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Abstract This paper was originally motivated by the problem of providing a point-
based formula (only involving the nominal data, and not data in a neighborhood) for
estimating the calmness modulus of the optimal set mapping in linear semi-infinite
optimization under perturbations of all coefficients. With this aim in mind, the paper
establishes as a key tool a basic result on finite-valued convex functions in the n-
dimensional Euclidean space. Specifically, this result provides an upper limit char-
acterization of the boundary of the subdifferential of such a convex function. When
applied to the supremum function associated with our constraint system, this charac-
terization allows us to derive an upper estimate for the aimed calmness modulus in
linear semi-infinite optimization under the uniqueness of nominal optimal solution.

Keywords Variational analysis · Calmness · Semi-infinite programming ·
Linear programming

M. J. Cánovas · J. Parra (B) · F. J. Toledo
Center of Operations Research, Miguel Hernández University of Elche, 03202 Elche, Alicante, Spain
e-mail: parra@umh.es

M. J. Cánovas
e-mail: canovas@umh.es

F. J. Toledo
e-mail: javier.toledo@umh.es

A. Hantoute
Departamento de Ingeniería Matemático, Centro de Modelamiento Matemático (CMM),
Universidad de Chile, Santiago, Chile
e-mail: ahantoute@dim.uchile.cl

123



514 M. J. Cánovas et al.

1 Introduction

We consider the parameterized family of linear optimization problems

P (c, a, b) : minimize c′x
subject to a′

t x ≤ bt , t ∈ T,
(1)

where c, x ∈ R
n are regarded as column-vectors, y′ denotes the transpose of y ∈ R

n,

T is a compact Hausdorff space and the functions t �→ at ∈ R
n and t �→ bt ∈ R

are continuous on T . In our model, the parameter to be perturbed is (c, a, b) ∈ R
n ×

C
(
T, R

n+1
)
, where (a, b) ≡ (at , bt )t∈T . In other words, we are working in the

context of linear semi-infinite optimization problems under perturbations of all data.
The parameter space R

n × C
(
T, R

n+1
)

is considered to be endowed with the
uniform convergence topology through the norm

‖(c, a, b)‖ := max {‖c‖∗ , ‖(a, b)‖∞} , (2)

where R
n is equipped with an arbitrary norm, ‖·‖, with dual norm, ‖·‖∗ , given by

‖u‖∗ = max‖x‖≤1
∣∣u′x

∣∣ , and ‖(a, b)‖∞ := maxt∈T ‖(at , bt )‖ , where

‖(at , bt )‖ := max {‖at‖∗ , |bt |} . (3)

Associated with the parameterized problem (1) we consider the feasible set map-
ping, F : C

(
T, R

n+1
)

⇒ R
n, the optimal value function, ϑ : R

n × C
(
T, R

n+1
) →

[−∞,+∞], and the optimal (solution) set mapping (also called argmin mapping),
S : R

n × C
(
T, R

n+1
)

⇒ R
n, which are given by:

F (a, b):= {
x ∈ R

n | a′
t x ≤ bt , t ∈ T

}
,

ϑ (c, a, b):= inf
{
c′x | x ∈ F (a, b)

}
(with inf ∅:= + ∞),

S (c, a, b):= {
x ∈ F (a, b) | c′x = ϑ (c, a, b)

}
.

At this moment, we declare the main contributions of the present paper, which has
[3] as an immediate antecedent in the different context of canonical perturbations
(i.e., only perturbing c and b, and keeping a fixed at its nominal value, denoted by a).
We underline Theorem 4.1 (see also Corollary 4.1), which provides an upper bound on
the calmness modulus of S at a given

(
c, a, b

)
, assuming that S (

c, a, b
)

is a singleton
{x}. The main tool in order to get this result is given in Theorem 3.1, which is of interest
by itself. This result characterizes the boundary of the subdifferential, at a point x, of
a convex function defined on R

n, in terms of the upper limit of subdifferentials around
x, and, as far as we know and in spite of being so basic, it seems to be new in the
literature of convex analysis.

Let us recall that a mapping M : Y ⇒ X between metric spaces (with both
distances denoted by d) is said to be calm at (y, x) ∈ gphM (the graph of M) if there
exist a constant κ ≥ 0 and neighborhoods U of x and V of y such that

d (x,M (y)) ≤ κd (y, y) (4)
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Boundary of subdifferentials and calmness 515

whenever x ∈ M (y) ∩ U and y ∈ V ; where, as usual, d (x,�) is defined as
inf {d (x, z) | z ∈ �} for � ⊂ R

n , with d (x,∅) := + ∞. Equivalently, the calmness
property can be written in terms of the existence of a (possibly smaller) neighborhood
U of x and κ ≥ 0 such that

d (x,M (y)) ≤ κd
(

y,M−1 (x)
)

, for all x ∈ U, (5)

where M−1 (x) := {y ∈ Y | x ∈ M (y)} . In these terms, the calmness of M at (y, x)

turns out to be equivalent to the so-called metric subregularity of M−1 at (x, y) .

The infimum of those κ ≥ 0 for which (4)—or ( 5)—holds (for some associated U
and V ) is called the calmness modulus of M at (y, x) and denoted by clmM (y, x) .

The case when M is not calm at (y, x) corresponds to clmM (y, x) = +∞.

Calmness property is weaker than the Aubin property (also called pseudo-Lipschitz
or Lipschitz-like), which holds at (y, x) when (4)—or (5 )—are valid when replac-
ing y with an arbitrary ỹ in some neighborhood V of y. The reader is addressed to
the monographs [6,12,16,18] for details and references about calmness and Aubin
properties. The existing relationship between the calmness property and local error
bounds is well known (see, e.g., [1,15]). As far as calmness plays an important role
in relation to issues from optimization (theory and algorithms), one can find in the
literature deep contributions to the analysis of this property in different linear and
nonlinear frameworks, mainly devoted to the calmness of feasible set mappings under
right-hand-side perturbations; see, e.g., [7,10,13,14]. Subdifferential approaches to
calmness/local error bounds can be found in [1,9,11,15]. See also [2] in relation to
the so-called isolated calmness (also called calmness on selections) of the argmin
mapping S in a convex semi-infinite framework under canonical perturbations.

The structure of the paper is as follows: Sect. 2 gathers the necessary notation and
preliminary results. Sect. 3 provides the announced characterization on the boundary
of the subdifferential of convex functions. Sect. 4 establishes a point-based expression
for the calmness modulus of the feasible set mapping when the nominal feasible set
is a singleton. This result is particularly relevant when applied to the (sub)level set
mapping L associated with an optimization problem (1) with a unique solution x . An
upper bound on the calmness modulus of the argmin mapping S, assuming again the
uniqueness of nominal optimal solution, is also provided.

2 Preliminaries

In this section we introduce some additional notation and preliminary results which
are needed later on. Given X ⊂ R

k, k ∈ N, we denote by convX and coneX the
convex hull and the conical convex hull of X , respectively. It is assumed that the
coneX always contains the zero-vector 0k , in particular cone(∅) = {0k}. If X is a
subset of any topological space, intX, clX and bdX stand, respectively, for the interior,
the closure and the boundary of X.

Throughout the paper, we appeal to the set of active indices at x ∈ F (a, b) ,

Ta,b (x), defined as
Ta,b (x) := {

t ∈ T | a′
t x = bt

}
.
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516 M. J. Cánovas et al.

Recall that the Slater constraint qualification (SCQ) holds at parameter (a, b) ∈
C

(
T, R

n+1
)

if there exists x̂ ∈ R
n (called a Slater point) such that a′

t x̂ < bt for all
t ∈ T .

In the paper we consider the supremum function associated with a fixed (nominal)
element

(
a, b

) ∈ C
(
T, R

n+1
)
, s : R

n ⇒ R, given by

s (x) := max
{
a′

t x − bt , t ∈ T
}
. (6)

If ∂ denotes the usual subdifferential in convex analysis, we have, for x ∈ R
n,

∂s (x) = conv
{
at | a′

t x − bt = s (x) , t ∈ T
}
.

(This result follows immediately from the Ioffe–Tikhomirov theorem; see, for instance,
[19, Theorem 2.4.18] and the classical Mazur’s theorem). In particular, if x ∈ F (

a, b
)

is not a Slater point (i.e., if s (x) = 0),

∂s (x) = conv
{

at | t ∈ Ta,b (x)
}

. (7)

The following proposition comes straightforwardly from [5, Theorem 5], taking
[15, Theorem 1] into account.

Proposition 2.1 Let (
(
a, b

)
, x) ∈ gphF . Then

clmF(
(
a, b

)
, x) = ‖x‖ + 1

lim inf
x→x, s(x)>0

d∗ (0n, ∂s (x))

(with the convention 1/0 = +∞), where d∗ stands for the distance in R
n associated

with ‖·‖∗ .

3 On the boundary of the subdifferential of convex functions

The next two results, Proposition 3.1 and Corollary 3.1, are devoted to prove Theorem
3.1. As usual, f ∗ stands for the Fenchel–Legendre conjugate of f, and ‘dom’ means
effective domain.

Proposition 3.1 Let g : R
n −→ R be a convex function such that g (0n) = 0 and

g (x) > 0 for all x ∈ R
n\{0n}. For each v ∈ R

n, let M (v) :=arg min
x∈Rn

(
g (x) − v′x

)
.

Then there exists δ > 0 such that M (v) �= ∅ whenever ‖v‖∗ < δ.

Proof As a consequence of [17, Theorem 27.1 (d)], we have that 0n ∈ int domg∗,
and then, 0n ∈ int dom∂g∗. Then, just observe that M (v) = ∂g∗ (v) for all v ∈ R

n,

according to [17, Theorem 23.5 (b)⇔(a∗)]. ��
Corollary 3.1 Let f : R

n −→ R be a convex function, x ∈ R
n, and u ∈ ∂ f (x) . For

each u ∈ R
n set A (u) :=arg minx∈Rn

(
f (x) − u′x

)
and assume A (u) = {x}. Then

there exists δ > 0 such that A (u) �= ∅ whenever ‖u − u‖∗ < δ.
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Boundary of subdifferentials and calmness 517

Proof Just apply the previous proposition to g (x) := f (x + x) − f (x) − 〈u, x〉 and
note that the associated M is given by M (v) = A (u + v) . ��
Theorem 3.1 Let f : R

n −→ R be a convex function and let x ∈ R
n . Then

bd∂ f (x) = lim sup
x→x, x �=x

∂ f (x) .

Proof First, let us see the inclusion ‘⊂’. Set, as in the previous corollary, A (u) :=
arg minx∈Rn

(
f (x) − u′x

)
for each u ∈ R

n, and pick an arbitrary u ∈ bd∂ f (x)

(closed), which entails x ∈ A (u) . The case A (u) �= {x} is trivial, since in such a
case u ∈ ∂ f (x) for all x ∈ A (u) \{x}, and we may approach x within the segment
linking any x ∈ A (u) \{x} and x . Let us assume the nontrivial case A (u) = {x}. As
a consequence of [17, Theorem 24.5], taking the equality A = ∂ f ∗ into account, A
turns out to be (Berge-) upper semicontinuous at u; in other words, for each ε > 0
there exists δ > 0 sucht that ‖u − u‖∗ < δ entails A (u) ⊂ B (x, ε) . According to
Corollary 3.1 we may assume δ small enough to ensure A (u) �= ∅, which entails that
A is also (Berge-) lower semicontinuous at u. Since u ∈ bd∂ f (x) , we may approach
u by means of a sequence {ur }r∈N with ur /∈ ∂ f (x) for all r. Assuming, without
loss of generality, A (ur ) �= ∅ for all r ∈ N, and picking xr ∈ A (ur ) for each r,
we obtain xr → x . Finally observe that xr ∈ A (ur ) ⇔ ur ∈ ∂ f (xr ) , and, since
ur /∈ ∂ f (x) , we have x /∈ A (ur ) , hence xr �= x . Accordingly, we have proved
u ∈ lim supx→x, x �=x∂ f (x) .

Now let us see the converse inclusion: ‘⊃’. Let xr → x with xr �= x for all r, and
suposse that ur ∈ ∂ f (xr ) for all r and {ur }r∈N converges to some u ∈ R

n . Appealing
again to [17, Theorem 24.5], mapping ∂ f is upper semicontinuous at x (see, e.g., [17,
Corollary 24.5.1]), so that u ∈ ∂ f (x) . Let us see, reasoning by contradiction, that
u /∈ int∂ f (x) . On the contrary, suppose that the closed Euclidean ball B2 (ur , ε) is
contained in ∂ f (x) for some ε > 0 and some r ∈ N (indeed for all r large enough),
which in particular entails ur + ε xr −x

‖xr −x‖2
∈ ∂ f (x) , and hence

(
ur + ε xr −x

‖xr −x‖2

−1

)′(
xr − x

f (xr ) − f (x)

)
≤ 0. (8)

On the other hand, ur ∈ ∂ f (xr ) entails

(
ur

−1

)′( x − xr

f (x) − f (xr )

)
≤ 0,

and adding up this last inequality with (8), and recalling xr �= x, we obtain the
contradiction ε ‖xr − x‖2 ≤ 0. ��
Remark 3.1 An alternative proof of the direct inclusion in the previous theorem, given
u ∈ bd∂ f (x) and assuming the nontrivial case A (u) = {x}, is the following: Since
∂ f ∗ (u) = A (u) = {x} and f ∗ is continuous at u, f ∗ is Gâteaux-differentiable
at u, and so, a fortiori, it is Fréchet differentiable (due to the finite-dimensional
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setting) at u.Take a sequence {ur }r∈N with ur /∈ ∂ f (x) for all r, converging to u.
Because u ∈ int(dom f ∗), there exists xr ∈ ∂ f ∗(ur ) different of x which, thanks
to the differentiability property of f ∗, converges to x . Accordingly, we have proved
u ∈ lim supx→x, x �=x∂ f (x) .

The next result is a direct consequence of the previous theorem.

Corollary 3.2 Let f : R
n −→ R be a convex function and let x ∈ R

n . Then

d (0n, bd∂ f (x)) = lim inf
x→x, x �=x

d (0n, ∂ f (x)) .

Remark 3.2 From Theorem 3.1 we can immediately derive the classical result on
continuous differentiability of convex functions given in [17, Corollary 25.5.1].

4 Calmness moduli of sub-level sets and argmin mappings

To start with, this section provides a point-based expression for the calmness modulus
of F when the nominal feasible set is a singleton. This seems very restrictive, but turns
out to be relevant when applied to the lower level set mapping associated with (1),
L : R

n+1 × C
(
T, R

n+1
)

⇒ R
n , which is given by

L (c, α, a, b) := {
x ∈ R

n | c′x ≤ α; a′
t x ≤ bt , t ∈ T

}
, (9)

for (c, α, a, b) ∈ R
n+1 × C

(
T, R

n+1
)
. The last space is endowed with the norm

‖(c, α, a, b)‖ := max {‖(c, α)‖ , ‖(a, b)‖∞} . (10)

Proposition 4.1 Let
(
a, b

) ∈ C
(
T, R

n+1
)

and assume F (
a, b

) = {x} . Then

clmF ((
a, b

)
, x

) = ‖x‖ + 1

d∗
(

0n, bd conv
{

at , t ∈ Ta,b (x)
}) .

Proof The assumption F (
a, b

) = {x} entails that s (x) > 0 for all x �= x . Conse-
quently, by applying Proposition 2.1, Corollary 3.2, and taking (7) into account, we
obtain
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Boundary of subdifferentials and calmness 519

clmF ((
a, b

)
, x

) = ‖x‖ + 1

lim inf
x→x, x �=x

d∗ (0n, ∂s (x))
= ‖x‖ + 1

d∗ (0n, bd∂s (x))

= ‖x‖ + 1

d∗
(

0n, bd conv
{

at , t ∈ Ta,b (x)
}) .

��
The following Corollary comes directly from the previous proposition taking into

account the fact that L (
c, c′x, a, b

) = S (
c, a, b

)
.

Corollary 4.1 Let
(
c, a, b

) ∈ R
n ×C

(
T, R

n+1
)

and assume S (
c, a, b

) = {x} . Then

clmL ((
c, c′x, a, b

)
, x

) = ‖x‖ + 1

d∗
(

0n, bd conv{c; at , t ∈ Ta,b (x)}
) .

Theorem 4.1 provides the aforementioned upper bound for the calmness modulus
of S in terms of the calmness modulus of ϑ. Since ϑ is a function (i.e., single-valued),
we denote its calmness modulus at

(
c, a, b

)
by just clmϑ

(
c, a, b

)
. The next remark

gathers some preliminary results about ϑ.

Remark 4.1 Under SCQ at
(
a, b

)
and the boundedness (and non-emptiness) of

S (
c, a, b

)
, ϑ turns out to be Lipschitz continuous at

(
c, a, b

)
(see [8, Theorem 10.1]).

Under these hypotheses, [4, Theorem 4.3] provides an explicit expression of a Lip-
schitz constant L0 for ϑ at

(
c, a, b

)
, in terms of the distance to infeasibility of the

nominal constraint system. Such an L0 can be computed exclusively in terms of the
nominal data

((
c, a, b

)
, x

)
. Obviously L0 is an upper bound on clmϑ

(
c, a, b

)
.

Theorem 4.1 Let
(
c, a, b

) ∈ R
n × C

(
T, R

n+1
)

and assume S (
c, a, b

) = {x} and
that SCQ holds at

(
a, b

)
. Then

clmS ((
c, a, b

)
, x

) ≤ max
{
1, clmϑ

(
c, a, b

)}
clmL ((

c, c′x, a, b
)
, x

)

= (‖x‖ + 1) max
{
1, clmϑ

(
c, a, b

)}

d∗(0n, bd conv{c; at , t ∈ Ta,b (x)}) . (11)

Proof According to the previous corollary, take any κ > clmL ((
c, c′x, a, b

)
, x

)
and

consider neighborhoods W of
(
c, c′x, a, b

)
in R

n+1 × C
(
T, R

n+1
)

and U of x in R
n

such that
‖x − x‖ ≤ κ

∥∥(c, α, a, b) − (
c, c′x, a, b

)∥∥

whenever (c, α, a, b) ∈ W and x ∈ L (c, α, a, b) ∩ U.

Due to the continuity of ϑ at
(
c, a, b

)
under the current hypotheses, let us consider

a neighborhood V of
(
c, a, b

)
in R

n × C
(
T, R

n+1
)

such that

(c, ϑ (c, a, b) , a, b) ∈ W
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whenever (c, a, b) ∈ V . Now fix an arbitrarily small ε > 0 and assume that V is small
enough to ensure

∣∣ϑ (c, a, b) − c′x
∣∣ ≤ (

clmϑ
(
c, a, b

) + ε
) ∥∥(c, a, b) − (

c, a, b
)∥∥

provided that (c, a, b) ∈ V . Then, for any (c, a, b) ∈ V and any x ∈ S (c, a, b) ∩ U,

taking into account the fact that

S (c, a, b) = L (c, ϑ (c, a, b) , a, b) ,

one has, recalling (2), (3), and (10 ),

‖x − x‖ ≤ κ
∥∥(c, ϑ (c, a, b) , a, b) − (

c, c′x, a, b
)∥∥

= κ max
{∥∥(c, a, b) − (

c, a, b
)∥∥ ,

∣∣ϑ (c, a, b) − c′x
∣∣}

≤ κ max{1, clmϑ
(
c, a, b

) + ε} ∥
∥(c, a, b) − (

c, a, b
)∥∥ .

Consequently, κ max{1, clmϑ
(
c, a, b

) + ε} turns out to be a calmness constant
for S at

((
c, a, b

)
, x

)
. Due to the fact that κ may be chosen arbitrarily closed to

clmL ((
c, c′x, a, b

)
, x

)
and ε > 0 was arbitrarily chosen, we conclude

clmS ((
c, a, b

)
, x

) ≤ max
{
1, clmϑ

(
c, a, b

)}
clmL ((

c, c′x, a, b
)
, x

)
,

which entails the aimed result according to Corollary 4.1. ��
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