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Abstract We consider the standing-wave problem for a nonlinear Schrödinger equation,
corresponding to the semilinear elliptic problem

−�u + V (x)u = |u|p−1u, u ∈ H1(R2),

where V (x) is a uniformly positive potential and p > 1. Assuming that

V (x) = V∞ + a

|x |m + O

(
1

|x |m+σ

)
, as |x | → +∞,

for instance if p > 2, m > 2 and σ > 1 we prove the existence of infinitely many positive
solutions. If V (x) is radially symmetric, this result was proved in [43]. The proof without
symmetries is much more difficult, and for that we develop a new intermediate Lyapunov–
Schmidt reduction method, which is a compromise between the finite and infinite dimensional
versions of it.
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1 Introduction and statement of the main result

In this paper we consider the problem of finding positive solutions of the classical semilinear
elliptic problem

− �u + V (x)u = |u|p−1u in R
N , (1.1)

where� =∑N
j=1

∂2

∂x2
j

stands for the Laplace operator in R
N , V (x) is a non-negative potential,

and p > 1.
Equation (1.1) arises in various branches of applied mathematics and physics (cf. [12] and

references therein). For instance, in condensed matter physics one simulates the interaction
effect among many particles to obtain a focusing nonlinear Schrödinger equation of the form

i h̄
∂ψ

∂t
= −h̄2�ψ + W (x)ψ − |ψ |p−1ψ in [0,∞) × R

N , (1.2)

where i is the imaginary unit, h̄ the Planck constant and W (x) a given potential. Standing
wave solutions of (1.2) are those of the form

ψ(t, x) = e−iλt/h̄u(h̄−1x),

where u(x) is a real-valued function. Then (1.2) reduces to Eq. (1.1) for u, where V (x) =
W (h̄x) − λ.

In what follows, we shall only consider positive, finite energy solutions of (1.1). Namely,
we are concerned with the problem:

{−�u + V (x)u − u p = 0 in R
N ,

u > 0 in R
N , u ∈ H1(RN ).

(1.3)
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Associated to (1.3) is the energy functional

E(u) = 1

2

∫

RN

{|∇u|2 + V (x)u2} dx − 1

p + 1

∫

RN

u p+1
+ dx, (1.4)

where u+ = max{u, 0}. In all what follows, we make the following structure assumptions
on V and p:

V is locally Hölder continuous, V ∈ L∞(RN ) and V0 = inf
x∈RN

V (x) > 0; (1.5)

1 < p < ∞ for N = 2 and 1 < p <
N + 2

N − 2
for N ≥ 3. (1.6)

Under these hypotheses, it is standard that classical solutions of (1.3) correspond precisely
to non-trivial critical points of E in H1(RN ).

Let us denote the set of solutions of problem (1.3) by SV . A natural question is whether or
not SV �= ∅. When V is radially symmetric, the answer is yes (cf. Theorem 4.6 in [24]). But
the answer is no when the potential is increasing along a direction (cf. Theorem 1.1 in [15]).

If we further assume that
lim|x |→∞ V (x) = V∞ > 0, (1.7)

the existence of a positive solution of (1.3) has been widely investigated. For example, if we
further suppose that

inf
x∈RN

V (x) < V∞, (1.8)

then one can show that (1.3) has a least energy (ground state) solution by using the concen-
tration compactness principle (cf. [24,31,32,39]). But if (1.8) does not hold, problem (1.3)
may not have a least energy solution and solutions have to be seeked for at higher energy
levels. Results in this direction are contained in [6,7,9], where a positive solution has been
found by variational methods under a suitable decay condition on V at infinity.

The structure of the solution set SV may be quite rich and interesting. Let us consider for
instance the semi-classical limit case:{−ε2�u + W (x)u − u p = 0 in R

N ,

u > 0 in R
N , u ∈ H1(RN ),

(1.9)

where ε > 0 is a small parameter. Naturally, problem (1.9) is equivalent to problem (1.3)
for V (x) = W (εx). It is known that as ε goes to zero, highly concentrated solutions near
critical points of the potential W can be found, see [1,10,11,17–20,25,27,37,42], or near
higher dimensional stationary sets of other auxiliary potentials [3,21,33,41]. The number of
solutions of (1.9) may depend on the number or type of the critical points of W (x). It is rather
difficult task to understand the structure of SV for an arbitrary potential V . For instance, a con-
spicuously unanswered question is whether or not SV �= ∅ for any potential V satisfying (1.7).

Summing up, the above-mentioned work concerns the existence of positive solutions, i.e.,
SV �= ∅. There is less work on the multiplicity of positive solutions of (1.3), namely on
estimating #SV . A seminal result in this direction was given in Coti-Zelati and Rabinowitz
[16] where V (x) is spatially periodic. In that situation they prove the existence of infinitely
many positive solutions, distinct up to periodic translations, via variational methods.

Recently, by assuming that V = V (|x |) is radially symmetric, the second author and
Yan [43] proved that problem (1.3) has infinitely many positive non-radial solutions if there
are constants V∞ > 0, a > 0, m > 1, and σ > 0, such that
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V (r) = V∞ + a

rm
+ O

(
1

rm+σ

)
, as r → +∞. (1.10)

An alternative proof through min-max methods was given by Devillanova and Solim-
ini [23].

The proof in [43] uses in essential way the radial symmetry of the potential V . On the
other hand, it is conjectured there that the result should remain true when the symmetry
requirement is lifted:

Conjecture Problem (1.3) has infinitely many positive solutions if there are constants V∞ >

0, a > 0, m > 1, and σ > 0, such that the potential V (x) satisfies

V (x) = V∞ + a

|x |m + O

(
1

|x |m+σ

)
, as |x | → +∞. (1.11)

Results in this direction with non-symmetric potentials, as far as we know, there are only
perturbative results (cf. [4,14]). For instance, if V (x) tends to V∞ from above with a suitable
rate:

V (x) ≥ V0 > 0, lim|x |→∞ (V (x) − V∞) eη̄|x | = +∞, for some η̄ ∈ (0,
√

V∞), (1.12)

and V satisfies a global condition:

sup
y∈RN

‖V (x) − V∞‖L N/2(B1(y)) < V, (1.13)

where V is a sufficiently small positive constant (with no explicit expression), Cerami et al.
[14] proved that problem (1.3) has infinitely many positive solutions by purely variational
methods. (In [4], Ao and Wei gave a new proof of this result, using localized energy method.
The new techniques also allow them to deal with more general nonlinearity).

The main purpose of this paper is to prove the above conjecture under some additional
assumptions. In [43], the fact that V is radially symmetric allows to build a k-bump solution
for an arbitrary k ≥ 1 with a k-dyadic symmetry, reducing the problem to just adjusting one
parameter representing the location of a single bump along a given ray. A finite dimensional
Lyapunov–Schmidt reduction method is used.

When V is non-symmetric, we cannot constrain the bump configuration to any symmetry
class. We are thus forced to deal with a large number of bumps and therefore with a huge
number of parameters which need to be adjusted. This poses a tremendous difficulty in the
construction comparatively to [43]. In Lyapunov–Schmidt reduction for problems like (1.3)
the situation of adjusting a finite number of points (finite dimensional Lyapunov–Schmidt
reduction method), and that of adjusting a higher dimensional object such a geodesic in a
suitable metric as limiting concentration sets (infinite dimensional Lyapunov–Schmidt reduc-
tion method) have been treated. In this work we develop an intermediate Lyapunov–Schmidt
reduction method, which consists of the finite dimensional procedure for large number of
reduced equations, which in the limit become an ODE system of limiting Jacobi-type oper-
ators (see (8.9) below). Treating the discrete problem needs a method, technically delicate,
which we interpret as an intermediate procedure between the finite and the infinite dimen-
sional one (see for instance [21,22,38] and references therein for the latter). The main dif-
ference between the intermediate and infinite dimensional reduction, is that in the latter
procedure only the variations in the normal direction are needed so the usual Jacobi operator
for a curve appears. In the former procedure we also need to take into account variations in the
tangential direction of points, which in the limit may be interpreted as a reparametrization of
the curve. This seems to be a new procedure, with potentially many interesting applications.
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Our main result removes the symmetry assumption on V when N = 2.

Theorem 1.1 Let N = 2. Suppose that V (x) satisfies (1.5) and (1.11) for some constants
V∞ > 0, a > 0, and

min

{
1,

p − 1

2

}
m > 2, σ > 2. (1.14)

Then problem (1.3) has infinitely many non-radial positive solutions, whose energy can
be made arbitrarily large.

If (1.11) holds in the C1 sense, then “σ > 2” in (1.14) can be improved to be “σ > 1”.
The condition on p can be further relaxed if we assume more regularity of the condition
(1.11) or if p is an integer.

The results in [4,14] make us think that condition (1.11) could be improved. In fact we
believe that the optimal condition should be (1.12). We stress that our result does not require
a global perturbative assumption such as (1.13) on V . In addition, it is worth pointing out
that the results on the existence of positive solutions in [6,7,9] do not include the polynomial
decay case (1.11).

Finally, we remark that for N ≥ 3, Theorem 1.1 holds if we assume the following addi-
tional symmetry assumption on V : after suitably rotating the coordinate system,

V (x) = V (x ′, x ′′) = V (x ′,−x ′′), (1.15)

where x = (x ′, x ′′) ∈ R
2 × R

N−2. An open question is whether or not the same result holds
when N ≥ 3 with no extra assumption made.

Throughout the paper, we shall use the following notation and conventions:

• For quantities AK and BK , we write AK ∼ BK to denote that there exists a positive
constant C such that 1/C ≤ AK /BK ≤ C for K sufficiently large; AK = O(BK ) means
that |AK /BK | is uniformly bounded as K tends to infinity; AK = o(BK ) denotes that
|AK /BK | → 0 as K → ∞.

• For simplicity, the letter C denotes various generic constant which is independent of K .
It is allowed to vary from line to line, and also within the same formula.

• We will use the same |y| = ‖y‖2 for the Euclidean norm in various Euclidean spaces R
N

when no confusion can arise and we always denote the inner product of a and b in R
N by

a · b.
• For the index j ∈ {1, 2, . . . , K }, we shall always use the convention that j − 1 = K if

j = 1 and j + 1 = 1 if j = K .
• The cardinality of a finite set E will be denoted by #E ; The Lebesgue measure of a set

E ⊂ R
N will be denoted by |E |.

• The transpose of a matrix A will be denoted by AT .
• For each function w(x) defined in R

N , if w is radially symmetric, then there is a real
function w̃(r) such that w(x) = w̃(|x |). With slight abuse of notation, we will simply
write w(r) instead of w̃(r).

In the next section, we will describe the procedure of our construction and give the main
ideas of each step.
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2 Description of the construction

We will prove the slightly more general version of the Theorem 1.1, for N ≥ 3 where we
assume even symmetry in N − 2 the remaining variables in the sense that

V (x) = V (x ′, x ′′) = V (x ′,−x ′′), (2.1)

where x = (x ′, x ′′) ∈ R
2 × R

N−2. We assume this henceforth.
We shall briefly describe the solutions to be constructed later and will give the main

ideas in the procedure of the construction. In particular, we shall introduce the intermediate
reduction method, which we believe can be very useful in other contexts.

Firstly, without loss of generality, we can assume that V∞ = 1 by suitable scaling. As
developed in [43], we will use the loss of compactness to build up solutions. More precisely,
we will construct solutions with large number of spikes whose inter-distances and distances
from the origin are sufficiently large.

By the asymptotic behaviour of V at infinity, the basic building block is the ground state
(radial) solution w of the limit problem at infinity:{−�w + w − w p = 0, w > 0 in R

N ,

w = w(|x |), w ∈ H1(RN ).
(2.2)

The solutions we construct will be small perturbations of the sum of copies of w, centered
at some carefully chosen points on R

2 × {0} ⊂ R
N , where 0 is the zero vector in R

N−2.
Let K ∈ N+ be the number of spikes, whose locations are given by Q j ∈ R

N , j =
1, . . . , K . We define

wQ j (x) = w(x − Q j ) and U (x) =
K∑

j=1

wQ j (x), for x ∈ R
N . (2.3)

A natural and central question is how to choose Q j ’s such that a small perturbation of U will
be a genuine solution.

Assuming that

inf
1≤ j≤K

|Q j | → +∞ and inf
j �=l

|Q j − Ql | → +∞,

by the asymptotic behaviour of V at infinity and the property of w, one can get (at least
formally) the following energy expansion

E(U ) = K I0 + a0

K∑
j=1

|Q j |−m − 1

2
γ0

∑
j �=l

w(|Q j − Ql |)
︸ ︷︷ ︸

J (Q1,...,QK )

+other terms, (2.4)

where I0, a0 and γ0 are positive constants. Here E(U ) is the energy functional defined at
(1.4) and we denote the leading order expansion as J (Q1, ..., QK ).

Observe that for any rotation Rθ around the origin in R
N , there holds

J (Rθ Q1, . . . , Rθ QK ) = J (Q1, . . . , QK ).

Hence any critical point of J (Q1, . . . , QK ) is degenerate. Therefore, except in the symmetric
class, it is not easy to find critical points of small perturbations of J (Q1, . . . , QK ). This means
that it is not easy to apply the localized energy method directly. However, this observation
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Infinitely many positive solutions 479

gives us some enlightenment in the non-symmetric setting. Actually, when we restrict Q j ’s
on a plane, this suggests us to introduce one more parameter to deal with the degeneracy due
to rotations as we will see in Sect. 5.

Under the condition (1.15), there is no essential difference between N = 2 and N ≥ 3.
Hence from now on we will restrict Q j ’s on the plane R

2 × {0} ⊂ R
N . To describe further

the configuration space of Q j ’s, we define

Q0
j = (R cos θ j , R sin θ j , 0

) ∈ R
2 × {0}, for j = 1, . . . , K ,

where

θ j = α + ( j − 1)
2π

K
∈ R.

Here α is the parameter representing the degeneracy due to rotations, and R is a positive
constant to be determined later. Observe that each point Q0

j depends on α. Thus we write

Q0
j = Q0

j (α). When α = 0, the Q0
j ’s are the points used in [43]. If V (x) is radially

symmetric, it is obvious that the parameter α plays no role in the construction in [43]. But it
is very important in our construction as we will see in Sect. 6.

For the constant R, we introduce the so-called balancing condition:

a0m R−m−1 = 2 sin
π

K


(

2R sin
π

K

)
, (2.5)

where a0 = a
2

∫
RN w2 dx > 0, and 
 is the interaction function defined by


(s) = −
∫

RN

w(x − s�e) div
(
w p(x)�e) dx . (2.6)

Here �e can be any unit vector in R
N (cf. [34,35]). The balancing condition (2.5) can either

be understood as a consequence of a conservation law or can be seen as a condition such that
the approximation U is very close to a genuine solution (cf. Appendix in [35]). Assuming
that

d = 2R sin
π

K
→ +∞, as K → +∞,

we will see that (cf. Lemma 3.3)

|Q0
j | = R ∼ m

2π
K ln K , and min

j �=l

{
|Q0

j − Q0
l |
}

= d ∼ m ln K .

Next we define a small neighbourhood of Q0 = (Q0
1, . . . , Q0

K ) on (R2×{0})K in a suitable
norm to be made precise and introduce another parameter. Let f j , g j ∈ R, j = 1, . . . , K ,
we define

Q j = Q0
j + f j �n j + g j �t j = (R + f j )�n j + g j �t j , (2.7)

where

�n j = (cos θ j , sin θ j , 0
)
, and �t j = (− sin θ j , cos θ j , 0

)
.

Keep in mind that f j and g j measure the displacement in the normal and tangential
directions, respectively.

Writing Q j = Q j (α), �n j = �n j (α) and �t j = �t j (α), we note the following trivial but
important fact:

Q j (α + 2π) = Q j (α), ∀α ∈ R, and ∀ j = 1, . . . , K . (2.8)
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We can now introduce another parameter q and define a suitable norm. Denote

q = ( f1, . . . , fK , g1, . . . , gK )T ∈ R
2K ,

that is, q j = f j and qK+ j = g j for j = 1, . . . , K . We define

q̇ = ( ḟ1, . . . , ḟK , ġ1, . . . , ġK )T , and q̈ = ( f̈1, · · · , f̈K , g̈1, · · · , g̈K )T ,

where for j = 1, . . . , K ,

ḟ j = ( f j+1 − f j )
K

2π
, f̈ j = ( f j+1 − 2 f j + f j−1)

K 2

4π2 ,

ġ j = (g j+1 − g j )
K

2π
, g̈ j = (g j+1 − 2g j + g j−1)

K 2

4π2 ,

fK+1 = f1, f0 = fK , gK+1 = g1, g0 = gK .

Observe that if f j = f (θ j ) for some 2π periodic smooth function f , then ḟ j is the forward
difference of f and f̈ j is the 2nd order central difference of f .

With these notation, we can define the configuration space of Q j ’s by

�K =
{
(Q1, . . . , QK ) ∈ (R2 × {0})K

∣∣ Q j is defined by (2.7) and |q‖∗ ≤ 1
}
,

where ‖q‖∗ = ‖q‖∞ + ‖q̇‖∞ + ‖q̈‖∞ is a norm on R
2K . In the following, we assume that

Q j is defined by (2.7), the parameter α ∈ R and the parameter q satisfy

‖q‖∗ = ‖q‖∞ + ‖q̇‖∞ + ‖q̈‖∞ ≤ 1. (2.9)

For any (Q1, . . . , QK ) ∈ �K , an easy computation shows that for j = 1, . . . , K ,

|Q j | = R + f j + O(R−1),

and

|Q j+1 − Q j | = d + 2( f j + ġ j )
π

K
+ O(K −2).

Define ρ = min j �=l{|Q j − Ql |}, it follows that

ρ = d + O(K −1), and min
j=1,...,K

{|Q j |} = R + O(1). (2.10)

We will prove Theorem 1.1 by showing the following result.

Theorem 2.1 Under the assumption of Theorem 1.1, there is a positive integer K0 such that:
for all integer K ≥ K0, there exist α ∈ [0, 2π) and (Q1, . . . , QK ) ∈ �K such that problem
(1.3) has two solutions of the form

u(x) =
K∑

j=1

w(x − Q j ) + φ(x), (2.11)

where ‖φ‖H1(RN ) + ‖φ‖L∞(RN ) → 0 as K → +∞. Moreover, the energy of u is given by

E(u) = K

(
1

2
− 1

p + 1

) ∫

RN

w p+1 dx + o(1). (2.12)
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Remark 1 It is worth pointing out that the solutions constructed in this paper are different
from those found in [4,14]. The reason is simply that the inter-distances and distances from
the origin of the spikes of the solutions given in (2.11) tend to infinity uniformly as K goes
to infinity, but those of the solutions found in [4,14] do not.

Remark 2 The fact that we can find at least two solutions of the form (2.11) is nontrivial.
This is due to the fact that we need to choose the first starting point Q0

1. It turns out that there
are at least two such points to choose (see Sect. 6).

Remark 3 As K → +∞, ( f j , g j ) is the discretization of two second order ordinary differ-
ential equations (8.9).

To prove Theorem 2.1, it is sufficient to show that for K sufficiently large there are
parameters α and q such that U + φ is a genuine solution for a small perturbation φ. To
achieve this goal, we will adopt the techniques in the singularly perturbed problem. Unlike
problem (1.9), there is no apparent parameter in (1.3). As stated in Theorem 2.1, we use the
number of the spikes as the ε-type parameter. This idea comes directly from [43] and goes
back at least as far as to [30].

Before we sketch the procedure of our proof, we briefly introduce the abstract set-up of the
Lyapunov–Schmidt reduction (although it is always used in a framework that occurs often
in bifurcation theory).

Let X, Y be Banach spaces and S(u) is a C1 map from X to Y . To study the equation
S(u) = 0, a natural way is to find approximations first and then to look for genuine solutions
as (small) perturbations of approximations. Assume that Uλ are the approximations, where
λ ∈ � is the parameter (we think of � as the configuration space). Writing u = Uλ +φ, then
solving S(u) = 0 amounts to solve

L[φ] + E + N (φ) = 0, (2.13)

where

L[φ] = S′(Uλ)[φ], E = S(Uλ), and N (φ) = S(Uλ + φ) − S(Uλ) − S′(Uλ)[φ].
Here S′(Uλ) is the Fréchet derivative of S at Uλ, E denotes the error of approximation, and
N (φ) denotes the nonlinear term. In order to solve (2.13), we try to invert the linear operator
L so that we can rephrase the problem as a fixed point problem. That is, when L has a
uniformly bounded inverse in a suitable space, one can rewrite Eq. (2.13) as

φ = −L−1[E + N (φ)] = A(φ).

What is left is to use fixed point theorems such as contraction mapping theorem.
The Lyapunov–Schmidt reduction deals with the situation when the linear operator L

is Fredholm and its eigenfunction space associated to small eigenvalues has finite dimen-
sion. Assuming that {Z1, . . . ,Zn} is a basis of the eigenfunction space associated to small
eigenvalues of L , we can divide the procedure of solving (2.13) into two steps:

(i) solving the projected problem for any λ ∈ �,⎧⎨
⎩

L[φ] + E + N (φ) =∑n
j=1 c j Z j ,

〈φ,Z j 〉 = 0, ∀ j = 1, . . . , n,

where c j may be constant or function depending on the form of 〈φ,Z j 〉;
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(ii) solving the reduced problem

c j (λ) = 0, ∀ j = 1, . . . , n,

by adjusting λ.

Let us now turn to our problem (1.3). In this case,

S(u) = −�u + V (x)u − u p
+,

L[φ] = −�φ + V (x)φ − pU p−1φ,

E = −�U + V (x)U − U p,

N (φ) = −(U + φ)
p
+ + U p + pU p−1φ.

Observe that all of these quantities depend implicitly on α and q even though this is not
apparent in the notation.

By the Lyapunov–Schmidt reduction, the procedure of construction is made up of several
steps which we explain next and postpone the proofs of major facts in later sections.

Step 1: Solving the projected problem
Let α ∈ R and q satisfy (2.9). We look for a function φ and some multiplier β̂ ∈ R

2K

such that ⎧⎨
⎩

L[φ] + E + N (φ) = β̂ · ∂U
∂q ,∫

RN φ ZQ j dx = 0, ∀ j = 1, . . . , K ,
(2.14)

where the vector field ZQ j is defined by

ZQ j (x) = ∇w(x − Q j ). (2.15)

By direct computation, we have

∂U

∂q
= − (ZQ1 · �n1, · · · ,ZQK · �nK ,ZQ1 · �t1, · · · ,ZQK · �tK

)T
.

This is the first step in the Lyapunov–Schmidt reduction. It is done in Sect. 4 through
some a priori estimates and contraction mapping theorem. A required element in this step
is the non-degeneracy of w (cf. Lemma 3.1). It is worth pointing out that the function φ

and the multiplier β̂ found in Step 1 depend on the parameters α and q. Hence we write
φ = φ(x;α,q) and β̂ = β̂(α,q).

Step 2: Solving the reduced problem
By Step 1, it is known that β̂ is small. But it is not easy to solve β̂(α,q) = 0 directly

since the linear part of the expansion of β̂ in q is degenerate (due to the invariance of
J (Q1, . . . , QK ) under rotations).

More precisely, let us write

β̂(α,q) = T̃ q + �(α,q),

where T̃ q is the linear part and �(α,q) denotes the remaining term. As we will see in Sect. 5,
T̃ q does not depend on α and there is a unique vector (up to a scalar)

q0 = (0, . . . , 0︸ ︷︷ ︸
K

, 1, . . . , 1︸ ︷︷ ︸
K

)T ∈ R
2K

such that T̃ q0 = 0.
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By the Lyapunov–Schmidt reduction again (called the secondary Lyapunov–Schmidt
reduction), the step of solving the reduced problem β̂(α,q) = 0 can be divided into two
steps. To write the projected problem of β̂ = 0 in a proper form, note that

∂U

∂α
= R

K∑
j=1

∂U

∂g j
+

K∑
j=1

(
f j

∂U

∂g j
− g j

∂U

∂ f j

)
= (Rq0 + q⊥) · ∂U

∂q
,

where q⊥ = (−�g, �f ) for q = ( �f , �g). Hence we define

�β = β̂ − γ (Rq0 + q⊥), for every γ ∈ R. (2.16)

With this notation,

β̂ · ∂U

∂q
= �β · ∂U

∂q
+ γ

∂U

∂α
.

Obviously the new multiplier �β depends on the parameters α, q and γ . Thus we write
�β = �β(α,q, γ ).

Step 2.A: Solving �β(α,q, γ ) = 0 by adjusting γ and q
In this step, for each α ∈ R, we are going to find parameters (γ,q) such that

�β(α,q, γ ) = 0, and q ⊥ q0. (2.17)

It can be seen as the step of solving the projected problem in the secondary Lyapunov–
Schmidt reduction. To achieve it, we will use the condition (1.14). This step is done in Sect. 5
by using various integral estimates and contraction mapping theorem. A key element in this
step is the invertibility of an 2K × 2K matrix whose proof is given in Appendix A.

When Step 2.A is done, we denote the unique solution of (2.17) by (γ (α),q(α)). Then
the original problem (1.3) is reduced to the problem γ (α) = 0 of one dimension.

Step 2.B: Solving γ (α) = 0 by choosing α

At the last step, we want to prove that there exists an α such that γ (α) = 0. As a result,
the function u = U + φ is a genuine solution of (1.3).

This step is the second step of solving the reduced problem in the secondary Lyapunov–
Schmidt reduction. To achieve this step, by Step 2.A, the function φ = φ(x;α,q(α)) found
in Step 1 solves the following problem:

{
L[φ] + E + N (φ) = γ (α) ∂U

∂α
,∫

RN φ ZQ j dx = 0, ∀ j = 1, . . . , K ,
(2.18)

where all of the quantities depending implicitly on (α,q) are taken values at (α,q(α)). To
solve γ (α) = 0, we first apply the so-called variational reduction (often used in the localized
energy method) to show that equation γ (α) = 0 has a solution if the reduced energy function
F(α) = E(U +φ) has a critical point. Secondly, by using (2.8), it is easy to check that F(α)

is 2π periodic in α. Hence it has at least two critical points. More details of this step will be
given in Sect. 6.

Finally, this paper is organized as follows. Some preliminary facts and estimates are
explained in Sect. 3. In Sect. 4 we apply the standard Lyapunov–Schmidt reduction for Step
1. Sect. 5 contains a further reduction process for Step 2.A which reduces the original problem
to a one-dimensional one. In Sect. 6 we carry out Step 2.B and then complete the proof of
Theorem 2.1. At the last, we discuss some possible extensions in Sect. 7.
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3 Preliminaries

In this section we present some preliminary facts and some useful estimates.
First we recall some basic and useful properties of the standard spike solution w defined

by (2.2) and those of the interaction function 
 defined in (2.6).

Lemma 3.1 If 1 < p < ∞ for N = 2 and 1 < p < N+2
N−2 for N ≥ 3, then every positive

solution of the problem: {−�u + u − u p = 0 in R
N ,

u > 0 in R
N , u ∈ H1(RN ),

(3.1)

has the form w(· − Q) for some Q ∈ R
N , where w(x) = w(|x |) ∈ C∞(RN ) is the unique

positive radial solution which satisfies

lim
r→+∞ r

N−1
2 erw(r) = cN ,p, lim

r→+∞
w′(r)
w(r)

= −1. (3.2)

Here cN ,p is a positive constant depending only on N and p. Furthermore, the Morse index
of w is one and w is nondegenerate in the sense that

Ker
(−� + 1 − pw p−1) ∩ L∞(RN ) = Span

{
∂x1w, . . . , ∂xN w

}
.

Proof This result is well known. For the proof we refer the reader to [12,40] for the existence,
[26] for the symmetry, [29] for the uniqueness, Appendix C in [36] for the nondegeneracy,
and [8] for the Morse index.

Lemma 3.2 For s sufficiently large,


(s) = cN ,p s− N−1
2 e−s (1 + O(s−1)

)
, (3.3)

where cN ,p > 0 is a constant depending only on N and p.

Proof This lemma follows from Taylor’s theorem and the Lebesgue dominated convergence
theorem. We omit it here and refer to [27,34] for details.

Next we study the balancing condition (2.5). Assuming that

d = 2R sin
π

K
→ +∞, as K → +∞,

by the expansion (3.3), both positive numbers R and d are uniquely determined by K .
Moreover, we have the following expansions.

Lemma 3.3 For K sufficiently large,

d = m ln K +
(

m − N − 3

2

)
ln(m ln K ) + O(1), (3.4)

R = m

2π
K ln K + 1

2π

(
m − N − 3

2

)
K ln(m ln K ) + O(K ).

Proof From the balancing condition (2.5), the number d satisfies the equation

dm+1
(d) = a0m
(

2 sin
π

K

)m
. (3.5)
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By using (3.3), for K sufficiently large, Eq. (3.5) becomes

cN ,pdm+1− N−1
2 e−d(1 + O(d−1)) = a0m(2π)m K −m (1 + O(K −2)

)
,

from which we obtain

dm+1− N−1
2 e−d ∼ K −m .

Let d = m ln K + d1 with d1 = o(ln K ), we have

cN ,p(m ln K )m+1− N−1
2 e−d1 (1 + o(1)) = a0m(2π)m (1 + O(K −2)

)
.

It follows that

ed1 ∼ (m ln K )m+1− N−1
2 .

Therefore,

d1 =
(

m − N − 3

2

)
ln(m ln K ) + O(1),

from which we get the expansions of d and R. ��
In the next section, we will apply the Lyapunov–Schmidt reduction. After refinements by

many authors working on the subject or on closely related problems, this type of argument
is rather standard now. However technical difficulties arise when the number of spikes goes
to infinity or the number of spikes is infinity (cf. [34]). To deal with these difficulties, the
following lemmas are useful.

Lemma 3.4 There exists a constant CN depending only on N such that for any K ∈ N+ and
any Q = (Q1, . . . , QK ) ∈ (RN )K ,

#
{

Q j
∣∣ �ρ/2 ≤ |Q j − x | < (� + 1)ρ/2

} ≤ CN (� + 1)N−1, (3.6)

for all x ∈ R
N and all � ∈ N, where ρ = min j �=l{|Q j − Ql |}. In particular, if Q =

(Q1, . . . , QK ) ∈ (R2 × {0})K , then for all x ∈ R
N and all � ∈ N,

#
{

Q j
∣∣ �ρ/2 ≤ |Q j − x | < (� + 1)ρ/2

} ≤ 6(� + 1). (3.7)

Proof When ρ = 0, the result is trivial. It remains to consider the case ρ > 0. For � = 0, it
suffices to take CN ≥ 1. For � ≥ 1, let Q jk ’s (k = 1, . . . , n) be the points satisfying

�ρ/2 ≤ |Q jk − x | < (� + 1)ρ/2.

By the triangle inequality, we have

(� − 1)ρ/2 ≤ |y − x | < (� + 2)ρ/2, ∀ y ∈ Bρ/2(Q jk ).

Hence for all k = 1, . . . , n,

Bρ/2(Q jk ) ⊂ B(�+2)ρ/2(x) \ B(�−1)ρ/2(x).

Since Bρ/2(Q jl ) ∩ Bρ/2(Q jk ) = ∅ for l �= k, we conclude that

n∑
k=1

∣∣Bρ/2(Q jk )
∣∣ ≤ ∣∣B(�+2)ρ/2(x) \ B(�−1)ρ/2(x)

∣∣ .
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Therefore, taking CN = sup�∈N+
(�+2)N −(�−1)N

(�+1)N−1 , we have

n ≤ (� + 2)N − (� − 1)N ≤ CN (� + 1)N−1,

which implies (3.6).
If Q = (Q1, . . . , QK ) ∈ (R2 × {0})K , the above argument implies that

n∑
k=1

∣∣Bρ/2(Q jk ) ∩ R
2 × {0}∣∣ ≤ ∣∣B(�+2)ρ/2(x) \ B(�−1)ρ/2(x) ∩ R

2 × {0}∣∣ ,
which implies that

n ≤ (� + 2)2 − (� − 1)2 ≤ 6(� + 1).

Therefore, we get the estimate (3.7) if we restrict Q = (Q1, . . . , QK ) on (R2 × {0})K . ��
Given Q = (Q1, . . . , QK ) ∈ (RN )K with ρ = min j �=l{|Q j − Ql |} > 0, for any � ∈ N,

we divide R
N into K + 1 parts:

��
j =

{
x ∈ R

N
∣∣ |x − Q j | = min

1≤l≤K
|x − Ql | ≤ �ρ/2

}
, ∀ j = 1, . . . , K ,

and ��
K+1 = R

N \ ∪K
j=1�

�
j . Then the interior of ��

j ∩ ��
l is an empty set for j �= l.

Lemma 3.5 Suppose that Γ (r) is a positive decreasing function defined on [0,∞) such that
for some b ∈ R and η > 0,

Γ (r) ∼ rbe−ηr as r → +∞. (3.8)

Then there exist positive constants ρ0 and C (independent of K ) such that

(i) for all K , � ∈ N+, all (Q1, . . . , QK ) ∈ (RN )K with ρ ≥ ρ0, and all x ∈ ��
j0

( j0 =
1, . . . , K ), we have

K∑
j=1

Γ (|x − Q j |) ≤ C�N−1Γ (|x − Q j0 |). (3.9)

In particular, if (Q1, . . . , QK ) ∈ (R2 × {0})K , then

K∑
j=1

Γ (|x − Q j |) ≤ C�Γ (|x − Q j0 |).

(ii) for all (Q1, . . . , QK ) ∈ (RN )K with ρ ≥ ρ0 and all j0 ∈ {1, . . . , K },∑
j �= j0

Γ (|Q j0 − Q j |) ≤ CΓ (ρ). (3.10)

Remark 4 A similar result holds when Γ (r) has polynomial decay. For example, if for some
integer n ∈ N+,

Γ (r) ∼ rb as r → +∞, where b < −n,

then there are positive constants ρ0 and C (independent of K ) such that for all K ∈ N+, all
(Q1, . . . , QK ) ∈ (Rn × {0})K with ρ ≥ ρ0, and all j0 ∈ {1, . . . , K },∑

j �= j0

Γ (|Q j − Q j0 |) ≤ CΓ (ρ).

123



Infinitely many positive solutions 487

It seems that this kind of property will be useful and important in the construction of infinitely
many solutions of problem with critical growth.

Proof Given x ∈ ��
j0

, by definition we have

|x − Q j0 | ≤ �ρ/2 and |x − Q j0 | ≤ |x − Q j |, ∀ j = 1, . . . , K .

Thus there is an integer 0 ≤ �0 ≤ � such that

�0ρ/2 ≤ |x − Q j0 | < (�0 + 1)ρ/2.

By the property of Γ (r) and Lemma 3.4, for ρ sufficiently large, we have

K∑
j=1

Γ (|x − Q j |) ≤ CN (�0 + 1)N−1Γ (|x − Q j0 |) + CN

+∞∑
s=�0+1

(s + 1)N−1Γ (sρ/2)

≤ CN (�0 + 1)N−1Γ (|x − Q j0 |) + C(�0 + 2)N−1Γ ((�0 + 1) ρ/2)

≤ C�N−1Γ (|x − Q j0 |),
where in the second inequality we use the following inequality:

+∞∑
s=�0+1

(s + 1)N−1

(�0 + 2)N−1

Γ (sρ/2)

Γ ((�0 + 1)ρ/2)
≤ C.

To prove it, for ρ sufficiently large, by (3.8), we have

Γ (sρ/2)

Γ ((�0 + 1)ρ/2)
≤ C

(
s

�0 + 1

)b

e−η(s−�0−1)ρ/2.

Hence
+∞∑

s=�0+1

(s + 1)N−1

(�0 + 2)N−1

Γ (sρ/2)

Γ ((�0 + 1)ρ/2)
≤ C

+∞∑
s=�0+1

(
s

�0 + 1

)N−1+b

e−η(s−�0−1)ρ/2

≤ C
+∞∑

s=�0+1

e−η(s−�0−1)ρ/4

≤ C

+∞∫
0

e−ηtρ/4 dt ≤ C.

In particular, if (Q1, . . . , QK ) ∈ (R2 ×{0})K , then by (3.7), we can take N = 2 in the above
argument.

To deduce (3.10) from (3.9), denote

Q̂ = (Q1, . . . , Q j0−1, Q j0+1, . . . , QK ) ∈ (RN )K−1,

and

ρ̂ = min
j �=l

{|Q j − Ql |
∣∣ j �= j0, l �= j0

} ≥ ρ.

Take j1 ∈ {1, . . . , K } such that

|Q j0 − Q j1 | = min
l �= j0

{|Q j0 − Ql |
}
,
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and choose � ∈ N+ satisfying

(� − 1)ρ̂/2 < |Q j0 − Q j1 | ≤ �ρ̂/2.

Then by (3.9), we have

∑
j �= j0

Γ (|Q j0 − Q j |) ≤ C

(
1 + 2|Q j0 − Q j1 |

ρ̂

)N−1

Γ (|Q j0 − Q j1 |)

≤ CΓ (|Q j0 − Q j1 |) + CΓ (ρ̂) ≤ CΓ (ρ),

where in the second inequality we use the following inequality:

|Q j0 − Q j1 |N−1Γ
(|Q j0 − Q j1 |

) ≤ C ρ̂N−1Γ (ρ̂) , for |Q j0 − Q j1 | ≥ ρ̂ ≥ ρ0.

To prove it, we only need to apply (3.8). ��
A simple corollary is the following result which is useful in our construction.

Corollary 3.6 There are positive constants ρ0 and C (independent of K ) such that for all
K , � ∈ N+, all (Q1, . . . , QK ) ∈ (R2 ×{0})K with ρ ≥ ρ0, and all x ∈ ��

j0
( j0 = 1, . . . , K ),

we have
K∑

j=1

wQ j (x) ≤ C�wQ j0
(x), (3.11)

and ∑
j �= j0

e−η|Q j −Q j0 | ≤ Ce−ηρ. (3.12)

To analyze the interactions between spikes, we prove some estimates concerning convo-
lution of functions with suitable exponential decays.

Lemma 3.7 Given Γ1, Γ2 two positive continuous radial functions on R
N with the following

property:

Γ1(r) ∼ rb1 e−η1r , and Γ2(r) ∼ rb2 e−η2r , as r → +∞,

where b1, b2 ∈ R, η1 > 0, η2 > 0. Let ξ ∈ R
N tends to infinity. Then, the following

asymptotic estimates hold:

(i) If η1 < η2, then ∫

RN

Γ1(x − ξ)Γ2(x) dx ∼ |ξ |b1 e−η1|ξ |.

Clearly, if η1 > η2, a similar expression holds, by replacing b1 and η1 with b2 and η2.
(ii) If η1 = η2, suppose that b1 ≥ b2 for simplicity. Then

∫

RN

Γ1(x − ξ)Γ2(x) dx ∼

⎧⎪⎪⎨
⎪⎪⎩

|ξ |b1+b2+ N+1
2 e−η1|ξ |, if b2 > − N+1

2 ,(|ξ |b1 ln |ξ |) e−η1|ξ |, if b2 = − N+1
2 ,

|ξ |b1 e−η1|ξ |, if b2 < − N+1
2 .
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Proof This result follows from the Lebesgue dominated convergence theorem. The argument
is standard and is omitted here, we refer the interested reader to Lemma 3.7 in [2] for details.

��
By the property ofw, as a corollary of Lemma 3.7, we have the following integral estimates.

Lemma 3.8 Suppose that |Q j − Qk | is sufficiently large, then the following estimates hold:

(i) for every p > 1, ∫

RN

wQ j w
p
Qk

dx = (γ0 + o(1))w(|Q j − Qk |),

where γ0 = ∫
RN w p(x)e−x1 dx > 0 is a constant;

(ii) ∫

RN

wQ j wQk dx = O(e−|Qk−Q j ||Qk − Q j |−(N−3)/2);

(iii) let �k = {x ∈ R
N | |x − Qk | = min1≤ j≤K |x − Q j |}, then∫

�k

w
p
Q j

wQk dx = O
(

e− p+1
2 |Q j −Qk ||Q j − Qk |− N−3

2

)
,

and ∫
�k

w2
Q j

w
p−1
Qk

dx = O
(

e− min{2, p+1
2 }|Q j −Qk ||Q j − Qk |− N−3

2

)
.

Proof Since the argument of proof is somewhat standard, we give only the main ideas of the
proof.

(i) It follows from Lemma 3.1 and Lebegue’s dominated convergence theorem (see e.g.
the arguments used in the proof of Lemma 2.5, in [30]).

(ii) By Lemma 3.1 and a simple computation, we get the estimate from Lemma 3.7.
(iii) By the definition, for all x ∈ �k , wQ j (x) ≤ wQk (x) for every 1 ≤ j ≤ K . Hence by

Lemmas 3.1 and 3.7, we have∫
�k

w
p
Q j

wQk dx ≤
∫
�k

w
p+1

2
Q j

w
p+1

2
Qk

dx ≤ Ce− p+1
2 |Q j −Qk ||Q j − Qk |− N−3

2 ,

and ∫
�k

w2
Q j

w
p−1
Qk

dx ≤ C
∫
�k

w
min{2, p+1

2 }
Q j

w
min{2, p+1

2 }
Qk

dx

≤ Ce− min{2, p+1
2 }|Q j −Qk ||Q j − Qk |− N−3

2 .

��
Using above integral estimates, we can get the expansion of the energy of approximate

solution.
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Lemma 3.9 For K sufficiently large, for any α ∈ R and q satisfying (2.9) we have

E(U ) = K I0 + (a0 + o(1))
K∑

j=1

|Q j |−m − 1

2

∑
i �= j

(γ0 + o(1))w(|Qi − Q j |)

+ O(K R−2m) + O
(

K e− min{2, p+1
2 }dd− N−3

2

)
,

where γ0 = ∫
RN w p(x)e−x1 dx is a positive constant given in Lemma 3.8,

I0 =
(

1

2
− 1

p + 1

) ∫

RN

w p+1 dx, and a0 = a

2

∫

RN

w2 dx .

Proof The proof is delayed to Appendix B. ��

4 The Lyapunov–Schmidt reduction

The aim of this section is to achieve Step 1 in the procedure of our construction described in
Sect. 2.

Before stating the main result, we first introduce some notation. Let η ∈ (0, 1) be a
constant chosen later, we define the weighted norm:

‖h‖∗∗ = sup
x∈RN

∣∣∣∣∣∣∣

⎛
⎝ K∑

j=1

e−η|x−Q j |
⎞
⎠

−1

h(x)

∣∣∣∣∣∣∣
, (4.1)

where Q j is defined in (2.7). In what follows, we assume that (Q1, . . . , QK ) ∈ �K , i.e., the
parameter q satisfies (2.9).

We first claim that

‖h‖L∞(RN ) ≤ C‖h‖∗∗ and ‖h‖Lq (RN ) ≤ C K‖h‖∗∗ for 1 ≤ q < ∞. (4.2)

Indeed, the second inequality in (4.2) follows directly from

|h(x)| ≤ ‖h‖∗∗
K∑

j=1

e−η|x−Q j |, ∀x ∈ R
N .

To prove the first inequality in (4.2), it suffices to show that
∑K

j=1 e−η|x−Q j | ≤ C . Indeed,

for any x ∈ R
N , we can choose � ∈ N+ and j0 ∈ {1, . . . , K } such that x ∈ ��

j0
\ ��−1

j0
.

Hence by Lemma 3.5,

0 <

K∑
j=1

e−η|x−Q j | ≤ C�N−1e−η(�−1)ρ/2 ≤ C. (4.3)

Denote

B∗∗ =
{

h ∈ L∞(RN )
∣∣ ‖h‖∗∗ < ∞

}
.

Then B∗∗ is a Banach space with the norm ‖h‖∗∗. To show the completeness, suppose that
{hn} is a Cauchy sequence in B∗∗. By (4.2), {hn} is also a Cauchy sequence in L∞(RN ).
Hence hn converges to a function h∞ in L∞(RN ). By the definition of Cauchy sequence, for
any ε > 0, there is n0 ∈ N such that
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|hn(x) − hk(x)|
⎛
⎝ K∑

j=1

e−η|x−Q j |
⎞
⎠

−1

≤ ‖hn − hk‖∗∗ < ε, ∀ x ∈ R
N , if n, k ≥ n0.

Letting k → +∞, we get

|hn(x) − h∞(x)|
⎛
⎝ K∑

j=1

e−η|x−Q j |
⎞
⎠

−1

< ε, ∀ x ∈ R
N , if n ≥ n0,

which implies that ‖hn − h∞‖∗∗ → 0 as n → +∞.
Now we can state our main result in this section.

Proposition 4.1 Suppose that V (x) satisfies (1.11) for constants V∞ > 0, a ∈ R, m ≥ 1
and σ > 0. If N ≥ 3, we further assume (1.15). Then there is a positive integer K0 such
that: for all K ≥ K0, every α ∈ R, and q satisfies (2.9), there exists a unique function
φ ∈ W 2,2(RN ) ∩ BK and a unique multiplier β̂ ∈ R

2K such that⎧⎨
⎩

L[φ] + E + N (φ) = β̂ · ∂U
∂q ,∫

RN φ ZQ j dx = 0, ∀ j = 1, . . . , K ,
(4.4)

where

BK =
{
φ ∈ L∞(RN )

∣∣ ‖φ‖∗∗ ≤ C0 K − min{1, p−η
2 }m(ln K )−

1
2

}
.

Here C0 is a positive constant independent of K . Moreover, (α, q) �→ φ(x;α, q) is of class
C1, and

R−1
∥∥∥∥∂φ∂α

∥∥∥∥∗∗
+
∥∥∥∥∂φ∂q

∥∥∥∥∗∗
≤ C

(
K − min{1, p−η

2 }m(ln K )−
1
2

)min{p−1,1}
.

The proof of Proposition 4.1 is somewhat standard and can be divided into two steps:

(i) studying the invertibility of the linear operator;
(ii) applying fixed point theorems.

4.1 Linear analysis

Let M denotes an 2K × 2K matrix defined by

M jk =
∫

RN

∂U

∂q j

∂U

∂qk
dx, ∀ j, k = 1, . . . , 2K . (4.5)

Lemma 4.2 Assume that m ≥ 1. Then for K sufficiently large, given any vector �b ∈ R
2K ,

there exists a unique vector β̂ ∈ R
2K such that M β̂ = �b. Moreover,

‖β̂‖∞ ≤ C‖�b‖∞, (4.6)

for some constant C independent of K .

Proof To prove the existence, it is sufficient to prove the a priori estimate (4.6). Suppose that
|β̂ j | = ‖β̂‖∞, by the definition, we have

K∑
k=1

M jk β̂k = b j . (4.7)
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For the entries M jk , by Lemmas 3.3 and 3.8, we get

|M jk | ≤ Ce−dd− N−3
2 ≤ C K −m(m ln K )−m, ∀ k �= j, (4.8)

and

M j j =
∫

RN

(
∂x1w

)2
dx = c0 > 0, ∀ j = 1, . . . , 2K . (4.9)

Hence by (4.7)–(4.9), for K sufficiently large, we have

c0‖β̂‖∞ ≤ c0|β̂ j | ≤
∑
k �= j

|M jk ||β̂k | + |b j | ≤ c0

2
‖β̂‖∞ + ‖�b‖∞,

from which the desired result follows. ��
We can now formulate our main result in this subsection.

Lemma 4.3 Under the assumption of Proposition 4.1, there is a positive integer K0 such
that: for all K ≥ K0, every α ∈ R, and q satisfies (2.9), and for all h ∈ B∗∗, there exists a
unique function φ ∈ W 2,2(RN ) ∩ B∗∗ and a unique multiplier β̂ ∈ R

2K such that{
L[φ] = h + β̂ · ∂U

∂q ,∫
RN φ ZQ j dx = 0,∀ j = 1, . . . , K .

(4.10)

Moreover, we have
‖φ‖∗∗ + ‖β̂‖∞ ≤ C‖h‖∗∗, (4.11)

for some positive constant C independent of K .

Proof To solve (4.10), we first consider weak solutions. Define

H =
{

u ∈ H1(RN )
∣∣ (u, (−� + 1)−1ZQ j

) = 0, ∀ j = 1, . . . , K
}
.

Then H is a Hilbert space with the standard inner product:

(u, v) =
∫

RN

(∇u∇v + uv) dx .

Since the vector function ZQ j decays exponentially at infinity, by integration by parts, it is
not hard to show that for φ ∈ H1(RN ), φ ∈ H is equivalent to∫

RN

φ ZQ j dx = 0, ∀ j = 1, . . . , K .

As usual, φ ∈ H is a weak solution of (4.10) if and only if it satisfies the following
equation: ∫

RN

{∇φ∇ϕ + V (x)φϕ − pU p−1φϕ
}

dx =
∫

RN

hϕ dx, ∀ϕ ∈ H.

By the Riesz representation theorem, the last equation can be written as

φ + K[φ] = ĥ,
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where ĥ is defined by duality and K is a linear compact operator due to the exponential decay
of U and |V (x) − 1| ≤ C |x |−m for |x | large. Using the Fredholm alternative, showing that
Eq. (4.10) has a unique weak solution is equivalent to showing that it has a unique solution
for h = 0. Moreover, by (4.2), h ∈ Lq(RN ) for all 1 < q < ∞. By the standard elliptic
regularity results, φ ∈ W 2,q(RN ). Hence φ is a strong solution and φ ∈ L∞(RN ) by the
Sobolev imbedding theorem. Therefore, to prove Lemma 4.3, it is sufficient to prove the a
priori estimate (4.11).

To prove (4.11), we first multiply Eq. (4.10) by ∂U
∂q and integrate over R

N to obtain

M β̂ =
∫

RN

L[φ] ∂U

∂q
dx −

∫

RN

h
∂U

∂q
dx, (4.12)

where M is an 2K × 2K matrix defined in (4.5).
By the integration by parts,∫

RN

L[φ] ZQk dx =
∫

RN

φ L[ZQk ] dx .

Observe that

L[ZQk ] = (V (x) − 1)∇wQk − p
(

U p−1 − w
p−1
Qk

)
∇wQk .

We claim that ∣∣∣∣∣∣∣
∫

RN

L[φ] ZQk dx

∣∣∣∣∣∣∣
≤ Cde− min{1, p

2 }d‖φ‖∞. (4.13)

Indeed, on one hand, by the assumption (1.11) and φ ∈ H, we have∣∣∣∣∣∣∣
∫

RN

(V (x) − 1)∇wQkφ dx

∣∣∣∣∣∣∣
≤ C(R−m−1 ln K + R−m−σ )‖φ‖∞.

On the other hand, by mean value theorem and (3.11), for |x − Qk | < 2m ln K , we have

|U p−1 − w
p−1
Qk

| ≤ Cw
p−2
Qk

∑
j �=k

wQ j .

Thus by Lemma 3.8,∣∣∣∣∣∣∣
∫

RN

−p
(

U p−1 − w
p−1
Qk

)
∇wQk φ dx

∣∣∣∣∣∣∣
≤ Cde− min{1, p

2 }d‖φ‖∞.

Combining the above estimates we get (4.13).
Since w decays exponentially at infinity, we have∣∣∣∣∣∣∣

∫

RN

hZQk dx

∣∣∣∣∣∣∣
≤ C‖h‖∗∗. (4.14)
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Combining the above estimates (4.13) and (4.14), by Lemma 4.2, we get

‖β̂‖∞ ≤ C
(

de− min{1, p
2 }d‖φ‖∞ + ‖h‖∗∗

)
. (4.15)

Now we prove the a priori estimate (4.11). First we show that ‖φ‖∗∗ < ∞. To prove it,
by the maximum principle, we prove that there exist constants τ and C (both independent of
K ) such that for all x ∈ R

N \ ∪K
j=1 B(Q j , τ ),

|φ(x)| ≤ C

(
‖L[φ]‖∗∗ + sup

1≤ j≤K
‖φ‖L∞(B(Q j ,τ ))

)
K∑

j=1

e−η|x−Q j |. (4.16)

To prove the above pointwise estimate, we first show the independence of τ on K , for
x ∈ R

N \ ∪K
j=1 B(Q j , τ ), by Lemma 3.4, we have

U (x) ≤
∑

|Q j −x |<ρ/2

w(x − Q j ) +
∞∑
�=1

∑
�ρ/2≤|Q j −x |<(�+1)ρ/2

w(x − Q j )

≤ w(τ) + C
∞∑
�=1

�N−1e−�ρ/2 ≤ Cw(τ).

Thus we can take τ sufficiently large but independent of K such that

pU p−1(x) ≤ (V0 − η2)/4, ∀ x ∈ R
N \ ∪K

j=1 B(Q j , τ ). (4.17)

Now we claim that for τ sufficiently large (independent of K ), in R
N \ ∪K

j=1 B(Q j , τ ),

L[W−] ≥ c0W−, and L[W+] ≥ c0W+

where W±(x) = ∑K
j=1 e±η|x−Q j | and c0 > 0 is a constant independent of K . Indeed, for

x ∈ R
N \ ∪K

j=1 B(Q j , τ ),

L[W±] =
K∑

j=1

{
V (x) − η2 ∓ N − 1

|x − Q j |η − pU p−1
}

e±η|x−Q j | ≥ V0 − η2

2
W±,

by the assumption (V 1) and inequality (4.17).
The remaining part in the proof of (4.16) is to apply the maximum principle for the linear

operator L in R
N \ ∪K

j=1 B(Q j , τ ) to obtain

|φ(x)| ≤ C

(
‖L[φ]‖∗∗ + sup

1≤ j≤K
‖φ‖L∞(B(Q j ,τ ))

)
K∑

j=1

e−η|x−Q j | + δ

K∑
j=1

eη|x−Q j |

for any δ > 0, where C is a constant independent of K and δ. Letting δ → 0, we get the
desired estimate (4.16). Hence

‖φ‖∗∗ ≤ C

(
‖L[φ]‖∗∗ + sup

1≤ j≤K
‖φ‖L∞(B(Q j ,τ ))

)
< ∞. (4.18)

Now we can prove the a priori estimate (4.11). Arguing by contradiction, assume that
there is a sequence of (φ(K ), h(K )) satisfying (4.10) such that

‖φ(K )‖∗∗ = 1, and ‖h(K )‖∗∗ = o(1), as K → ∞.
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(For simplicity, in the following we will drop “(K )” in the superscript.) As a consequence
of (4.15),

∣∣∣∣β̂ · ∂U

∂q
(x)

∣∣∣∣ ≤ C
(

de− min{1, p
2 }d‖φ‖∞ + ‖h‖∗∗

) K∑
j=1

e−η|x−Q j |.

Since ‖φ‖∞ ≤ C‖φ‖∗∗ and ‖h‖∗∗ = o(1), we get ‖L[φ]‖∗∗ = o(1). Hence (4.18) implies
that there exists a subsequence of Q j such that

‖φ‖L∞(B(Q j ,τ )) ≥ C > 0 (4.19)

for some fixed constant C (independent of K ). Since ‖φ‖∞ ≤ 1, by elliptic regularity
estimates, we get ‖φ‖C1(RN ) ≤ C . Applying Ascoli–Arzela’s theorem, one can find a subse-
quence of Q j such that φ(x + Q j ) converge (on compact sets) to φ∞. It is not hard to show
that φ∞ is a bounded (weak and then strong) solution (actually bound by e−η|x |) of

−�φ∞ + φ∞ − pw p−1φ∞ = 0.

Furthermore, since φ satisfies the orthogonality condition
∫

RN φ ZQ j dx = 0, the limit
function φ∞ satisfies

∫
RN φ∞∇w = 0. By the non-degeneracy of w, one has φ∞ ≡ 0, which

is in contradiction with (4.19). This completes the proof of Lemma 4.3. ��
Remark 5 If V (x) is a bounded measurable function such that there is no nontrivial solution
of

− �φ + V (x)φ = 0, |φ(x)| ≤ Ce−η|x | in R
N , (4.20)

the above argument still work by adding 0 to the points Q j ’s.

Remark 6 Since the Morse index of w is finite, using a similar argument in the proof of
Lemma 4.3 (cf. [4]), one can show that

‖φ‖H1(RN ) ≤ C‖h‖L2(RN ) (4.21)

for some positive constant C independent of K . Indeed, since τ is independent of K , one can
first prove that

C‖φ‖2
H1(RN )

≤
∫

RN

{|∇φ|2 + V (x)φ2 − pU p−1φ2} dx .

4.2 Nonlinear analysis

Summarizing, for any h ∈ B∗∗, by Lemma 4.3, there is a unique functionφ ∈ H∩W 2,2(RN )∩
B∗∗ satisfying (4.10). Hence we can define a linear operator from B∗∗ to H∩W 2,2(RN )∩B∗∗
and denote it by L−1. Then Eq. (4.4) is equivalent to

φ = −L−1 [E + N (φ)] .

Before we give the complete proof of Proposition 4.1, we first show the estimate of the
error.

Lemma 4.4 Given (Q1, . . . , QK ) ∈ �K , then for any fixed 0 < η < 1 and K sufficiently
large, there is a constant C (independent of K ) such that

‖E‖∗∗ ≤ C K − min{1, p−η
2 }m(ln K )−

1
2 . (4.22)
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Proof By the definition, we have

E =
K∑

j=1

(V (x) − 1)wQ j

︸ ︷︷ ︸
E1

−
⎧⎨
⎩
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p

−
K∑

j=1

w
p
Q j

⎫⎬
⎭

︸ ︷︷ ︸
E2

.

Claim 1: There exists a constant C (independent of K ) such that

‖E1‖∗∗ ≤ C R−m ≤ C K −m(ln K )−m . (4.23)

Claim 2: There exists a constant C (independent of K ) such that

‖E2‖∗∗ ≤ Cd− N−1
2 e− min{1, p−η

2 }d ≤ C K − min{1, p−η
2 }m(ln K )− min{ N−1

2 ,m+1}. (4.24)

If both Claim 1 and Claim 2 are true, the desired estimate (4.22) follows.

Proof of Claim 1: Note that for |x | < R/3, by the triangle inequality, we have

|x − Q j | ≥ |Q j | − |x | ≥ R/2.

Hence for all |x | < R/3, by V ∈ L∞(RN ) and Lemma 3.1, we get

|E1(x)| ≤ C
K∑

j=1

w(x − Q j ) ≤ Ce−(1−η)R/2
K∑

j=1

e−η|x−Q j | ≤ C K −m−3
K∑

j=1

e−η|x−Q j |.

For |x | ≥ R/3, by the assumption (1.11), we have |V (x) − 1| ≤ C R−m . Hence for all
|x | ≥ R/3,

|E1(x)| ≤ C R−m
K∑

j=1

w(x − Q j ) ≤ C R−m
K∑

j=1

e−η|x−Q j |.

Combining these estimates, Claim 1 follows.

Proof of Claim 2: For x ∈ ��
K+1, where � ∈ N+ is chosen later, we have

|E2(x)| ≤ K p−1
K∑

j=1

w
p
Q j

(x) +
K∑

j=1

w
p
Q j

(x)

≤ C K p−1
K∑

j=1

e−p|x−Q j | ≤ C K p−1e−(p−η)�ρ/2
K∑

j=1

e−η|x−Q j |.

Since ρ > m
2 ln K , by choosing � >

4(p+m+2)
m(p−1) (independent of K ), we have

K p−1e−(p−η)�ρ/2 ≤ K p−1 K −(p−η)�m/4 ≤ C K −m−3.

Thus for all x ∈ ��
K+1,

|E2(x)| ≤ C K −m−3
K∑

j=1

e−η|x−Q j |.
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By the definition of��
j , j = 1, . . . , K , |x−Q j | ≤ |x−Qk | for all x ∈ ��

j and 1 ≤ k ≤ K .

Thus |x − Qk | ≥ ρ
2 for k �= j . Hence by mean value theorem and (3.11), for all x ∈ ��

j , we
have

|E2(x)| ≤
∣∣∣∣∣∣
(

K∑
k=1

wQk

)p

− w
p
Q j

∣∣∣∣∣∣+
∑
i �= j

w
p
Qi

≤ p

(
K∑

k=1

wQk

)p−1∑
k �= j

wQk +
∑
k �= j

w
p
Qk

≤ C�(N−1)(p−1)w
p−1
Q j

∑
k �= j

wQk .

Since � is independent of K , for all x ∈ ��
j , by Theorem 3.1 and (3.12) we have

|E2(x)| ≤ Ce−(p−1)|x−Q j |∑
k �= j

ρ− N−1
2 e−|x−Qk |

≤ Cρ− N−1
2 e−η|x−Q j |∑

k �= j

e− min{1, p−η
2 }|Q j −Qk |

≤ Cd− N−1
2 e− min{1, p−η

2 }de−η|x−Q j |.

Combining these estimates, Claim 2 follows. ��
Now we are in the position to give the proof of Proposition 4.1.

Proof of Proposition 4.1 Let C0 be a positive number to be determined later, we define

BK =
{
φ ∈ L∞(RN ) : ‖φ‖∗∗ ≤ C0 K − min{1, p−η

2 }m(ln K )−
1
2

}
.

Then BK is a non-empty closed set in B∗∗. Now we define a map A : BK �→ H∩W 2,2(RN )∩
B∗∗ by

A(φ) = −L−1 [E + N (φ)] .

Now solving Eq. (4.4) is equivalent to finding a fixed point for the map A.
Since φ is uniformly bounded for φ ∈ BK , by the mean value theorem, there is a positive

constant C such that for all φ ∈ BK ,

|N (φ)| ≤ C |φ|min{p,2},

and for all φ1, φ2 ∈ BK ,

|N (φ1) − N (φ2)| ≤ C(|φ1|min{p−1,1} + |φ2|min{p−1,1})|φ1 − φ2|.
Thus by (4.3), one has

‖N (φ)‖∗∗ ≤ C‖φ‖min{p,2}∗∗ ,

and we have that

‖N (φ1) − N (φ2)‖∗∗ ≤ C(‖φ1‖min{p−1,1}∗∗ + ‖φ2‖min{p−1,1}∗∗ )‖φ1 − φ2‖∗∗.

Hence by Lemmas 4.3 and 4.4, for K sufficiently large and C0 large we have

‖A(φ)‖∗∗ ≤ C(‖E‖∗∗ + ‖N (φ)‖∗∗) ≤ C0 K − min{1, p−η
2 }m(ln K )−

1
2 ,
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and

‖A(φ1) − A(φ2)‖∗∗ ≤ C‖N (φ1) − N (φ2)‖∗∗ ≤ 1

2
‖φ1 − φ2‖∗∗,

which shows that A is a contraction mapping on BK . Hence there is a unique φ ∈ BK such
that (4.4) holds.

Now we come to the differentiability of φ(x;α,q) as function of (α,q). Consider the
following map T : R × R

2K × B × R
2K → B × R

2K of class C1:

T (α,q, φ, β̂) =

⎛
⎜⎜⎜⎜⎝

(−� + 1)−1S(U + φ) − β̂ · (−� + 1)−1 ∂U
∂q∫

RN φ ZQ1 dx
...∫

RN φ ZQK dx

⎞
⎟⎟⎟⎟⎠ ,

where B = W 2,2(RN )∩B∗∗. Equation (4.4) is equivalent to T (α,q, φ, β̂) = 0. By the above
argument, we know that, given α ∈ R and q satisfying (2.9), there is a unique local solution
(φ(α,q), β̂(α,q)). For simplicity, in the following, we write (φ, β̂) = (φ(α,q), β̂(α,q)).
We claim that the linear operator

∂ T (α,q, φ, β̂)

∂(φ, β̂)

∣∣∣
(α,q,φ,β̂)

: B × R
2K → B × R

2K

is invertible for K large. Then the C1-regularity of (α,q) �→ (φ, β̂) follows from the Implicit
Function Theorem. Indeed we have

∂ T (α,q, φ, β̂)

∂(φ, β̂)

∣∣∣
(α,q,φ,β̂)

[ϕ, �ζ ] =

⎛
⎜⎜⎜⎜⎝

(−� + 1)−1S′(U + φ)[ϕ] − �ζ · (−� + 1)−1 ∂U
∂q∫

RN ϕ ZQ1 dx
...∫

RN ϕ ZQK dx

⎞
⎟⎟⎟⎟⎠ .

Since ‖φ‖∗∗ ≤ C0 K − min{1, p−η
2 }m(ln K )− 1

2 , by Lemma 4.2, the argument in the proof of

Lemma 4.3 shows that ∂ T (α,q,φ,β̂)
∂(φ,β̂)

∣∣∣
(α,q,φ,β̂)

is invertible for K sufficiently large. This con-

cludes the proof of Proposition 4.1.
Next we study the dependence of φ on (α,q). Assume that we have two solutions corre-

sponding to two sets of parameters. One of them denoted by

L[φ] + E + N (φ) = β̂ · ∇qU,

corresponds to the parameters α and q; the other denoted by

L̊[φ̊] + E̊ + N̊ (φ̊) = ˚̂β · ∇̊qU,

corresponds to the parameters α̊ and q̊. Observe that φ is L2-orthogonal to ∇qU while φ̊ is
L2-orthogonal to ∇̊qU . To compare φ̊ with φ, we first choose a vector �ω so that

φ̊ω = φ̊ + �ω · ∇qU

satisfies the same orthogonality condition as φ. Moreover, by the equation of φ̊, the function
φ̊ω satisfies the equation

L[φ̊ω] + (L̊ − L)[φ̊] − �ω · L[∇qU ] + E̊ + N̊ (φ̊) + ˚̂β · (∇qU − ∇̊qU ) = ˚̂β · ∇qU.
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Taking the difference with the equation satisfied by φ, we get

L[φ̊ω − φ] = (L − L̊)[φ̊] + �ω · L[∇qU ] + (E − E̊) + (N (φ) − N̊ (φ̊))

− ˚̂β · (∇qU − ∇̊qU ) + ( ˚̂β − β̂) · ∇qU.

Note that by (2.7), for j = 1, . . . , K , we have

|Q̊ j − Q j | ≤ C(R|α̊ − α| + ‖q̊ − q‖∞).

Assume that (R|α̊ − α| + ‖q̊ − q‖∞) ≤ 1/2, then we have

‖(L − L̊)[φ̊]‖∗∗ ≤ C K − min{1, p−η
2 }m(ln K )−

1
2 (R|α̊ − α| + ‖q̊ − q‖∞),

‖�ω · L[∇qU ]‖∗∗ ≤ C K − min{1, p−η
2 }m(ln K )−

1
2 ‖�ω‖∞,

‖E − E̊‖∗∗ ≤ C K − min{1, p−η
2 }m(ln K )−

1
2 (R|α̊ − α| + ‖q̊ − q‖∞),

‖N (φ) − N̊ (φ̊)‖∗∗ ≤ C(‖φ‖p−1∗∗ + ‖φ̊‖p−1∗∗ )‖φ − φ̊‖∗∗ + C‖φ‖min{p−1,1}∗∗
(R|α̊ − α| + ‖q̊ − q‖∞)

≤ C K − min{1, p−η
2 }m(p−1)(ln K )−

p−1
2 ‖φ − φ̊‖∗∗

+ C
(

K − min{1, p−η
2 }m(ln K )−

1
2

)min{p−1,1}
(R|α̊ − α| + ‖q̊ − q‖∞),

‖ ˚̂β · (∇qU − ∇̊qU )‖∗∗ ≤ C‖ ˚̂β‖∞(R|α̊ − α| + ‖q̊ − q‖∞)

≤ C K − min{1, p−η
2 }m(ln K )−

1
2 (R|α̊ − α| + ‖q̊ − q‖∞).

Hence by Lemma 4.3,

‖φ̊ω − φ‖∗∗ + ‖ ˚̂β − β̂‖∞ ≤ C
(

K − min{1, p−η
2 }m(ln K )−

1
2

)min{p−1,1}

(R‖α̊ − α‖∞ + ‖q̊ − q‖∞)

+ C K − min{1, p−η
2 }m(ln K )−

1
2 ‖�ω‖∞

+ C K − min{1, p−η
2 }m(p−1)(ln K )−

p−1
2 ‖φ̊ − φ‖∗∗.

On the other hand, by the definition of φ̊ω, we have

‖�ω‖∞ ≤ C‖φ̊‖∗∗(R‖α̊ − α‖∞ + ‖q̊ − q‖∞)

≤ C K − min{1, p−η
2 }m(ln K )−

1
2 (R‖α̊ − α‖∞ + ‖q̊ − q‖∞).

Hence

‖φ̊−φ‖∗∗+‖ ˚̂β−β̂‖∞ ≤ C
(

K − min{1, p−η
2 }m(ln K )−

1
2

)min{p−1,1}
(R‖α̊−α‖∞+‖q̊−q‖∞).

Therefore, we conclude that

R−1
∥∥∥∥∂φ∂α

∥∥∥∥∗∗
+
∥∥∥∥∂φ∂q

∥∥∥∥∗∗
≤ C

(
K − min{1, p−η

2 }m(ln K )−
1
2

)min{p−1,1}
.

��
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5 A further reduction process

The main purpose of this section is to achieve Step 2.A. As explained in Sect. 2, we define

�β = β̂ − γ (Rq0 + q⊥), for every γ ∈ R. (5.1)

Then Eq. (4.4) becomes

L[φ] + E + N (φ) = �β · ∂U

∂q
+ γ

∂U

∂α
. (5.2)

Note that φ does not depend on γ , but �β depends on the parameters α, q and γ and we write
�β = �β(α,q, γ ).

In this section we are going to solve �β(α,q, γ ) = 0 for each α ∈ R by adjusting γ and q.
To this end, we multiply (5.2) by ∂U

∂q and integrate over R
N to conclude that

∫

RN

(E + L[φ] + N (φ))
∂U

∂q
dx = M �β + γ

∫

RN

∂U

∂α

∂U

∂q
dx .

By Lemma 4.2, solving �β(α,q, γ ) = 0 amounts to solve∫

RN

(E + L[φ] + N (φ))
∂U

∂q
dx = γ

∫

RN

∂U

∂α

∂U

∂q
dx . (5.3)

For this purpose, in the next subsection, we will evaluate the projection of the error and the
projections of the terms involving φ.

5.1 Projections

We first compute
∫

RN E ∂U
∂q dx . Recall that

∂U

∂q
= −(ZQ1 · �n1, . . . ,ZQK · �nK ,ZQ1 · �t1, . . . ,ZQK · �tK )T .

Lemma 5.1 Under the assumption of Proposition 4.1, for sufficiently large K , the following
expansion holds:∫

RN

EZQk dx = a0m|Qk |−m−1 Qk

|Qk | +
∑
j �=k


(|Q j − Qk |) (Q j − Qk)

|Q j − Qk |

+ R−m−σΠk,1(α, q) + R−m−3Πk,2(α, q) + R−2mΠk,3(α, q)

+ R− min{2−η,
p+1−η

2 }mΠk,4(α, q)

where η is a small positive constant chosen later, a0 = a
2

∫
RN w2(x) dx, and Πk,l(α, q)’s are

smooth vector valued functions, which are uniformly bounded as K → ∞.

Proof By the definition,

∫

RN

EZQk dx =
K∑

j=1

∫
RN

(V (x) − 1)wQ j ∇wQk dx

︸ ︷︷ ︸
I1

−
∫

RN

⎧⎨
⎩
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p

−
K∑

j=1

w
p
Q j

⎫⎬
⎭∇wQk dx

︸ ︷︷ ︸
I2

.

123



Infinitely many positive solutions 501

Claim 1: There are smooth vector valued functions Πk,1, Πk,2 and Πk,3 of α and q such that

I1 = a0m|Qk |−m−1 Qk

|Qk | + R−m−σΠk,1(α,q) + R−m−3Πk,2(α,q) + R−2mΠk,3(α,q).

Claim 2: There exists a smooth vector valued function Πk,4 of α and q such that

I2 = −
∑
j �=k


(|Q j − Qk |) (Q j − Qk)

|Q j − Qk | − R− min{2−η,
p+1−η

2 }mΠk,4(α,q),

where η is a small positive constant chosen later.
Combining Claim 1 and Claim 2, we get the desired result. The remainder of this proof

will be devoted to the proofs of Claim 1 and Claim 2.

Proof of Claim 1: We divide I1 into two parts:

I1 =
∫

RN
(V (x) − 1)wQk ∇wQk dx

︸ ︷︷ ︸
I11

+
∑
j �=k

∫
RN

(V (x) − 1)wQ j ∇wQk dx

︸ ︷︷ ︸
I12

.

Write I11 = I111 + I112, where

I111 =
∫

|x |≤ R
3

(V (x) − 1)wQk ∇wQk dx, and I112 =
∫

|x |> R
3

(V (x) − 1)wQk ∇wQk dx .

On one hand, since V ∈ L∞(RN ) and (2.10), by the triangle inequality and the property of
w, we get |I111| ≤ Ce−R/2 ≤ C R−m−3. On the other hand, by (1.11) and Taylor’s theorem,

I112 =
∫

|x |> R
3

a

|x |m wQk ∇wQk dx + O(R−m−σ )

=
∫

|y+Qk |> R
3

a

|y + Qk |m w(y)∇w(y) dy + O(R−m−σ )

= m|Qk |−m−1 Qk

|Qk |
a

2

∫

RN

w2(x) dx + O(R−m−σ ) + O(R−m−3),

where in the last equality we use the following identities:∫

RN

w(y)∇w(y) dy = 0,
∫

RN

y j ykw(y)∇w(y) dy = 0, ∀ j, k = 1, . . . , N ,

and ∫

RN

(yT �e)w(y)∇w(y) dy = −1

2

∫

RN

w2 dy �e, ∀ �e ∈ R
N .

Therefore, we get

I11 = a0m|Qk |−m−1 Qk

|Qk | + +O(R−m−σ ) + O(R−m−3).

123



502 M. del Pino et al.

If (1.11) holds in the C1 sense, i.e.,

∇V (x) = − ma

|x |m+1

x

|x | + O

(
1

|x |m+1+σ

)
, as |x | → +∞,

by a similar argument, we get

I11 = a0m|Qk |−m−1 Qk

|Qk | + +O(R−m−1−σ ) + O(R−m−3).

For the term I12, we claim that there exists a constant C (independent of K ) such that

|I12| ≤ C R−me−dd− N−3
2 ≤ C R−2m .

Indeed, by Lemmas 3.3, 3.5 and 3.8, we have∣∣∣∣∣∣∣
∑
j �=k

∫

RN

(V (x) − 1)wQ j ∇wQk dx

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
∑
j �=k

∫

|x |< R
3

(V (x) − 1)wQ j ∇wQk dx

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑
j �=k

∫

|x |≥ R
3

(V (x) − 1)wQ j ∇wQk dx

∣∣∣∣∣∣∣∣
≤ C K e−R/2 + C

∑
j �=k

R−me−|Q j −Qk ||Q j − Qk |− N−3
2

≤ C R−me−dd− N−3
2 ≤ C R−2m .

Combining the above estimates, we complete the proof of Claim 1.

Proof of Claim 2: We first divide I2 into two parts:

I2 =
∫

RN
pw p−1

Qk

⎛
⎝∑

j �=k

wQ j

⎞
⎠∇wQk dx

︸ ︷︷ ︸
I21

+
∫

RN

⎧⎨
⎩
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p

− w
p
Qk

− pw p−1
Qk

∑
j �=k

wQ j −
∑
j �=k

w
p
Q j

⎫⎬
⎭∇wQk dx

︸ ︷︷ ︸
I22

.

By the definition (2.6) of the interaction function 
,

I21 = −
∑
j �=k


(|Q j − Qk |) (Q j − Qk)

|Q j − Qk | .

For the term I22, we divide the domain of integration into K + 1 parts: ��
1, . . . , �

�
K+1.

On ��
K+1, by taking � large but independent of K , we have
∣∣∣∣∣∣
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p

− w
p
Qk

− pw p−1
Qk

∑
j �=k

wQ j −
∑
j �=k

w
p
Q j

∣∣∣∣∣∣ ≤ C K pe−p�ρ/2 ≤ C K −m−3.
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On ��
l , l = 1, . . . , K , by the definition, we have

|x − Ql | ≤ |x − Q j |, ∀ x ∈ ��
l , and ∀ 1 ≤ j ≤ K . (5.4)

Since � is independent of K , for x ∈ ��
k , by mean value theorem and (3.11),

∣∣∣∣∣∣
⎧⎨
⎩
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p

− w
p
Qk

− pw p−1
Qk

∑
j �=k

wQ j −
∑
j �=k

w
p
Q j

⎫⎬
⎭∇wQk

∣∣∣∣∣∣

≤ C

⎧⎪⎨
⎪⎩w

p−1
Qk

⎛
⎝∑

j �=k

wQ j

⎞
⎠

2

+ wQk

∑
j �=k

w
p
Q j

⎫⎪⎬
⎪⎭ .

Note that for x ∈ ��
k , |x − Q j | ≥ ρ/2 for all j �= k. Hence by Lemma 3.1, (5.4) and

Lemma 3.5, and by choosing 0 < η < 1 sufficiently small, we have

w
p−1
Qk

⎛
⎝∑

j �=k

wQ j

⎞
⎠

2

+ wQk

∑
j �=k

w
p
Q j

≤ Cρ− min{2,p} N−1
2

⎧⎪⎨
⎪⎩e−(p−1−η)|x−Qk |

⎛
⎝∑

j �=k

e−|x−Q j |
⎞
⎠

2

+e−(1−η)|x−Qk |∑
j �=k

e−p|x−Q j |

⎫⎪⎬
⎪⎭w

η
Qk

≤ Ce− min{2, p+1−η
2 }d d− min{2,p} N−1

2 w
η
Qk

.

Similarly, for all x ∈ ��
l (l �= k), by mean value theorem, (3.11), Lemma 3.1, (5.4) and

Lemma 3.5, we have

∣∣∣∣∣∣

⎧⎨
⎩
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p

− w
p
Qk

− pw p−1
Qk

∑
j �=k

wQ j −
∑
j �=k

w
p
Q j

⎫⎬
⎭∇wQk

∣∣∣∣∣∣

≤ C

⎧⎨
⎩wQkw

p−1
Ql

∑
j �=l

wQ j + w
p
Qk

wQl

⎫⎬
⎭ ,

and

wQkw
p−1
Ql

∑
j �=l

wQ j + w
p
Qk

wQl

≤ Cρ− min{2,p} N−1
2

⎧⎨
⎩e−(2−η)|x−Qk |e−(p−1)|x−Ql | + e−(p−η)|x−Qk |e−|x−Ql |

+e−(1−η)|x−Qk |e−(p−1)|x−Ql | ∑
j �=k,l

e−|x−Q j |
⎫⎬
⎭ e−η|x−Qk |

≤ Cd− min{2,p} N−1
2 e− min{2−η,

p+1−η
2 ,p−η}de−η|x−Qk |.
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Since p > 1, we can choose η > 0 such that p − η >
p+1−η

2 . Hence, there is a constant
(independent of K ) such that for all x ∈ R

N ,
∣∣∣∣∣∣

⎧⎨
⎩
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p

− w
p
Qk

− pw p−1
Qk

∑
j �=k

wQ j −
∑
j �=k

w
p
Q j

⎫⎬
⎭∇wQk

∣∣∣∣∣∣
≤ Cd− min{2,p} N−1

2 e− min{2−η,
p+1−η

2 }de−η|x−Qk |.

Therefore,

|I22| ≤ Cd− min{2,p} N−1
2 e− min{2−η,

p+1−η
2 }d ≤ C R− min{2−η,

p+1−η
2 }m .

Combining the above estimates, we complete the proof of Claim 2. ��

Now let us analyze
∫

RN E ∂U
∂q dx . Before doing this, we define

d̂ = −
 ′(d)

(d)

d = d + O(1),

and for j = 1, . . . , K , we denote

f̄ j = ḟ j + ḟ j−1 = ( f j+1 − f j−1)
K

2π
, ḡ j = ġ j + ġ j−1 = (g j+1 − g j−1)

K

2π
.

Lemma 5.2 Under the assumption of Proposition 4.1, for sufficiently large K , the following
expansion holds:

−
∫

RN

E
∂U

∂q
dx = a0m R−m−2T q + R−m−σΠ1(α, q) + R−m−3Π2(α, q) + R−2mΠ3(α, q)

+ R− min{2−η,
p+1−η

2 }mΠ4(α, q) + R−m−3(ln K )2Π5(α, q, q̇, q̈),

where Π1(α, q), . . . ,Π4(α, q),Π5(α, q, q̇, q̈) are uniformly bounded smooth vector valued
functions with Π5(α, 0, 0, 0) = 0, and T is an 2K × 2K matrix defined by

T =
(

c1 A1 + c4 I c2 A2

−c2 A2 c3 A1

)
, (5.5)

Here I is the K × K identity matrix, both A1 and A2 are K × K circulant matrices given by

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0 1
1 −2 1 0 · · · 0
0 1 −2 1 0 · · ·
...

. . .
. . .

. . .
. . .

...

0 · · · 0 1 −2 1
1 0 · · · 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 −1
−1 0 1 0 · · · 0
0 −1 0 1 0 · · ·
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −1 0 1
1 0 · · · 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and c1, c2, c3, c4 are constants given by

c1 = K 2

4π2 , c2 = (d̂ − 1)
K

4π
, c3 = −d̂

K 2

4π2 , c4 = d̂ − m − 1. (5.6)
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Proof First a simple computation shows that

|Qk |−m−1 Qk

|Qk | = |Q0
k + qk |−m−1 (Q0

k + qk)

|Q0
k + qk |

= R−m−1�nk + R−m−2 {gk�tk − (m + 1) fk �nk
}+ O(R−m−3).

To estimate I2, by direct computation, we have

Q j+1 − Q j

|Q j+1 − Q j |
=
{
− sin

π

K
+ ( ḟ j − g j )R−1 − ġ j R−1 π

K
− ( ḟ j − g j )( f j + ġ j )R−2

}
�n j

+
{

cos
π

K
+ ( ḟ j − g j )R−1 π

K
− 1

2
( ḟ j − g j )

2 R−2
}

�t j + O(K −3(ln K )−1),

Q j−1 − Q j

|Q j−1 − Q j |
=
{
− sin

π

K
+ (− ḟ j−1 + g j )R−1 − ġ j−1 R−1 π

K
− (− ḟ j−1 + g j )( f j + ġ j−1)R−2

}
�n j

−
{

cos
π

K
+ (− ḟ j−1 + g j )R−1 π

K
− 1

2
(− ḟ j−1 + g j )

2 R−2
}

�t j + O(K −3(ln K )−1),

and


(|Q j+1 − Q j |)

= 
(d + (2 f j + ḡ j )
π

K
) + 
 ′(d)

{
2g̈ j

π2

K 2 + 2 ḟ j
π2

K 2 + ( ḟ j − g j )
2 R−1 π

K

}

+ 
(d)O(K −3),


(|Q j−1 − Q j |)

= 
(d + (2 f j + ḡ j )
π

K
) + 
 ′(d)

{
−2g̈ j

π2

K 2 − 2 ḟ j−1
π2

K 2 + (− ḟ j−1 + g j )
2 R−1 π

K

}

+ 
(d)O(K −3).

Therefore,

∑
j∈{k−1, k+1}


(|Q j − Qk |) (Q j − Qk)

|Q j − Qk |

= −2 sin
π

K

(d)�n j + 2
 ′(d) π

2

K 2

{−(2 f j + ḡ j )�n j + ( f̄ j + 2g̈ j )�t j
}

+ 
(d)R−1 π

K

{
(2 f̈ j − ḡ j )�n j + ( f̄ j − 2g j )�t j

}+ 
(d)O(K −3).
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Combining the above estimates and Lemma 5.1, we get∫

RN

EZQk dx = a0m R−m−2
{
−(m + 1) fk + ( f̈k − 1

2
ḡk) + d̂( fk + 1

2
ḡk)

}
�nk

+ a0m R−m−2
{

gk + (
1

2
f̄k − gk) − d̂(

1

2
f̄k + g̈k)

}
�tk

+ R−m−σΠk,1(α,q) + R−m−3Πk,2(α,q) + R−2mΠk,3(α,q)

+ R− min{2−η,
p+1−η

2 }mΠk,4(α,q) + R−m−3(ln K )2Πk,5(α,q, q̇, q̈),

where Πk,l(α,q)’s and Πk,5(α,q, q̇, q̈) are smooth vector valued functions, which are uni-
formly bounded as K → ∞. Moreover, Πk,5(α, 0, 0, 0) = 0. The desired result follows.

��
Next we compute

∫
RN (L[φ] + N (φ)) ∂U

∂q dx .

Lemma 5.3 Under the assumption of Proposition 4.1, for sufficiently large K , the following
expansions hold true:∫

RN

L[φ]∂U

∂q
dx = K − min{2, p

2 +1− η
2 ,p− η

2 }m(ln K )2Π6(α, q),

and ∫

RN

N (φ)
∂U

∂q
dx = K − min{2, p−η}m(ln K )−1Π7(α, q),

where Π6(α, q),Π7(α, q) are uniformly bounded smooth vector valued functions.

Proof By integration by parts, (4.13) and Proposition 4.1, we have∣∣∣∣∣∣∣
∫

RN

L[φ] ZQk dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

RN

φ L[ZQk ] dx

∣∣∣∣∣∣∣
≤ Cde− min{1, p

2 }d‖φ‖L∞(RN )

≤ C K − min{2, p
2 +1− η

2 ,p− η
2 }m(ln K )2.

For the second estimate, since ‖φ‖∗∗ ≤ C K − min{1, p−η
2 }m(ln K )− 1

2 , one has

|N (φ)| ≤
{

CU p−2|φ|2, for |φ| ≤ U/2,

C |φ|p, for |φ| ≥ U/2.

We claim that ∣∣∣∣∣∣∣
∫

RN

N (φ)ZQk dx

∣∣∣∣∣∣∣
≤ C‖φ‖2∗∗ ≤ C K − min{2, p−η}m(ln K )−1.

Indeed, when p ≥ 2, this follows from |N (φ)| ≤ C |φ|2. Now we consider the case p < 2.
In this case, it is not hard to get |N (φ)| ≤ CU p−2|φ|2. Since U ≥ wQk , we have

|N (φ)ZQk | ≤ CU p−2wQk |φ|2 ≤ Cw
p−1
Qk

|φ|2, if p < 2,

from which we get the desired result. ��
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5.2 The invertibility of T

In this subsection, we study the linear problem T �q = b and get the following result, whose
proof is delayed to Appendix A.

Lemma 5.4 There is an K0 ∈ N such that for all K ≥ K0 and every b ∈ R
2K , there exists

a unique vector �q ∈ R
2K and a unique constant γ ∈ R such that

T �q = b + γ q1, �q ⊥ q0, where q1 = M(Rq0 + q⊥). (5.7)

Moreover, there is a positive constant C which is independent of K such that

‖�q‖∗ ≤ C(ln K )2‖b‖∞. (5.8)

Denote the inverse of T in the sense of Lemma 5.4 by T −1. Since q1 depends on the
parameter q, the matrix T −1 depends on q and thus we write T −1 = T −1

q .

5.3 Reduction to one dimension

Now we can state the main result in this section.

Proposition 5.5 Under the assumption of Theorem 1.1, there is an integer K0 > 0 such that:
for all integer K ≥ K0 and for each α ∈ R, there exists a unique (q, γ ) = (q(α), γ (α)) such
that �β(α, q, γ ) = 0. As a result, φ(x;α, q(α)) and γ (α) satisfy the equation:

{
L[φ] + E + N (φ) = γ ∂U

∂α
,∫

RN φ ZQ j dx = 0, ∀ j = 1, . . . , K .
(5.9)

Moreover, the function φ(x;α, q(α)) is of class C1 in α, and we have

‖φ‖∗∗ ≤ C0 K − min{1, p−η
2 }m(ln K )−

1
2 , ‖q‖∗ + R−1‖∂αq‖∗ ≤ C K −μ(ln K )2, (5.10)

where C is a positive constant (independent of K ), and

0 < μ < min

{
σ − 2, min

{
1 − η,

p − 1 − η

2

}
m − 2, 1

}
. (5.11)

To prove Proposition 5.5, it suffices to solve �β(α,q, γ ) = 0 for each α. By the results in
the preceding subsections, we can rewrite this equation in a more explicit form.

Lemma 5.6 For every α ∈ R, the equation �β(α, q, γ ) = 0 is equivalent to

−a0m R−m−2T q + �(α, q) = γ q1, (5.12)

where T is the 2K × 2K matrix defined in (5.5), � denotes the remaining term, and

q1 =
∫

RN

∂U

∂α

∂U

∂q
dx = M(Rq0 + q⊥).

By Lemmas 5.2, 5.6 and 5.6, we have the following expansion of �(α,q).
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Lemma 5.7 Under the assumption of Proposition 4.1, for K sufficiently large, the following
expansion holds:

�(q) = R−m−σΠ1(α, q) + R−m−3Π2(α, q) + R−2mΠ3(α, q)

+ R− min{2−η,
p+1−η

2 }mΠ4(α, q) + R−m−3(ln K )2Π5(α, q, q̇, q̈)

+ K − min{2, p
2 +1− η

2 ,p− η
2 }m(ln K )2Π6(α, q) + K − min{2, p−η}m(ln K )−1Π7(α, q),

where Π j (α, q)’s and Π5(α, q, q̇, q̈) are smooth vector valued functions, which are uniformly
bounded as K → ∞. Moreover, Π5(α, 0, 0, 0) = 0.

Now we are going to solve (5.12) and then complete the proof of Proposition 5.5.

Proof of Proposition 5.5 By Lemma 5.4, Eq. (5.12) is equivalent to

q = (a0m)−1T −1
q
[
Rm+2�(α,q)

] = F(q).

By Lemma 5.7, since min{2 − η,
p+1−η

2 } ≤ min{2, p − η} ≤ min{2, p
2 + 1 − η

2 , p − η
2 } for

0 < η < p − 1, we get

(a0m)−1 Rm+2�(α,q) = K −μΠ̃(α,q) + (K −1 ln K )Ξ̃(α,q, q̇, q̈),

where both Π̃ and Ξ̃ are smooth vector valued functions, which are uniformly bounded as
K tends to infinity. Moreover, Ξ̃(α, 0, 0, 0) = 0.

Hence by Lemma 5.4, for ‖q‖∗ ≤ 1/2, we have

‖F(q)‖∗ ≤ C
(
K −μ(ln K )2 + K −1(ln K )3) ≤ C K −μ(ln K )2,

and

‖F(q) − F(q̊)‖∗ ≤ C
(
K −μ(ln K )2 + K −1(ln K )3) ‖q − q̊‖∗ ≤ 1

2
‖q − q̊‖∗,

since ‖(T −1
q − T −1

q̊ )b‖∗ ≤ C K R−m(ln K )2‖b‖∞‖q − q̊‖∗. Therefore, F is a contraction
mapping. By the Banach fixed point theorem, the result follows.

To show the differentiability of q(α). Consider the map T (α,q) = q − F(α,q) : R ×
R

2K �→ R
2K of class C1. Since ∂F

∂q = O(K −μ−1(ln K )2), ∂T
∂q

∣∣
α,q(α) = I − ∂F

∂q (α,q(α)) is
invertible, we get the differentiability of q(α).

Next we study the dependence of q onα. Assume that we have two solutions corresponding
to two sets of parameters. One of them denoted by

q = (a0m)−1T −1
q
[
Rm+2�(α,q)

]
,

corresponds to α; the other denoted by

q̊ = (a0m)−1T −1
q̊

[
Rm+2�(α̊, q̊)

]
,

corresponds to α̊. Assume that R|α̊ −α| ≤ 1/2, by a direct computation and Lemma 5.4, we
have

‖q − q̊‖∗ ≤ C K −μ(ln K )2(R|α̊ − α|),
from which we get the desired result. ��
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6 Proof of Theorem 1.1: variational reduction

In this section, our purpose is to achieve Step 2.B in the setting up of the problem and then
complete the proof of Theorem 2.1.

To solve γ (α) = 0 in Step 2.B, we will apply the variational reduction. To do this, we
first introduce some notation. Let α ∈ R and φ = φ(x;α,q(α)) be the function given in
Proposition 5.5, we define the reduced energy function by

F(α) = E(U + φ) : R → R, (6.1)

where we write U = U (x;α,q(α)).
By (2.8), both U and φ are 2π periodic in α. Hence by Proposition 5.5, the reduced energy

function F(α) has the following property.

Lemma 6.1 The function F(α) is of class C1 and satisfies F(α + 2π) = F(α) for every
α ∈ R.

With this notation, the next lemma shows that if F(α) has a critical point then γ (α) = 0
has a solution. In other words, after the Lyapunov–Schmidt reduction, the following lemma
concerns the relation between the critical points of F(α) and those of the energy functional
E(u).

Lemma 6.2 Under the assumption of Proposition 5.5, there exists K0 ∈ N+ such that: for
all integer K ≥ K0, if α0 is a critical point of F(α), then γ (α0) = 0 and the corresponding
function

u(x) = U (x;α0, q(α0)) + φ(x;α0, q(α0))

is a solution of (1.3).

Proof By Proposition 5.5, for K sufficiently large and for every α ∈ R, φ = φ(x;α,q(α))
satisfies the equation

S(U + φ) = γ (α)
∂U

∂α
. (6.2)

By the definition (6.1), we obtain

F ′(α) =
∫

RN

S(U + φ)(∂αU + ∂αφ) dx,

where ∂αU = ∂U
∂α

+ ∂U
∂q · ∂αq and ∂αφ = ∂φ

∂α
+ ∂φ

∂q · ∂αq. Thus by using (6.2),

F ′(α) = γ (α)

∫

RN

∂U

∂α
(∂αU + ∂αφ) dx .

If α0 be a critical point of F(α), then F ′(α0) = 0. Hence to prove γ (α0) = 0, it is sufficient
to show that ∫

RN

∂U

∂α
(∂αU + ∂αφ) dx �= 0. (6.3)

In fact, by Propositions 5.5 and 5.5, we have

∂αU + ∂αφ = ∂U

∂α
+ ∂U

∂q
· ∂αq + ∂φ

∂α
+ ∂φ

∂q
· ∂αq. (6.4)
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Recall that

∂U

∂α
= (Rq0 + q⊥) · ∂U

∂q
,

hence by Propositions 4.1 and 5.5, we have

K −1 R−2
∫

RN

∂U

∂α
(∂αU + ∂αφ) dx = (1 + o(1))

∫

RN

(∂x1w)2 dx,

which implies (6.3) and completes the proof. ��
Proof of Theorem 2.1 By Lemma 6.1, F(α) is 2π periodic and of class C1. Hence it has at
least two critical points (maximum and minimum points) in [0, 2π). Therefore, Theorem 2.1
follows from Lemma 6.2. ��

7 Generalizations and discussion

In this section we first give some slight extensions of the results proved in the previous
sections. Finally we would like to discuss some related questions we do not answer in this
paper.

7.1 More general nonlinearities

Unlike the minimization method, we do not use the homogeneous property of the nonlinearity
of Eq. (1.3). Therefore, our argument can be applied to construct infinitely many positive
solutions for a more general problem:{

−�u + V (x)u − f (u) = 0 in R
N ,

u > 0 in R
N , u ∈ H1(RN ),

where f : R → R is at least C1,ν(R) for some ν ∈ (0, 1), and satisfies the following
conditions:

( f1) f (u) = 0 for u ≤ 0, f (0) = f ′(0) = 0;
( f2) The equation {

−�u + V∞u − f (u) = 0 in R
N ,

u > 0 in R
N , u ∈ H1(RN ),

has a nondegenerate solution w, in the sense that

Ker
(−� + 1 − f ′(w)

) ∩ L∞(RN ) = Span
{
∂x1w, . . . , ∂xN w

}
.

Remark 7 It is not hard to see that our argument can be used to deal with the homogeneous
Dirichlet boundary condition problem of (1.3) in R

N \ �, where � is a bounded domain in
R

N .

7.2 Sign-changing solutions

Suppose that (1.11) holds for some constants
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V∞ > 0, a < 0, and min

{
1,

p − 1

2

}
m > 2, σ > 2.

If N ≥ 3, we further assume (1.15), using almost the same argument, our method can be
applied to construct infinitely many sign-changing solutions of the problem

−�u + V (x)u − |u|p−1u = 0 in R
N , u ∈ H1(RN ). (7.1)

A similar result can be found in [13] when V (x) tends to V∞ from below with a suitable rate.
We emphasize that our method can be applied to a more general non-even nonlinearity.

7.3 Remarks on condition (1.14)

In this subsection we consider the possible ways to improve the condition (1.14). Recall that
the key step in our method is to solve the following equation:

−a0m R−m−2T q + �(α,q) = γ q1,

where the property of T has been described in Lemma 5.4. We pose the condition (1.14) such
that �(α,q) is a smaller term comparing to R−m−2T q. Hence, to refine the condition (1.14),
the estimate of�(α,q) is the key point. A better estimate on�(α,q) gives a weaker condition
on m and σ . For example, for N = 2, if we assume that the following asymptotic behaviour
of V holds in the C1 sense:

V (x) = V∞ + a

|x |m + a1(θ)

|x |m+1 + O

(
1

|x |m+1+σ1

)
, as |x | → ∞,

where a1(θ) is an 2π periodic smooth function. Here (r, θ) is the polar coordinate. Then
“σ > 2” in the condition (1.14) can be improved to be “σ1 > 0”.

To get a better estimate of �(α,q), an improvement of approximation is needed. Recall
that

E =
K∑

j=1

(V (x) − 1)wQ j

︸ ︷︷ ︸
E1

−
⎧⎨
⎩
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p

−
K∑

j=1

w
p
Q j

⎫⎬
⎭

︸ ︷︷ ︸
E2

.

The leading term of E1 is given by
K∑

j=1

(
V (Q j ) − 1

)
wQ j , which is O(R−m) by (1.11).

Moreover, it is known that ϕ0 = − 1
p−1w − 1

2 x · ∇w is the explicit solution of

L0[ϕ0] = −�ϕ0 + ϕ0 − pw p−1ϕ0 = w in R
N , and

∫

RN

ϕ0∇w dx = 0.

Thanks to the polynomial decay of V , we can improve the approximation and write E1 into
two parts: one is O(R−m) having explicit form; and the other one is O(R−m−1), which is
enough for a better estimate of the part in �(α,q) from E1.

However, for the term E2, the situation is more difficult. Recall that in the proof of Claim 2

of Lemma 4.4, we show that E2 ∼ d− N−1
2 e− min{1, p

2 }d . Since w(r) ∼ r− N−1
2 e−r , subtracting

the terms of order d− N−1
2 e− min{1, p

2 }d , the next term is O(d− N−1
2 −1e− min{1, p

2 }d). It is not
enough for a better estimate of the part in �(α,q) from E2.
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Except for getting a better estimate of �(α,q), another feasible way to improve the
condition (1.14) is to apply min-max theorems to study the reduced energy functional E(U )

and its small perturbations. A useful property is that the matrix T has only one zero eigenvalue,
K − 1 negative eigenvalues, and K positive eigenvalues.

7.4 The anisotropic case

Observe that the leading term in (1.11) is radial. Thus it is interesting to consider the fully
anisotropic case of the problem (1.3) for N = 2.

Question 1 Do there still exist infinitely many positive solution of problem (1.3) if there are
constants V∞ > 0, m > 1, σ > 0 and a positive 2π periodic smooth function a(θ) such that

V (x) = V∞ + a(θ)

|x |m + O

(
1

|x |m+σ

)
, as |x | → ∞. (V3)

Here (r, θ) is the polar coordinate.

Inspired by the results in [4,14], the answer is very likely yes. But in this situation, the idea
of uniformly distribution of points on curves does not work. Indeed, let � = (r(θ), θ) be a
closed curve in the polar coordinate system. Denote its length by L and its natural parameter
by s(θ). If one puts K points on the stretched curve R � for some positive constant R. After
some computations, we get the balancing condition on � and R:{( 1

2

∫
RN w2 dy

)
R−m−1 = C


( RL
K

) L
K ,

C
{
ma(θ(s))γ (s) − a′(θ(s))γ⊥(s)

} |γ (s)|−m−2 + γ ′′(s) = 0,
(7.2)

where C > 0 is a constant, L is the length of γ and θ(s) is the inverse of s(θ). However, it
can be proved that system (7.2) has a solution if and only if a(θ) ≡ constant. Therefore, it
is to be expected that the spikes cannot be uniformly distributed on a closed curve if a(θ) is
not a constant function.

A feasible way to answer Question 1 is to develop a theory like [5]. But a more accurate
reduction procedure would be required since the mutual angles between the adjacent rays
connecting spikes and the origin goes to zero as K tends to infinity.

7.5 Optimal condition on the decay

It seems that our argument here can only deal with the case of polynomial decay. Inspired by
[4,14], it is reasonable to believe that there are infinitely many positive solutions when the
potential V satisfies the following decay assumption:

∃ η̄ ∈ (0,
√

V∞) : lim|x |→∞ (V (x) − V∞) eη̄|x | = +∞. (V4)

Hence it is natural to ask the following question:

Question 2 Does SV �= ∅ for any potential V satisfying (1.7)? Is the condition (V4) sufficient
and necessary for #SV = ∞, i.e., on the existence of infinitely many positive solution of
problem (1.3)?

7.6 Higher dimensions

For the higher dimension case, i.e., N ≥ 3, as we have seen, our arguments still work under
the weak symmetry condition (1.15). It is natural to ask the following question:
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Question 3 Does the week symmetry condition (1.15) can be dropped when N ≥ 3? Do the
points can be distributed (uniformly) over the surface of a higher dimensional set, such as
sphere in R

3?

7.7 Higher dimensional concentration phenomena

Next we turn to the higher dimensional concentration phenomena. Inspired by the results in
[3,21,33,41] and [8,34], it is interesting to ask the following question:

Question 4 Does there exist solution of problem (1.3) concentrating on higher dimensional
sets, e.g., curves? That is, does the Ambrosetti–Malchiodi–Ni conjecture in [3] still hold
without the small parameter ε, even in the radial symmetry case? If the answer is yes, are
the solutions constructed in Theorem 2.1 bifurcations sets?

Under the condition (1.7), Question 4 is not easy even in the radial symmetry case. For
example, assuming that N = 2 and V (x) is radially symmetric, if one try to construct
a positive solution concentrating on a circle with radius R, a simple computation gives
V ′(R) ∼ 1/R, which is incompatible with lim|x |→∞ V (x) = V∞.
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Appendix A: Circulant matrices and proof of Lemma 5.4

In this section we will prove Lemma 5.4. To this end, we need some notation. Denote the
K -dimensional complex vector space and the ring of K × K complex matrices by C

K and
MK , respectively. Let b = (b1, b2, . . . , bK ) ∈ C

K , we define a shift operator S : C
K → C

K

by

S(b1, b2, . . . , bK ) = (bK , b1, . . . , bK−1).

Definition 8.1 (cf. [28]) The circulant matrix B = circ {b} associated to the vector b =
(b1, b2, . . . , bK ) ∈ C

K is the K × K matrix whose nth row is Sn−1b:

B =

⎛
⎜⎜⎜⎜⎜⎝

b1 b2 · · · bK−1 bK

bK b1 · · · bK−2 bK−1
...

...
. . .

...
...

b3 b4 · · · b1 b2

b2 b3 · · · bK b1

⎞
⎟⎟⎟⎟⎟⎠

.

We denote by Circ(K ) ⊂ MK the set of all K × K complex circulant matrices.

With this notation, both A1 and A2 in (5.5) are K × K circulant matrices. In fact,

A1 = circ {(−2, 1, 0, . . . , 0, 1)} and A2 = circ {(0, 1, 0, . . . , 0,−1)} .
Let ε = ei 2π

K be a primitive K -th root of unity, we define

Xl = 1√
K

(1, εl−1, ε2(l−1), . . . , ε(K−1)(l−1))T ∈ C
K , for l = 1, . . . , K ,
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and

PK = 1√
K

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1
1 ε · · · εK−2 εK−1

...
...

. . .
...

...

1 εK−2 · · · ε(K−2)2
ε(K−2)(K−1)

1 εK−1 · · · ε(K−1)(K−2) ε(K−1)2

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ MK .

For the circulant matrix B = circ {b}, let

λl = b1 + b2ε
l−1 + · · · + bK ε(K−1)(l−1), for l = 1, . . . , K . (8.1)

A simple calculation shows that B Xl = λl Xl . Hence λl is an eigenvalue of B with normalized
eigenvector Xl . Since {X1, . . . , X K } is a linearly independent set of vectors in C

K , all of the
eigenvalues of B are given by λl , l = 1, . . . , K .

Lemma 8.2 (cf. [28]) All circulant matrices have the same ordered set of orthonormal
eigenvectors {Xl}. Moreover, PK is the diagonalizable matrix.

Using these notation, we study the invertibility of T .

Lemma 8.3 There is an K0 ∈ N such that for all K ≥ K0 and every b ∈ R
2K , there exists

a unique vector q ∈ R
2K and a unique constant γ ∈ R such that

T q = b + γ q0, q ⊥ q0. (8.2)

Moreover, there is a positive constant C which is independent of K such that

‖q‖2 ≤ C‖b‖2, ‖q̇‖2 ≤ C(ln K )1/2‖b‖2, and ‖q̈‖2 ≤ C(ln K )3/2‖b‖2. (8.3)

Furthermore, the number of zero (negative, positive) eigenvalues of T is 1 (K − 1, K ),
respectively.

Proof Note that (8.3) is the Euclidean norm, hence it suffices to perform the analysis of the
eigenvalues. To this end, first by (8.1), the eigenvalues of A1 are

λ1,l = −2 + εl−1 + ε(K−1)(l−1) = −4 sin2 (l − 1)π

K
, l = 1, . . . , K , (8.4)

and the eigenvalues of A2 are

λ2,l = εl−1 − ε(K−1)(l−1) = 2i sin
2(l − 1)π

K
, l = 1, . . . , K . (8.5)

Write diag (c1, . . . , cK ) for a diagonal matrix whose diagonal entries starting in the upper
left corner are c1, . . . , cK . Denote the diagonal matrix of A1 and A2 by

D1 = diag (λ1,1, λ1,2, . . . , λ1,K ) and D2 = diag (λ2,1, λ2,2, . . . , λ2,K ), respectively.

Since PK is the diagonalizable matrix for circulant matrices, we have

P−1T P =
(

P−1
K 0

0 P−1
K

)
T

(
PK 0
0 PK

)
=
(

c1 D1 + c4 I c2 D2

−c2 D2 c3 D1

)
. (8.6)

Since the matrix T is real and symmetric, all its eigenvalues are real and satisfy the equations

�2 − [(c1 + c3)λ1,l + c4
]
� + (c1λ1,l + c4

)
(c3λ1,l) + c2

2λ
2
2,l = 0, (8.7)
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for l = 1, . . . , K . Let

αl = (c1 + c3)λ1,l + c4, andβl = (c1λ1,l + c4
)
(c3λ1,l) + c2

2λ
2
2,l , ∀ l = 1, . . . , K .

Then by (5.6), (8.4) and (8.5), we have

αl = (d̂ − 1)
K 2

π2 sin2 (l − 1)π

K
+ (d̂ − m − 1) > 0,

and

βl = −
{(

d̂
K 2

π2 − (d̂ − 1)2
)

sin2 (l − 1)π

K
+ (m − 1)d̂ + 1

}
K 2

π2 sin2 (l − 1)π

K
≤ 0.

Denote the solutions of (8.7) by �1,l and �2,l with �1,l ≤ �2,l for l = 1, . . . , K . Then

�1,l = αl

2

(
−
√

1 − 4βl

α2
l

+ 1

)
≤ 0, �2,l = αl

2

(√
1 − 4βl

α2
l

+ 1

)
> 0, ∀ l = 1, . . . , K .

In particular, for l = 1, we have

�1,1 = 0, �2,1 = d̂ − m − 1. (8.8)

For l = 2, . . . , K , by Lemma 3.3, we have

−4βl

α2
l

≤
(

d̂ K 2

π2 sin2 (l−1)π
K + md̂

)
4K 2

π2 sin2 (l−1)π
K(

d̂
2

K 2

π2 sin2 (l−1)π
K + d̂

2

)2 ≤ C

d̂
,

and

−4βl

α2
l

≥
(

d̂
2

K 2

π2 sin2 (l−1)π
K

)
4K 2

π2 sin2 (l−1)π
K(

d̂ K 2

π2 sin2 (l−1)π
K + d̂

)2 ≥ C

d̂
, ∀ l = 2, . . . , K ,

where C is a positive constant. Therefore, for all l = 2, . . . , K ,

−�1,l ≥ d̂

2
· C

d̂
≥ 1

2
C, and �2,l ≥ αl ≥ 1

2
d̂, for some constant C > 0,

from which we get ‖q‖2 ≤ C‖b‖2.
Define f̂ j = f j+1 − f j and ĝ j = g j+1 − g j . Then

{
c1( f̂ j − f̂ j−1) + c2(ĝ j + ĝ j−1) = φ j − c4 f j ,

−c2( f̂ j + f̂ j−1) + c3(ĝ j − ĝ j−1) = ϕ j ,

where φ j = b j and ϕ j = bK+ j for j = 1, . . . , K . By a similar argument in the proof of
‖q‖2 ≤ C‖b‖2, we can get

‖q̇‖2 ≤ C(ln K )1/2‖b‖2.

When this is done, let f̃ j = f j+1 − 2 f j + f j−1 and g̃ j = g j+1 − 2g j + g j−1. Then
{

c1 f̃ j = φ j − c4 f j − c2(ĝ j + ĝ j−1),

c3g̃ j = ϕ j + c2( f̂ j + f̂ j−1).

123



516 M. del Pino et al.

Using a similar argument, by the definition of c j ’s, we get

‖q̈‖2 ≤ C(ln K )3/2‖b‖2.

��
Now we are going to prove Lemma 5.4. An important observation is that the system

T q = b can be seen as the discretization of the following continuous system:⎧⎪⎨
⎪⎩

−(m + 1) f (θ) + ( f ′′ + f )(θ) + (d̂ − 1)( f + g′)(θ) = φ(θ), θ ∈ (0, 2π),

f ′(θ) − d̂( f ′ + g′′)(θ) = ϕ(θ), θ ∈ (0, 2π),

f (0) = f (2π), f ′(0) = f ′(2π), g(0) = g(2π), g′(0) = g′(2π),

(8.9)

where f ′′ + f is the Jacobi operator on S1.

Lemma 8.4 For K sufficiently large, given φ, ϕ satisfying
∫ 2π

0 ϕ = 0, the system (8.9) has

a unique solution ( f, g) satisfying
∫ 2π

0 g = 0. Moreover, there exists a constant C > 0 such
that

‖ f ‖C2([0,2π ]) + ‖g‖C2([0,2π ]) ≤ C
(‖φ‖C0([0,2π ]) + ‖ϕ‖C0([0,2π ])

)
. (8.10)

Proof Let h = d̂( f + g′), then system (8.9) becomes
⎧⎪⎨
⎪⎩

f ′′ − m f + d̂−1
d̂

h = φ,

f ′ − h′ = ϕ.

f, h are 2π periodic.

(8.11)

Since
∫ 2π

0 ϕ = 0, from the second equation we get

h(θ) = f (θ) −
θ∫

0

ϕ − ch . (8.12)

Here we take ch = 1−d̂
2π

∫ 2π
0 f − 1

2π

∫ 2π
0

∫ θ

0 ϕ such that − ∫ 2π
0 f + d̂−1

∫ 2π
0 h = 0. Hence

g can be solved by

g(θ) = −
θ∫

0

f + d̂−1

θ∫
0

h + cg,

where we take cg = 1
2π

∫ 2π
0

∫ θ

0 f − d̂−1 1
2π

∫ 2π
0

∫ θ

0 h such that
∫ 2π

0 g = 0.
By (8.12) the first equation in (8.11) becomes

f ′′ − (m − 1 + 1

d̂
) f = φ + d̂ − 1

d̂

⎡
⎣

θ∫
0

ϕ − 1

2π

2π∫
0

θ∫
0

ϕ

⎤
⎦− (d̂ − 1)2

2π d̂

2π∫
0

f.

To solve the above equation, we first integrate it over [0, 2π] to get
∫ 2π

0 f = 1
d̂−1−m

∫ 2π
0 φ.

Thus

f ′′ − (m − 1 + 1

d̂
) f =

⎡
⎣φ − (d̂ − 1)2

d̂(d̂ − 1 − m)

1

2π

2π∫
0

φ

⎤
⎦+ d̂ − 1

d̂

⎡
⎣

θ∫
0

ϕ − 1

2π

2π∫
0

θ∫
0

ϕ

⎤
⎦ .
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Note that m − 1 + 1
d̂

> 0, by the boundary condition, f is uniquely given and satisfies

‖ f ‖C2([0,2π ]) ≤ C
(‖φ‖C0([0,2π ]) + ‖ϕ‖C0([0,2π ])

)
. Therefore,

g(θ) = −
θ∫

0

f + d̂−1

θ∫
0

h + cg,

satisfies the same inequality, where

h(θ) = f (θ) + (d̂ − 1)

2π(d̂ − 1 − m)

2π∫
0

φ −
⎡
⎣

θ∫
0

ϕ − 1

2π

2π∫
0

θ∫
0

ϕ

⎤
⎦ .

��

Remark 8 Let c =
√

m − 1 + 1
d̂

, by the equation of f , we can get

f (θ)=
2π∫

0

[
(d̂−1)2

d̂(d̂−m−1)

1

2πc2 −G0(θ, s)

]
φ(s) ds+

2π∫
0

d̂−1

d̂

⎡
⎣

t∫
0

G0(θ, t)− s

2πc2

⎤
⎦ϕ(s)ds,

where

G0(θ, s) =
{ 1

2c(e2πc−1)

[
e2πcec(θ−s) + e−c(θ−s)

]
, if θ ≤ s,

1
2c(e2πc−1)

[
ec(θ−s) + e2πce−c(θ−s)

]
, if θ > s.

Moreover, there is a Green’s matrix

G(θ, t) =
(

G11(θ, s) G12(θ, s)

G21(θ, s) G22(θ, s)

)

such that

f (θ) =
2π∫

0

G11(θ, s)φ(s) ds +
2π∫

0

G12(θ, s)ϕ(s) ds,

and

g(θ) =
2π∫

0

G21(θ, s)φ(s) ds +
2π∫

0

G22(θ, s)ϕ(s) ds.

Actually,

G11(θ, s) = (d̂ − 1)2

d̂(d̂ − m − 1)

1

2πc2 − G0(θ, s),

G12(θ, s) = d̂ − 1

d̂

⎡
⎣

s∫
0

G0(θ, t)dt − s

2πc2

⎤
⎦ ,
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G21(θ, s) = (d̂ − 1)3

d̂2(d̂ − m − 1)

(
1

2c2 − θ

2πc2

)
+ (d̂ − 1)

d̂(d̂ − m − 1)

(
θ

2π
− 1

2

)

+ (d̂ − 1)

d̂

⎡
⎣

θ∫
0

G0(t, s)dt − 1

2π

2π∫
0

θ∫
0

G0(t, s)dtdθ

⎤
⎦ ,

and

G22(θ, s) = (d̂ − 1)

d̂

(
θs

2πc2 − s

2c2

)
+ 1

d̂

[(
π − s

2
+ s2

4π

)
− (θ − s)+ − θs

2π

]

+ (d̂ − 1)

d̂

⎡
⎣−

θ∫
0

s∫
0

G0(t, r)drdt + 1

2π

2π∫
0

θ∫
0

s∫
0

G0(t, r)drdtdθ

⎤
⎦ .

Lemma 8.5 Under the assumption of Lemma 8.3, there is a positive constant C which is
independent of K such that

‖q‖∗ ≤ C(ln K )2‖b‖∞. (8.13)

Proof Claim 1: There is a positive constant C (independent of K ) such that

‖q‖∞ ≤ C‖b‖∞. (8.14)

To prove it, we only need to consider the case b ⊥ q0. For j = 1, . . . , K , we define

q j = ( f1, j , . . . , fK , j , g1, j , . . . , gK , j )
T ,

where

fl, j = 2π

K
G11(θl , θ j ), gl, j = 2π

K
G21(θl , θ j ).

This corresponds to take φ = 2π
K δ(θ − θ j ), ϕ = 0 for j = 1, . . . , K , where δ is the delta

function in the distribution theory. For j = K + 2, . . . , 2K , we define

q j = ( f1, j , . . . , fK , j , g1, j , . . . , gK , j )
T ,

where

fl, j = −2π

K
G12(θl , θ1) + 2π

K
G12(θl , θ j ), gl, j = −2π

K
G22(θl , θ1) + 2π

K
G22(θl , θ j ).

This corresponds to take φ = 0, ϕ = − 2π
K δ(θ − θ1)+ 2π

K δ(θ − θ j ) for j = K + 2, . . . , 2K .
By the property of Green’s matrix, for j = 1, . . . , K , we have

T q j = �e j + �τ j ;
for j = K + 2, . . . , 2K , we have

T q j = −�eK+1 + �e j + �τ j ,

where �e j = (δ j,1, . . . , δ j,2K )T is standard orthonormal basis of R
2K and �τ j = O(K −2)

is the local truncation error for the Green’s matrix in the finite difference method. Since
{�e1, . . . , �eK ,−�eK+1 + �eK+2,−�eK+1 + �e2K } is a basis of {b ∈ R

2K | b ⊥ q0} and write b =
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∑K
j=1 b j �e j +∑2K

j=K+2 b j (−�eK+1 + �e j ). Then we get q = q̂ + q̃, where q̂ =∑K
j=1 b j q j +∑2K

j=K+2 b j q j and T q̃ =∑ j �=K+1 b j �τ j .

On one hand, by the property of Green’s matrix, we get ‖̂q‖∞ ≤ C‖b‖∞. On the other
hand, by Lemma 8.3, we get

‖̃q‖∞ ≤ ‖̃q‖2 ≤ C‖
∑

j �=K+1

b j �τ j‖2 ≤ C K 1/2‖
∑

j �=K+1

b j �τ j‖∞ ≤ C K −1/2‖b‖∞.

Combining these two estimates, we get ‖q‖∞ ≤ C‖b‖∞.

Claim 2: There is a positive constant C (independent of K ) such that

‖q‖∗ = ‖q‖∞ + ‖q̇‖∞ + ‖q̈‖∞ ≤ C(ln K )2‖b‖∞. (8.15)

Proof of Claim 2:
Define f̂ j = f j+1 − f j and ĝ j = g j+1 − g j . Then

{
c1( f̂ j − f̂ j−1) + c2(ĝ j + ĝ j−1) = φ j − c4 f j ,

−c2( f̂ j + f̂ j−1) + c3(ĝ j − ĝ j−1) = ϕ j .

By using a similar argument, one can get

‖q̇‖∞ ≤ C‖b‖∞ + (ln K )‖q‖∞ ≤ C(ln K )‖b‖∞. (8.16)

Let f̃ j = f j+1 − 2 f j + f j−1 and g̃ j = g j+1 − 2g j + g j−1. Then

{
c1 f̃ j = φ j − c4 f j − c2(ĝ j + ĝ j−1),

c3g̃ j = ϕ j + c2( f̂ j + f̂ j−1).

Similarly we obtain

‖q̈‖∞ ≤ C‖b‖∞ + (ln K )‖q‖∞ + (ln K )‖q̇‖∞ ≤ C(ln K )2‖b‖∞. (8.17)

The above estimate is enough for our application. Actually if one can show that ‖̂q‖∗ ≤
C‖b‖∞, then we can get ‖q‖∗ ≤ C‖b‖∞ by Lemma 8.3 since the local truncation error for
the Green’s matrix is O(K −2). ��

Now we can use Lemma 8.5 to prove Lemma 5.4.

Proof of Lemma 5.4 To prove Lemma 5.4, it suffices to prove the a priori estimate (5.8). let
γ = −(b · q0)/(q1 · q0). By Lemma 4.2, for q satisfies (2.9), we have

R−1q1 = c0q0 + O(K R−m),

which implies that ‖R−1q1‖∞ ≤ C and |R−1q1 · q0| ≥ C K . Hence ‖γq1‖∞ ≤ C‖b‖∞.
Therefore, by Lemma 8.5, we have

‖�q‖∗ ≤ C(ln K )2‖b + γq1‖∞ ≤ C(ln K )2‖b‖∞.

��
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Appendix B: Energy expansion

In this section, we give the energy expansion of E(U + φ) and prove Lemma 3.9.

Proof of Lemma 3.9 By (1.4), we get

E(u) =
K∑

j=1

E(wQ j )

︸ ︷︷ ︸
J1

+ 1

2

∑
i �= j

∫

RN

(∇wQi ∇wQ j + V (x)wQi wQ j

)
dx

︸ ︷︷ ︸
J2

+ 1

p + 1

∫

RN

⎧⎪⎨
⎪⎩

K∑
j=1

w
p+1
Q j

−
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p+1
⎫⎪⎬
⎪⎭ dx

︸ ︷︷ ︸
J3

.

Claim 1: By (1.11), there are positive constants I0 and a0 such that

J1 = K I0 + a0 (1 + o(1))
K∑

j=1

|Q j |−m . (9.1)

Indeed, by the definition of the energy functional, (1.11) and Taylor’s expansion,

J1 = K I0 + 1

2

K∑
j=1

∫

RN

(V (x) − 1)w2
Q j

dx = K I0 + a0

K∑
j=1

(|Q j |−m + O(R−m−σ )
)
,

where

I0 =
(

1

2
− 1

p + 1

) ∫

RN

w p+1 dx, anda0 = a

2

∫

RN

w2 dx .

Claim 2: By (1.11) we have

J2 = 1

2

∑
i �= j

∫

RN

w
p
Q j

wQi dx + O(K R−2m). (9.2)

Indeed, the term J2 can be divided into two parts:

J2 = 1

2

∑
i �= j

∫

RN

w
p
Q j

wQi dx

︸ ︷︷ ︸
J21

+ 1

2

∑
i �= j

∫

RN

(V (x) − 1) wQ j wQi dx

︸ ︷︷ ︸
J22

.

For J22, by (1.11), we have

|J22| ≤ C R−m
∑
i �= j

e−|Q j −Qi ||Q j − Qi |−(N−3)/2 ≤ C K R−me−dd−(N−3)/2 ≤ C K R−2m .

Claim 3: Let Q ∈ �K , we have

J3 = −
∑
i �= j

∫

RN

w
p
Q j

wQi dx + O(K e− min{2, p+1
2 }dd− N−3

2 ). (9.3)
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Indeed, write

J3 = 1

p + 1

∫

RN

⎧⎪⎨
⎪⎩

K∑
j=1

w
p+1
Q j

−
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p+1
⎫⎪⎬
⎪⎭ dx = −

∫

RN

E3 dx .

For x ∈ ��
K+1, where � ∈ N chosen later, we have

|E3(x)| ≤ 1

p + 1

⎧⎪⎨
⎪⎩

K∑
j=1

w
p+1
Q j

+
⎛
⎝ K∑

j=1

wQ j

⎞
⎠

p+1
⎫⎪⎬
⎪⎭ ≤ 1

p + 1

⎛
⎝ K∑

j=1

w
p+1
Q j

+ K p
K∑

j=1

w
p+1
Q j

⎞
⎠ .

By choosing � ≥ 4(p+2m+3)
pm (but independent of K ), we get

∫

��
K+1

|E3| dx ≤ C K p
K∑

j=1

∫

��
K+1

w
p+1
Q j

dx ≤ C K p+1w p(�ρ/2) ≤ C K −2m−2.

For x ∈ ��
j , j = 1, 2, . . . , K , by a similar argument in the proof of Lemma 4.4, we have

∣∣∣∣∣∣E3 − w
p
Q j

∑
i �= j

wQi

∣∣∣∣∣∣ ≤ C�(N−1)(p−1)w
p−1
Q j

⎛
⎝∑

i �= j

wQi

⎞
⎠

2

.

Applying Lemma 3.8, we get∣∣∣∣∣∣∣
J3 +

∑
i �= j

∫

RN

w
p
Q j

wQi

∣∣∣∣∣∣∣
≤ C

K∑
j=1

∫

��
j

w
p−1
Q j

⎛
⎝∑

i �= j

wQi

⎞
⎠

2

dx + C K −2m−2

≤ C K e− min{2, p+1
2 }dd− N−3

2 ≤ C K − min{2, p+1
2 }m+1(ln K )1/2,

which implies Claim 3.
Combining our Claim 1, Claim 2 and Claim 3, the desired result follows from Lemma 3.8.

��
At the last, by (1.4), Lemma 4.4 and Proposition 4.1,

E(U + φ) = E(U ) + 1

2

∫

RN

{|∇φ|2 + V (x)φ2} dx +
∫

RN

(∇U∇φ + V (x)Uφ) dx

− 1

p + 1

∫

RN

{
(U + φ)

p+1
+ − U p+1

}
dx

= E(U ) + 1

2

∫

RN

{
(U + φ)

p
+ − U p + E

}
φ dx

− 1

p + 1

∫

RN

{
(U + φ)

p+1
+ − U p+1 − (p + 1)U pφ

}
dx

= E(U ) + O(K‖φ‖2∗∗) + O(K‖φ‖∗∗‖E‖∗∗)
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= K I0 + (a0 + o(1))
K∑

j=1

|Q j |−m − 1

2

∑
i �= j

(γ0 + o(1))w(|Qi − Q j |)

+ O
(

K − min{2, p+1
2 }m+1(ln K )1/2

)
.
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