
bounds on cs for a fixed value of ϵ.

V. CONCLUSIONS

A measurement of a large value of the tensor to scalar
ratio r would constitute a dramatic breakthrough in our
understanding of the very early universe. In this article, we
have analyzed the implications of a large value of r on the
evolution slow-roll quantities parametrizing deviations
from canonical single field inflation. Our work has been
greatly motivated by Ref. [41], where it was emphasized
that a small value of the sound speed could have a sizable
impact on the dependence of r on the running of back-
ground inflationary parameters. Our results ratify this
assertion. More importantly, we have seen that the same
effects leading to the constraints on the speed of sound,
preserve the degeneracy between ϵ and cs even in the case
where the consistency relation is found to be satisfied. As
we have seen in Sec. III A, a measurement of the spectral
index of tensor modes nt does not break the degeneracy
between ϵ and cs, and a confirmation of the consistency
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relation does not necessarily rule out noncanonical models
of inflation. However, a determination of the running of
the scalar spectral index α would improve substantially our
knowledge about noncanonical models parametrized by cs.
Our results emphasize the importance of CMB-polarization
experiments [71] in order to constrain nontrivial deviations
from canonical single field inflation (parametrized by the
speed of sound and the UV-physics parameters β1 and β2).
More precisely, if future CMB experiments [72–75] detect
a signal larger than r ¼ 0.01 we would count with better
constraints on the value of cs (and even on the UV-physics
parameter β) than those obtained from non-Gaussianity
observations.
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APPENDIX: PERTURBATION THEORY

In this Appendix we review the in-in formalism of
perturbation theory applied to compute two-point correla-
tion functions in inflationary backgrounds [76,77].

1. Slowly-rolling background

Let us start by considering the quadratic action para-
metrizing the evolution of adiabatic perturbations Rðx; tÞ
with a nontrivial sound speed cs. This action is given by

S ¼
Z

d3xdta3ϵ

�
1

c2s
_R2 −

1

a2
ð∇RÞ2

�
; ðA1Þ

where a is the scale factor and where ϵ is the usual slow-roll
parameter given by

ϵ≡ −
_H
H2

; H ≡ _a
a
: ðA2Þ

Notice that we are working in units such that m2
Pl ¼ 1.

We may parametrize the time evolution of ϵ and cs through
additional slow-roll parameters η and s defined as

η≡ _ϵ

Hϵ
; s ¼ _cs

Hcs
: ðA3Þ

Since we are interested in computing the power spectrum of
scalar modes to first order in the slow-roll parameters, there
is no need to further parametrize the evolution of η and s,
which would lead to second order effects. Then, taking η
and s to be constant, we obtain

ϵ ¼ ϵ0eη0 lnða=a0Þ; ðA4Þ

cs ¼ c0es0 lnða=a0Þ; ðA5Þ

where ϵ0 and c0 are the values of ϵ and cs at a reference time
t0, when the scale factor is given by aðt0Þ ¼ a0. To simplify
the computation we may expand the exponentials as

ϵ ¼ ϵ0½1þ η0 lnða=a0Þ þ � � ��; ðA6Þ

cs ¼ c0½1þ s0 lnða=a0Þ þ � � ��: ðA7Þ

Integrating (A6) we obtain H as

H ¼ H0

�
1 − ϵ0 lnða=a0Þ þ

ϵ0ðϵ0 − η0Þ
2

ln2ða=a0Þ þ � � �
�
;

ðA8Þ
where H0 is the value of the Hubble parameter evaluated at
time t0. It is convenient to work with conformal time τ,
which comes defined through the change of variables
dt ¼ adτ. Then, integrating one more time we obtain an
expression for the scale factor a as a function of conformal
time τ,

a ¼ a0ðτÞ½1þ A1 þ A2 þ � � ��;
a0ðτÞ ¼ −

a0
H0τ

; ðA9Þ

where

A1ðτÞ ¼ ϵ0½1þ lnða0ðτÞ=a0Þ�; ðA10Þ

A2ðτÞ ¼
1

2
ϵ0½2ð2ϵ0 þ η0Þ þ 2ð2ϵ0 þ η0Þ lnða0ðτÞ=a0Þ

þ ðϵ0 þ η0Þln2ða0ðτÞ=a0Þ�: ðA11Þ

Notice that a0ðτÞ ¼ a0 at a conformal time given by

τ0 ¼ −
a0
H0

½1þ ϵ0 þ ϵ0ðϵ0 þ η0Þ þ � � ��: ðA12Þ

In what follows we simplify our computations by setting
a0 ¼ 1. We will later restore the value a0 whenever it
becomes necessary. To deal with the dynamics of pertur-
bations it is convenient to define a canonical field u through
the following rescaling of R:

u ¼ zR; z ¼
ffiffiffiffiffi
2ϵ

p a
cs

: ðA13Þ

Then, the action for the u-field is found to be given by

S ¼ 1

2

Z
d3xdτ

�
ðu0Þ2 − c2sð∇uÞ2 þ z00

z
u2
�
; ðA14Þ
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where the prime 0 denotes derivatives with respect to
conformal time τ. Expanding the coefficient z00=z up to
first order in slow roll, we obtain

z00

z
¼ 2

τ2
þ 3ð2ϵ0 þ η0 − 2s0Þ

2τ2
þ � � � : ðA15Þ

This expression implies a natural splitting of the theory
between a zeroth order part, and a first order part in terms of
the slow-roll parameters S ¼ S0 þ S1, where

S0 ¼
1

2

Z
d3xdτ

�
ðu0Þ2 − c20ð∇uÞ2 þ 2

τ2
u2
�
; ðA16Þ

S1 ¼
1

2

Z
d3xdτ

�
−c20θðτÞð∇uÞ2 þ 1

τ2
δ0u2

�
; ðA17Þ

where we have defined

δ0 ¼
3

2
ð2ϵ0 þ η0 − 2s0Þ; ðA18Þ

θ0ðτÞ ¼ 2s0 ln a0ðτÞ: ðA19Þ

The splitting S ¼ S0 þ S1 will allow us to compute the
power spectrum with the help of perturbation theory to first
order in slow roll.

2. Perturbation theory

The interaction piece of Eq. (A17) defines the
Hamiltonian of the interaction picture as

HIðτÞ ¼
1

2

Z
d3x

�
c20θðτÞð∇uIÞ2 −

δ0
τ2

u2I

�
; ðA20Þ

where uI is the interaction picture field defined as

uI ¼
1

ð2πÞ3
Z

d3k½akukðτÞeik·x þ a†ku
�
kðτÞe−ik·x�; ðA21Þ

where the pair a†k and ak are the usual creation and
annihilation operators satisfying the commutation relation

½ak; a†k0 � ¼ ð2πÞ3δð3Þðk − k0Þ; ðA22Þ

and ukðτÞ represents the normalized solution to the zeroth
order equation of motion deduced from (A16), given by

ukðτÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2c0k

p
�
1 −

i
c0kτ

�
e−ic0kτ: ðA23Þ

Standard perturbation theory tells us that the complete
solution uðx; τÞ may be written in terms of the interaction
picture field uIðx; τÞ and the propagator UðτÞ as

uðx; τÞ ¼ U†ðτÞuIðx; τÞUðτÞ; ðA24Þ

with

UðτÞ ¼ T exp

�
−i

Z
τ

−∞þ
dτ0HIðτ0Þ

	
; ðA25Þ

where T stands for the time ordering symbol, and ∞þ ¼
ð1þ iϵÞ∞ is the usual prescription to isolate the in-
vacuum. We may now compute the two-point correlation
function for u, which is written in terms of the interaction
picture quantities as

huðx; τÞuðy; τÞi ¼ h0jU†ðτÞuIðx; τÞuIðy; τÞUðτÞj0i: ðA26Þ

By expanding the previous result up to first order in HI, we
obtain

huðx; τÞuðy; τÞi ¼ h0juIðx; τÞuIðy; τÞj0i

þ i
Z

τ

−∞
dτ0h0j½HIðτ0Þ; uIðx; τÞuIðy; τÞ�j0i; ðA27Þ

which is the two-point correlation function for the u-field
up to first order in slow roll.

3. Scalar power spectrum

Let us now consider the computation of the power
spectrum for adiabatic fluctuations PRðkÞ. Because
R ¼ u=z, we find that PRðkÞ is given in terms of the
two-point correlation function for the u-field as

PRðk; τÞ ¼
4πk3

ð2πÞ3z2
Z
y
huðy; τÞuð0; τÞie−ik·y; ðA28Þ

where
R
y stands for

R
d3y. Expanding z up to first order in

slow roll as z ¼ z0 þ z1, where

z0 ¼
ffiffiffiffiffi
ϵ0

p
a0ðτÞ
c0

;

z1 ¼
ffiffiffiffiffi
ϵ0

p
a0ðτÞ
c0

½ϵ0 þ ðϵ0 − s0 þ η0=2Þ ln a0ðτÞ�; ðA29Þ

and using (A27) back into (A28), we obtain

PRðk; τÞ ¼
4πk3

ð2πÞ3z20

Z
y
h0juIðy; τÞuIð0; τÞj0ie−ik·y

−
8πk3z1
ð2πÞ3z20

Z
y
h0juIðy; τÞuIð0; τÞj0ie−ik·y

þ 4πik3

ð2πÞ3z20

Z
y

Z
τ

−∞
dτ0h0j½HIðτ0Þ;

uIðy; τÞuIð0; τÞ�j0i: ðA30Þ
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The rest of the computation is straightforward: The first line

of (A30) gives the zeroth order power spectrum Pð0Þ
R , which

is scale independent, whereas the two next lines combine to
give the first order correctionΔPRðk; τÞ, which depends on
the scale k and on time τ. In the long wavelength limit
jτjk ≪ 1 the final result has the form

PRðkÞ ¼ Pð0Þ
R þ ΔPRðkÞ; ðA31Þ

where

Pð0Þ
R ¼ H2

0

8π2ϵ0c0
; ðA32Þ

ΔPRðkÞ
Pð0Þ

R

¼ −ð2ϵ0 þ η0 þ s0Þ lnðc0k=a0H0Þ

þ ð2ϵ0 þ η0 þ s0ÞC − 2ðϵ0 þ s0Þ; ðA33Þ

where C ¼ 2 − log 2 − γ (γ being the Euler-Mascheroni
constant). Notice that in the final result we have restored the
value a0 of the scale factor evaluated at time τ0.

One may now repeat the same steps to derive the tensor
power spectrum. Here we limit ourselves to write the final
result which is found to be

PhðkÞ ¼ Pð0Þ
h þ ΔPhðkÞ; ðA34Þ

where

Pð0Þ
h ¼ 2H2

0

π2
; ðA35Þ

ΔPhðkÞ
Pð0Þ

h

¼ −2ϵ0 lnðk=a0H0Þ þ 2ϵ0ðC − 1Þ: ðA36Þ

Notice that in the present article we have introduced the
label h to label the horizon crossing time of tensor modes,
which happens at a different time from the respective
horizon crossing of scalars. This amounts to replace 0 → h
in every background quantity in our last expressions.
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