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Let (M, g) be an n-dimensional compact Riemannian manifold without boundary 
and Γ be a non-degenerate closed geodesic of (M, g). We prove that the supercritical 
problem

−Δgu + hu = u
n+1
n−3 ±ε, u > 0, in (M, g)

has a solution that concentrates along Γ as ε goes to zero, provided the function h
and the sectional curvatures along Γ satisfy a suitable condition. A connection with 
the solution of a class of periodic Ordinary Differential Equations with singularity 
of attractive or repulsive type is established.
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r é s u m é

Soit (M, g) une variété riemannienne compacte sans bord, de dimension n, et Γ une 
géodésique fermée, non dégénérée de (M, g). On démontre que le problème elliptique 
supercritique

−Δgu + hu = u
n+1
n−3 ±ε, u > 0, dans (M, g)

admet une solution qui se concentre le long de Γ lorsque le paramètre ε tend vers 
zéro, à condition que la fonction h et les courbures sectionnelles de M le long de 
Γ satisfassent une certaine condition appropriée. On établit également un lien avec 
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des solutions d’une certaine classe d’équations différentielles ordinaires périodiques 
avec singularité de type attractif ou répulsif.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of main results

We deal with the semilinear elliptic equation

−Δgu + hu = up−1, u > 0, in (M, g) (1.1)

where (M, g) is an n-dimensional compact Riemannian manifold without boundary, h is a C1-real function 
on M such that −Δg + h is coercive and p > 2.

For any p ∈ (2, 2∗n), where 2∗n := 2n
n−2 if n � 3 and 2∗n := +∞ if n = 2, problem (1.1) has a solution, 

which can be found by minimization of

Ip(u) =
∫
M(|∇gu|2 + hu2)dσg

(
∫
M |u|pdσg)2/p

over H1
g (M) \ {0}, using the compactness of the embedding H1

g (M) ↪→ Lp
g(M).

In the critical case, i.e. p = 2∗n, the situation turns out to be more delicate. In particular, the existence of 
solutions is related to the position of the potential h with respect to the geometric potential hg := m−2

4(m−1)Rg, 
where Rg is the scalar curvature of the manifold.

If h ≡ hg, then problem (1.1) is referred to as the Yamabe problem [22] and it has always a solution. 
After Trudinger [20] discovered a gap in the argument in [22] and gave a proof under some conditions on 
(M, g), Aubin [2,3] showed that whenever Q(M, g) < Q(Sn, g0), where (Sn, g0) is the standard sphere and

Q(M, g) := inf
u∈H1

g(M)\{0}
I2∗

n
(u),

there is a solution to the problem, and proved that this holds if n � 6 and (M, g) is not locally conformally 
flat. Finally, Schoen [18] gave a proof in full generality using the Positive Mass Theorem [19].

When h < hg somewhere in M , existence of a solution is guaranteed by a minimization argument, 
arguing as in Aubin [2,3]. The situation is extremely delicate when h � hg everywhere in M, because 
blow-up phenomena can occur as pointed out by Druet in [9,10].

The supercritical case p > 2∗n is even more difficult to deal with. A first result in this direction is a 
perturbative result due to Micheletti, Pistoia and Vétois [15]. They consider the almost critical problem 
(1.1) when p = 2∗n ± ε with ε > 0. If p = 2∗n − ε the problem (1.1) is slightly subcritical and if p = 2∗n + ε

the problem (1.1) is slightly supercritical. They prove the following results:

Theorem 1.1. Assume n � 6 and ξ0 ∈ M is a non-degenerate critical point of h − n−2
4(n−1)Rg. Then

(i) if h(ξ0) > n−2
4(n−1)Rg(ξ0) then the slightly subcritical problem (1.1) with p = 2∗n − 1 − ε, has a solutions 

uε which concentrates at ξ0 as ε → 0,
(ii) if h(ξ0) < n−2

4(n−1)Rg(ξ0) then the slightly supercritical problem (1.1) with p = 2∗n − 1 − ε, has a solutions 
uε which concentrates at ξ0 as ε → 0.

Now, for any integer 0 � k � n − 3 let 2∗n,k = 2(n−k)
n−k−2 be the (k + 1)-st critical exponent. We remark 

that 2∗n,k = 2∗n−k,0 is nothing but the critical exponent for the Sobolev embedding H1
h(N ) ↪→ Lq (N ) in a 
h
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compact (n − k)-dimensional Riemannian manifold (N , h). In particular, 2∗n,0 = 2n
n−2 is the usual Sobolev 

critical exponent.
We can summarize the results proved by Micheletti, Pistoia and Vétois just saying that problem (1.1)

when p → 2∗n,0 (i.e. k = 0) has positive solutions blowing-up at points. Note that a point is a 0-dimensional 
manifold.

A natural question arises:

does problem (1.1) have solutions blowing-up at k-dimensional submanifolds when p → 2∗n,k?

In the present paper, we give a positive answer when k = 1. More precisely, we prove that if p → 2∗n,1
problem (1.1) has a solution which concentrates along a geodesic Γ of the manifold provided h satisfies a 
suitable condition. Let us state our main result.

We consider the problem (1.1) with p = 2∗n,1 ± ε and ε > 0, i.e.

−Δgu + hu = u
n+1
n−3±ε, u > 0 in (M, g). (1.2)

We will say that problem (1.2) is slightly 2nd-supercritical if p = 2∗n,1 + ε and it is slightly 2nd-subcritical
if p = 2∗n,1 − ε.

In order to state our main result, we need to introduce some geometric notation. Let Γ be a closed 
nontrivial simple geodesic in M. Given ξ ∈ Γ there is a natural splitting TξM = TξΓ⊕NξΓ into the tangent 
and normal bundle over Γ . It is useful to introduce a local system of coordinates near Γ . Let γ : [0, 2�] → M
be an arclength parametrization of Γ , where 2� is the length of Γ . We denote by E0 a unit tangent vector 
to Γ . In a neighborhood of a point ξ of Γ we give an orthonormal basis E1, . . . , EN of NqΓ . We can assume 
that the Ei’s are parallel along Γ , i.e. ∇E0Ei = 0 for any i = 1, . . . , N . The geodesic condition for Γ
translates into the condition ∇E0E0 = 0. Here ∇ is the connection associated with the metric g. Moreover, 
the non-degeneracy of Γ is equivalent to say that the linear equation

J φ := ∇2
E0

φ + R(φ,E0)E0 = 0 has only the trivial solution on all of Γ. (1.3)

Here J is the Jacobi operator on Γ corresponding to the second variation of the length functional on curves. 
For a generic metric g on M it is well known that all closed geodesics are non-degenerate (see Anosov [1]). 
To parametrize a neighborhood of a point of Γ in M we define the Fermi coordinates

F (x0, x1, . . . , xN ) = expγ(x0)

(
N∑
i=1

xiEi(x0)
)
, (1.4)

where expγ(x0) is the exponential map in M through the point γ(x0).
Let us introduce the function (see also (4.20))

σ(x0) = h(x0) −
(n− 3)
4(n− 2)

[
Rg(x0) − (n− 1)Ric

(
γ̇(x0), γ̇(x0)

)]
, (1.5)

where Rg is the scalar curvature and Ric denotes the Ricci tensor.
Let an := 2(n−2)

(n−3)(n+1) and bn := (n−3)2(n−5)
4(n+1) . We introduce the periodic ODE problem

⎧⎪⎪⎨
⎪⎪⎩

−μ̈ + anσμ− bn
μ

= 0 in [0, 2�],

μ > 0 in [0, 2�], (1.6)
μ(0) = μ(2�), μ̇(0) = μ̇(2�)
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which has a singularity of attractive type at the origin and the periodic ODE problem

⎧⎪⎪⎨
⎪⎪⎩

−μ̈ + anσμ + bn
μ

= 0 in [0, 2�],

μ > 0 in [0, 2�],
μ(0) = μ(2�), μ̇(0) = μ̇(2�)

(1.7)

which has a singularity of repulsive type at the origin.
Solvability of the slightly 2nd-subcritical problem is strictly related with solvability of (1.6) with attractive 

singularity, while solvability of the slightly 2nd-supercritical problem is strictly related with solvability 
of (1.7) with repulsive singularity. We remark that in the subcritical side the assumption σ(s) > 0 for any 
s ∈ [0, �] is enough to find a solution to problem (1.6). In this case, using standard arguments, the solution 
is just a minimizer of the energy. The supercritical side turns out to be more difficult and the only existence 
result for problem (1.7) was obtained by del Pino, Manásevich and Montero in [5] when σ(s) < 0 for any 
s ∈ [0, �] provided some extra non-resonance conditions are satisfied (see also Proposition 2.1).

As usual in this kind of problem, we also need to assume a gap condition of the form
∣∣εk2 − κ2∣∣ > ν

√
ε, k = 1, 2, . . . (1.8)

where κ > 0 is given explicitly in Lemma 6.2 and ν is positive.
Now we can state our main result.

Theorem 1.2. Let n � 8. Let Γ be a simple closed, non-degenerate geodesic of M (see (1.3)).

(i) Assume the problem (1.6) has a non-degenerate positive solution μ0. Then, for any ν > 0 there 
exists ε0 > 0 such that for any ε ∈ (0, ε0) which satisfies condition (1.8), the slightly 2nd-subcritical
problem (1.2) with p = 2∗n,1 − 1 − ε has a solution uε that concentrates along Γ as ε → 0.

(ii) Assume the problem (1.7) has a non-degenerate positive solution μ0. Then, for any ν > 0 there exists
ε0 > 0 such that for any ε ∈ (0, ε0) which satisfies condition (1.8), the slightly 2nd-supercritical
problem (1.2) with p = 2∗n,1 − 1 + ε has a solution uε that concentrates along Γ as ε → 0.

Moreover, the solution uε can be described in Fermi coordinates as follows:

uε(x0, x) = μ
−N−2

2
ε w

(
μ−1
ε (x− dε)

)
+ o(1),

where

με(x0) ∼
√
εμ0(x0) and dεk(x0) ∼ εdk(x0), k = 1, . . . , N,

and μ0 solves either problem (1.6) in the slightly 2nd-subcritical case or problem (1.7) in the slightly 
2nd-supercritical case, the dj ’s are smooth functions of x0 and w is the standard bubble

w(y) = cN
1

(1 + |y|2)N−2
2

, y ∈ R
N , cN =

[
N(N − 2)

]N−2
4 , (1.9)

which is the radial solution of the critical problem Δw + wp = 0 in RN , with N = n − 1.
Since the existence of solutions to singular problems (1.6) or (1.7) plays a crucial role in the construction 

of the solution, in particular in the choice of the concentration parameter με, it is important to point out 
that existence of solutions to problems (1.6) or (1.7) is strictly linked with the sign of the function σ defined 
in (1.5), as it is showed in the following theorem, whose proof is given in Section 2.
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Theorem 1.3. If

min
x0∈R

σ(x0) > 0,

then problem (1.6) has a non-degenerate solution.
If h∗ ∈ C2(M) is such that

−
(

(k + 1)π
2�

)2

< min
x0∈R

σh∗(x0) � max
t∈R

σh∗(x0) < −
(
kπ

2�

)2

< 0,

then for most functions h ∈ C2(M) with ‖h − h∗‖C0(M) � r, provided r is small enough, the problem (1.7)
has a non-degenerate solution.

As far as we know, Theorem 1.2 is the first result about existence of solutions to (1.1) which concentrate 
along geodesic of the manifold M when the exponent p approaches the 2nd-critical exponent from above. 
Indeed, in the Euclidean setting, del Pino, Musso and Pacard in [7] built bubbling solutions for a Dirichlet 
problem when the exponent is close to but less than the second critical exponent. Solutions concentrating in 
higher dimensional sets and the gap condition have been found in elliptic problems in the Euclidean setting. 
We mention among, among many results, [12,13,11,14] for a Neumann singular perturbation problem and 
[4] for a Schrödinger equation in the plane.

It would be interesting to find a geometric interpretation to problem (1.2). We only observe that the 
geometric potential

ΩΓ (x0) := (n− 3)
4(n− 2)

[
Rg(x0) − (n− 1)Ric

(
γ̇(x0), γ̇(x0)

)]
introduced in (1.5) when Γ reduces to a point x0 is nothing but the usual geometric potential (n−2)

4(n−1)Rg(x0)
which appears in the Yamabe problem.

We conjecture that our result can be extended to higher k-dimensional minimal submanifolds Γ of M. 
Indeed, arguments developed by Del Pino, Mahmoudi and Musso in [6] in the Euclidean setting for a 
Neumann problem could also be applied to Eq. (1.1). More precisely, we could consider a supercritical 
problem

−Δgu + hu = u
m−k+2
m−k−2±ε, u > 0, in (M, g),

and we could find conditions on h such that it possesses solutions which concentrate along Γ as ε goes to 
zero. It would interesting to determine the function σΓ (the analogue of the function σ introduced in (1.5)) 
whose sign determines the existence of solutions either to the supercritical case or to the subcritical case.

The proof of our result relies on the infinite-dimensional reduction developed by del Pino, Kowalczyk and 
Wei in [4] and successively adapted by del Pino, Musso and Pacard in [7] to study a problem quite similar 
to our problem

−Δu = u
m+1
m−3−ε in Ω, u = 0 on ∂Ω,

where Ω is a bounded smooth domain in Rm. We omit many details in several steps of the proof, because 
they can be carried out, up to some minor modifications, as in [7]. However there is an important difference 
with respect to [7] concerning the scaling parameter με, whose choice is crucial for building the solution. 
The difference is that the extra term 1

μ here is the main order term, see (4.11), and leads to the ODEs
(1.6) and (1.7), while in [7] it appears at a higher order.
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The paper is organized as follows. In Section 2 we study the singular problems (1.6) and (1.7). In Section 3
we build the approximate solution close to the geodesic and in Section 4 we estimate the error. Then, in 
Section 5 we reduce the problem to a suitable infinite dimensional set of parameters and in Section 6 we 
study the reduced problem. Section 7 is devoted to the study of a linear problem.

Notation.

• For sums we use the standard convention of summing terms, where repeated indices appear.
• We will denote by L∞

2�(R), C0
2�(R) and C2

2�(R) the Banach space of 2�-periodic L∞, C0 and C2 functions, 
respectively. We will set ‖u‖∞ := sup

R
|u|, for any 2�-periodic bounded function u.

2. A periodic ODE with repulsive or attractive singularity

Let us consider the periodic boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

−μ̈ + σμ− c

μ
= 0 in [0, 2�],

μ > 0 in [0, 2�],
μ(0) = μ(2�), μ̇(0) = μ̇(2�),

(2.1)

where c ∈ R and σ ∈ C0
2�(R). The following existence result holds true.

Proposition 2.1. Assume either

min
t∈R

σ(t) > 0 and c > 0 (2.2)

or

−
(

(k + 1)π
2�

)2

< min
t∈R

σ(t) � max
t∈R

σ(t) < −
(
kπ

2�

)2

< 0 and c < 0 (2.3)

for some integer k. Then problem (2.1) has a periodic solution μ0 ∈ C2
2�(R).

Proof. If (2.2) holds, the claim follows by standard arguments and if (2.3) holds the claim follows by 
Theorem 1.1 of [5]. �

Let us consider the linearization of problem (2.1) around μ0, namely the linear periodic boundary value 
problem

⎧⎨
⎩−μ̈ +

(
σ + c

μ2
0

)
μ = 0 in [0, 2�],

μ(0) = μ(2�), μ̇(0) = μ̇(2�).
(2.4)

The solution μ0 is non-degenerate if and only if the problem (2.4) has only the trivial solution.

Proposition 2.2.

(i) If (2.2) holds, then the solution μ0 is non-degenerate.
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(ii) Let σ∗ ∈ C0
2�(R) and c ∈ R as in (2.3). The set

{
σ ∈ B

(
σ∗, r

)
: all the positive solutions of (2.1) are non-degenerate

}
is a dense subset of the ball B(σ∗, r) := {σ ∈ C0

2�(R) : ‖σ − σ∗‖∞ � r} provided the radius r is small 
enough.

Proof. (i) follows immediately by the maximum principle.
Let us prove (ii). We shall use the following abstract transversality theorem previously used by Quinn [16], 

Saut and Temam [17] and Uhlenbeck [21].

Theorem 2.3. Let X, Y, Z be three Banach spaces and U ⊂ X, V ⊂ Y open subsets. Let F : U × V → Z be 
a Cα-map with α � 1. Assume that

(ι) for any y ∈ V , F (·, y) : U → Z is a Fredholm map of index l with l � α;
(ιι) 0 is a regular value of F , i.e. the operator F ′(x0, y0) : X × Y → Z is onto at any point (x0, y0) such 

that F (x0, y0) = 0;
(ιιι) the map π ◦ i : F−1(0) → Y is σ-proper, i.e. F−1(0) =

⋃+∞
η=1 Cη where Cη is a closed set and 

the restriction π ◦ i|Cη
is proper for any η; here i : F−1(0) → Y is the canonical embedding and 

π : X × Y → Y is the projection.

Then the set Θ := {y ∈ V : 0 is a regular value of F (·, y)} is a residual subset of V , i.e. V \ Θ is a 
countable union of closet subsets without interior points.

In our case the C2-function F is defined by

F : C2
2�(R) × C0

2�(R) → C0
2�(R), F (μ, σ) := −μ̈ + σμ− c

μ
,

X = C2
2�(R) and U = {μ ∈ C2

2�(R) : minR μ > 0}, Y = Z = C0
2�(R) and V = B(σ∗, r), where r is small 

enough so that condition (2.3) holds for any σ ∈ V .
It is not difficult to check that for any σ ∈ V the map μ → F (μ, σ) is a Fredholm map of index 0 and 

then assumption (ι) holds. Let us prove assumption (ιι). We fix (μ0, σ0) ∈ U × V such that F (μ0, σ0) = 0. 
The derivative DσF (μ0, σ0) : C0

2�(R) → C0
2�(R) is the linear map defined by DσF (μ0, σ0)[σ] = σμ0 and it is 

surjective, because μ0 > 0.
As far as it concerns assumption (ιιι), we have that

F−1(0) =
+∞⋃
m=1

{
(Cm ×Bm) ∩ F−1(0)

}

where

Cm =
{
μ ∈ C2

2�(R) : 1
m

� min
R

μ � max
R

μ � m

}
and Bm = B

(
σ∗, r − 1

m

)
.

We can show that the restriction π ◦ i|Cm
is proper, namely if the sequence (σn) ⊂ Bm converges to σ and 

the sequence (μn) ⊂ Cm is such that F (μn, σn) = 0 then there exists a subsequence of (μn) which converges 
to μ ∈ Cm and F (μ, σ) = 0.

That concludes the proof. �



J. Dávila et al. / J. Math. Pures Appl. 103 (2015) 1410–1440 1417
Proof of Theorem 1.3. It follows immediately by Proposition 2.1 and Proposition 2.2. �
3. Construction of the approximate solution close to the geodesic

This section is devoted to the construction of an approximation for a solution to the problem (1.2) in a 
neighborhood of the geodesic.

3.1. The problem near to the geodesic

Let us consider the system of Fermi coordinates (x0, x) introduced in (1.4). In this language the geodesic 
Γ is represented by the x0-axis. We recall that x0 denotes the arclength of the curve, 2� represent the total 
length of the geodesic and x = (x1, . . . , xN ) ∈ R

N . Let us introduce a neighborhood of the geodesic Γ in 
this system of coordinates

D :=
{
(x0, x) ∈ R× R

N : x0 ∈ [−�, �], |x| < δ̂
}
, (3.1)

where δ̂ > 0 is a fixed small number. Then for a function defined in D we write

ũ(x0, x) = u
(
F (x0, x)

)
and we extend ũ in a satisfying the following periodicity condition:

ũ(2�, x) = ũ(0, Ax),

where A = (aij) is the invertible matrix defined by the requirement

Ei(2�) =
N∑
j=1

ajiEj(0). (3.2)

Therefore, if u solves Eq. (1.2) in the neighborhood D of the geodesic, then ũ solves

{
∂00ũ + Δxũ + B(ũ) − hũ + fε(ũ) = 0 in D

ũ(x0 + 2�, x) = ũ(x0, Ax) for any (x0, x) ∈ D
(3.3)

where fε(s) := (s+)p±ε. For the sake of simplicity, we will refer to fε(s) := (s+)p+ε as the supercritical case
and to fε(s) := (s+)p−ε as the subcritical case.

In (3.3) B is a second order linear operator defined in the following lemma:

Lemma 3.1. Let u be a smooth function. Then for any (x0, x) ∈ D we have

Δgu = ∂00ũ + Δxũ + B(ũ),

where B is a second order linear operator defined by

B(ũ) := A00∂00ũ +
∑
j

A0j∂0∂j ũ +
∑
i,j

(
−1

3
∑
k,l

Rikjlxkxl + Aij

)
∂i∂j ũ

+ B0∂0ũ +
∑(∑(

2
3Rijik + R0j0k

)
xk + Bj

)
∂j ũ,
j k
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where the Riemann tensor Rijkl and the metric g are computed along Γ , depending only on x0, while the 
functions Aαβ and Bα do depend on (x0, x) and enjoy the following decompositions:

A00 =
∑
k,l

A00
klxkxl; Aij =

∑
k,l,m

Aij
klxkxlxm; A0j =

∑
k,l

A0j
klxkxl;

B0 =
∑
k

B0
kxk; Bj =

∑
k,l

Bj
klxkxl,

where A00
kl , A

ij
kl, A

0j
kl , B0

k and Bj
kl are smooth functions depending on (x0, x).

Proof. We argue exactly as in Section 4 of [7] taking into account the following expansion of the metric g
in a neighborhood of the geodesic⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g00(x) = 1 +
N∑

k,l=1

R0k0lxkxl + O
(
|x|3

)
,

g0j(x) = O
(
|x|2

)
, j = 1, . . . , N,

gij(x) = δij + 1
2
∑
k,l

Rikjlxkxl + O
(
|x|3

)
, i, j = 1, . . . , N,

(3.4)

whose proof is postponed in Appendix A. �
3.2. The scaled problem

We write an approximated solution of problem (3.3). Let

ũε(x0, x) = με(x0)−
N−2

2 w

(
x− dε(x0)
με(x0)

)
, (3.5)

where the bubble w is defined in (1.9), and dε satisfies

dε(0) = Adε(2�), with dε(x0) =
(
dε1(x0), . . . , dεN (x0)

)
(3.6)

and A = (aij) is the matrix defined by (3.2). In the sequel, C2
2�(R, RN ) is the space of functions 

d : [0, 2�] → R
N which satisfy (3.6).

We will take dε(x0) of the form

dεj(x0) = εdj(x0) with dj ∈ C2
2�(R), j = 1, . . . , N (3.7)

and the concentration parameter με(x0) is given by

με(x0) =
√
εμ̃ε(x0), μ̃ε(x0) = μ0(x0) + (ε ln ε)μ1(x0) + εμ(x0), (3.8)

with μ0, μ1, μ ∈ C2
2�(R). We point out that in (3.8) and (3.7) the μ0, μ1, μ and dj , j = 1, . . . , N are unknown 

functions which will be found in the final step of the infinite-dimensional reduction. In particular, it will 
turn out that μ0 is a non-degenerate solution to problem (1.6) in the subcritical case or to problem (1.7) in 
the supercritical case.

Therefore, it is natural to consider the change of variables

ũε(x0, x) = μ
−N−2

2
ε v

(
x0

,
x− dε

)
, ρ :=

√
ε. (3.9)
ρ με
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Here vε = vε(y0, y) is defined in a region of the form

D =
{

(y0, y) : y0 ∈
[
− �

ρ
,
�

ρ

]
, |y| < η

√
ρ

}
. (3.10)

It is clear that if ũε(x0, x) solves Eq. (3.3), then vε = vε(y0, y) solves problem

⎧⎪⎨
⎪⎩

A(v) − μ2
εhv + μ

±N−2
2 ε

ε fε(v) = 0 in D

v

(
y0 + 2�

ρ
, y

)
= v(y0, Ay) for any (y0, y) ∈ D.

(3.11)

We agree that we take μ
+N−2

2 ε
ε in the supercritical case, i.e. fε(s) = (s+)p+ε and μ

−N−2
2 ε

ε in the subcritical 
case, i.e. fε(s) = (s+)p−ε.

In (3.11) A is a second order operator of the form defined in the following lemma, whose proof can be 
obtained arguing exactly as in Lemma 5.1 of [7].

Lemma 3.2. After the change of variable (3.9), the following holds true:

A(v) := a0∂00v + Δyv + Ã(v),

with

a0(ρy0) = ρ−2με(ρy0)2 = (μ0 + ρμ)2 (3.12)

and Ã(v) :=
∑2

κ=0 Aκ(v) + B(v) where

A0(v) = μ̇2
ε

[
Dyyv[y]2 + NDyv[y] + N(N − 2)

4 v

]
+ μ̇ε

[
Dyyv[y] + N − 2

2 Dyv

]
[ḋε]

+ Dyyv[ḋε]2 − 2με

[
ρ−1Dy(∂0v)[μ̇εy + ḋε] + N − 2

2 μ̇ερ
−1∂0v

]
− μεDyv[d̈ε]

− μεμ̈ε

(
N − 2

2 v + Dyv[y]
)

A1(v) := −1
3
∑

Rikjl(μεyk + dεk)(μεyl + dεl)∂ijv

A2(v) :=
∑(

2
3Rijik + R0j0k

)
(μεyk + dεk)με∂jv

and the operator B(v) satisfies

B(v) = O
(
|μεy + dε|2

)
A0(v) + O

(
|μεy + dε|3

)
∂ijv

+ O
(
|μεy + dε|2

)[
μερ

−1∂0jv + μερ
−1∂0v −Dy(∂jv)[dε]

−
(
N − 2

2 ∂jv + Dy(∂jv)[y]
)
μ̇ε −Dyv[ḋε]

− μ̇ε

(
N − 2

2 v + Dyv[y]
)

+ με∂jv

]
.
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Our approximation close to the geodesic is

ω̃ = ω + ω1. (3.13)

The first order approximation ω is given in (3.15), while the second order approximation ω1 is given in (3.25). 
We also set

Sε(v) := A(v) − μ2
εhv + μ

±N−2
2 ε

ε fε(v). (3.14)

3.3. The ansatz: the first order approximation

We define ω to be

ω := (1 + αε)w + eε(ρy0)χε(y)Z0(y). (3.15)

In the first term of (3.15), w is the bubble defined in (1.9) and αε := μ
(N−2)2

8 ε
ε − 1 in the subcritical case 

or αε := μ
− (N−2)2

8 ε
ε − 1 in the subcritical case. In the second term of (3.15), χε(y) := χ(ε 1

2 |y|) where χ is a 
cut-off function such that χ(s) = 1 if s � δ and χ(s) = 0 if s � 2δ with δ > 0 small but fixed. Moreover, Z0

denotes the first eigenfunction in L2(RN ) of the problem (see Section 7)

ΔZ0 + pwp−1Z0 = λ1Z0 in R
N , with λ1 > 0 and

∫
RN

Z2
0 dy = 1. (3.16)

Finally, the function eε(x0) is given by

eε = εẽε, ẽε = e0 + (ε ln ε)e1 + εe, (3.17)

with e0, e1, e ∈ C2
2�(R). We point out that e0, e1 and e are unknown functions which will be chosen in the 

final step of the infinite-dimensional reduction, together with the functions μ0, μ and dj introduced in (3.7)
and (3.8).

Let us estimate the error Sε(ω) one commits by considering ω a real solution to (3.11), which is itself a 
function of the parameter functions μ, d, e.

Assume that the functions μ, d, e defined respectively in (3.8), (3.7) and (3.17), satisfy the assumption

∥∥(μ, d, e)
∥∥ := ‖μ‖ + ‖d‖ + ‖e‖ε � C (3.18)

for some constant C > 0, independent of ε, where

‖μ‖ := ‖μ̈‖∞ + ‖μ̇‖∞ + ‖μ‖∞, ‖d‖ :=
N∑
j=1

‖dj‖∞, (3.19)

‖e‖ε := ‖εë‖∞ +
∥∥ε 1

2 ė
∥∥
∞ + ‖e‖∞. (3.20)

Here and in the rest of the paper, the dot denotes the derivative with respect to x0.
It is possible to compute the expansion of the error Sε(ω) as showed in the following lemma whose proof 

is postponed in Section 4.1.
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Lemma 3.3. If ε > 0 small enough, then for any (y0, y) ∈ D the following expansion holds

Sε(ω) = ±εwp lnw + ελ1e0Z0 − εμ2
0hw

+ ε

[
μ̇2

0

(
Dyyw[y]2 + NDyw[y] + N(N − 2)

4
w

)
− μ0μ̈0ZN+1

+ μ2
0

(
−1

3Rikjlykyl∂ijw +
(

2
3Rijik + R0j0k

)
yk∂jw

)]

+ ε
3
2

[
−μ0∂jwd̈j −

1
3μ0Rikjlykyl∂ijw + μ0

(
2
3Rijik + R0j0k

)
dk∂jw − 2μ̇0∂jZN+1ḋj

]

+ ε2
[(
ρ2a0ë + λ1e

)
Z0 +

(∑
i,j

ḋiḋj −
1
3Rijkldkdl

)
∂ijw + Υ0

− 2μ0μhw + b(ρy0, μ, d, e)wp + 2μ̇0μ̇

(
Dyyw[y]2 + NDyw[y] + N(N − 2)

4 w

)

− μ0μ̈ZN+1 − μμ̈0ZN+1 + 2μ0μ

(
−1

3Rikjlykyl∂ijw +
(

2
3Rijik + R0j0k

)
yk∂jw

)

− e0μ̈0μ0ZN+1 + μ2
0e0

(
−1

3Rikjlykyl∂ijZ0 +
(

2
3Rijik + R0j0k

)
yk∂jZ0

)

+ μ̇2
0

(
DyyZ0[y]2 + NDyZ0[y] + N(N − 2)

4 Z0

)
− μ2

0hZ0

]

+ ε
5
2

[
−μ∂j d̈j −

1
3μRikjlykdl∂ijw − μ

(
2
3Rijik + R0j0k

)
dkμ∂jw − 2μ̇∂jZN+1ḋj

− μ0e0∂jZ0d̈j −
1
3μ0e0Rikjlykdl∂ijZ0 + μ0e0

(
2
3Rijik + R0j0k

)
dk∂jZ0

− 2μ̇0e0

(
N − 2

2 DyZ0 + DyyZ0[y]
)

[ḋ]
]

+ ε3Θ, (3.21)

where

– Z0 is defined in (3.16) and ZN+1 is defined in (3.23)
– the first term is “−εwp lnw” in the subcritical case or “+εwp lnw” in the supercritical case.
–

Υ0 = p(p− 1)e2
0w

p−2Z2
0 + pe0w

p−1 lnwZ0 (3.22)

– Θ = Θ(y0, y) is a sum of functions of the form

h0(ρy0)
[
f1(μ, d, μ̇, ḋ) + o(1)f2(μ, d, e, μ̇, ḋ, ė, μ̈, d̈, ë)

]
f3(y)

with
– h0 a smooth function uniformly bounded in ε
– f1 and f2 smooth functions of their arguments, uniformly bounded in ε when μ, d and e satisfy (3.18)
– f2 depending linearly on the argument (μ̈, d̈, ̈e)
– o(1) → 0 as ε → 0 uniformly when μ, d and e satisfy (3.18)
– supy∈R

(1 + |y|N−2)|f3(y)| < +∞
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Now, we use formula (3.21) to compute, for each y0 ∈ [−�/ρ, +�/ρ], the L2(Dy0) the projection of the 
error Sε(ω) along the elements of the kernel of the linear operator L0 := ΔRN + pwp−1I (see Section 7), i.e. 
the functions

Zk(y) := ∂kw(y), k = 1, . . . , N and ZN+1(y) := y · ∇w(y) + N − 2
2 w(y). (3.23)

Lemma 3.4. If ε > 0 small enough, then for any x0 = ρy0 with y0 ∈ [−�/ρ, +�/ρ] the following expansion 
holds: ∫

Dy0

Sε(ω)Zk dy = ε
3
2 c1μ0

(
−d̈k +

∑
R0k0ldl

)
+ ε2θ, for any k = 1, . . . , N ;

moreover, if μ0 solves either (1.6) or (1.7) there exist μ1, e0, e1 ∈ C2
2�(R) such that

∫
Dy0

Sε(ω)ZN+1 dy = ε2c2μ0

[
αN+1(x0) + c3Q(x0, d) − μ̈ +

(
anσ ∓ bn

μ2
0

)
μ

]
+ ε3| ln ε|θ

and ∫
Dy0

Sε(ω)Z0 dy = ε2
[
εa0ë + λ1e + α0(x0) + c4Q(ρy0, d) + β(x0)μ

]
+ ε3| ln ε|θ.

Here

– σ is defined in (1.5) and an, bn are positive constants depending only on n defined in (4.16)
– Q(x0, d) :=

∑
(ḋ2

j − 1
3Rikjldkdl)

– ci’s are constants which depend only on n
– αi’s and β are explicit smooth functions, uniformly bounded in ε when μ, d and e satisfy (3.18)
– θ = θ(x0) denotes a sum of functions of the form

h0(x0)
[
h1(μ, d, e, μ̇, ė, ḋ) + o(1)h2(μ, d, e, μ̇, ḋ, ė, μ̈, d̈, ë)

]
,

where
– h0 is a smooth function uniformly bounded in ε
– h1 and h2 are smooth functions of their arguments, uniformly bounded in ε when μ, d and e satisfy 

(3.18)
– h2 depends linearly on the argument (μ̈, d̈, ̈e)
– o(1) → 0 as ε → 0 uniformly when μ, d and e satisfy (3.18)

The proof is postponed in Section 4.2.
In the sequel we will use the following norms, which are motivated by the linear theory presented in 

Section 7. For functions φ, g defined on a set D as in (3.10), and for a fixed 2 � ν < N , let

‖φ‖∗ := sup
D

(
1 + |y|ν−2)∣∣φ(y0, y)

∣∣ + sup
D

(
1 + |x|ν−1)∣∣Dφ(x0, x)

∣∣,
‖g‖∗∗ := sup

D

(
1 + |y|ν

)∣∣g(y0, y)
∣∣.

Therefore, from the expansion given in (3.21) we conclude that the error Sε(ω), computed in (3.21), has 
the properties listed in the following lemma:
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Lemma 3.5. Let μ0 and e0 as in Lemma 3.4 If ε is small enough

Sε(ω) = εS0 + ε
[
ρ2a0ë + λ1e

]
χεZ0 + N0, (3.24)

where

– S0 is a smooth function of ρy0 uniformly bounded in ε
– S0 does not depend on μ, d and e
–

∫
Dy0

S0Zj dy = 0 for any y0 ∈ (−ρ−1�, ρ−1�) and for any j = 0, . . . , N + 1
– ‖N0‖∗∗ � cε

3
2 .

Here c is a positive constant independent of ε. All the estimates are uniform with respect to μ, d and e which 
satisfy (3.18).

3.4. The ansatz: the second order approximation

Now we introduce a further correction ω1 to ω, to get the final approximation ω̃ := ω+ω1. The correction 
ω1 is chosen to reduce the size of the error (3.24), killing the term εS0 and it is found in the following lemma, 
whose proof can be carried out arguing exactly as in Section 5 of [7].

Lemma 3.6. If ε is small enough there exists a unique solution ω1 of the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A(ω1) − μ2
εhω1 + pwp−1ω1 = −εS0 +

N∑
j=0

σjZj in D,

∫
Dy0

ω1(y0, y)Zjdy = 0 for any y0 ∈
[
− �

ρ
,
�

ρ

]
, j = 0, . . . , N + 1.

(3.25)

Moreover, the function ω1 satisfies

– ‖ω1‖∗ � cε and ‖∂0ω1‖∗ � cε
3
2

– ω1 depends smoothly on μ and d and it is independent of e
– ‖ω1(μ1, d1) − ω1(μ2, d2)‖∗ � c‖(μ1 − μ2, d1 − d2)‖

and each function σj satisfies

– ‖σj‖∞ � o(1)ε3
– σj depends smoothly on μ and d and it is independent of e
– ‖σj(μ1, d1) − σj(μ2, d2)‖∞ � cε2‖(μ1 − μ2, d1 − d2)‖.

Moreover, it holds true

Sε(ω̃) = ε
3
2S1 + ε

[
ρ2a0ë + λ1e

]
χεZ0 + N1 +

N∑
j=0

σjZj , (3.26)

where

– S1 is a smooth function of ρy0 uniformly bounded in ε
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– S1 depends smoothly on μ, d and e
– ‖S1(μ1, d1, e1) − S1(μ2, d2, e2)‖∗∗ � c‖(μ1 − μ2, d1 − d2, e1 − e2)‖
– ‖N1‖∗∗ � cε2.

Here c is positive constant independent of ε. All the estimates are uniform with respect to μ, d and e which 
satisfy (3.18). Moreover, the components of Sε(ω̃) along the Zj’s satisfy the estimate in Lemma 3.4.

4. The error Sε(ω)

4.1. The pointwise estimate of the error

We recall that

Sε(ω) = A(ω) − μ2
εhω + μ

±N−2
2 ε

ε fε(ω)

where by Lemma 3.2

A(ω) = a0∂00ω + Δyω +
2∑

k=0

Ak(ω) + B(ω)

︸ ︷︷ ︸
Ã(ω)

and

ω(y) = (1 + αε)w(y) + eε(ρy0)χε(y)Z0(y).

Here we recall that

αε = μ
∓ (N−2)2

8 ε
ε − 1

and

Δ
(
(1 + αε)w

)
+ μ

±N−2
2 ε

ε f0
(
(1 + αε)w

)
= 0 in R

N .

Proof of Lemma 3.3. We use Lemma 3.2.
A straightforward computation shows that

Sε(ω) =
2∑

κ=0
Aκ(w) − μ2

εhw ± εwp lnw +
[
ρ2a0ëε(ρy0) + λ1eε(ρy0)

]
χεZ0︸ ︷︷ ︸

J0

+ B(w) + a0w∂00αε + Ã(αεw) − μ2
εαεhw︸ ︷︷ ︸

J1

+ μ
±N−2

2 ε
ε

[
fε
(
(1 + αε)w

)
− f0

(
(1 + αε)w

)]
∓ εwp lnw︸ ︷︷ ︸

J2

+
2∑

κ=0
Aκ(eεχεZ0) − μ2

εeεχεZ0h︸ ︷︷ ︸

J3
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+ B(eεχεZ0) + eεZ0Δχε + 2eε∇χε∇Z0︸ ︷︷ ︸
J4

+ μ
±N−2

2 ε
ε

[
fε(ω) − fε

(
(1 + αε)w

)]
− f ′

0(w)eεχεZ0︸ ︷︷ ︸
J5

. (4.1)

By Lemma 3.2, we get the first term of J0

2∑
κ=0

Aκ(w) = μ̇2
ε

[
Dyyw[y]2 + NDyw[y] + N(N − 2)

4 w

]

+ μ̇ε

[
Dyyw[y] + N − 2

2 Dyw

]
[ḋε] + Dyyw[ḋε]2

− μεDyw[d̈ε] − μεμ̈ε

(
N − 2

2 w + Dyw[y]
)

− 1
3
∑

Rikjl(μεyk + dεk)(μεyl + dεl)∂ijw

+
∑(

2
3Rijik + R0j0k

)
(μεyk + dεk)με∂jw + ε3Θ

= ε2
[∑(

ḋiḋj −
1
3Rikjldkdl

)]
∂ijw

+ ρε

[
−μ̃Dyw[d̈] −

∑ 1
3 μ̃Rikjlykdl∂ijw

+
(

2
3Rijik + R0j0k

)
dkμ̃∂jw − 2 ˙̃μDyZN+1[ḋ]

]

+ ρ2
[

˙̃μ2
[
Dyyw[y]2 + NDyw[y] + N(N − 2)

4 w

]
− μ̃ ¨̃μZN+1

+ μ̃2
(
−1

3
∑

Rikjlykyl∂ijw +
(

2
3Rijik + R0j0k

)
yk∂jw

)]
+ ε3Θ, (4.2)

where Θ = Θ(ρy0, y) has the required properties.
By Lemma 3.2, we deduce that B(w) is of lower order with respect to 

∑
Ak(w). Moreover, by definition 

of αε we get that αε = O(ε| ln ε|) as ε → 0. Hence αεÃ(w) and μεαεhw are terms of lower order with respect 
to the others. Furthermore ∂00αε = ρ2O(αε), so also a0∂00[αεw] = O(ε2| ln ε|)w. Therefore,

J1 = ε3Θ

where Θ = Θ(ρy0, y) is a sum of functions of the form h0(ρy0)f1(μ, d, μ̇, ḋ)f2(y), with h0 a smooth function 
uniformly bounded in ε, f1 a smooth function of its arguments, homogeneous of degree 3, uniformly bounded 
in ε and supy∈R

(1 + |y|N−2)|f2(y)| < +∞.
By mean value theorem we deduce that

J2 = ± (n− 2)2

8
(
ε2 ln ε

)
wp(lnw − 1) ± ε2wp

(
(n− 2)2

8 (lnw − 1) lnμ + 1
2 lnw

)
+ O

(
ε3| ln ε|

)
. (4.3)

By Lemma 3.2 we also get that
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J3 = εẽ

{
ε2
[(∑

ḋiḋj −
1
3Rikjldkdl

)
∂ijZ0

]

+ ρε

[
−μ̃DyZ0[d̈] −

1
3 μ̃Rikjlykdl∂ijZ0 + μ̃

(
2
3Rijik + R0j0k

)
dk∂jZ0

− 2 ˙̃μ
(
N − 2

2 DyZ0 + DyyZ0[y]
)

[ḋ]
]

+ ρ2
[
− ¨̃μμ̃ZN+1 + μ̃2

(
−1

3Rikjlykyl∂ijZ0 +
(

2
3Rijik + R0j0k

)
yk∂jZ0

)

+ ˙̃μ2
(
DyyZ0[y]2 + NDyZ0[y] + N(N − 2)

4 Z0

)
− μ̃2hZ0

]}
+ ρε ˙̃e

{
ε
(
−2μ̃DyZ0[ḋ]

)
+ ρε

[
−2μ̃ ˙̃μDyZ0[y] − (N − 2)μ̃ ˙̃μZ0

]}
and

J4 = ε3Θ

where Θ = Θ(ρy0, y) has the required properties.
Finally, standard estimates yield to

J5 = ε2
[
p(p− 1)e2

0w
p−2Z2

0 + pe0w
p−1 lnwZ0

]︸ ︷︷ ︸
Υ0

+ ε3| ln ε|Θ,

where Θ = Θ(ρy0, y) is a sum of functions of the form h0(ρy0)h1(μ, d, e)h2(y) with h0 a smooth function, 
uniformly bounded in ε, h1 a smooth function of its arguments and supy∈R

(1 + |y|N−2)|h2(y)| < +∞.
Collecting all the previous estimates we get the proof. �

4.2. The components of the error along the Zj’s

Proof of Lemma 3.4. The proof consists of two steps. In the first part we compute the expansion in ε of the 
projection assuming that

με = ρμ̃, dεj = εdj , eε = εẽ.

In the second part we will choose the ε-order terms μ0 and e0 and the ε ln ε-order terms μ1 and e1 in the 
expansion of μ̃ and ẽ.

Arguing as in the proof of Lemma 3.3, we have

Sε(ω) = ±εwp lnw − ρ2μ̃2hw︸ ︷︷ ︸
I1

+
2∑

k=0

Ak(w)

︸ ︷︷ ︸
I2

+ ε
[
ρ2a0 ¨̃e + λ1ẽ

]
χεZ0︸ ︷︷ ︸

I3

+ J1 + · · · + J5︸ ︷︷ ︸
I4

.

We stress the fact that the first term in I1 is “+εwp lnw” in the super-critical case and “−εwp lnw” in the 
subcritical case.

• The projection of I1.∫
I1ZN+1 dy = ±ε

∫
wp lnwZN+1 dy − ρ2μ̃2

∫
hwZN+1 dy
Dy0 Dy0 Dy0
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= −εA1 + O
(
ερN

)
− ρ2μ̃2h(ρy0)

∫
RN

wZN+1 dy + O
(
ρN

)
= ε

[
±A1 − μ̃2h(ρy0)A2

]
+ O

(
ρN

)
,

where

A1 =
∫
RN

wp lnwZN+1 dy = N

(p + 1)2

∫
RN

wp+1 dy > 0 (see Remark 4.1) (4.4)

and

A2 =
∫
RN

wZN+1 dy < 0 (see Remark 4.1). (4.5)

∫
Dy0

I1Zk dy = ε

∫
Dy0

wp lnwZj dy + ρ2μ̃2
∫

Dy0

hwZj dy

= ε

∫
RN

wp lnwZj dy + ρ2μ̃2h(ρy0)
∫
RN

wZj dy + O
(
ρN+1)

= O
(
ρN+1) for k = 1, . . . , N.∫

Dy0

I1Z0 dy = −ε

∫
Dy0

wp lnwZ0 dy − ρ2μ̃2
∫

Dy0

hwZ0 dy

= ε
[
−A3 − μ̃2h(ρy0)A4

]
+ O

(
ρN

)
,

where

A3 :=
∫
RN

wp lnwZ0 dy, A4 :=
∫
RN

wZ0 dy. (4.6)

• The projection of I2.
We use estimate (4.2).

∫
Dy0

I2ZN+1 dy = ε2
∑(

ḋiḋj −
1
3Rikjldkdl

) ∫
Dy0

∂ijwZN+1 dy

− ρεμ̃
∑

d̈j

∫
Dy0

∂jwZN+1 dy

− 1
3 μ̃ρε

∑
Rikjldl

∫
Dy0

yk∂ijwZN+1

+ ρεμ̃
∑(

2
3Rijik + R0j0k

)
dk

∫
Dy0

∂jwZN+1 dy

− 2 ˙̃μρε
∑

ḋj

∫
∂jZN+1ZN+1 dy
Dy0
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+ ˙̃μ2
ρ2

∫
Dy0

[
Dyyw[y]2 + NDyw[y] + N(N − 2)

4 w

]
ZN+1 dy

− μ̃ ¨̃μρ2
∫

Dy0

Z2
N+1 dy

− ρ2μ̃2 1
3
∑

Rikjl

∫
Dy0

ykyl∂ijwZN+1 dy

+ μ̃2ρ2
∑(

2
3Rijik + R0j0k

) ∫
Dy0

yk∂jwZN+1 dy

= ε2
∑[

ḋ2
i −

1
3Rikildkdl

] ∫
RN

∂iiwZN+1 dy

+ μ̃2ρ2
∑(

2
3Rijij + R0j0j

) ∫
RN

yj∂jwZN+1 dy − μ̃ ¨̃μρ2
∫

Dy0

Z2
N+1

− 1
3ρ

2μ̃2
∑

Rikjl

∫
RN

ykyl∂ijwZN+1 dy + ε3θ

= ε2B1
∑[

ḋ2
i −

1
3Rikildkdl

]
︸ ︷︷ ︸

Q(d,ρy0)

+ ε

[
μ̃2

∑(
1
3Rijij + R0j0j

)
B2 − μ̃ ¨̃μB3

]
+ ε3θ,

where the function θ = θ(ρy0) has the required properties and

B1 :=
∫
RN

∂iiwZN+1dy, B2 :=
∫
RN

yj∂jwZN+1dy < 0, B3 :=
∫
RN

Z2
N+1dy. (4.7)

Here we used the fact that

∑
Rikjl

∫
RN

ykyl∂ijwZN+1 dy =
∑

Rjiij

∫
RN

yj∂jwZN+1 dy,

because Rikjl is antisymmetric (i.e. Rikjl = −Rkijl),

∫
RN

ykyl∂ijwZN+1 dy

=
∫
RN

ykyl

(
−cN (N − 2) δij

(1 + |y|2)N
2

+ cNN(N − 2) yiyj

(1 + |y|2)N+2
2

)
ZN+1 dy (4.8)

and 
∫
RN

ykylyiyj
N+2 ZN+1 dy is symmetric,
(1+|y|2) 2
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∫
Dy0

I2Zk dy = ρεμ̃

[
−d̈k

∫
RN

Z2
j dy −

2
3Riljmdl

∫
RN

ym∂ijwZk dy

+
(

2
3Rijil + R0j0l

)
dl

∫
RN

Z2
j dy

]
+ ρ2εθ

= ε
3
2 μ̃B4[−d̈k + R0j0ldl] + ρ2εθ,

where

B4 :=
∫
RN

Z2
j dy, j = 1, . . . , N. (4.9)

Here we used the fact that

−2
3Riljm

∫
ym∂ijwZk dy

= −2
3

[
Rilik

∫
yk∂iiwZk dy + Rilki

∫
yl∂ikwZk dy + Rkljj

∫
yj∂kjwZk dy

]

= −1
3B4[Rilik −Rilki] = −2

3B4Rilik.

∫
Dy0

I2Z0 dy = ε2
[∑(

ḋ2
i −

1
3Rikildkdl

) ∫
RN

∂iiwZ0 dy

]

+ μ̃2ρ2
∑(

2
3Rijij + R0j0j

) ∫
RN

yj∂jwZ0 dy

− ρ2μ̃2 1
3
∑

Rikjl

∫
RN

ykyl∂ijwZ0 dy + ε3r

= ε2B5
∑[

ḋ2
i −

1
3Rikildkdl

]
︸ ︷︷ ︸

Q(d,ρy0)

+εμ̃2B6
∑(

1
3Rijij + R0j0j

)
+ ε3θ,

where

B5 :=
∫
RN

∂iiwZ0 dy, B6 :=
∫
RN

yj∂jwZ0 dy. (4.10)

Here we used (4.8) and we argued as before.
• The projection of I3.∫

Dy0

I3ZN+1 dy = o(1)ε3 and
∫

Dy0

I3Zk dy = o(1)ε3 for any k = 1, . . . , N,

because of the symmetry and of the orthogonality of Z0 with ZN+1 and Zj .∫
Dy0

I3Z0 dy = ε
[
ρ2a0 ¨̃e + λ1ẽ

]
+ o(1)ε3

because 
∫

N Z2
0 dy = 1.
R
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• The projection of I4. ∫
Dy0

I4ZN+1 dy = ε2 ln εD1 + ε2b1(ρy0) + ε3| ln ε|θ

∫
Dy0

I4Zk dy = ε2θ for any k = 1, . . . , N.

∫
Dy0

I4Z0 dy = ε2 ln εD2 + ε2b2(ρy0) + ε3| ln ε|θ,

where

D1 := ± (N − 2)2

16 A1, D2 := ± (N − 2)2

16 A3
(
see (4.4) and (4.6)

)
,

b1, b2 are explicit functions and the function θ = θ(ρy0) has the required properties.

Hence, summing up the previous calculations we conclude that
∫

Dy0

Sε(ω)ZN+1 dy = ε
(
±A1 − μ0μ̈0B3 + μ2

0g1
)︸ ︷︷ ︸

the choice of μ0 ⇒ =0

+ ε2 ln ε
(
−μ̈1μ0B3 + μ1(−μ̈0B3 + 2μ0g1) + D1

)︸ ︷︷ ︸
the choice of μ1 ⇒ =0

+ ε2
(
−μ̈μ0B3 + μ(−μ̈0B3 + 2μ0g1) + B1Q(d, x0) + b1(x0)

)
+ O

(
ε3| ln ε|

)
, (4.11)

where (see Remark 4.1)

g1(x0) := −A2h(x0) +
∑(

1
3Rijij + R0j0j

)
B2 = −A2σ(x0) (4.12)

and ∫
Dy0

Sε(ω)Z0 dy = ε
(
λ1e0 −A3 + μ2

0g2
)︸ ︷︷ ︸

the choice of e0 ⇒ =0

+ ε2 ln ε (λ1e1 + 2μ0μ1 + D2)︸ ︷︷ ︸
the choice of e1 ⇒ =0

+ ε2
(
εa0ë + λ1e + a0ë0 + b2(x0) + 2μ0μg2 + B5Q(d, x0)

)
+ O

(
ε3| ln ε|

)
, (4.13)

where

g2(x0) := −A4h(x0) +
∑(

1
3Rijij + R0j0j

)
B6. (4.14)

More precisely, μ0 solves the periodic ODE
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−μ̈0B3 + g1μ0 ±
A1

μ0
= 0, μ0 > 0 in [0, 2�]. (4.15)

which is nothing but problem (1.6) or (1.7) where (see Remark 4.1)

an := −A2

B3
> 0 and bn := A1

B3
> 0

(
see (4.4), (4.5) and (4.7)

)
. (4.16)

Moreover,

e0 = A3 − μ2
0g2

λ1
. (4.17)

Finally, μ1 solves the periodic ODE

−μ̈1μ0B3 + μ1 (−μ̈0B3 + 2μ0g1)︸ ︷︷ ︸
=μ0g1∓A1

μ2
0
.

+D1 = 0 in [0, 2�]. (4.18)

We point out that μ1 does exist, because μ0 is a non-degenerate solution of (4.15) (see also Lemma 6.1). 
Moreover,

e1 = −2μ0μ1 −D2

λ1
. (4.19)

That concludes the proof. �
Remark 4.1. It holds

• g1(x0) = −A2σ(x0) with A2 < 0 (see (4.5)),
• A1 > 0 (see (4.4)),
• an = −A2

B3
= 2(N−1)

(N−2)(N+2) = 2(n−2)
(n−3)(n+1) (see (4.5) and (4.7)),

• bn = A1
B3

= (N−2)2(N−4)
4(N+2) = (n−3)2(n−5)

4(n+1) (see (4.4) and (4.7)).

Proof. It is useful to point out that

B2

A2
= 3(N − 2)

4(N − 1) .

Indeed, if we denote

Iqp :=
+∞∫
0

rq

(1 + r)p dr if p− q > 1

and we use the properties

Iqp+1 = p− (q + 1)
p

Iqp and Iq+1
p+1 = q + 1

p− (q + 1)I
q
p+1

a straightforward computation shows that
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A1 = N

(p + 1)2

∫
RN

wp+1 dy = c2N
(N − 2)4

8N ωNI
N/2
N > 0,

A2 =
∫
RN

wZN+1 dy = −c2N
2(N − 1)(N − 2)

N(N − 4) ωNI
N/2
N < 0,

B2 =
∫
RN

yj∂jwZN+1 dy = −c2N
3(N − 2)2

2N(N − 4)ωNI
N/2
N < 0

and

B3 =
∫
RN

Z2
N+1 dy = c2N

(N − 2)2(N + 2)
2N(N − 4) ωNI

N/2
N > 0,

where ωN is the measure of the sphere SN−1. Therefore, we immediately deduce the quantities an and bn, 
taking into account that N = n − 1.

Moreover, it is easy to check that

1
3

N∑
i,j=1

Rijij(x0) +
N∑
j=1

R0j0j(x0) = 1
3

N∑
i,j=0

Rijij(x0) −
1
3

N∑
j=1

R0j0j(x0)

= 1
3Rg(x0) −

N

3 Ric
(
γ̇(x0), γ̇(x0)

)
. (4.20)

Therefore, the claim follows. �
5. The infinite dimensional reduction

5.1. The gluing procedure

Here we perform a gluing procedure that reduces the full problem (1.2) to the scaled problem (3.11) in 
the neighborhood of the scaled geodesic.

Since the procedure is very similar to that of [7] we briefly sketch it.
We denote by Mρ the scaled manifold 1

ρM , by z the original variable in Mρ and by ξ := ρz the 
corresponding point in M . It is clear that the function u(x) is a solution to (1.2) if and only if the function
v(z) := ρ

N−2
2 u(ρz) solves the problem

Δgv − ρ2hv + ρ−
N−2

2 εvp−ε = 0 in Mρ (5.1)

The function ω̃(y0, y) constructed in (3.13) defines an approximation to a solution of (1.2) near the geodesic 
through the natural change of variables (3.9).

It is useful to introduce the following notation. Let f(z) be a function defined in a small neighborhood 
of the scaled geodesic Γρ := 1

ρΓ . Through the change of variables (3.9) we denote

f̃(y0, y) = μ̃
−N−2

2
ε (ρy0)f

(
1
ρ
F
(
ρy0, με(ρy0) + dε(ρy0)

))
, (5.2)

where the point ρz = F (ρy0, με(ρy0) + dε(ρy0)) ∈ M and μ̃ε, με and dε are defined in (3.8) and (3.7). 
According this notation, we set ω = ω(z) the function corresponding to ω̃ = ω̃(y0, y).
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Let δ > 0 be a fixed number with 4δ < δ̂, where δ̂ is given in (3.1). We consider a smooth cut-off function 
ζδ(s) such that ζδ(s) = 1 if 0 < s < δ and ζδ(s) = 0 if s > 2δ. Let us consider the cut-off function ηεδ defined 
on the manifold Mρ by

ηεδ(z) = ζδ

(
distg(ξ, Γ )

ρ

)
for ρz = ξ ∈ M.

We remark that with this definition ηεδ(z) does not depend on the parameter functions.
We define our global first approximation of the problem (1.2) w(z) as

w(z) = ηεδ(z)ω(z). (5.3)

We look for a solution to problem (5.1) of the form u = w + Φ, namely

ΔgΦ + pwp−1Φ + N(Φ) + E = 0 in Mρ, (5.4)

where

N(Φ) = ρ−
N−2

2 ε(w + Φ)p−ε − wp−ε − pwp−1Φ− ρ2h(w + Φ) (5.5)

and

E = Δgw + wp−ε. (5.6)

We look for a solution Φ of (5.4) as Φ = η2δφ + ψ where the function φ is such that the corresponding 
function φ̃ via the change of variables (5.2) is defined only in D. It is immediate to check that Φ of this form 
solves (5.4) if the pair (ψ, φ) solves the following nonlinear coupled system:

Δgψ +
(
1 − ηε2δ

)
pwp−1ψ = −2∇gφ∇gη

ε
2δ − φΔgη

ε
2δ −

(
1 − ηε2δ

)
N

(
ηε2δφ + ψ

)
in Mρ (5.7)

and

A(φ̃) + pω̃p−1φ̃ = −N
(
ζε2δφ̃ + ψ̃

)
− Sε(ω̃) − pω̃p−1ψ̃ in D, (5.8)

where

N (Φ̃) = μ̃
−N−2

2 ε
ε (ω̃ + Φ̃)p−ε − wp−ε − pω̃p−1Φ̃− μ̃2

ε h̃Φ̃, Φ̃ = ζε2δφ̃ + ψ̃. (5.9)

Indeed, problem (5.4) in a scaled neighborhood of the geodesic looks like Problem 5.8 and the error E given 
in (5.6) via the change of variables (5.2) is nothing but the error term Sε(ω̃) defined in (3.26).

Given φ such that φ̃ is defined in D, we first solve problem (5.7) for ψ (see Section 6 of [7]).

Lemma 5.1. For any R > 0 there exists r > 0 such that for any function φ such that the corresponding 
function φ̃ is defined only in D with ‖φ̃‖∗ � r, there exists a unique solution ψ = ψ(φ) of (5.7) with

‖ψ‖∞ � Rε
N−4

2 ‖φ̃‖∗.

Moreover, the nonlinear operator ψ satisfies a Lipschitz condition of the form
∥∥ψ(φ1) − ψ(φ2)

∥∥
∞ � cε

N−4
2 ‖φ1 − φ2‖∗, (5.10)

for some positive constant c independent on ε.
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Finally, we substitute ψ̃ = ψ̃(φ) (via the change of variables (5.2)) in Eq. (5.7) and we reduce the full 
problem (1.2) to solving the following (nonlocal) problem in D:

A(φ̃) + pω̃p−1φ̃ = −N
(
ηε2δφ̃ + ψ̃(φ)

)
− Sε(ω̃) − pω̃p−1ψ̃(φ) in D. (5.11)

5.2. The nonlinear projected problem

We can solve the following projected problem associated to (5.11): given μ, d and e satisfying (3.18), find 
functions φ̃ and cj(y0) for j = 0, . . . , N + 1 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(φ̃) = −Sε(ω̃) + N(φ̃) +
N∑
j=0

cjZj in D,

φ̃

(
y0 + 2�

ρ
, y

)
= φ(y0, Ay) for any (y0, y) ∈ D,∫

Dy0

φ̃Zjdy = 0 for any y0 ∈
[
− �

ρ
,
�

ρ

]
, j = 0, 1, . . . , N + 1.

(5.12)

Here Sε(ω̃) is given in (3.26) and

L(φ̃) := A(φ̃) + pωp−1φ̃
(
A is in Lemma 3.2 and ω is in (3.5)

)
,

N(φ̃) := p
(
ωp−1 − ω̃p−1)φ̃−N

(
ζε2δφ̃ + ψ̃(φ)

)
− pω̃p−1ψ̃(φ)

(
N is in (5.9)

)
.

Proposition 5.2. There exists c > 0 such that for all sufficiently small ε and all μ, d and e satisfying (3.18), 
problem (5.12) has a unique solution φ̃ = φ̃(μ, d, e) and cj = cj(μ, d, e) which satisfies

‖φ‖∗ � cε
3
2 . (5.13)

Moreover, φ̃ depends Lipschitz continuously on μ, d and e in the sense

∥∥φ̃(μ1, d1, e1) − φ̃(μ2, d2, e2)
∥∥
∗ � ε

5
2
∥∥(μ1 − μ2, d1 − d2, e1 − e2)

∥∥
for some positive constant c independent of ε and uniformly with respect to μ, d and e which satisfy (3.18).

Proof. We argue exactly as in Section 7 of [7], using a contraction mapping argument and the linear theory 
developed in Proposition 7.3. �
6. The reduced problem

6.1. The reduced system

We find N +1 equations relating μ, d and e to get all the coefficients cj in (5.12) identically equal to zero. 
To do this, we multiply Eq. (5.12) by Zj , for all j = 0, . . . , N + 1 and we integrate in y. Thus, the system

cj(ρy0) = 0, j = 0, 1, . . . , N + 1

is equivalent to
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∫
Dy0

Sε(ω̃)Zj dy +
∫

Dy0

(
L(φ̃) −N(φ̃)

)
Zj dy = 0, j = 0, 1, . . . , N + 1,

for any y0 ∈ [− �
ρ , 

�
ρ ].

By Proposition 5.2 it follows that ∫
Dy0

(
L(φ̃) −N(φ̃)

)
Zj dy = ε3θ,

where θ = θ(ρy0) is as in Lemma 3.4.
Hence the equations cj = 0 are equivalent to the following limit system on N + 2 nonlinear ordinary 

differential equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

LN+1(μ) := −μ̈ +
(
anσ ± bn

μ2
0

)
μ = −αN+1(x0) − c3Q(x0, d) + ε| ln ε|MN+1,

Lk(d) := −d̈k +
N∑
j=1

R0j0kdj =
√
εMk, k = 1, . . . , N,

L0(e) := εa0ë + λ1e = −α0(x0) − c4Q(x0, d) − β(x0)μ + ε| ln ε|M0,

(6.1)

where μ, d1, . . . , dN , e ∈ C2
2�(R) and

– the functions αi and β are explicit functions of x0, smooth and uniformly bounded in ε given in 
Lemma 3.4

– the operator Q is quadratic in d (see Lemma 3.4) and it is uniformly bounded in L∞
2�(R) for (μ, d, e)

satisfying (3.18)
– the operators Mi = Mi(μ, d, e) can be decomposed as Mi(μ, d, e) = Ai(μ, d, e) + Ki(μ, d, e), where

– Ki is uniformly bounded in L∞
2�(R) for (μ, d, e) satisfying (3.18) and it is compact

– Ai depends on (μ, d, e) and their first and second derivatives and it satisfies∥∥Ai(μ2, d2, e2) −Ai(μ1, d1, e1)
∥∥ � o(1)

∥∥(μ2 − μ1, d2 − d1, e2 − e1)
∥∥

uniformly for (μ, d, e) satisfying (3.18)
– the dependence on (μ̈, d̈, ̈e) is linear.

Our goal is to solve (6.1) in μ, d and e. To do so, we first analyze the invertibility of the linear
operator LN+1.

Lemma 6.1. For any f ∈ L∞
2�(R), there exists a unique μ ∈ C2

2�(R) solution of LN+1(μ) = f . Moreover, 
there exists c such that

‖μ‖∞ + ‖μ̇‖∞ � c‖f‖∞.

Proof. The non-degeneracy condition of the solution μ0 translates into the fact that the periodic ODE

−μ̈ +
(
anσ ± bn

μ2
0

)
μ = 0 in [0, 2�]

has only the trivial solutions. Therefore the claim follows. �
Next, we analyze the invertibility of the linear operator L0.
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Lemma 6.2. Assume

∣∣εm2 − κ2∣∣ > ν
√
ε for any m = 1, 2, . . .

for some ν positive, where

κ := π

2
√

λ1

+�∫
−�

1√
a0(s)

ds.

For any f ∈ C0
2�(R) ∩L∞

2�(R), there exists a unique solution e ∈ C2
2�(R) of L0(e) = f . Moreover, there exists 

c such that

ε‖ë‖∞ +
√
ε‖ė‖∞ + ‖e‖∞ � c

1√
ε
‖f‖∞.

Finally, if f ∈ C2
2�(R), then

ε‖ë‖∞ +
√
ε‖ė‖∞ + ‖e‖∞ � c

[
‖f̈‖∞ + ‖ḟ‖∞ + ‖f‖∞

]
.

Proof. We argue as in Lemma 8.2 of [7]. �
Finally, we consider the invertibility of the linear operator (L1, . . . , LN ).

Lemma 6.3. Assume the geodesic is non-degenerate. For any f = (f1, . . . , fN ) with fk ∈ L∞
2�(R), there exists 

a d = (d1, . . . , dN ) with dk ∈ C2
2�(R) such that Lk(d) = fk for any k = 1, . . . , N . Moreover, there exists c

such that

‖d̈‖∞ + ‖ḋ‖∞ + ‖d‖∞ � c‖f‖∞.

Proof. It is useful to point out that assumption (1.3) about non-degeneracy of Γ in normal coordinates 
translates exactly into the fact that the linear system of ODE’s

−d̈k +
N∑
j=1

R0j0kdj = 0, in [0, 2�], k = 1, . . . , N

has only the trivial solution d ≡ 0 satisfying the periodicity condition (3.6). Therefore, the claim follows. �
6.2. The choice of parameters: the proof completed!

Now, we are ready to complete the proof, finding parameters which solve the reduced problem (6.1).
First, by Lemma 6.1 we find μ̂0 solution of

LN+1(μ̂0) = −αN+1(x0), with ‖ ¨̂μ0‖|∞ + ‖ ˙̂μ0‖∞ + ‖μ̂0‖∞ � c.

Then, by Lemma 6.2 we find ê0 solution of

L0(ê0) = −α0 − βμ̂0, with ε‖¨̂e0‖∞ +
√
ε‖ ˙̂e0‖∞ + ‖ê0‖∞ � c.

Therefore, ‖(μ̂0, 0, ̂e0)‖ � c. Let us define



J. Dávila et al. / J. Math. Pures Appl. 103 (2015) 1410–1440 1437
μ = μ̂0 + μ̂1, d = d̂1, e = ê0 + ê1.

The system (6.1) reduces to

⎧⎪⎨
⎪⎩

LN+1(μ̂1) = −c3Q(x0, d̂1) + ε| ln ε|MN+1,

Lk(d̂1) =
√
εMk, k = 1, . . . , N,

L0(ê1) = −c4Q(x0, d̂1) − β(x0)μ̂1 + ε| ln ε|M0.

(6.2)

Let us observe now that the linear operator

L(μ̂1, d̂1, ê1) =
(
LN+1(μ̂1), LN (d̂1), . . . , L1(d̂1), L0(ê1)

)
is invertible with bounds for L(μ̂1, d̂1, ̂e1) = (f, g, h) given by

∥∥(μ̂1, d̂1, ê1)
∥∥ � C

[
‖f‖∞ + ‖g‖∞ + ε−1/2‖h‖∞

]
.

Finally, by the contraction mapping principle it follows that, the problem (6.2) has a unique solution with

‖μ̂1‖∞ < cε| ln ε|, ‖d̂1‖∞ <
√
ε, ‖ê1‖∞ <

√
ε| ln ε|.

That concludes the proof.

7. The linear theory

Here we recall a linear theory necessary to solve problem (3.11), which has been developed in Section 3 
of [7].

Let us consider the operator L0 := ΔRN + pwp−1. It is well-known that the L2-null space of the operator 
L0 is N + 1-dimensional and spanned by the functions

Zj(y) := ∂jw(y), j = 1, . . . , N and ZN+1(y) := y · ∇w(y) + N − 2
2 w(y).

Moreover it is known that (see [7]) the operator L0 has one negative eigenvalue −λ1 < 0, whose corresponding 
eigenfunction Z0 (normalized to have L2-norm equal to 1) decays exponentially at infinity with exponential 
order O(e−

√
λ1|x|).

The following results (see Lemma 3.1 of [7] and also [8]) are useful in order to obtain a priori estimates 
and a solvability theory for problem (3.11).

Lemma 7.1. Assume that λ /∈ {0, ±
√
λ1 }. Then for g ∈ L∞(RN ), there exists a unique bounded solution of

(
L0 − |λ|2

)
ψ = g

in RN . Moreover

‖ψ‖L∞ � cλ‖g‖L∞

for some constant cλ > 0 only depending on λ.



1438 J. Dávila et al. / J. Math. Pures Appl. 103 (2015) 1410–1440
Lemma 7.2. Let φ a bounded solution of

∂00φ + Δyφ + pwp−1φ = 0 in R
N+1.

Then φ(y0, y) is a linear combination of the functions Zj, j = 1, . . . , N + 1, Z0(y) cos(
√
λ1y0), 

Z0(y) sin(
√
λ1y0).

Now, we study a slightly more general problem than (3.11) that involves the essential features needed. 
For any constant M > 0 we consider the domain D defined as

D :=
{
(y0, y) ∈ R× R

N : |y| < M
}

(7.1)

and given a function φ defined on D, an operator of the form

L(φ) := b(y0)∂00φ + Δyφ + pwp−1φ +
∑
i,j

bij(y0, y)∂ijφ +
∑
i

bi(y0, y)∂iφ + d(y0, y)φ.

Then for a given function g we want to solve the following projected problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(φ) = g +
N+1∑
j=0

cj(y0)Zj(y) in D,

∫
Dy0

φ(y0, y)Zj(y) dy = 0 for any y0 ∈ R, j = 0, . . . , N,

(7.2)

where

Dy0 :=
{
y ∈ R

N : (y0, y) ∈ D
}
.

We fix a number 2 � ν < N and consider the L∞-weighted norms

‖φ‖∗ := sup
D

(
1 + |y|ν−2)∣∣φ(y0, y)

∣∣ + sup
D

(
1 + |x|ν−1)∣∣Dφ(x0, x)

∣∣,
‖g‖∗∗ := sup

D

(
1 + |y|ν

)∣∣g(y0, y)
∣∣.

We assume that all functions involved are smooth. The following result (see Proposition 3.2 of [7]) establishes 
existence and uniform a priori estimates for problem (7.2) in the above norms, provided that appropriate 
bounds for the coefficients hold.

Proposition 7.3. Assume that N � 7 and N − 2 � ν < N . Assume that there exists m > 0 such that

m � b(y0) � m−1 for any y0 ∈ R.

There exist δ > 0 and C > 0 such that if

M‖∂0b‖∞ +
∑
i,j

(
‖bij‖∞ + ‖Dbij‖∞

)
+

∑
i

∥∥(1 + |y|
)
bi
∥∥
∞ +

∥∥(1 + |y|2
)
d
∥∥
∞ < δ (7.3)

then for any g with ‖g‖∗∗ < ∞ there exists a unique solution φ = T (g) of problem (7.2) with ‖φ‖∗ < ∞ and 
it holds true that

‖φ‖∗ � C‖g‖∗∗.
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Appendix A

A.1. Proof of (3.4)

Let E0, E1, . . . , EN be the coordinate vectors as given in the Introduction. By our choice of coordinates it 
follows that ∇EE = 0 on Γ for any vector field E, that is a linear combination (with coefficients depending 
only on x0) of the Ej ’s, j = 1, . . . , N .

In particular, for any i, j = 1, . . . , N and for any t ∈ R, we have ∇Ei+tEj
(Ei + tEj) = 0 on Γ , which 

implies ∇Ei
Ej + ∇Ej

Ei = 0 for every i, j = 1, . . . , N .
Using the fact that Ei’s are coordinate vectors for j = 1, . . . , N and in particular ∇Ea

Eb = ∇Eb
Ea for 

all a, b = 0, . . . , N , we obtain that ∇EjEi = 0 for every i, j = 1, . . . , N . The geodesic coordinate for Γ
translates precisely into ∇E0E0 = 0.

These facts immediately yield

∂mgij = Em〈Ei, Ej〉 = 〈∇Em
Ei, Ej〉 + 〈Ei,∇Em

Ej〉 = 0 (A.1)

on Γ with i, j, m = 1, . . . , N .
Moreover, since Ea’s are coordinate vectors for a = 0, . . . , N , we obtain

∂mg0j = Em〈E0, Ej〉
= 〈∇Em

E0, Ej〉 + 〈E0,∇Em
Ej〉

= 〈∇E0Em, Ej〉 + 〈E0,∇Em
Ej〉 = 0 (A.2)

on Γ with m, j = 1, . . . , N .
Here we used the fact that ∇E0Em = 0 on Γ , namely that ∇E0Em has zero normal components.
Moreover by (A.1) it follows that

∂mg00 = 0 on Γ. (A.3)

We can also prove that the components R0m0j of the curvature tensor are given by

R0m0j = −1
2∂mjg00. (A.4)

Indeed, we have

−R0m0j =
〈
R(E0, Ej)E0, Em

〉
= 〈∇E0EjE0, Em〉 − 〈∇Ej

∇E0E0, Em〉
= 〈∇E0∇EjE0, Em〉 −Ej〈∇E0E0, Em〉 − 〈∇E0E0,∇Ej

Em〉
= 〈∇E0∇Ej

E0, Em〉 − Ej〈∇E0E0, Em〉
= 〈∇E0∇Ej

E0, Em〉 − EjE0〉E0, Em〉 + Ej〈E0,∇E0Em〉
= 〈∇E0∇Ej

E0, Em〉 + Ej〈E0,∇Em
E0〉

= 1
2EjEm〈E0, E0〉 + E0〈∇Ej

E0, Em〉 − 〈∇Ej
E0,∇E0Em〉

= 1
2∂mjg00,

where here we have used the above properties and the fact that
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∇Ej
E0 = ∇E0Ej = 1

2∂jg00E0 = 0.

By (A.2), (A.4), (A.3) and (A.1) the claim follows.
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