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HNN-extensions and distortion phenomena
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Abstract. Linear and projective boundaries of Cayley graphs were introduced in [6] as
quasi-isometry invariant boundaries of finitely generated groups. They consist of forward
orbits g1 D ¹gi W i 2 Nº, or orbits g˙1 D ¹gi W i 2 Zº, respectively, of non-torsion
elements g of the group G, where ‘sufficiently close’ (forward) orbits become identified,
together with a metric bounded by 1.

We show that for all finitely generated groups, the distance between the antipodal
points g1 and g�1 in the linear boundary is bounded from below by

p
1=2, and we give

an example of a group which has two antipodal elements of distance at most
p
12=17 < 1.

Our example is a derivation of the Baumslag–Gersten group.
We also exhibit a group with elements g and h such that g1 D h1, but g�1 ¤ h�1.

Furthermore, we introduce a notion of average-case-distortion—called growth—and com-
pute explicit positive lower bounds for distances between points g1 and h1 which are
limits of group elements g and h with different growth.

1 Introduction

One of the most important classes of groups studied in Geometric Group Theory
is the class of word-hyperbolic groups (also referred to as Gromov-hyperbolic
groups). Word-hyperbolic groups admit several geometric tools which can be used
to derive algebraic properties. Since in Geometric Group Theory the focus lies
on the large-scale geometry of the group, these tools are only defined up to
quasi-isometries. An important large-scale invariant of a hyperbolic group is its
Gromov-boundary. The present work is part of a program to understand the extent
to which one can generalize this concept to arbitrary finitely generated groups.

A new concept of quasi-isometry invariant boundaries of metric spaces has
recently been introduced by Krön, Lehnert, Seifter and Teufl [6]. It is related to
a concept due to Bonnington, Richter and Watkins [1]. This concept is rather gen-
eral and for instance, Tits’ boundary of a CAT.0/ space (see [2, Section 9]) fits
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456 B. Krön, J. Lehnert and M. Stein

into it, after a small modification. See [6] for a more detailed discussion of this
relationship.

We will not recall the full concept for metric spaces, because here, we are
only interested in two applications to Cayley graphs of finitely generated groups,
namely the linear and the projective boundary, which we shall introduce next.

Let G be a group generated by a set X . The Cayley graph

� D .V;E/ D Cay.G;X/

is the graph with vertex set V D G and edge set E D ¹¹g; hº W g�1h 2 Xº. Let d
be the graph metric of � . That is, d.g; h/ is the length of the shortest path in �
from g to h.

For g 2 G of infinite order let

g1 WD ¹gn W n 2 Nº

denote the cyclic subsemigroup generated by g. We also call g1 the forward orbit
of g. Let

g˙1 WD ¹gk W k 2 Zº

denote the cyclic subgroup generated by g, and we call g˙1 the orbit of g. The
backward orbit g�1 is defined analogously.

Let CG and CCG denote the family of infinite orbits or infinite forward orbits,
respectively. That is, we set

CG WD ¹g˙1 W g 2 G; jgj D 1º

and
CCG WD ¹g1 W g 2 G; jgj D 1º:

We want to measure the distance between two orbits as if it were an angle. For
this, fix ˛ > 0 and c 2 N, and call the set

˛ � g1 C c WD ¹v 2 G W 9n 2 N such that d.v; gn/ � ˛ � d.1; gn/C cº

the .˛; c/-cone around g1. In other words, the .˛; c/-cone around g1 is the union
of all balls with center gn and radius ˛ � d.1; gn/C c. Analogously we define the
.˛; c/-cone around g˙1 as

˛ � g˙1 C c WD ¹v 2 G W 9k 2 Z so that d.v; gk/ � ˛ � d.1; gk/C cº:

In what follows, we write h1 2 ˛ � g1 C c if hn 2 ˛ � g1 C c for all n 2 N and
define h˙1 2 ˛ � g˙1 C c analogously. For x; y 2 CG or x; y 2 CCG set

sX .x; y/ WD inf¹˛ 2 R W 9c 2 N such that x 2 ˛ � y C c and y 2 ˛ � x C cº:

If sX .x; y/ D 0, then we call x and y linearly equivalent, this is an equivalence
relation. We call two elements g and h forward equivalent if g1 � h1 and
backward equivalent if g�1 � h�1.
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Boundaries of HNN-extensions and distortion phenomena 457

It is easy to check that the function sX is well defined on the set of equivalence
classes and that the square root tX D

p
sX is a metric on the quotient CCG=� and

on CG=�, respectively. The completion of the metric space .CCG=�; t / is called
the linear boundary LG of G, the completion of the metric space .CG=�; tX / is
called the projective boundary PG of G, or strictly speaking of G with respect
to the generating set X . Although the elements of the linear/projective boundary
are equivalence classes of (forward) orbits g.˙/1, and not the (forward) orbits
themselves, we shall slightly abuse notation and write g.˙/1 instead of Œg.˙/1��
also for an element of the linear or projective boundary.

If G is finitely generated and we change the finite set of generators, then the
resulting quotient spaces are bi-Lipschitz equivalent and hence the boundaries are
homeomorphic. But the values of sX and tX depend on the choice of generators.
In most cases the context will make clear the set of generators with respect to
which we calculate sX and tX ; therefore we will frequently suppress the index X .
Moreover, by definition it is clear that the diameter of LG and of PG is at most 1.
For more details we refer to [6].

The linear boundary of finitely generated nilpotent groups is (homeomorphic
to) the disjoint union of spheres with dimensions di , which correspond to the free
abelian quotients of rank di C 1 in the central series, and the projective boundary
is (homeomorphic to) the disjoint union of projective spaces of the same dimen-
sion; see [6]. The latter fact relies on the observation that in the case of a nilpotent
group the distance t .g1; h1/ is equal to the distance of the inverse elements
t .g�1; h�1/ for all g1; h1 2 LG. Thus the space PG can be obtained by iden-
tifying each element with its inverse without changing distances (that is, for all
elements g; h 2 G the distance t .g˙1; h˙1/ (in PG) is equal to the minimum
of t .g1; h1/ and t .g1; h�1/ (in LG)).

One might guess that this yields a general method for constructing the projective
boundary but the results in Section 3 show that this is not the case. In general, it is
not even true that g1 D h1 implies g�1 D h�1; hence the projective boundary
is not necessarily a quotient of the linear boundary.

Theorem 1.1. There is a group H with elements g1 and g2 which are forward-
equivalent but not backward-equivalent.

The proof of Theorem 1.1 is given in Section 3.

Knowing of this counterintuitive phenomenon, it is natural to ask whether the
‘algebraic antipodal’ g�1 of g1 2 CCG is also the metric antipodal. In other
words, one would like to know whether t .g1; g�1/ is always 1 or if at least this
distance is universally bounded away from 0. We show that the answer to the first
question is negative, but that there is a positive lower bound for t .g1; g�1/.
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458 B. Krön, J. Lehnert and M. Stein

Theorem 1.2. The following statements hold.

(a) For any finitely generated group G and any g 2 G of infinite order we have
t .g1; g�1/ �

p
1=2.

(b) There exists a group G generated by the finite set X which has an element g
such that tX .g1; g�1/ �

p
12=17.

The proof of this result will span from Section 4 to Section 6. While the proof
of the first part of Theorem 1.2 is not overly complicated, the proof of the second
part is quite lengthy and takes up most of these three sections in which we give
an example of a family of such groups. The groups in question are derivations of
the so-called Baumslag–Gersten group and in order to prove our theorem we have
to understand some of the intrinsic geometry of these groups. Note that for the
group constructed for the second part of the statement it is not hard to see that for
all g 2 G of infinite order we have maxh2G tX .g1; h1/ D 1. This remark goes
back to a suggestion of an anonymous referee of this paper and actually it sounds
reasonable that this statement is true for all finitely generated groups G but we
have not been able to prove it, yet.

As we will see, the geometry of a cyclic subgroup can be very different from
the usual geometry of the group of integers. This phenomenon is known as dis-
tortion and leads to one of the asymptotic invariants studied by Gromov in his
seminal book [5]. For an element h of a group G generated by the finite set X
let jhjX denote the length of the shortest word representing h in letters of X˙,
where X˙ D ¹x 2 G W x 2 X or x 2 X�1º. Gromov defines the distortion func-
tion for a subgroup H generated by the finite set Y as

�HG .r/ WD
1

r
max¹jhjY W h 2 H; jhjX � rº:

This function measures something like a worst-case distortion and can easily be
superexponential, for instance in the group Gp of Theorem 4.2. Such examples
suggest that the factor 1=r is a bit artificial and in fact nowadays most authors
follow the definition of Farb [3] who defined the distortion function just as

�HG .r/ WD max¹jhjY W h 2 H; jhjX � rº:

In the context of this work, we are interested in the distortion of cyclic sub-
groups (or even cyclic subsemigroups). But as we would like to view these sub-
groups just as a set rather than as a sequence, worst-case considerations do not
seem appropriate. A better fitting concept will be a kind of average-case distortion
for cyclic subgroups—called growth of elements—which we define as follows.
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Boundaries of HNN-extensions and distortion phenomena 459

Definition 1.3. Let G be a group generated by the finite set X and let g 2 G. The
growth of g is the function wg.n/ W N ! N which counts the number of elements
of the type gi in the ball B1.n/ of radius n around 1:

wg.n/ WD j¹i 2 Z W jgi jX � nºj:

Note that for the group H D hgi our growth function wg.n/ measures the
number of elements of H in the ball of radius r around 1, while Gromov’s dis-
tortion �HG .r/ determines the absolute value of the maximum of all i such that gi

still lies in this ball.
There are some easy bounds on the growth. First of all, balls in Cayley graphs

grow at most exponentially fast. Namely, it is easy to see that the upper bound
wg.n/ � jB1.n/j � .2jX j � 1/.2jX j/

n�1 holds. Less obvious but still straight-
forward is the following fact. For all k 2 N, we have wg.kn/ � k � wg.n/. For
instance, the groups which will be defined in Theorem 4.2 contain elements with
exponential growth function, and in free nilpotent groups of class c the growth
function of a central element is equivalent to nc . The results of Olshanskii and
Sapir [8] on length functions of subgroups, which are a very precise measure for
distortion phenomena, suggest that there exist a broad variety of growth functions
for elements. It seems natural to ask the following question:

Problem 1.4. Can two elements g and h of a group whose forward orbits are
linearly equivalent have growth functions of different order?

In Section 2 we will give a partial solution to this problem. If g is an element
of exponential growth, then there is even a minimal distance between g˙1, and
any other orbit of PG of an element h of the group which has a different growth.
This minimal distance depends on the number of generators of G and the growth
functions of g and h. Our lower bound also holds for the minimal distance in LG.

To make this statement more precise we will use Landau notation. Recall that
for a function f; g W N ! N the notation f .n/ 2 !.g.n// can be translated to “for
all k > 0 there exists an n0 such that for all n > n0 we have f .n/ � k � g.n/.” In
the same manner f .n/ 2 o.g.n// translates to “for all k > 0 there exists an n0
such that for all n > n0 we have f .n/ � k � g.n/.”

Theorem 1.5. For every d 2N, ı > 1 and  > ı there is a tmin D tmin.d; ; ı/ > 0

such that for each group G, each generating set X of cardinality d , and any
g; h 2 G with wg.n/ 2 !.n/ and wh.n/ 2 o.ın/, we have that

t .g˙1; h˙1/ � tmin and t .g1; h1/ � tmin:

A possible choice is tmin D

q
log.2d�1/


ı

.
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460 B. Krön, J. Lehnert and M. Stein

Note that the assumption wg.n/ 2 !.n/ already implies that d � 2 and there-
fore the logarithm is well defined.

In order to be able to speak of the growth of an element of a group without
fixing a generating set, we consider equivalence classes of growth functions rather
than explicit functions. Two functions f; g W N ! N are called weakly equivalent
if there exist constants c1; c2 such that

g.n/ � c1f .c1nC c2/C c2;

f .n/ � c1g.c1nC c2/C c2

hold. If X and Y are finite generating sets for G, then Cay.G;X/ and Cay.G; Y /
are bi-Lipschitz equivalent and therefore the growth function of g with respect
to X and the growth function of g with respect to Y are weakly equivalent. Note
that this equivalence separates exponential functions from sub-exponential func-
tions and hence having an exponential growth function is a property of the group
element which is independent of the chosen generating set.

We say that an element of a finitely generated group has exponential growth
if there is a finite generating set S of G such that the growth function of g with
respect to S is exponential (by the preceding paragraph, this then holds for any
finite generating set S ). Theorem 1.5 immediately gives the following corollary.

Corollary 1.6. If g is an element of a finitely generated group that has exponential
growth, then every element h with g1 D h1 (or with with g˙1 D h˙1) also
has exponential growth.

Before we start let us fix some further notation. Throughout the paper G will
be a group generated by a (usually finite) set X . The free monoid over the alpha-
bet X˙ will be denoted X� and ` is the length function on X�. The assumption
that X is a generating set of G implies the existence of a surjective monoid homo-
morphism � W X� ! G and it is straightforward that for g; h 2 G we have

d.g; h/ D min¹`.w/ W w 2 X�; �.x/ D g�1hº:

Using this fact, we mostly work with representing words for group elements. We
will use the shorthand notationw1 DG w2 for �.w1/ D �.w2/whereasw1 D w2
means that the two words as elements of X� are equal.

For Y � G we will denote by hY iG the subgroup of G generated by Y , i.e. the
smallest subgroup of G containing Y and by hhY iiG the normal closure of Y in G,
i.e. the smallest normal subgroup of G containing Y .

Beginning with Section 4 we will have to work with huge powers. We will use
the following notation: Let np denote the tower of length n of pth powers (often
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Boundaries of HNN-extensions and distortion phenomena 461

called tetration of p by n), i.e.

0p D 1 and np D p
.n�1/p:

So for instance 3p D pp
p

. (Note that by convention ab
c

D a.b
c/, not .ab/c .)

We assume that the reader is familiar with the concept of HNN-extensions and
in particular with Britton’s lemma which most of our considerations concerning
part (b) of Theorem 1.2 rely on. Britton’s lemma can be used to derive a normal
form for elements in HNN-extensions and gives a necessary condition for a word
to represent the identity. The standard references for these results (and many other
facts on HNN-extensions) are [7] and [10].

2 Distortion phenomena

The present section is dedicated to the aforementioned distortion phenomena.
We prove Theorem 1.5.

Proof of Theorem 1.5. We will only show the result for the elements of the projec-
tive boundary, that is, we show the existence of a number tmin such that for each
group G that is generated by d elements, and any g; h 2 G with wg.n/ 2 !.n/
and wh.n/ 2 o.ın/, the inequality t .g˙1; h˙1/ � tmin holds. The other part can
be shown analogously.

We assume that t .g˙1; h˙1/ < 1, since otherwise 1 is the desired bound.
Since wg.n/ 2 !.n/ and wh.n/ 2 o.ın/, there exist constants N0; c1; c2 such

that for all n > N0 we have

wg.n/ � c1 � 
n and wh.n/ � c2 � ı

n (2.1)

Let n > N0, let ˛ 2 R such that 1 > ˛ > t.g˙1; h˙1/2 D s.g˙1; h˙1/.
By definition, there exists a constant c such that for all i � 0 there exists some

j D j.i/ such that
gi 2 B˛d.1;hj /Cc.h

j /:

If d.1; gi / � n, then by the triangle-inequality,

d.1; hj / � d.1; gi /C d.gi ; hj / � nC ˛d.1; hj /C c

and thus
d.1; hj / �

nC c

1 � ˛
:

Set I WD ¹i 2 Z W d.1; gi / < nº, and set J WD ¹j 2 Z W d.1; hj /� nCc
1�˛
º. Then

for each i 2 I we have j.i/ 2 J . By (2.1),

jI j � c1
n and jJ j � c2ı

nCc
1�˛ ;
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462 B. Krön, J. Lehnert and M. Stein

and the latter is smaller than c3ı
n
1�˛ for some constant c3. Hence, by the pigeon-

hole principle, there exists a j 2 J such that

jB˛d.1;hj /Cc.h
j /j �

c1 � 
n

c3 � ı
n
1�˛

D
c1

c3

�


ı
1
1�˛

�n
:

On the other hand, jB˛d.1;hj /Cc.h
j /j is bounded above by a power of the number

of generators d , namely by

jB˛d.1;hj /Cc.h
j /j � 2d � .2d � 1/˛d.1;h

j /Cc�1:

We obtain the inequality

c1

c3

�


ı
1
1�˛

�n
� 2d � .2d � 1/˛d.1;h

j /Cc�1

� 2d � .2d � 1/˛
nCc
1�˛
Cc�1

D c4 � .2d � 1/
˛n
1�˛

D c4 � ..2d � 1/
˛
1�˛ /n

for c4 D 2d � .2d � 1/
˛c
1�˛
Cc�1. This has to be true for arbitrarily large values

of n, which is possible only if



ı
1
1�˛

� .2d � 1/
˛
1�˛ ” 1�˛ � .2d � 1/˛ � ı

” ln  � ˛ � ln  � ˛ � ln .2d � 1/C ln ı

”
ln  � ln ı

ln .2d � 1/C ln 
� ˛

” log.2d�1/


ı
� ˛:

Note that 
ı
< .2d � 1/ and therefore this lower bound is less than 1. We obtain

the lower bound

t .g˙1; h˙1/ �

r
log.2d�1/



ı
:

The complete answer to Problem 1.4 remains open. In addition it might be an
interesting project to completely understand the relationship between the usual dis-
tortion of cyclic subgroups and the growth of the generating element. It obviously
happens that cyclic subgroups of different distortion yield elements of the same
growth type but whether it can also be the other way around is an open question.
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Boundaries of HNN-extensions and distortion phenomena 463

3 Forward-equivalence vs. backward-equivalence

In this section, we will construct a group H that contains elements g1 and g2 for
which g11 � g

1
2 but g�11 6� g�12 . The groupH is an iterated HNN-extension of

a cyclic group (generated by the element a) with stable letters s; t; x given by the
presentation

H D ha; s; t; x j t�1at D a2; s�1as D a2; x�1sx D s2i: (3.1)

Thus H is isomorphic to a free product with amalgamation H D H1 �hai H2
where H1 is the Baumslag–Solitar group

BS.1; 2/ D ha; t j t�1at D a2i

and
H2 D ha; s; x j s

�1as D a2; x�1sx D s2i

is an HNN-extension of BS.1; 2/D ha; s j s�1as D a2iwith associated subgroups
hsi and hs2i.

We use the group H to prove Theorem 1.1.

Proof of Theorem 1.1. We have to show that H contains elements g1 and g2
which are forward-equivalent but not backward-equivalent. We do this for g1 WD t
and g2 WD at .

First of all, we estimate the distance dH .1; gki / for k 2 Z. In all defining
relations of presentation (3.1) the exponent sum of t is zero, hence any word rep-
resenting tk needs at least jkj times the letter t (or t�1 if k < 0). So the word tk

is geodesic and
d.1; gk1 / D jkj: (3.2)

The same argument yields that

jkj � d.1; gk2 / � 2jkj; (3.3)

which will be a sufficient approximation for our purpose.
Let k > 0. We can use the relation t�1at D a2, which is the same as at D ta2,

to see that
gk2 D t

ka2
kC1�2: (3.4)

By definition, the distance dH .gk1 ; g
k
2 / is the same as

dH .1; g
�k
1 gk2 / D dH .1; t

�ktka2
kC1�2/ D dH .1; a

2kC1�2/: (3.5)

One easily checks that

a2
kC1�2

D s�.kC1/askC1a�2: (3.6)
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464 B. Krön, J. Lehnert and M. Stein

Hence to obtain an upper bound for dH .1; g�k1 gk2 / we need to find a good upper
bound for dH .1; sk/. Let kmkm�1 : : : k0 be the binary code for k (i.e. ki 2 ¹0; 1º
and km D 1). Then, because of the relation x�1sx D s2, it holds that 

m�1Y
iD0

skix�1

!
sxm D sk :

The fact thatm D blog2 kc gives us the upper bound dH .1; sk/ � 3 � blog2 kcC1.
Thus by (3.5) and (3.6),

dH .1; g
�k
1 gk2 / � 6 � blog2.k C 1/c C 5: (3.7)

In order to show that dX
LH

.g11 ; g
1
2 / D 0, we now fix an ˛ > 0 and show that

dLH .g
1
1 ; g

1
2 / � ˛:

To do so, by (3.3), it suffices to show that there exists a constant c D c.˛/ such
that for each k there exist k1 and k2 such that

dH .g
k
1 ; g

k1
2 / < ˛ � k1 C c and dH .g

k
2 ; g

k2
1 / < ˛ � k2 C c:

Choosing k1 D k2 D k and using (3.7), this breaks down to the statement that
there exists a constant c D c.˛/ such that

6 � blog2.k C 1/c C 5 � ˛ � k C c;

which is obviously true. This shows that g1 and g2 are forward-equivalent.
We shall now show that g1 and g2 are not backward-equivalent. In fact, we

claim that dLH .g
�1
1 ; g�12 / D 1. For this, by (3.2), it suffices to show that for

each c 2 N there exists an l 0 2 N such that for all l 2 N the inequality

dH .g
�l 0

2 ; g�l1 / > 1 � d.1; g
l
1/C c D l C c

holds. Set l 0 WD c C 2. By definition, and because of the relation t�1a�1t D a�2,
we have

dH .g
�l 0

2 ; g�l1 / D dH .1; g
l
1g
�l 0

2 / D dH .1; t
la�.2

l0C1�2/t�l
0

/;

where for the last equality we used (3.4).
Now, let

h D t la�.2
l0C1�2/t�l

0

be the word representing gl1g
�l 0

2 in H and we try to simplify it within the pre-
sentation of this group. Using now 2l

0

� 1 times the relation t�1a�1t D a�2 we
obtain that

h DH t l�1a�2
l0C1t�l

0C1
DW h0:
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Boundaries of HNN-extensions and distortion phenomena 465

In order to give a lower bound for dH .1; h/ we once again have to change our
point of view. The group H is an HNN-extension of H2 with stable letter t and
associated subgroups hai and ha2i. Let h be a geodesic word such that h0 DH h.
Hence

h0h�1 DH 1:

We now iteratively apply Britton’s lemma to h0h�1.
The number of letters a�1 in h0 is odd and therefore the letters t and t�1

belonging to h0 cannot cancel out (moving a t from left to right through a power of
letters a halves this power). Therefore they all have to cancel with corresponding
t�1 and t letters in h�1. This implies that the geodesic word h has to contain l � 1
times the letter t and l 0 � 1 times the letter t�1. So,

dH .g
�l
1 ; g

�l 0

2 / D dH .1; h/ � .l � 1/C .l
0
� 1/ > 1 � l C c;

as desired.

4 The distance between g1 and g�1

The remainder of this paper is devoted to the proof of Theorem 1.2. We split
it into two parts. First we show in Theorem 4.1 the easier lower bound for the
distance between two elements g1 and g�1 D .g�1/1 of the linear boundary of
a finitely generated group G. The more difficult part of Theorem 1.2 is obtained
from Theorem 4.2, which shows that there are examples of groups with elements g
where the distance between g1 and g�1 is strictly smaller than 1. The proof of
Theorem 4.2 will continue in Sections 5 and 6.

But let us first show the easier bound:

Theorem 4.1. Let g be an element of a finitely generated group of infinite order.
Then t .g1; g�1/ � 1=

p
2.

Proof. Any ball in a group with respect to a finite generating set is finite. Hence

lim
i!1

d.1; gi / D1: (4.1)

Suppose ˛ 2 R is such that s.g1; g�1/ < ˛. Then there is a c 2 N such that for
each i there exists an m.i/ 2 N with

d.g�i ; gm.i// � ˛ � d.1; gm.i//C c

� ˛ �
�
d.1; g�i /C d.g�i ; gm.i//

�
C c;

using the triangle-inequality. By (4.1), there is an increasing sequence .in/n�1
such that

d.1; gk/ > d.1; gin/ for all k > in. (4.2)
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466 B. Krön, J. Lehnert and M. Stein

Thus

˛ �
d.g�in ; gm.in// � c

d.1; g�in/C d.g�in ; gm.in//

D
d.1; ginCm.in// � c

d.1; gin/C d.1; ginCm.in//

(4.2)
�

d.1; ginCm.in// � c

2 � d.1; ginCm.in//

D
1

2

�
1 �

c

d.1; ginCm.in//

�
:

Since this inequality is valid for all in, n 2 N, and because of (4.1), we obtain
that ˛ � 1=2. As ˛ may be chosen arbitrarily close to s.g1; g�1/, this implies
that s.g1; g�1/ � 1=2, and thus, t .g1; g�1/ � 1=

p
2.

We now turn to the rather tedious proof of the second part of Theorem 1.2 which
will span over the remainder of this section and the following two sections.

Theorem 4.2. Let p � 20. In the group Gp D ha; t j t�1a�1tat�1at D api we
have t .a1; a�1/ �

p
12=17.

Remark 4.3. The groupGp from Theorem 4.2 has a perhaps more natural descrip-
tion: Consider the Baumslag–Solitar group BS.1; p/ D ha; x j x�1ax D api and
build the HNN-extension with associated subgroups hai and hxi. The resulting
group is isomorphic to Gp. Furthermore, if we replace the p in the presentation
by the number 2, we obtain what is called the Baumslag–Gersten group G2. This
group was constructed by Gersten [4] (see also [9]) as an example of a group with
Dehn function � n2.

Remark 4.4. From now on we consider p � 20 to be a fixed number. We choose
a lower bound of 20 for the sake of brevity of the arguments. However, this is not
the best possible bound for p. We believe the theorem to hold for all p � 2.

We already remarked that the remainder of this section and the following two
sections are devoted to the somewhat lengthy proof of Theorem 4.2. The main aim
of the rest of the present section is to introduce certain short geodesic words wk
ofGp, which represent large powers of a. The wordswk will later be used to show
that t .a1; a�1/ is bounded from above by

p
12=17.

For the sake of simplicity, let us shift our attention for a moment from Gp to
the infinitely generated groupG0 that shall be defined next. First, for all i < k 2 Z
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Boundaries of HNN-extensions and distortion phenomena 467

we set

Aki WD ¹ai ; : : : ; akº;

A1i WD
[
k�i

Aki ;

Gki WD hA
k
i j a

�1
j aj�1aj D a

p
j�1; j D i C 1; i C 2; : : : ; ki;

G1i WD hA
1
i j a

�1
j aj�1aj D a

p
j�1; j D i C 1; i C 2; : : : i;

G0 WD G10 :

For all i 2 Z the monoid isomorphisms ' D 'i W .A1i /
� ! .A1iC1/

� defined
by

'.aj / D ajC1

induce isomorphisms betweenG1i andG1iC1 resp.Gki andGkC1iC1 , which we, abus-
ing notation, will also call '. Using ji j times this isomorphism ' we see that

G1i Š G
0 and Gkj Š G

kCi
jCi for all i; j; k 2 N. (4.3)

Lemma 4.5. Let j < i � k. In the notation defined above,

Gki D hA
k
i iG1j

and G1i D hA
1
i iG1j

(or, to be more precise, the identity map from Aki � G
k
i to Aki � G

1
j (resp. A1i )

induces an isomorphism Gki Š hA
k
i iG

1
j

(resp. G1i Š hA
1
i iG

1
j

)).

Proof. As a first step for fixed i we use induction on k to show that

Gki D hA
k
i iGk

j
:

Let k D i ; then Gki Š Z and in the HNN-extension Gkj the letter ak is the stable
letter and hence

hAki iGk
j
D hakiGk

j
Š Z:

Now assume Gmi D hA
m
i iG

m
j

and let k D mC 1. By von Dyck’s theorem the
identity map on Aki induces an epimorphism

id W Gki ! hA
k
i iGk

j

and we only have to check for injectivity. The groupGki is an HNN-extension with
stable letter ak and base group Gmi and similarly the group Gkj is an HNN-exten-
sion with stable letter ak and base group Gmj . The induced epimorphism maps
words in normal form to words in normal form, so the injectivity is a consequence
of Britton’s lemma.
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468 B. Krön, J. Lehnert and M. Stein

It remains to show that
Gkj D hA

k
j iG1j

:

Again von Dyck’s theorem shows that the identity map induces an epimorphism
and we just have to check injectivity. Let w 2 .Akj /

� and assume w DG1
j
1. Then

w is freely equivalent to a finite product of relators and therefore there exists anm
such that

w DGm
j
1:

The group Gmj is an iterated HNN-extension of Gkj and in each step injectivity is
an immediate consequence of Britton’s lemma. Hence

w DGk
j
1:

The claim about G1i being isomorphic to hA1i iG1j follows from the observa-
tion that

G1i D lim
�!

Gki Š lim
�!
hAki iG1j

D hA1i iG1j
:

The case of the lemma above one should keep in mind is the case 0 D j < i ,
hence G1j D G

0. We only have to deal with negative values of i for some techni-
cal reasons but will see later on (in Lemma 5.1) that the letters ai for negative i
are of no importance for our purposes.

We shall now embed G0 in Gp. By (4.3), the subgroup generated by the ele-
ments ¹ai ; aiC1; aiC2; : : : º is isomorphic to G0. Therefore we can construct the
ascending HNN-extension G associated to '. Then

G D ht; aj .j D 0; 1; 2 : : : / j a
�1
jC1ajajC1 D a

p
j ; t

�1aj t D aiC1i:

Note that in this group the relations ai D t�ia0t i hold. Substituting a0 by a and
applying Tietze-transformations we obtain the presentation from Theorem 4.2:

G D Gp D ha; t j t
�1a�1tat�1at D api:

So G is in fact a one-relator group on two generators. Even if the elements ai
no longer belong to our set of generators, we will still use the notation ai for the
element t�iat i . In order to prove Theorem 4.2 we are only interested in distances
between powers of a, hence elements of the subgroupG0. Such words have to con-
tain the same number of letters t and t�1. Moreover, they can be written entirely
in letters ai using the following rewriting process:

Let v be a word in ¹a˙; t˙º� as above. We replace every a by the letter ai and
every a�1 by a�1i , where i is the difference of the number of letters t�1 and the
number of letters t before this a or a�1, respectively. Afterwards we delete all
letters t˙ to obtain the word v0 2 ¹a˙i º

�
i2Z. For example v D t�2at4a2t�3a�5ta

becomes v0 D a2.a�2/2.a1/�5a0.
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Boundaries of HNN-extensions and distortion phenomena 469

If the word v is (freely) reduced, we can recover it from v0 by replacing each ai
with t�iat i and each a�1i with t�ia�1t i , respectively, and freely reducing the
result then. This defines a bijection  between the reduced words in ¹a˙i ºi2Z and
the reduced words in ¹a˙; t˙º� that have the same number of letters t and t�1.

We proceed to defining the words wk which shall be used as ‘shortcuts’ to go
from large negative powers to large positive powers of a in the proof of Theo-
rem 4.2. Our definition of the wk will rely on the words w0

k
in G0 representing

large powers of a0 which we define first.
For this, first note that

a�kiC1 ai a
k
iC1 DG0 a

�.k�1/
iC1 a

p
i a

k�1
iC1

DG0 .a
�.k�1/
iC1 ai a

k�1
iC1 /

p

DG0 ..a
�.k�2/
iC1 ai a

k�2
iC1 /

p/p

DG0 .a
�.k�2/
iC1 ai a

k�2
iC1 /

p2

:::

DG0 a
pk

i :

Now set w00 WD a0 and inductively set w0
k
WD '.w0

k�1
/�1a0'.wk�1/. Notice

that the word w0
k

only consists of 2kC1 � 1 letters. Nevertheless, it represents
a huge power of a0:

Lemma 4.6. The word w0
k

(2 .A10 /
�) is freely reduced and represents the group

element a
kp
0 in G0.

Proof. We use induction on k. For k D 0 the statement is true by definition.
Assume that w0n is freely reduced, w0n DG0 a

np
0 and let k D nC 1. The word

'.w0n/ is also freely reduced and does not contain the letter a0 hence

w0k WD .'.w
0
n//
�1 a0 '.w

0
n/

is also freely reduced. We obtain

w0k WD .'.w
0
n//
�1 a0 '.w

0
n/

DG0 .'.a
np
0 //�1 a0 '.a

np
0 /

DG0 a
� np
1 a0 a

np
1

DG0 a
nC1p
0

DG0 a
kp
0 :
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470 B. Krön, J. Lehnert and M. Stein

Since w0i is reduced, we finally can define wi WD  .w0i /. Then

w0 D a and wiC1 D t
�1w�1i t a t�1wi t;

where the second line follows from the easy observation, that for all reduced words
w 2 .A10 /

� the word '.w/ is also reduced and  .'.w// D t�1 .w/t . Note that
since  jG0 is just a rewriting process of elements of G0 as a subgroup of G and
since w0

k
DG0 a

kp, we obtain wk DG a
kp.

The recursion formula for wk above implies that the length of wk is given by
the recursion formula `.wiC1/ D 2 � `.wi /C 5 and therefore

`.wk/ D 3 � 2
kC1
� 5: (4.4)

Our proof of Theorem 4.2 will follow from the next two lemmas.

Lemma 4.7. The words wk are geodesic.

Lemma 4.7 will be proved in Section 5.
The second key ingredient in the proof of Theorem 4.2 is Lemma 4.8, to be

stated next, and to be proved in Section 6. We employ the well-known Kronecker
delta ım;n, which, here for numbers n;m 2 ZŒ1

2
�, takes the value 1 ifm D n, and 0

otherwise.

Lemma 4.8. Let k > 0, n 2 Z be such that d.1; an/ DW dn < 3 � 2kC1 � 5. Then

n < pp
��
�p
12

where the number of p’s is k � 1 and

d.1; a
kp�n/ � 3 � 2kC1 � 5Cmin¹dn; 3 � 2k � 5º � .1 � ık;1/min¹dn; 2k�1º:

Postponing the proofs of Lemma 4.7 and Lemma 4.8 to the next two sections
we first show how they imply Theorem 4.2:

Proof of Theorem 4.2. Observe that it suffices to show that for all ˛ > 12=17 there
is a c such that the elements a�n are contained in the .˛; c/-cones of a1. Then
by symmetry (interchanging a and a�1 in all arguments), the reciprocal is true
as well, showing that the distance between a1 and a�1 is at most

p
12=17. Let

˛ > 12=17 and set c WD 35=17.
Let n > 0. Now, let k D k.n/ be the unique positive integer such that

3 � 2kC1 � 5 > d.1; an/ � 3 � 2k � 5:
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Boundaries of HNN-extensions and distortion phenomena 471

We define h D h.n/ WD kp � n, which is according to Lemma 4.8 positive. Hence,
by Lemmas 4.6 and 4.7 and by (4.4),

d.a�n; ah/ D d.1; a
kp/ D 3 � 2kC1 � 5: (4.5)

Using Lemma 4.8 we obtain

d.1; ah/ > 3 � .2kC1 C 2k/ � 2k�1 � 10:

By (4.5) this shows that

d.a�n; ah/ D 3 � 2kC1 � 5

D
12

17
� .3 � .2kC1 C 2k/ � 2k�1 � 10/C

120

17
� 5

< ˛ � .3 � .2kC1 C 2k/ � 2k�1 � 10/C
35

17

< ˛d.1; ah/C c;

and thus a�n lies in the .˛; c/-cone around a.

5 The words w0
k

and wk are geodesic

The main aim of this section is to prove Lemma 4.7, namely that the words wk
are geodesic in G. This will be obtained by a series of results on the groups Gki
and G1i . A bit outside our way towards Lemma 4.7, we will also sketch a proof
for the fact that the words w0

k
are geodesic in G0 (Lemma 5.6).

The other important results of this section will be Lemmas 5.7 and 5.8 which
are used in the proof of our main theorem, Theorem 4.2. We start by showing
a number of rather easy lemmas. Recall that on page 469 we defined a bijection  
between the reduced words in ¹a˙i ºi2N and the reduced words in ¹a˙; t˙º� that
have the same number of letters t and t�1. We will use the following notation: We
say a word w 2 Aji is pseudo-geodesic in G0 if w is geodesic in Gji or  .w/ is
geodesic in G.

Lemma 5.1. Let i 2 N and k > i or k D1 and let w0 be a pseudo-geodesic
word in G0. Any subword w of w0 representing an element g 2 Gki is an element
of .A1i /

�.

Proof. Fix a j < 0 such that j < min¹m W w0 contains the letter a˙mº. By Lem-
ma 4.5, the identity map on A1i induces an embedding ofGki intoG1i and ofG1i
into G1j . Therefore G1j splits as semi-direct product

G1j D hhA
i�1
j iiG1

j
ÌG1i ;
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472 B. Krön, J. Lehnert and M. Stein

and hence
G1i D G

1
j =hhA

i�1
j iiG1

j
:

Assume that w contains at least one letter a˙m for k � m < i . Let

� W .A1j /
�
! .A1i /

�

be the canonical projection, that is, �.w/ is the word we obtain by removing
from w all letters a˙m for k � m < i . Then �.w/ DG1

i
g � hhAi�1j ii and, since

�.w/ does not contain any letters a˙m for 0�m< i , we obtain that

�.w/ DG10 g:

Replacing the subword w in w0 by �.w/ we obtain a the shorter word w00. So w00

is shorter than w and since w DG1
j
�.w/, we also obtain

w0 DG1
j
w00:

Hence w0 is not geodesic. Moreover, all letters of w00 also occur in the same order
in w0, only some more letters are inserted in between. So  .w00/ contains at most
the same number of letters t˙ and less a˙, which implies `. .w00// < `. .w0//.

This contradicts the assumption that w0 is pseudo-geodesic in G0.

Corollary 5.2. The subgroups G1i are undistorted in G0. That is, for the genera-
tors considered above, the distances between elements ofG1i are the same inG1i
as in G0.

Lemma 5.3. Let k > i and w be a pseudo-geodesic word in Gki with w DGk
i
ani .

Then there are words v˛, ˛ D 1; : : : ; m, in GkiC1 such that

(a) w D al0i v1a
l1
i v2a

l2
i : : : vma

lm
i , for some lj 2 Z with l1; : : : ; lm�1 ¤ 0,

(b) v˛ DGk
iC1

a
ˇ˛
iC1 for some ˇ˛ 2 Z,

(c)
Qm
˛D1 v˛ DGk

iC1
1.

Proof. Without loss of generality we may assume that the word w does not end
with a letter a˙i .

As a consequence of Lemma 5.1, the word w has the property that none of its
subwords representing some element of some subgroup Gk

l
for l > i may contain

a letter a˙j for j < l . For fixed i , we use induction on k to show the stronger
statement that all words with this property that represent ani are of the desired form.

For k D i C 1 the group Gki is the Baumslag–Solitar group BS.1; p/. Now
the v˛ are just powers of aiC1 and the above statement breaks down to the im-
mediate consequence of Britton’s lemma that elements of the base group have
exponent sum 0 in the stable letter.
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Boundaries of HNN-extensions and distortion phenomena 473

So suppose k > i C 1, and assume the statement true for k � 1. The group Gki
is an HNN-extension of Gk�1i with associated subgroups hak�1i and hap

k�1
i and

stable letter ak . As
wa�ni DGk

i
1;

Britton’s lemma implies that w contains a subword a�1
k
vak or akva�1k , where v

represents an element of hak�1i or hap
k�1
i, respectively. (In particular, v does

not contain any letters a˙j for j < k � 1.) Replacing any such subword a�1
k
vak

by apl
k�1

or any such subword akva�1k by al
k�1

, respectively, for some suitable l ,
we obtain a word with less occurrences of ak which still represents ani . Repeating
this procedure as long as there are letters ak in our word, we arrive at a word
w0 2 .Ak�1i /�, which still represents ani .

We wish to apply the induction hypothesis to w0, so we have to check if w0 con-
tains any subword representing some element of some subgroup Gk�1

l
for l > i

and containing the letter a˙j for some j < l . Assume that w0 contains such a sub-
word

u DGk�1
l

g 2 Gk�1l :

Since multiplication with letters a˙
k�1

from the left or right does not change
the desired properties of this word, we may assume, without loss of generality,
that u does not start or end with a letter a˙

k�1
. Since the replacement procedure

described above only creates letters a˙
k�1

, this implies that all replacements have
been made either outside of u or completely inside of u. In particular, by undoing
these replacements we can identify a subword v0 of w with the properties that

v0 DGk�1
l

g 2 Gk�1l

and v0 contains a˙j (since we did not add any letters a˙j during our modification),
which contradicts the assumptions on w.

By the induction hypothesis, the word w0 has the form a
l0
i v1a

l1
i v2a

l2
i : : : vm

with
v˛ DGk�1

i
a
ˇ˛
iC1:

Since all replacements have been made inside the words v˛, also w has the desired
form. The statement follows.

Lemma 5.4. In the situation (and notation) of Lemma 5.3, for all 1 � j < m we
have

jX
˛D1

ˇ˛ � 0 and n D l0 C

mX
˛D1

l˛p
�
P˛
jD1 ǰ :
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Proof. According to Lemma 5.3 the word w D al0i v1a
l1
i v2a

l2
i : : : vma

lm
i which

represents the same element as

Qw WD a
l0
i

mY
˛D1

 Y̨
jD1

vj

!
a
l˛
i

 Y̨
jD1

vj

!�1
:

Since vj DG1
i
a ǰ

iC1, we obtain

w DGi1 Qw
0
WD a

l0
i

mY
˛D1

 Y̨
jD1

a ǰ

iC1

!
a
l˛
i

 Y̨
jD1

a ǰ

iC1

!�1
(5.1)

which we can analyze in the subgroup GiC1i , namely in the Baumslag–Solitar
group BS.1; p/. Recall that in this group all conjugate of ai by powers of aiC1
commute. If

P˛
jD1 ǰ < 0, we already know that Y̨
jD1

a ǰ

iC1

!
a
l˛
i

 Y̨
jD1

a ǰ

iC1

!�1
D
G
iC1
i

a
l˛p
�
Pj
jD1 ǰ

i : (5.2)

Since Qw0 D
G
iC1
i

ani , this implies that

Y
˛ such that

Pj
˛D1 ˇ˛>0

 Y̨
jD1

a ǰ

iC1

!
a
l˛
i

 Y̨
jD1

a ǰ

iC1

!�1
D
G
iC1
i

an
0

i

for some n0 2 Z. According to Britton’s lemma this is only possible, if one of
the l˛ is a multiple of p (which is equivalent to the statement that al˛i 2 ha

p
i i). But

w is pseudo-geodesic which obviously implies l˛ < p. Hence no such ˛ exists
and using (5.2) to sum up (5.1) the statement follows.

Lemma 5.5. Let k � i � 0. Any geodesic word inG0 containing the letter a˙
k

and
representing an element of hak�i i has length at least 2iC1 � 1.

Proof. Let v be a geodesic word in G0 representing an element of hak�i i. We
prove the statement by induction on i . Let i D 0. A word containing a˙

k
has at

least length 1 D 20C1 � 1. Now assume the statement to be true for i D n � 1.
Let v be a geodesic word representing al

k�n
and containing the letter a˙

k
.

According to Lemma 5.3,

v D a
l0
k�n

v1a
l1
k�n

v2 : : : vma
lm
k�n

where each v˛ DG0 a
ˇ˛
k�nC1

for some ˇ˛ and the product v1v2 : : : vm D 1. Since v
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contains a letter a˙
k

, there exists an ˛ such that v˛ contains a˙
k

. Because v˛ is
geodesic, the induction hypothesis gives that v˛ has length at least 2n � 1. Since

v0 D

 
mY

D˛C1

v

! 
˛�1Y
D1

v

!

is a word representing v�1˛ , this word cannot be shorter than the geodesic word v˛
and also contains at least 2n � 1 letters. All in all, since v contains at least one
letter ak�n, we obtain that the length of v is at least 2 �.2n�1/C1 D 2nC1�1.

In particular, the last lemma shows that there exists no geodesic word contain-
ing a˙

k
and representing an element of ha0i, which is shorter than w0

k
. And in fact

we can prove the following result, although it will not be needed in the course of
this paper.

Lemma 5.6. The word w0
k

is a geodesic word in G0.

Proof. The word w0
k

represents the element a
kp
0 and has length 2kC1 � 1. So, by

Lemma 5.5 for i D k we only have to show that every geodesic word represent-
ing a

kp
0 has to contain the letter ak . This can again be done by induction on k. The

statement is obviously true for k D 0. Because we will not need this statement
later on, we leave the proof of the induction step, which can be done following the
lines of the proof to Lemma 5.8, to the reader.

In contrast to the situation in G0, the product wiwj for i ¤ j is not freely
reduced. Nevertheless, in the group G the analogue of Lemma 5.5 also holds.

Lemma 5.7. Let k � 0. Let w be a geodesic word in the letters ¹a; tº representing
a non-zero power of a such that w0 D  �1.w/ contains the letter a˙

k
. Then the

length of w is at least 3 � 2kC1 � 5.
If in addition `.w/ D 3 � 2kC1 � 5, then w DG a˙.

kp/.

Proof. Without loss of generality we may assume that

k D max¹j W a˙j is contained in w0º:

We prove the statement by induction on k. For k D 0 the statement is trivial.
For k > 0, Lemma 5.3 yields that

w0 D a
l0
0 v
0
1a
l1
0 v
0
2a
l2
0 : : : v

0
ma

lm
0

where each v0˛ DG0 a
ˇ˛
1 for some ˇ˛ and the product v01v

0
2 : : : v

0
m D 1. The v0˛

are subwords of the pseudo-geodesic word w0 and according to Lemma 5.1 do not
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contain any letters a0. Then, for some words v˛ 2 ¹a; tº� we obtain

w D al0 t�1v1ta
l1 t�1v2ta

l2 : : : alm�1 t�1vmta
lm

where each v˛ DG a�ˇ˛ and the product v1v2 : : : vm D 1 (note that this is the
same as saying that

P
ˇ˛ D 0). Since w is geodesic, ˇ˛ ¤ 0 for all ˛ which

immediately implies m � 2. Therefore the number of letters t or t�1 outside of
the v˛ is at least 4.

Asw0 contains a letter a˙
k

, there exists an ˛� such that �1.v0˛�/ contains a˙
k�1

.
As a subword ofw, the word v˛� is geodesic, it has by induction hypothesis length
at least 3 � 2k � 5. Because v1v2 : : : vm D 1, the product of the other v˛ also has
length at least 3 � 2k � 5, and furthermore, we have at least four letters t and an al˛ ,
the bound follows.

For the second assertion of the lemma, we again apply induction on k. The case
k D 0 is trivial. So assume the statement correct for k � 1. The v˛� defined above
has – according to the first part of this lemma – length at least 3 � 2k � 5. SinceY

˛¤˛�

v˛ D v˛�

and v˛� is geodesic, we obtain that also
Q
˛¤˛� v˛ contains at least 3 � 2k � 5

letters. In addition w contains at least four letters t˙ and one a˙. This only works
out if w D t�1v1ta˙t�1v2t and `.v1/ D `.v2/ D 3 � 2k � 5. Since w represents
a power of a, we obtain wax DG 1 for some (huge) x 2 Z. Britton’s lemma now
implies that v1 D v�12 has to be a power of a and by induction hypothesis,

v1 DG a
�k�1p and v2 DG a

k�1p:

Hence
w DG t

�1a�
k�1pt a˙ t�1a

k�1pt DG a
˙kp:

Furthermore we can bound the power of a which is represented by a word of
given length avoiding high powers of t .

Lemma 5.8. Let k;L � 1. Let v be a word of length less than L � 2k�1 in G rep-
resenting an element an for some n 2 Z such that  �1.v/ does not contain the
letter a˙

k
. Then,

jnj < pp
��
�p
L

for k > 1 where the number of p’s is k � 1 and jnj < L for k D 1.

Proof. Let v0 D  �1.v/. Without loss of generality we assume v0 to be reduced.
First we show, that we also may assume j WD max¹˛ W a˙˛ is contained in v0º < k.
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So assume that j > k. Since v0a�n0 DG0 1, Britton’s lemma implies that v0

contains a subword a�1j waj or ajwa�1j , where w represents an element of the
subgroup hapj�1i or haj�1i, respectively. Replacing any such subword a�1j vak
by aplj�1 or aj va�1j by alj�1, respectively, for some suitable l , we obtain a word
with less occurrences of aj which still represents an0 . Repeating this procedure as
long as there letters aj in our word, we arrive at a word, which still represents
ani but does not contain a˙j . We repeat this procedure with a˙j�1 and all a˙˛
down to ˛ D k C 1 and end up with a word v00a�n0 DG0 1 that consists only
of letters a˙0 ; : : : a

˙
k�1

and a˙
kC1

. This word contains no subword representing
an element of haki or hap

k
i, so all the a˙

kC1
have to freely cancel each other. The

resulting reduced subword v000 of v000a�n0 can be obtained from v0 by deleting some
of the letters of v0. Hence

`. .v000// < `.v/;  .v000/ DG v; j WD max¹l W a˙˛ is contained in v000º < k:

Therefore we may assume j < k and v0 D  �1.v/ does not contain any a˛
with ˛ � k.

We proceed by induction on k. Let k D 1. The word  �1.v/ does not con-
tain a letter a˙1 . Therefore v D a˛ for some j˛j < L. Obviously, n D ˛ and we
are done.

Let k � 2 and assume the statement to be true for k � 1. We only consider the
case that n is positive, as the other case is symmetric. We may assume that v is
such that n is maximal among all possible values for n over all choices of v as
in the lemma. Note that then `.v/ D L � 2k�1 � 1, and furthermore, v is shortest
possible among all v satisfying the assumptions of the lemma.

Now, as in the proof of Lemma 5.7 we obtain

v D al0 t�1v1ta
l1 t�1v2t : : : t

�1vmta
lm ;

with vi DG a�ˇi for some ˇi such that
P
ˇi D 0. But now we can calculate n in

terms of li and ˇi , namely

n D l0 C

mX
iD1

lip
Pi
jD1 ǰ �

 
mX
iD0

jli j

!
� pmaxi

Pi
jD1 ǰ DW y:

Let c be such that maxi
Pi
jD1 ǰ D

Pc
jD1 ǰ . By deleting all but four letters t

and rearranging the letters a we obtain the word

v0 D t�1v1v2 : : : vcta
Pm
iD0 li t�1vcC1 : : : vmt:

Then `.v0/ � `.v/ and v0 DG ay . Since v was chosen such that n is maximal, we
obtain that y D n. Then `.v/ D `.v0/. So, we actually did not delete any t when
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creating v0, and thus v D v0. Hence

v D t�1v1ta
l t�1v2t;

with v�11 DG v2 DG a
˛ for some ˛ � 0 and n D l � p˛.

Assume that l � 3. Then we can build the word v00 D t�1v1a�1tal�2t�1av2t
which is of the same length as v and represents a..l�2/p/p

˛

in contradiction to the
maximality of n. Therefore l � 2. Since v is shortest possible under the assump-
tions of the lemma, so are v1 and v2, and hence `.v1/ D `.v2/. Since `.v/ is odd,
it follows that l D 1 and

`.v1/ D
L � 2k�1 � 1 � 5

2
< L � 2k�2:

By induction hypothesis

j˛j < pp
��
�p
L

where the number of p’s is k � 2, and since n D 1 � p˛, we obtain the desired
inequality.

The two preceding lemmas imply Lemma 4.7, that is, that the wk are geodesic:

Proof of Lemma 4.7. Let w be a geodesic word such that w DG wk DG a
kp.

Recall that we have chosen p � 20 > 12. Since `.w/ < 12 � 2k�1, Lemma 5.8 im-
plies that w has to contain the letter ak or a�1

k
. On the other hand, by Lemma 5.7

we know that any word containing ak or a�1
k

is as least as long as wk . So the
statement follows.

6 The proof of Lemma 4.8

This final section is devoted to the proof of Lemma 4.8, which is the only ingre-
dient missing for our proof of Theorem 4.2. We build on results from Section 5.
Before we start to consider the general situation let us focus on some cases of
small values for n, which turns out not only to be more accessible but will also be
of importance during the proof of the general case. For this case we actually need
stronger statements:

Lemma 6.1. For k � 2 we have d.1; a
kp�p/ � 3 � 2kC1.

Proof. Let v DG a
kp�p and set L D 12. Then

kp � p > pp
��
�p
12
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where the number of p’s is k � 1. For contradiction, assume `.v/ < 3 � 2kC1. Then
by Lemma 5.1, the word v0 WD  �1.v/ contains the letter ak .

By Lemma 5.3 we can write v0 as

v0 D a
l0
0 v1a

l1
0 v2a

l2
0 : : : vma

lm
0 ;

with l1; : : : ; lm�1 ¤ 0 and thus,

v D al0 t�1u1ta
l1 t�1u2ta

l2 : : : t�1umta
lm ; (6.1)

for some ui DG ani . Since one of the vi contains a letter ak , it follows that one of
the u0i WD  

�1.ui /, say u0j , contains a letter ak�1. Hence, Lemma 5.7 implies

`.uj / � 3 � 2
k
� 5:

Another consequence of Lemma 5.3 is thatY
i¤j

ui DG u
�1
j (6.2)

and since uj is geodesic, X
i¤j

`.ui / � 3 � 2
k
� 5:

This already impliesm � 3. Assumem D 3. This implies `.uj / D 3 �2k�5, since
otherwise we obtain `.v/ � 2 � .3 � 2k � 4/C 8 (the word v contains six additional
letters t; t�1 and at least two additional letters a). By Lemma 5.7 this implies

uj DG a
˙k�1p:

By (6.2) and Lemma 5.1 we obtain that  �1.
Q
i¤j ui / also contains ak�1. So for

j 0 ¤ j the word u0j contains the letter ak�1. Since uj ¤ u0˙j , Lemma 5.7 implies

`.u0j / � 3 � 2
k
� 4

and therefore
`.v/ � 3 � 2k � 5C 3 � 2k � 4C 1C 8:

So, m D 2 and v D al0 t�1u1tal1 t�1u2tal2 and similar arguments as above
show that

`.u1/ D `.u2/ � 3 � 2
k
� 5:

So jl0j C jl1j C jl2j < 10. By Lemma 5.4 we obtain kp � p D l0 C l1 � p
ı C l2

for some ı. But this is impossible since p � 20 > 16.
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480 B. Krön, J. Lehnert and M. Stein

Lemma 6.2. Let k � 2 and n 2 Z be such that no geodesic word representing an

contains the letter t (which is easily seen to be equivalent to jnj < pC7
2

). Then

d.1; a
kp�n/ � 3 � 2kC1 � 5C jnj � ı

jnj;pC6
2

:

Proof. We only discuss the case n > 0, the case n < 0 can be shown analogously
and the case n D 0 is a consequence of Lemma 4.7. Let v DG a

kp�n be a geodesic
word. By Lemma 5.3 we can write  �1.v/ as

 �1.v/ D a
l0
0 v1a

l1
0 v2a

l2
0 : : : vma

lm
0 ;

with l1; : : : ; lm�1 ¤ 0 and thus,

v D al0 t�1u1ta
l1 t�1u2ta

l2 : : : t�1umta
lm (6.3)

where ui DG a�˛i , for i D 1; : : : m. Clearly,

kp � n D l0 C

mX
iD1

lip
Pi
jD1 j̨ ; (6.4)

and the sum of all ˛i is equal to 0. Note that since v is geodesic, we may assume
that

Pi
jD1 j̨ D 0 holds only for i D m and jli j < p for i D 1; : : : m. Consider-

ing equation (6.4) modulo p we obtain l0 C lm � �n.p/, hence l0 C lm D �n or
l0 C lm D p � n. If l0 C lm D �n, then, according to (6.4), the subword

Qv WD t�1u1ta
l1 t�1u2ta

l2 : : : t�1umt

of v has to represent the group element a
kp and by Lemma 4.7 we have

`. Qv/ � 3 � 2kC1 � 5;

which implies the statement.
Now assume l0 C lm D p � n. Since n < pC7

2
, we know that

p � n � n � 5 � ı
jnj;pC6

2

:

According to (6.4) the subword

Qv WD t�1u1ta
l1 t�1u2ta

l2 : : : t�1umt

of v then has to represent the group element x D a
kp�p. By Lemma 6.1 we obtain

d.1; x/C l0 C lm � 3 � 2
kC1
C n � 5 � ı

jnj;pC6
2

:

Now we are ready to prove the final missing piece of Theorem 1.2.
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Proof of Lemma 4.8. First of all, observe that by Lemma 5.7, every geodesic word
representing an is ak-less. So by Lemma 5.8, we know that

n < pp
��
�p
12

(6.5)

where the number of p’s is k � 1.
In order to prove the lemma, we use induction on k. For k D 1, we only have to

check that d.1; ap�n/ � 7Cmin¹n; 1º � 12 � 5Cmin¹n; 1º � 0 for all n with
n < 12, by (6.5). This is true, since testing all words with at most 6Cmin¹n; 1º
letters we see that none of them represents ap�n (note that by the choice of p, we
have p � n > 8).

So assume the lemma valid for k � 1, our aim is to show it for k � 2. Suppose
otherwise, i.e. assume there is a word v with v DG a

kp�n and

`.v/ < 3 � 2kC1 � 5Cmin¹dn; 3 � 2k � 5º �min¹dn; 2k�1º (6.6)

� 3 � .2kC1 C 2k/ � 10

� 18 � 2k�1 � 10:

We claim that
 �1.v/ contains the letter ak : (6.7)

If not, then we may apply Lemma 5.8 to v, with L D 18, to find that

kp � pp
��
�p
12

< kp � n < pp
��
�p
18

where on both sides the number of p’s equals k�1, and the first inequality follows
from (6.5). This, however, is impossible, as p � 20. We have thus proved (6.7).

Now, by Lemma 5.3, we can write  �1.v/ as

 �1.v/ D a
l0
0 v1a

l1
0 v2a

l2
0 : : : vma

lm
0 ;

with l1; : : : ; lm�1 ¤ 0 and thus,

v D al0 t�1u1ta
l1 t�1u2ta

l2 : : : t�1umta
lm (6.8)

where ui DG a�˛i , for i D 1; : : : m. Clearly,

kp � n D l0 C

mX
iD1

lip
Pi
jD1 j̨ ; (6.9)

and the sum of all ˛i is equal to 0. Note that since v is geodesic, we may assume
that li < p for i D 1; : : : m.
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482 B. Krön, J. Lehnert and M. Stein

Suppose c 2 ¹1; : : : ; mº is such that  �1.uc/ contains the letter a˙
k�1

. Then by
Lemma 5.7,

`.uc/ � 3 � 2
k
� 5: (6.10)

So, as 3 � .3 � 2k � 5/ > `.v/ � 5, and moreover, since each uc as above gives
rise to two letters t , we conclude that there are less than three indices c such
that  �1.uc/ contains the letter a˙

k�1
. On the other hand, by (6.7), there is at

least one such index, say c1.
Moreover, since the expression in (6.8) contains m times a subword of the

form t�1ui t , and also at least m � 1 letters a, we can use (6.6) and (6.10) to get
that

m �
`.v/ � `.uc1/C 2

4
< 3 � 2k�1: (6.11)

Together, (6.9) and (6.11) imply that there is an index b such that

lb � p
Pb
jD1 j̨ >

pp
��
�p
p�1

3 � 2k�1

where the number of p’s is equal to k � 1. Hence, since p > 6, and since lb < p,
we know that

p
Pb
jD1 j̨ >

p p
��
�p
p�1

pk

where again, the number of p’s is k � 1. Taking the logarithm, we obtain that

x WD

bX
jD1

j̨ > p
p �
��
pp�1

� k DW y (6.12)

where the number of p’s is k � 2. Because
Pb
jD1 j̨ D �

Pm
jDbC1 j̨ , this yields

that
u1u2 : : : ub DG ubC1ubC2 : : : um DG a

x :

So, by Lemma 5.8, there is a second index c2 such that  �1.uc2/ contains the
letter a˙

k�1
. We may assume that c2 > b � c1. Note that by what we said above,

c1 and c2 are the only indices c such that  �1.uc/ contains the letter a˙
k�1

.
Consider the subword

z WD t�1uc1 ta
lc1 t�1uc1C1 : : : t

�1uc2 t

of v. By the choice of the ci ,

`.z/ � 2 � .3 � 2k � 5/C 5: (6.13)

So,
`.v/ � `.z/ � 3 � 2k � 5: (6.14)
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Set
u WD u�1c1�1u

�1
c1�2

: : : u�11 u�1m u�1m�1 : : : u
�1
c2C1

and consider the word

v0 WD al0 t�1u1ta
l1 : : : alc1�1 t�1utalc2 t�1uuc2C1 ta

lc2C1 : : : t�1umta
lm :

Then v0 DG aq where

q D l0 C

c1�1X
iD1

lip
Pi
jD1 j̨ C

mX
iDc2

lip
Pi
jD1 j̨ :

Here we used the fact that
iX

jD1

j̨ D �

mX
jDiC1

j̨ :

By (6.14) and by the definition of v0, we know that `.v0/ � 2 � .3 � 2k � 5/, and
moreover, since  �1.v0/ does not contain any letter a˙

k
, for k > 2 we obtain that

jqj < pp
��
�p
12

where the number of p’s is k � 1. For k D 2 we obtain jqj < p7 since in this case
 �1.v0/ is even a1 free and of length less than 7. Set

s WD

c2�1X
Dc1

lp
P
jD1 j̨ D

kp � n � q: (6.15)

Then, for k > 2,

kp � 2pp
��
�p
12

< s < kp C 2pp
��
�p
12

; (6.16)

where the number of p’s on each side is again k � 1 and respectively, for k D 2,
2p � 2p7 < s < 2p C 2p7; (6.17)

On the other hand, by (6.10) and since `.v/ < 3 � .2kC1 C 2k/ � 10 by (6.6),
we have that

c2�1X
iDc1C1

`.ui / < 3 � 2
k
� 5; (6.18)

and, for each of these indices i , we know that  �1.ui / is ak�1 free. Therefore,
for k � 2, the exponents of p in the sum expression (6.15) of s differ less than

pp
��
�p
12
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where the number of p’s is k � 2. For k D 2 the same differences are less than
7 D 3 � 22 � 5 since in this case  �1.

Qc2�1
iDc1C1

ui / is even a1 free and of length
less than 7.

We claim that this implies that

s D kp: (6.19)

In fact, for k D 2we know by (6.12) that one summand in (6.15) is divisible by px

for some x > .p � 1/ � 2 and therefore by the argument above each summand is
divisible by p.p�2/�6. So, s D ı � pp�8 and the only possible value for s in the
interval (6.17) is 2p.

For k > 2 we obtain by (6.12) that one summand in (6.15) is divisible by px

for some

x > pp
��
�p
p�1

� k

where the number of p’s is k � 1. Therefore, by the argument above each sum-
mand is divisible by px

0

for some

x0 > x � pp
��
�p
12

> pp
��
�p
p�2

where the number of p’s is k � 2. So we can write

s D ı � pp
��
�p
p�2

where the number of p’s is k � 1, and ı is some integer. As the term after ı is
greater than the length of the interval from (6.16), we know that the only possible
value for s is kp. This proves (6.19).

Thus

kp D

c2�1X
iDc1

lip
Pi
jD1 j̨ :

Since all the
Pi
jD1 j̨ are different (as v is geodesic) and the li are in .0; p/, basic

arithmetics (a sum of products of powers of p with numbers smaller than p can
only give a power of p if there is only one summand, and the factor is 1) imply
that lc1 D 1 and c2 D c1 C 1. Hence z can be written as

z D t�1uc1 tat
�1uc2 t:

Taking the logarithm in (6.19), this implies that
Pc1
iD1 ˛i D

k�1p. Hence,

uc1 DG a
�k�1pC

Pc1�1
iD1

˛i

and
uc2 DG a

k�1pC
Pm
iDc2C1

˛i :
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We now apply the induction hypothesis with n1 WD
Pc1�1
iD1 ˛i in the role of n,

which satisfies the assumptions as

a
Pc1�1
iD1

˛i DG u1u2 : : : uc1�1:

We then apply the induction hypothesis again with n2 WD
Pm
iDc2

˛i in the role
of n, which satisfies the assumptions as

a
Pm
iDc2

˛i DG uc2uc2C1 : : : um:

This gives for j D 1; 2,

`.ucj / � 3 � 2
k
� 5Cmin¹dnj ; 3 � 2

k�1
� 5º �min¹dnj ; 2

k�2
º:

So, as v contains 3m � 1 letters a and t outside the ui , we obtain

`.v/ � `.uc1/C `.uc2/C `.u1u2 : : : uc1�1/C `.uc2uc2C1 : : : um/C 3m � 1

� `.uc1/C `.uc2/C dn1 C dn2 C 3m � 1

� 3 � 2kC1 C 3m � 11

C

2X
jD1

.min¹dnj ; 3 � 2
k�1
� 5º �min¹dnj ; 2

k�2
º C dnj /: (6.20)

Observe that by (6.6), and since the term in the sum above is always non-negative,
we get that

dn � 2
k�1: (6.21)

We claim that for j D 1; 2

dnj � 3 � 2
k�1
� 5 or dn3�j D 0: (6.22)

Indeed, suppose dn1 > 3 � 2
k�1 � 5. Then by comparing (6.6) with (6.20), we

obtain that

3 � 2k � 5 � 2k�1 � min¹dn; 3 � 2k � 5º � 2k�1

� 3m � 6Cmin¹dn1 ; 3 � 2
k�1
� 5º � 2k�2 C dn1

Cmin¹dn2 ; 3 � 2
k�1
� 5º � dn2 C dn2

� 3m � 6C 3 � 2k�1 � 5 � 2k�2 C 3 � 2k�1 � 5C 1

Cmin¹dn2 ; 3 � 2
k�1
� 5º

� 3m � 5C 3 � 2k � 10 � 2k�2 Cmin¹dn2 ; 3 � 2
k�1
� 5º:
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Therefore, since m � 3,

�2k�1 � �1 � 2k�2 Cmin¹dn2 ; 3 � 2
k�1
� 5º;

implying that
1 � 2k�2 Cmin¹dn2 ; 3 � 2

k�1
� 5º:

Hence dn2 D 0. In the same way we get that the assumption dn2 > 3 � 2
k�1 � 5

implies that dn1 D 0. This proves (6.22).

Let us define a new word Qv which is obtained from v by replacing z with
t�1 Qv�11 Qv2t where the Qvi are geodesic words for ani . That is,

Qv WD al0 t�1u1t : : : a
lc1�1 t�1 Qv�11 Qv2ta

lc2 t�1uc2 : : : t
�1umta

lm :

Clearly, Qv represents an.
First, suppose that both Qvi contain a letter t . Note that then we may assume that

each of the Qvi starts with a t�1. Hence, dn � `. Qv/ � 2. Observe that also, dnj > 0.
Hence, by (6.22), dnj � 3 � 2

k�1 � 5.
By (6.6) and by (6.21),

`.v/ < 3 � 2kC1 � 5C dn � 2
k�1:

Moreover, since
`.z/ D `.uc1/C `.uc2/C 5;

and by (6.22), we obtain

dn � `. Qv/ � 2

� `.v/C dn1 C dn2 C 2„ ƒ‚ …
� `.t�1 Qv1

�1
Qv2t/

� `.z/ � 2

< 3 � 2kC1 � 5C dn � 2
k�1
C dn1 C dn2

�

2X
jD1

.3 � 2k � 5C dnj �min¹dnj ; 2
k�2
º/ � 5

� dn � 2
k�1
C

2X
jD1

2k�2

� dn;

a contradiction.
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So we may assume that one of Qv1; Qv2 does not contain a letter t , say Qv1. Then it
might not be true that dn � `. Qv/ � 2. On the other hand, we can then use
Lem-ma 6.2. Hence the last calculation becomes

dn � `. Qv/

� `.v/C dn1 C dn2 C 2 � `.z/

< 3 � 2kC1 � 5C dn � 2
k�1
C dn1 C dn2

�

2X
jD1

.3 � 2k � 5C dnj / �min¹dn2 ; 2
k�2
º C ı

jnj;pC6
2

� 5C 2

� dn � 2
k�1
C 2k�2 C ı

jnj;pC6
2

C 2

� dn � 2
k�2
C ı
jn1j;

pC6
2

C 2;

which yields a contradiction for k > 3. For k D 3 we deduce

n1 D
p C 6

2
> 7 D 3 � 22 � 5:

So by (6.22), dn2 D 0. So we can substitute the last two lines of the calculation
above with

dn < dn � 2
2
C 1C 2

� dn � 1;

which is also a contradiction.
So let k D 2. Then

`.v/ < 3 � 23 � 5C 7 � 2 D 3 � 23;

by (6.21). Therefore m � 3. If m D 3, then
P3
iD1 ˛i D 0 and hence ˛c1 ¤ ˛c2 .

So ˛ci D ˙
2p and ˛c3�i ¤

2p. By Lemma 5.7 we get

2X
iD1

`.uci / � 3 � 2
3
� 9

and

`.v/ �

3X
iD1

`.ui /C 3m � 1 � 3 � 2
3 > `.v/:

So we have k D m D 2. This implies v D al0 t�1uc1 tat
�1uc2a

�nCl0 and

`.v/ D 3 � 23 � 5C n > 3 � 23 � 5C dn � 1;

which is impossible by (6.6).
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