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Abstract. Linear and projective boundaries of Cayley graphs were introduced in [6] as
quasi-isometry invariant boundaries of finitely generated groups. They consist of forward
orbits g = {g’ :i € N}, or orbits g*>° = {g’ :i € Z}, respectively, of non-torsion
elements g of the group G, where ‘sufficiently close’ (forward) orbits become identified,
together with a metric bounded by 1.

We show that for all finitely generated groups, the distance between the antipodal
points g% and g~°° in the linear boundary is bounded from below by m, and we give
an example of a group which has two antipodal elements of distance at most 4/12/17 < 1.
Our example is a derivation of the Baumslag—Gersten group.

We also exhibit a group with elements g and / such that g*° = h°°, but g=>° # h™°.
Furthermore, we introduce a notion of average-case-distortion—called growth—and com-
pute explicit positive lower bounds for distances between points g and £° which are
limits of group elements g and & with different growth.

1 Introduction

One of the most important classes of groups studied in Geometric Group Theory
is the class of word-hyperbolic groups (also referred to as Gromov-hyperbolic
groups). Word-hyperbolic groups admit several geometric tools which can be used
to derive algebraic properties. Since in Geometric Group Theory the focus lies
on the large-scale geometry of the group, these tools are only defined up to
quasi-isometries. An important large-scale invariant of a hyperbolic group is its
Gromov-boundary. The present work is part of a program to understand the extent
to which one can generalize this concept to arbitrary finitely generated groups.

A new concept of quasi-isometry invariant boundaries of metric spaces has
recently been introduced by Kron, Lehnert, Seifter and Teufl [6]. It is related to
a concept due to Bonnington, Richter and Watkins [1]. This concept is rather gen-
eral and for instance, Tits’ boundary of a CAT(0) space (see [2, Section 9]) fits
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into it, after a small modification. See [6] for a more detailed discussion of this
relationship.

We will not recall the full concept for metric spaces, because here, we are
only interested in two applications to Cayley graphs of finitely generated groups,
namely the linear and the projective boundary, which we shall introduce next.

Let G be a group generated by a set X. The Cayley graph

I = (V. E) = Cay(G. X)

is the graph with vertex set V = G and edge set £ = {{g.h} : g 'h € X}.Letd
be the graph metric of I'. That is, d(g, ) is the length of the shortest path in I"
from g to A.

For g € G of infinite order let

g¥ ={g" :neN}
denote the cyclic subsemigroup generated by g. We also call g the forward orbit
of g. Let
g=® =gl k e 7}
denote the cyclic subgroup generated by g, and we call g% the orbir of g. The
backward orbit g—° is defined analogously.
Let €G and €1 G denote the family of infinite orbits or infinite forward orbits,
respectively. That is, we set
€G = {gT® : g€ G, |g| = o0}
and
€tG :={g®:g€G, |g| =00}
We want to measure the distance between two orbits as if it were an angle. For
this, fix @ > 0 and ¢ € N, and call the set
a-g®°+c:={veG:IneNsuchthatd(v,g") <a-d(1,g") + ¢}

the («, ¢)-cone around g®°. In other words, the («, ¢)-cone around g° is the union
of all balls with center g” and radius « - d(1, g") + c. Analogously we define the
(e, ¢)-cone around g+ as

a-g¥® 4 c:={veG:IkeZsothatd(v,g") <a-d(1,g5 +c).
In what follows, we write h*° € a - g®° + cif h" € a - g°° + ¢ foralln € N and
define h*® € o - g+ + ¢ analogously. For x, y € €G or x,y € €1 G set
sy(x,y) :=infloa e R:3c e Nsuchthatx ea-y+candy € o -x + ¢}.

If sy (x,y) = 0, then we call x and y linearly equivalent, this is an equivalence
relation. We call two elements g and h forward equivalent if g ~ h*° and
backward equivalent if g=% ~ h™°.
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It is easy to check that the function sx is well defined on the set of equivalence
classes and that the square root £y = /sy is a metric on the quotient € G/~ and
on €G/~, respectively. The completion of the metric space (€1 G/~, 1) is called
the linear boundary £G of G, the completion of the metric space (€G/~, ty) is
called the projective boundary G of G, or strictly speaking of G with respect
to the generating set X. Although the elements of the linear/projective boundary
are equivalence classes of (forward) orbits g(i)oo, and not the (forward) orbits
themselves, we shall slightly abuse notation and write g(*)°° instead of [g(*)%] .
also for an element of the linear or projective boundary.

If G is finitely generated and we change the finite set of generators, then the
resulting quotient spaces are bi-Lipschitz equivalent and hence the boundaries are
homeomorphic. But the values of sy and #x depend on the choice of generators.
In most cases the context will make clear the set of generators with respect to
which we calculate sy and ty; therefore we will frequently suppress the index X.
Moreover, by definition it is clear that the diameter of £G and of # G is at most 1.
For more details we refer to [6].

The linear boundary of finitely generated nilpotent groups is (homeomorphic
to) the disjoint union of spheres with dimensions d;, which correspond to the free
abelian quotients of rank d; + 1 in the central series, and the projective boundary
is (homeomorphic to) the disjoint union of projective spaces of the same dimen-
sion; see [6]. The latter fact relies on the observation that in the case of a nilpotent
group the distance 7(g°°, h*°) is equal to the distance of the inverse elements
t(g7°,h=°) forall g*°, h*® € £G. Thus the space & G can be obtained by iden-
tifying each element with its inverse without changing distances (that is, for all
elements g, 1 € G the distance (g%, h**) (in £ G) is equal to the minimum
of 1(g°°, h*°) and 1 (g°°, h~*°) (in £G)).

One might guess that this yields a general method for constructing the projective
boundary but the results in Section 3 show that this is not the case. In general, it is
not even true that g = 7 implies g ~°° = h~°°; hence the projective boundary
is not necessarily a quotient of the linear boundary.

Theorem 1.1. There is a group H with elements g1 and g, which are forward-
equivalent but not backward-equivalent.

The proof of Theorem 1.1 is given in Section 3.

Knowing of this counterintuitive phenomenon, it is natural to ask whether the
‘algebraic antipodal’ g~ of g™ € €1 G is also the metric antipodal. In other
words, one would like to know whether #(g°°, g~°°) is always 1 or if at least this
distance is universally bounded away from 0. We show that the answer to the first
question is negative, but that there is a positive lower bound for ¢ (g, g—°°).
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Theorem 1.2. The following statements hold.

(a) For any finitely generated group G and any g € G of infinite order we have
18,87 = y1/2
(b) There exists a group G generated by the finite set X which has an element g

such that tx (g°°, g=>°) < /12/17.

The proof of this result will span from Section 4 to Section 6. While the proof
of the first part of Theorem 1.2 is not overly complicated, the proof of the second
part is quite lengthy and takes up most of these three sections in which we give
an example of a family of such groups. The groups in question are derivations of
the so-called Baumslag—Gersten group and in order to prove our theorem we have
to understand some of the intrinsic geometry of these groups. Note that for the
group constructed for the second part of the statement it is not hard to see that for
all g € G of infinite order we have maxyeq tx (g°°, h°°) = 1. This remark goes
back to a suggestion of an anonymous referee of this paper and actually it sounds
reasonable that this statement is true for all finitely generated groups G but we
have not been able to prove it, yet.

As we will see, the geometry of a cyclic subgroup can be very different from
the usual geometry of the group of integers. This phenomenon is known as dis-
tortion and leads to one of the asymptotic invariants studied by Gromov in his
seminal book [5]. For an element / of a group G generated by the finite set X
let ||y denote the length of the shortest word representing % in letters of X ¥,
where X* = {x € G : x € X orx € X~!}. Gromov defines the distortion func-
tion for a subgroup H generated by the finite set ¥ as

1
AZ(r) = —max{|hly :h € H, hlx <r}.

This function measures something like a worst-case distortion and can easily be
superexponential, for instance in the group G, of Theorem 4.2. Such examples
suggest that the factor 1/r is a bit artificial and in fact nowadays most authors
follow the definition of Farb [3] who defined the distortion function just as

AB(ry = max{|hly : h € H, |h|x <r}.

In the context of this work, we are interested in the distortion of cyclic sub-
groups (or even cyclic subsemigroups). But as we would like to view these sub-
groups just as a set rather than as a sequence, worst-case considerations do not
seem appropriate. A better fitting concept will be a kind of average-case distortion
for cyclic subgroups—called growth of elements—which we define as follows.
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Definition 1.3. Let G be a group generated by the finite set X and let g € G. The
growth of g is the function wg (1) : N — N which counts the number of elements
of the type g’ in the ball B;(n) of radius n around 1:

wg(n) =i € Z:1g'Ix <n)|.

Note that for the group H = (g) our growth function wg(n) measures the
number of elements of H in the ball of radius r around 1, while Gromov’s dis-
tortion A g (r) determines the absolute value of the maximum of all i such that g’
still lies in this ball.

There are some easy bounds on the growth. First of all, balls in Cayley graphs
grow at most exponentially fast. Namely, it is easy to see that the upper bound
we(n) < |B1(n)] < (2|X|—1)(2|X[)"! holds. Less obvious but still straight-
forward is the following fact. For all k € N, we have wg (kn) > k - wg (n). For
instance, the groups which will be defined in Theorem 4.2 contain elements with
exponential growth function, and in free nilpotent groups of class ¢ the growth
function of a central element is equivalent to n€. The results of Olshanskii and
Sapir [8] on length functions of subgroups, which are a very precise measure for
distortion phenomena, suggest that there exist a broad variety of growth functions
for elements. It seems natural to ask the following question:

Problem 1.4. Can two elements g and & of a group whose forward orbits are
linearly equivalent have growth functions of different order?

In Section 2 we will give a partial solution to this problem. If g is an element
of exponential growth, then there is even a minimal distance between g%, and
any other orbit of ?G of an element /4 of the group which has a different growth.
This minimal distance depends on the number of generators of G and the growth
functions of g and 4. Our lower bound also holds for the minimal distance in £G.

To make this statement more precise we will use Landau notation. Recall that
for a function f, g : N — N the notation f(n) € w(g(n)) can be translated to “for
all k > 0 there exists an n¢g such that for all n > ng we have f(n) > k- g(n).” In
the same manner f(n) € o(g(n)) translates to “for all k > O there exists an ng
such that for all n > ng we have f(n) <k-g(n).”

Theorem 1.5. For everyd € N, § > 1 and y > § there is a tin = tmin(d, y,8) >0
such that for each group G, each generating set X of cardinality d, and any
g.h € G withwg(n) € w(y™) and wy(n) € 0o(8"), we have that

t(gioo, hioo) > tmin  and t(goo, hoo) 2 Imin-

A possible choice is tyin = 1/108(24-1), -
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Note that the assumption wg (n) € w(y™) already implies that d > 2 and there-
fore the logarithm is well defined.

In order to be able to speak of the growth of an element of a group without
fixing a generating set, we consider equivalence classes of growth functions rather
than explicit functions. Two functions f, g : N — N are called weakly equivalent
if there exist constants ¢y, ¢» such that

g(n) <ciflcin +c2) +ca,
f(n) <crglcin +cz) +c2

hold. If X and Y are finite generating sets for G, then Cay(G, X) and Cay(G, Y)
are bi-Lipschitz equivalent and therefore the growth function of g with respect
to X and the growth function of g with respect to ¥ are weakly equivalent. Note
that this equivalence separates exponential functions from sub-exponential func-
tions and hence having an exponential growth function is a property of the group
element which is independent of the chosen generating set.

We say that an element of a finitely generated group has exponential growth
if there is a finite generating set S of G such that the growth function of g with
respect to S is exponential (by the preceding paragraph, this then holds for any
finite generating set S). Theorem 1.5 immediately gives the following corollary.

Corollary 1.6. If g is an element of a finitely generated group that has exponential
growth, then every element h with g = h® (or with with g*®° = h**) also
has exponential growth.

Before we start let us fix some further notation. Throughout the paper G will
be a group generated by a (usually finite) set X. The free monoid over the alpha-
bet X+ will be denoted X * and £ is the length function on X *. The assumption
that X is a generating set of G implies the existence of a surjective monoid homo-
morphism 77 : X* — G and it is straightforward that for g, 7 € G we have

d(g,h) = min{l(w) : w e X*, n(x) =g 'h}.

Using this fact, we mostly work with representing words for group elements. We
will use the shorthand notation w; =g wy for w(wq) = 7w (wy) whereas wy = w,
means that the two words as elements of X * are equal.

For Y C G we will denote by (Y )G the subgroup of G generated by Y, i.e. the
smallest subgroup of G containing ¥ and by (Y )) g the normal closure of ¥ in G,
i.e. the smallest normal subgroup of G containing Y .

Beginning with Section 4 we will have to work with huge powers. We will use
the following notation: Let ” p denote the tower of length n of pth powers (often
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called tetration of p by n), i.e.

0 (nfl)p

p=1 and "p=p
So for instance 3p = p?”. (Note that by convention a?* = a®), not (a?)¢.)

We assume that the reader is familiar with the concept of HNN-extensions and
in particular with Britton’s lemma which most of our considerations concerning
part (b) of Theorem 1.2 rely on. Britton’s lemma can be used to derive a normal
form for elements in HNN-extensions and gives a necessary condition for a word
to represent the identity. The standard references for these results (and many other
facts on HNN-extensions) are [7] and [10].

2 Distortion phenomena

The present section is dedicated to the aforementioned distortion phenomena.
We prove Theorem 1.5.

Proof of Theorem 1.5. We will only show the result for the elements of the projec-
tive boundary, that is, we show the existence of a number #,;, such that for each
group G that is generated by d elements, and any g, 7 € G with wg(n) € w(y")
and wy,(n) € 0(8"), the inequality (g%, h*%°) > . holds. The other part can
be shown analogously.

We assume that 7(g+>°, %) < 1, since otherwise 1 is the desired bound.

Since wg (1) € w(y") and wy(n) € 0(8"), there exist constants Ny, c1, c2 such
that for all n > Ny we have

n

we(n) = ¢1-y" and wy(n) < cz-8" @.1)

Letn > No, let o € R such that 1 > o > ¢(gF%°, h+®)2 = 5(g*®, h+>).

By definition, there exists a constant ¢ such that for all i > 0 there exists some
j = j(i) such that ' .

8" € Bya niyrc ().
Ifd(1, gi ) < n, then by the triangle-inequality,
d(1,h)y <d(1,g") +d(g' . h/) <n+ad(1,h’)) +c

and thus
n-+c
T

Setl:={icZ:d(l,g")<n},andset J :={j €Z:d(1,h’)) < %} Then
for eachi € I we have j(i) € J. By (2.1),

d(1,h)) <

ntc
1] > c1y" and |J| < cx8Te,
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and the latter is smaller than ¢38 7= for some constant ¢3. Hence, by the pigeon-
hole principle, there exists a j € J such that

. ct - Vn 1 y n
|Boyis i (hf>|z—,,=—( )
ad(1,h/)+c 3-8 3 Sﬁ

On the other hand, | By 4(1 p/)+¢ (h7)] is bounded above by a power of the number
of generators d, namely by

| Boa(iyreh?)] < 2d - (2d — 1)@ +e=1,

We obtain the inequality

n .
C_l( )/] ) §2d~(2d_1)ad(1,h/)+c—1
C3 \ §1—a

<2d-(2d — 1)* 55 +e-1
=c4-2d —1)T%
=ca-(2d — )T

for ¢4 = 2d - (2d — 1)T7=a T¢~1. This has to be true for arbitrarily large values
of n, which is possible only if

i <@2d-1)Ta < y'I™=@d-1)*-$

1—a

— Iny —a-lny <a-ln(2d — 1) +1né
Iny —1Iné “
In(2d —1)+Iny —

14
— 10g(2d—1)y g <.

Note that % < (2d — 1)y and therefore this lower bound is less than 1. We obtain

the lower bound
14
(g™, k™) = | [logry_1), 5 o

The complete answer to Problem 1.4 remains open. In addition it might be an
interesting project to completely understand the relationship between the usual dis-
tortion of cyclic subgroups and the growth of the generating element. It obviously
happens that cyclic subgroups of different distortion yield elements of the same
growth type but whether it can also be the other way around is an open question.
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3 Forward-equivalence vs. backward-equivalence

In this section, we will construct a group H that contains elements g; and g, for
which g7° ~ g5° but g7 £ g5,°°. The group H is an iterated HNN-extension of
a cyclic group (generated by the element a) with stable letters s, 7, x given by the
presentation

1 2 —1 2 -1

H={(a,s,t,x |t "at =a°,s as =a”°, x sx=s2). 3.1

Thus H is isomorphic to a free product with amalgamation H = Hy *(4) H>
where H is the Baumslag—Solitar group

BS(1,2) = (a,t |t tat = a?)

and

2 1

Hy = (a,s, x| slas =a?, x 7 lsx = s2)
is an HNN-extension of BS(1,2) = (a,s | s~ 'as = a?) with associated subgroups
(s) and (s2).

We use the group H to prove Theorem 1.1.

Proof of Theorem 1.1. We have to show that H contains elements g; and g»
which are forward-equivalent but not backward-equivalent. We do this for gy := ¢
and g, := at.

First of all, we estimate the distance dg (1, glk) for k € Z. In all defining
relations of presentation (3.1) the exponent sum of ¢ is zero, hence any word rep-
resenting r¥ needs at least |k| times the letter 7 (or 1! if k < 0). So the word ¥
is geodesic and

d(1,g}) = [k|. (32)

The same argument yields that
k| < d(1.g5) <2kl (3.3)

which will be a sufficient approximation for our purpose.
Let k > 0. We can use the relation  “1ar = a2, which is the same as at = ta?,
to see that
gk = ka2 2, (3.4)

By definition, the distance dg (g’l‘, g’zC ) is the same as
du(1,g7%g8) = du (1,7 5?2 = dy (1,777 (35)
One easily checks that

a2k+1—2 — g k+D) k1 -2 (3.6)
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Hence to obtain an upper bound for dg (1, gl_k g’2c ) we need to find a good upper
bound for dg (1, sk). Let kjkm—1 . . . ko be the binary code for k (i.e. k; € {0, 1}
and k,,, = 1). Then, because of the relation x “!sx = s2, it holds that

m—1
(1_[ sk"x_l)sxm —_—_
i=0

The fact that m = |log, k| gives us the upper bound dg (1, sky < 3. log, k| + 1.
Thus by (3.5) and (3.6),

dr(1,g7%¢%) < 6 [logy(k + 1)) + 5. 3.7)

In order to show that d;g% (g7°,85°) = 0, we now fix an o > 0 and show that

den (g5, 85°) <a.

To do so, by (3.3), it suffices to show that there exists a constant ¢ = ¢(«) such
that for each k there exist k1 and k» such that

dH(g]f,glzcl) <a-k;+c and dH(glzc,glfz) <a-ky+ec.

Choosing k; = ko = k and using (3.7), this breaks down to the statement that
there exists a constant ¢ = c(«) such that

6-logy(k+1)]+5<a-k+c,

which is obviously true. This shows that g; and g, are forward-equivalent.

We shall now show that g; and g, are not backward-equivalent. In fact, we
claim that dg g (g7°°, g5 °°) = 1. For this, by (3.2), it suffices to show that for
each ¢ € N there exists an !’ € N such that for all / € N the inequality

di(g;" g7 > 1-d(1.gh) +e=1+c

holds. Set [’ := ¢ + 2. By definition, and because of the relation t~ a1t = a2,
we have

I VA _J’ _(rl'+1_ g
du(g5" . g7 =du(l.ghg5") = duy(1.t'a=@ " 7271,

where for the last equality we used (3.4).

Now, let
_(o!'+1_9y _
h=tla? =

be the word representing g{ g5 " in I:I and we try to simplify it within the pre-
sentation of this group. Using now 2! — 1 times the relation " 'a~'t = a=2 we
obtain that

1 21—
h=g =g+ U+l _.
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In order to give a lower bound for dg (1,4) we once again have to change our
point of view. The group H is an HNN-extension of H, with stable letter # and
associated subgroups (a) and (a?). Let & be a geodesic word such that i’ =g h.
Hence
Wh=! = ol

We now iteratively apply Britton’s lemma to 4’ hl

The number of letters ¢~ ! in 4’ is odd and therefore the letters ¢ and ¢!
belonging to 4’ cannot cancel out (moving a ¢ from left to right through a power of
letters a halves this power). Therefore they all have to cancel with corresponding
¢t~ and ¢ letters in A~1. This implies that the geodesic word h has to contain [ — 1
times the letter # and I’ — 1 times the letter z . So,

dg(eih s =dg(h)y= (I -+ " =1)>1-1+e,

as desired. O

4 The distance between g and g~

The remainder of this paper is devoted to the proof of Theorem 1.2. We split
it into two parts. First we show in Theorem 4.1 the easier lower bound for the
distance between two elements g2 and g~ = (g~ 1) of the linear boundary of
a finitely generated group G. The more difficult part of Theorem 1.2 is obtained
from Theorem 4.2, which shows that there are examples of groups with elements g
where the distance between g°° and g~° is strictly smaller than 1. The proof of
Theorem 4.2 will continue in Sections 5 and 6.
But let us first show the easier bound:

Theorem 4.1. Let g be an element of a finitely generated group of infinite order.
Thent(g*®, g~®) > 1//2.
Proof. Any ball in a group with respect to a finite generating set is finite. Hence
lim d(1,g") = . 4.1
I—>00
Suppose o € R is such that s(g°°, g7°°) < «. Then there is a ¢ € N such that for
each i there exists an m (i) € N with
(g™ g") sa-d(1,g"V) +c
<o (d(.g™) +d(g™ . g"D) +ec.

using the triangle-inequality. By (4.1), there is an increasing sequence (iy)n>1
such that _
d(1,g%) > d(1,g™) forall k > iy. 4.2)



466 B. Kron, J. Lehnert and M. Stein

Thus

d(g_ln s gm(ln)) —C
a > , , .
T d(1, g7in) 4 d(gin, gmlin))
d(1, gintmiin)y — ¢
= d(l’ gi") + d(]’ gi,,-}—m(i,,))
(4.2) d(],gin'i'm(in)) —c
>
2-d(1, gintmin)y

_ 1 | c
o\ d(1, gintmn)y |’
Since this inequality is valid for all i, n € N, and because of (4.1), we obtain

that o > 1/2. As & may be chosen arbitrarily close to s(g°°, g~°°), this implies
that s(g>, g7°°) > 1/2, and thus, 1 (g™, g~°) > 1//2. ]

We now turn to the rather tedious proof of the second part of Theorem 1.2 which
will span over the remainder of this section and the following two sections.

Theorem 4.2. Let p > 20. In the group G, = (a,t |t~ 'a tat " at = aP?) we

have t(a®,a=%°) < /12/17.

Remark 4.3. The group G, from Theorem 4.2 has a perhaps more natural descrip-
tion: Consider the Baumslag—Solitar group BS(1, p) = (a,x | x"'ax = a”) and
build the HNN-extension with associated subgroups (a) and (x). The resulting
group is isomorphic to G,. Furthermore, if we replace the p in the presentation
by the number 2, we obtain what is called the Baumslag—Gersten group G». This
group was constructed by Gersten [4] (see also [9]) as an example of a group with
Dehn function ~ "2.

Remark 4.4. From now on we consider p > 20 to be a fixed number. We choose
a lower bound of 20 for the sake of brevity of the arguments. However, this is not
the best possible bound for p. We believe the theorem to hold for all p > 2.

We already remarked that the remainder of this section and the following two
sections are devoted to the somewhat lengthy proof of Theorem 4.2. The main aim
of the rest of the present section is to introduce certain short geodesic words wy
of G, which represent large powers of a. The words wy will later be used to show
that 7 (a®°, a=°°) is bounded from above by /12/17.

For the sake of simplicity, let us shift our attention for a moment from G, to
the infinitely generated group G’ that shall be defined next. First, foralli < k € Z
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we set

A;c = {ai,...,ak},
AR = | 4F,
k>i

Gk .= (Ak|a aj— 1aj—a] Ll =i+ LI +2,0 k),

G = (A |aj'aj1a; =a

G':=G.

Jl,]—z—{—lz—i—z ),

For all i € Z the monoid isomorphisms ¢ = ¢; : (A7°)* — (AP9)* defined
by
plaj) = aj+1

induce isomorphisms between G;° and G727 | resp. le and lej'll, which we, abus-

ing notation, will also call ¢. Using |i| times this isomorphism ¢ we see that

G =G and GF=x=GHH foralli.j.keN. 4.3)

Lemma 4.5. Let j < i < k. In the notation defined above,
Gf = (Af)gee and  G{® = (A%)ge=

(or;, to be more precise, the identity map from Ak Gk to Ak G°° (resp. A°)
induces an isomorphism Gk (Ak)Goo (resp. G°° = (A°°)Goo))

Proof. As a first step for fixed i we use induction on k to show that

Gik = (A?>ij

Let k = i; then Gik 2~ 7 and in the HNN-extension GJ]-‘ the letter ay, is the stable
letter and hence

<A£'€>G/F = (ak>G’F = 7.

Now assume G/" = (Am)Gm and let k = m + 1. By von Dyck’s theorem the
identity map on A induces an epimorphism

id: GF — (4F) ok

and we only have to check for injectivity. The group Gk is an HNN-extension with
stable letter a; and base group G;" and similarly the group Gk is an HNN-exten-
sion with stable letter a; and base group Gm The induced eplmorphlsm maps
words in normal form to words in normal form, so the injectivity is a consequence
of Britton’s lemma.
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It remains to show that

k k
Again von Dyck’s theorem shows that the identity map induces an epimorphism
and we just have to check injectivity. Let w € (A}c )* and assume w =G 1. Then
w is freely equivalent to a finite product of relators and therefore there exists an m
such that

w :G}" 1.

The group G]’.” is an iterated HNN-extension of G]’.c and in each step injectivity is
an immediate consequence of Britton’s lemma. Hence

w :G_jf 1.

The claim about G being isomorphic to (A?O)G;?o follows from the observa-
tion that ‘
. k 1 k i
G =lim G = lim(47)gee = (47%) gz o

The case of the lemma above one should keep in mind is the case 0 = j < i,
hence G;’o = G’. We only have to deal with negative values of i for some techni-
cal reasons but will see later on (in Lemma 5.1) that the letters a; for negative i
are of no importance for our purposes.

We shall now embed G’ in G,. By (4.3), the subgroup generated by the ele-
ments {a;,d;+1.d;i+2,...} is isomorphic to G’. Therefore we can construct the
ascending HNN-extension G associated to ¢. Then

G=(ta (j=012...)]| aj_ilajajﬂ = af, t_lajz =daj41).

Note that in this group the relations a; = ¢t agt’ hold. Substituting ao by a and
applying Tietze-transformations we obtain the presentation from Theorem 4.2:

G=G,={at]|t 'a rar  ar = aP).

So G is in fact a one-relator group on two generators. Even if the elements a;
no longer belong to our set of generators, we will still use the notation a; for the
element ' at'. In order to prove Theorem 4.2 we are only interested in distances
between powers of a, hence elements of the subgroup G’. Such words have to con-
tain the same number of letters # and ¢ ~!. Moreover, they can be written entirely
in letters a; using the following rewriting process:

Let v be a word in {a™T, t*}* as above. We replace every a by the letter a; and
every a~! by ai_l, where i is the difference of the number of letters ¢~ and the
number of letters ¢ before this a or a~!, respectively. Afterwards we delete all
letters # T to obtain the word v/ € {aii}lf‘ez. For example v = t2at*a?t—3a>ta
becomes v/ = az(a_»)*(ay)ay.
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If the word v is (freely) reduced, we can recover it from v’ by replacing each a;
with t“at’ and each ai_l with 1 ~"a~1t’, respectively, and freely reducing the
result then. This defines a bijection ¥ between the reduced words in {al.i} iez and
the reduced words in {a*, 7% }* that have the same number of letters ¢ and ¢~

We proceed to defining the words wy which shall be used as ‘shortcuts’ to go
from large negative powers to large positive powers of a in the proof of Theo-
rem 4.2. Our definition of the wy will rely on the words wj, in G’ representing
large powers of ag which we define first.

For this, first note that

-k . k —(k=1) p k-1
dit14idjq =G 4j4q 4; Qi

=G (ai_+1_ ai z+1)p
—(k—2)

=6 ((a;45 z+1)p)p
_( —

=6’ (ai+1 ai z+1)p

k
=G’/ aip

Now set wy, := ag and inductively set wk = go(wk Do Laop(wy_;). Notice
that the word w;_ only consists of 2k+1 _ 7 Jetters. Nevertheless, it represents
a huge power of ag:

Lemma 4 6. The word w) © (€ (Ag°)*) is freely reduced and represents the group
element aop in G'.

Proof. We use induction on k. For k = 0 the statement is true by definition.
Assume that w), is freely reduced, w), =g+ ay? and let k = n 4 1. The word
@(wy,) is also freely reduced and does not contain the letter a¢ hence

wy, = (p(wy) ™" a0 p(wy)
is also freely reduced. We obtain
wy = (p(wy)) ™" ao p(wy,)
=g (p(ag") ™ ao p(ay”)

— "p "p
=G’/ al ao Cll
n—+1
=G’ aO P
kp

=G’ 4y - O
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Since w; is reduced, we finally can define w; := ¥ (w;). Then

wo=a and w;4q =t_1u)i_1tat

_lwil‘,

where the second line follows from the easy observation, that for all reduced words
w € (AF)* the word g(w) is also reduced and ¥ (¢(w)) = t~ 14y (w)t. Note that
since V|G- is just a rewriting process of elements of G’ as a subgroup of G and
since w; =g’ a 7, we obtain wy =g ar.

The recursion formula for wy above implies that the length of wy is given by
the recursion formula £(w; +1) = 2 - £(w;) + 5 and therefore

C(wy) = 3.2k — 5, (4.4)
Our proof of Theorem 4.2 will follow from the next two lemmas.

Lemma 4.7. The words wy, are geodesic.

Lemma 4.7 will be proved in Section 5.

The second key ingredient in the proof of Theorem 4.2 is Lemma 4.8, to be
stated next, and to be proved in Section 6. We employ the well-known Kronecker
delta 8, , which, here for numbers n, m € Z[%], takes the value 1 if m = n, and 0
otherwise.

Lemma 4.8. Let k > 0, n € Z be such that d(1,a"™) =: d, <3 - 2k+1 _ 5 Then

n < p?
where the number of p’s is k — 1 and
kKp—n k+1 : k : k—1
d(1,a )>3-2 — 5+ min{d,,3 2" =5} — (1 = 8,1) min{d,, 2" " }.

Postponing the proofs of Lemma 4.7 and Lemma 4.8 to the next two sections
we first show how they imply Theorem 4.2:

Proof of Theorem 4.2. Observe that it suffices to show that for all @« > 12/17 there
is a ¢ such that the elements ¢~ are contained in the (¢, ¢)-cones of ¢°°. Then
by symmetry (interchanging a and ¢! in all arguments), the reciprocal is true
as well, showing that the distance between a® and a~°° is at most /12/17. Let
o > 12/17 and set ¢ := 35/17.

Letn > 0. Now, let k = k(n) be the unique positive integer such that

3.2k 55 4(1,a") =3.2F = 5.
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We define h = h(n) := kp — n, which is according to Lemma 4.8 positive. Hence,
by Lemmas 4.6 and 4.7 and by (4.4),

d@™",a") =d(1,d"'?) = 3.2k 5, 4.5)
Using Lemma 4.8 we obtain
d(1,a") > 3. (k1 4 2ky —2k=1 _1q.
By (4.5) this shows that
d@™",a" =3.2kt1 _5

12 . 120
= Z.3-k 42k 2k o)+ — -5
7 (3-( +2%) ) + 7
k+1 | oky _ ok—1 35
<a-(3-(2 +2%) -2 10)+ﬁ
< ad(l,ah) +c,
and thus " lies in the («, ¢)-cone around a. |

5 The words w) and wy are geodesic

The main aim of this section is to prove Lemma 4.7, namely that the words wy
are geodesic in G. This will be obtained by a series of results on the groups le
and G7°. A bit outside our way towards Lemma 4.7, we will also sketch a proof
for the fact that the words w)_are geodesic in G" (Lemma 5.6).

The other important results of this section will be Lemmas 5.7 and 5.8 which
are used in the proof of our main theorem, Theorem 4.2. We start by showing
a number of rather easy lemmas. Recall that on page 469 we defined a bijection v
between the reduced words in {a }ien and the reduced words in {a™®, tT}* that
have the same number of letters ¢ and # . We will use the following notation: We
say a word w € A/ is pseudo-geodesic in G’ if w is geodesic in Gj or ¥ (w) is
geodesic in G.

Lemma 5.1. Let i € N and k > i or k = 0o and let w' be a pseudo-geodesic
word in G'. Any subword w of w' representing an element g € le is an element

of (A$°)*.

Proof. Fix a j < 0 such that j < min{m : w’ contains the letter a,j,j}. By Lem-
ma 4.5, the identity map on A° induces an embedding of Gik into G and of G
into Gj‘?o. Therefore jS?o splits as semi-direct product

G = (A7 Ngse G,
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and hence )
G = G/ (A g

Assume that w contains at least one letter aX fork < m < i. Let
7 (A7) — (A7)

be the canonical projection, that is, w(w) is the word we obtain by removing
from w all letters a;t for k < m < i. Then m(w) =G® g - ((A’ 1)) and, since
7 (w) does not contain any letters ajE forO0 <m <i,we 'obtain that

m(w) =ggo &-

Replacing the subword w in w’ by 7 (w) we obtain a the shorter word w”. So w”
is shorter than w and since w =G 7 (w), we also obtain

/ "
w =g w .
J

Hence w’ is not geodesic. Moreover, all letters of w” also occur in the same order
in w’, only some more letters are inserted in between. So ¥ (w”) contains at most
the same number of letters 1+ and less a®, which implies £(y(w”)) < £(y¥ (w")).

This contradicts the assumption that w’ is pseudo-geodesic in G'. o

Corollary 5.2. The subgroups G?° are undistorted in G'. That is, for the genera-
tors considered above, the distances between elements of Gl.°° are the same in GZSX’
asin G’

Lemma 5.3. Let k > i and w be a pseudo- geodeszc word in Gk with w =Gk a?
Then there are words vy, @ = 1,...,m, in G 1 such that

(a) w= all. vlall. vzaf ...vmai ™, for some l; € Z withly, ..., lm—1 #0,

(b) vy =6k, a?_‘f_lfor some By € Z,

© [1v—; va =Gk, 1.

Proof. Without loss of generality we may assume that the word w does not end
with a letter al.i.

As a consequence of Lemma 5.1, the word w has the property that none of its
subwords representlng some element of some subgroup Gk for / > i may contain
a letter aF ; for j < [. For fixed i, we use induction on k to show the stronger
statement that all words with this property that represent a' are of the desired form.

For k =i 4 1 the group le is the Baumslag—Solitar group BS(1, p). Now
the vy are just powers of a; 41 and the above statement breaks down to the im-
mediate consequence of Britton’s lemma that elements of the base group have

exponent sum 0 in the stable letter.
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So suppose k > i + 1, and assume the statement true for k — 1. The group Gk
is an HNN-extension of Gk ! with associated subgroups (ax_;) and (a? 1) and
stable letter ag. As

wa; " =gk 1,

Britton’s lemma implies that w contains a subword a;lvak or aj va,:l, where v
represents an element of (ag—1) or (ak 1)» respectively. (In particular, v does
not colntaln any letters a7t ; for j <k —1.) Replacing any such subword a; Lvay
by a? k—1 Or any such subword agva; by a,lc_l, respectively, for some suitable /,
we obtain a word with less occurrences of a; which still represents a!'. Repeating
this procedure as long as there are letters aj in our word, we arrive at a word
w’ € (A¥=1)*, which still represents a”.

We wish to apply the induction hypothesis to w’, so we have to check if w’ con-
tains any subword representmg some element of some subgroup Gk Uforl > i
and containing the letter a for some j < /. Assume that w’ contalns such a sub-
word

k—1
u :lefl g S Gl .

Since multiplication with letters af_l from the left or right does not change
the desired properties of this word, we may assume, without loss of generality,
that » does not start or end with a letter a,:f_l. Since the replacement procedure
described above only creates letters afcc_l, this implies that all replacements have
been made either outside of u or completely inside of u. In particular, by undoing
these replacements we can identify a subword v’ of w with the properties that

1 k—1
Vi =gr-1 8 € G

and v’ contains a (since we did not add any letters a during our modification),
which contradlcts the assumptions on w.
By the induction hypothesis, the word w’ has the form af”vlall.‘ vzall.2 e Um
with
Vg =pk—1 a‘-g e
G; i+1
Since all replacements have been made inside the words vy, also w has the desired
form. The statement follows. O

Lemma 5.4. In the situation (and notation) of Lemma 5.3, for all 1 < j < m we
have

J m
Z,Botfo and n=lO+Zlap_27=lﬂj.
a=1

a=1
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Proof. According to Lemma 5.3 the word w = al vlal vzal2 vmall.m which
represents the same element as

-t f1(f1o) (1)

. _ B, .
Since v; =G Uy, We obtain

1

W =600 W 1= ]_[ (]_[ al+1) (1_[ aH_l) (5.1)

which we can analyze in the subgroup Gl’: 1 namely in the Baumslag—Solitar
group BS(1, p). Recall that in this group all conjugate of a; by powers of a;
commute. If Z?:l B; < 0, we already know that

! si_.8
lo Tay=1"j
(H“m) (]_[a,+1) =g 4" : (5.2)

Since w’ =gt a’!, this implies that

1
H (H“:H) (H“zﬂ) =git! “?/
Ba>0

a such that )7

for some n’ € Z. According to Britton’s lemma this is only possible, if one of
the /,, is a multiple of p (which is equivalent to the statement that all."‘ € (a f’ )). But
w is pseudo-geodesic which obviously implies /, < p. Hence no such « exists
and using (5.2) to sum up (5.1) the statement follows. O

Lemma 5.5. Let k > i > 0. Any geodesic word in G' containing the letter at © and
representing an element of (ay—;) has length at least 2 71 — 1.

Proof. Let v be a geodesic word in G’ representing an element of {ax_;). We
prove the statement by induction on i. Let i = 0. A word containing aiﬁ has at
least length 1 = 2971 — 1. Now assume the statement to be true for i = n — 1.

Let v be a geodesic word representing afc_n and containing the letter af:.
According to Lemma 5.3,

v=a" viah L vmalm
knlkn m%k_—n

where each vy =g~ a,f‘inH for some B, and the product v{v; ... v, = 1. Since v
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contains a letter a,:ct, there exists an « such that v, contains a,:f. Because v 18
geodesic, the induction hypothesis gives that v, has length at least 2" — 1. Since

(1))

is a word representing v, 1 this word cannot be shorter than the geodesic word vg
and also contains at least 2”7 — 1 letters. All in all, since v contains at least one
letter ay_,, we obtain that the length of v is atleast 2- (2" —1) +1 = 2"*t1 —1. o

In particular, the last lemma shows that there exists no geodesic word contain-
ing aki and representing an element of (ao), which is shorter than wj . And in fact
we can prove the following result, although it will not be needed in the course of
this paper.

Lemma 5.6. The word w,_ is a geodesic word in G'.

Proof. The word w;c represents the element agl’ and has length 2k+1 _ 1. So, by
LemIEa 5.5 for i = k we only have to show that every geodesic word represent-
ing a? has to contain the letter ax. This can again be done by induction on k. The
statement is obviously true for k = 0. Because we will not need this statement
later on, we leave the proof of the induction step, which can be done following the
lines of the proof to Lemma 5.8, to the reader. O

In contrast to the situation in G’, the product w;w; for i # j is not freely
reduced. Nevertheless, in the group G the analogue of Lemma 5.5 also holds.

Lemma 5.7. Let k > 0. Let w be a geodesic word in the letters {a,t} representing
a non-zero power of a such that w' = ¥~ (w) contains the letter a,f. Then the
length of w is at least 3 - 2k+1 _ 5

Ifin addition L(w) = 3 - 2K*1 — 5 then w =g at“P).

Proof. Without loss of generality we may assume that
k = max{j : aj': is contained in w'}.
We prove the statement by induction on k. For k = 0 the statement is trivial.

For k > 0, Lemma 5.3 yields that

N AN AN 2 1 Im
w' = ayviag vaag ... v,ag

where each v, =g a’f“ for some By and the product v{v}...v;, = 1. The v,

are subwords of the pseudo-geodesic word w’ and according to Lemma 5.1 do not
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contain any letters ag. Then, for some words vy € {a,}* we obtain

[ l

lvztal2 alm t~Loptalm

w = a"tr Yy tat e
where each vy =g aPe and the product vV ...V, = 1 (note that this is the
same as saying that > B, = 0). Since w is geodesic, Bq # 0 for all @ which
immediately implies m > 2. Therefore the number of letters ¢ or t~! outside of
the vy is at least 4.

As w' contains a letter a,f, there exists an o* such that v ! (v(/x*) contains alf_l.
As a subword of w, the word vy* is geodesic, it has by induction hypothesis length
at least 3 - 2¥ — 5. Because V1V2 ...V, = 1, the product of the other vy also has
length at least 3 - 2k _ 5, and furthermore, we have at least four letters # and an ala,
the bound follows.

For the second assertion of the lemma, we again apply induction on k. The case
k = 0is trivial. So assume the statement correct for k — 1. The vy* defined above

has — according to the first part of this lemma — length at least 3 - 2k — 5. Since

[T va = v

aFa*

and vg* 1S geodesic, we obtain that also ]_[a#a* Ve contains at least 3 -2k — 5
letters. In addition w contains at least four letters #* and one a*. This only works
out if w =t~ vyra*r vyt and £(vy) = £(v2) = 3-2% — 5. Since w represents
a power of a, we obtain wa® =g 1 for some (huge) x € Z. Britton’s lemma now
implies that vi = v ! has to be a power of @ and by induction hypothesis,

k—1

_ k=1
V] =g d P and vy =qga

p.

Hence
1 _k

_ —1 _ k—1 k
w=gt a Pra*7lq Pt =g at P,

o
Furthermore we can bound the power of a which is represented by a word of
given length avoiding high powers of 7.

Lemma 5.8. Let k, L > 1. Let v be a word of length less than L - 261 in G rep-
resenting an element a”™ for some n € 7 such that y~1(v) does not contain the
letter a;{t. Then,

N

n < p?*
for k > 1 where the number of p’sisk — 1 and |n| < L fork = 1.

Proof. Let v’ = ¥~ !(v). Without loss of generality we assume v’ to be reduced.

First we show, that we also may assume j := max{« : aoﬂf is contained in v’} < k.
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So assume that j > k Since v'ay —G/ 1, Britton’s lemma implies that v’
contains a subword a7 Ywa; j or a;wa; i where w represents an element of the
subgroup ( _1) or (aj—1), respectively. Replacing any such subword aj_lvak

by a _yor a jva; U by al -1 respectively, for some suitable /, we obtain a word
with less occurrences of a; ;7 which still represents ag. Repeating this procedure as
long as there letters a; in our word, we arrive at a word, whrch still represents
a?! but does not contain at ; . We repeat this procedure with a -, and all a

down to « =k + 1 and end up with a word v"ay" =g’ 1 that consists only
of letters aoi,. afcc , and ak 1 This word contarns no subword representing
an element of (ay) or {a k) so all the at iy , have to freely cancel each other. The
resulting reduced subword v"”’ of v""’a can be obtained from v’ by deleting some

of the letters of v’. Hence
Ly ") <L), Y")=gv, j:=max{l:aZ iscontainedinv”} < k.

Therefore we may assume j < k and v/ = ¥~ (v) does not contain any ay
with @ > k.

We proceed by induction on k. Let k = 1. The word ¥ ~!(v) does not con-
tain a letter afc. Therefore v = a® for some |¢| < L. Obviously, n = « and we
are done.

Let k£ > 2 and assume the statement to be true for k — 1. We only consider the
case that n is positive, as the other case is symmetric. We may assume that v is
such that n is maximal among all possible values for n over all choices of v as
in the lemma. Note that then £(v) = L - 2k—1 _ 1, and furthermore, v is shortest
possible among all v satisfying the assumptions of the lemma.

Now, as in the proof of Lemma 5.7 we obtain

1 -1

v = alot_lvltallt_ Uat ...t vmtalm

with v; =g a~Pi for some Bi such that )" B; = 0. But now we can calculate 7 in
terms of /; and f;, namely

n=1Iy+ Zl pzf—l B < (Z |1; |) max; 351 B; =:y.

i=1
Let ¢ be such that max; Zi':r Bj = X_j—1 B;. By deleting all but four letters ¢
and rearranging the letters @ we obtain the word

m P
vV o=t o1vs . vetazi=0ti Ty g L ot

Then £(v’) < £(v) and v =g a”. Since v was chosen such that n is maximal, we
obtain that y = n. Then £(v) = £(v’). So, we actually did not delete any ¢ when
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creating v’, and thus v = v’. Hence

l.—1

v = t_lvlta 1 Tvat,

with vl_l =g vy =g a* forsomea > 0andn =1 - p*.

Assume that [ > 3. Then we can build the word v/ =t Yvia " ta' 2t Lavyt
which is of the same length as v and represents a@=2P)r* ip contradiction to the
maximality of n. Therefore / < 2. Since v is shortest possible under the assump-
tions of the lemma, so are v; and vy, and hence £(vy) = £(v3). Since £(v) is odd,
it follows that / = 1 and

L-2k1—-1-5
L(v) = ———— < L.2k2,
2
By induction hypothesis
ot
laf < p?

where the number of p’s is k — 2, and since n = 1 - p%*, we obtain the desired
inequality. |

The two preceding lemmas imply Lemma 4.7, that is, that the wy are geodesic:

Proof of Lemma 4.7. Let w be a geodesic word such that w =g wr =g a“p.
Recall that we have chosen p > 20 > 12. Since £(w) < 12 - 2k=1 Lemma 5.8 im-
plies that w has to contain the letter a or a,:l. On the other hand, by Lemma 5.7
we know that any word containing ay or a;l is as least as long as wg. So the
statement follows. |

6 The proof of Lemma 4.8

This final section is devoted to the proof of Lemma 4.8, which is the only ingre-
dient missing for our proof of Theorem 4.2. We build on results from Section 5.
Before we start to consider the general situation let us focus on some cases of
small values for n, which turns out not only to be more accessible but will also be
of importance during the proof of the general case. For this case we actually need
stronger statements:

Lemma 6.1. For k > 2 we have d(l,akp_p) > 3.0k+1,

Proof. Letv =g a“P=P and set L = 12. Then

.p"?

kp—p>pP
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where the number of p’sis k — 1. For contradiction, assume £(v) < 3 - 2k+1 Then
by Lemma 5.1, the word v’ := ¥~ (v) contains the letter ay.
By Lemma 5.3 we can write v’ as

r o I8 153 l
V' =day'viag v2dg ... Umdy",

with [1,...,l;m—1 # 0 and thus,

lo A 1

v=a ugrale uztalz...t_lumtal’", (6.1)

for some u; =@ a™ . Since one of the v; contains a letter ay, it follows that one of
the u; =y (uy), say u}, contains a letter a;_1. Hence, Lemma 5.7 implies
Cu;) =3-2k—5.
Another consequence of Lemma 5.3 is that
l_[ Ui =g uj_l (6.2)
i#]
and since u; is geodesic,
. k
> b)) =3-2F -5
i#]

This already implies m < 3. Assume m = 3. This implies £(u;) = 3.2k —5 since
otherwise we obtain £(v) > 2 - (3 - 2K — 4) + 8 (the word v contains six additional
letters ¢, ¢! and at least two additional letters ). By Lemma 5.7 this implies

+hk—1
uj =g a .

By (6.2) and Lemma 5.1 we obtain that y—! (]—[i#- u;) also contains ay_1. So for
j' # j the word u} contains the letter a;_1. Since u; # u}i, Lemma 5.7 implies
L)) >3-2F—4

and therefore
() =3-2k—543.2F 44143

So,m =2 and v = alot_lultallt_luztal2 and similar arguments as above
show that
Cuy) = Lup) > 3-2F — 5.

So |lo| + |I1] + |l2] < 10. By Lemma 5.4 we obtain X p — p = lg + [1 - p® + I,
for some 4. But this is impossible since p > 20 > 16. |
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Lemma 6.2. Let k > 2 and n € 7, be such that no geodesic word representing a”
contains the letter t (which is easily seen to be equivalent to |n| < pTH ). Then

d(1.a"P7") > 3.2 =54 || =6, pre.
> 2

Proof. We only discuss the case n > 0, the case n < 0 can be shown analogously
and the case n = 0 is a consequence of Lemma4.7. Letv =g a “P-npea geodesic
word. By Lemma 5.3 we can write ¢ ~!(v) as

v ) = ag, vlaé' vzaéz . vmaf)m,

with /1, ..., L,—1 # 0 and thus,

v =ar Yugta " Yuota® |t g talm (6.3)
where u; =g a= %, fori = 1,...m. Clearly,
" i
Kp—n=lo+ Y lip=i=1%, (6.4)

i=1

and the sum of all «; is equal to 0. Note that since v is geodesic, we may assume
that Z;’:l o = 0 holds only for i =m and |/;| < p fori = 1,...m. Consider-
ing equation (6.4) modulo p we obtain lg + [, = —n(p), hence Iy + [,,, = —n or
lo+lm = p—n.Ifly + [, = —n, then, according to (6.4), the subword

-1

5=t tugta " hunta® o gt

of v has to represent the group element a"“? and by Lemma 4.7 we have
(@) > 3.2kt _5,

which implies the statement.

Now assume lo + I, = p — n. Since n < 247

-, we know that

p—nzn—S—Slnl P+6.
> 2

According to (6.4) the subword

5 1 1

U=t uytals uztalz...t_ Ul
of v then has to represent the group element x = a“r=p. By Lemma 6.1 we obtain
d(l,x)+lo+lmz3-2k+1+n—5—8|n‘,,7+6. o
22

Now we are ready to prove the final missing piece of Theorem 1.2.
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Proof of Lemma 4.8. First of all, observe that by Lemma 5.7, every geodesic word
representing a” is ag-less. So by Lemma 5.8, we know that

n< pp.. (6.5)

where the number of p’sisk — 1.

In order to prove the lemma, we use induction on k. For k = 1, we only have to
check that d(1,a?™) > 7 + min{n, 1} > 12 — 5 + min{n, 1} — 0 for all n with
n < 12, by (6.5). This is true, since testing all words with at most 6 + min{n, 1}
letters we see that none of them represents a?~" (note that by the choice of p, we
have p —n > 8).

So assume the lemma valid for k — 1, our aim is to show it for k > 2. Suppose
otherwise, i.e. assume there is a word v with v =g a“P=" and

((v) <32k 5 4 min{d,.3 2% — 5} — min{d,, 271} (6.6)
<3.k1 42k 10
<18.2k1 _1o.
We claim that
w_l(v) contains the letter ay. (6.7)

If not, then we may apply Lemma 5.8 to v, with L = 18, to find that

12 18

.p

. '_-P
kp—p? <kp—n<p?

where on both sides the number of p’s equals k — 1, and the first inequality follows
from (6.5). This, however, is impossible, as p > 20. We have thus proved (6.7).
Now, by Lemma 5.3, we can write ¥ ! (v) as

-1 It I l I
Y (v) = agviag vaag ... vmag”,

with [1,...,l;m—1 # 0 and thus,
v = alot_lultallt_luztalz ... t_lumtal’” (6.8)
where u; =g a=%, fori = 1,...m. Clearly,
n i
Kp—n=lo+ Y lip=i=1%, (6.9)
i=1

and the sum of all ¢; is equal to 0. Note that since v is geodesic, we may assume
that ; < pfori =1,...m.
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Suppose ¢ € {1,...,m} is such that ! (u,) contains the letter af{c_l. Then by
Lemma 5.7,
C(ue) > 3-2F 5. (6.10)

So, as 3-(3-2K —5) > £(v) — 5, and moreover, since each u. as above gives
rise to two letters ¢, we conclude that there are less than three indices ¢ such
that ¥ ~!(u.) contains the letter a,:ct_l. On the other hand, by (6.7), there is at
least one such index, say c;.

Moreover, since the expression in (6.8) contains m times a subword of the
form ¢~ 1u;t, and also at least m — 1 letters a, we can use (6.6) and (6.10) to get
that

L(v) —L(ue,) + 2
m <
- 4
Together, (6.9) and (6.11) imply that there is an index b such that

<3.0k-1 6.11)

where the number of p’s is equal to k — 1. Hence, since p > 6, and since [, < p,
we know that

pP!
.
Yiore o P
p J=1%J > %
p
where again, the number of p’sis k — 1. Taking the logarithm, we obtain that
b pP1
x:=Zocj>pp' —k=:y (6.12)
=1
where the number of p’s is k — 2. Because Zj-’:l aj = =) iyt @, this yields

that
UlUD ... Up =G Upr1Upto .. - Um =G a*.
So, by Lemma 5.8, there is a second index ¢, such that ¥~ 1(u,,) contains the
letter a,:f_l. We may assume that c; > b > c;. Note that by what we said above,
c1 and ¢, are the only indices ¢ such that ¥ ~1 (u.) contains the letter af_l.
Consider the subword

lucltal"l t_lucl_H ...t_lth

z:i=1
of v. By the choice of the ¢;,
((z)=2-(3-25—5)+5. (6.13)

So,
((v)—€(z) <3-2F 5. (6.14)
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Set
-1 -1 -1, —1,,—1 -1
U= U qUgp e U Uy Uty Uy

and consider the word

v = alortugtah ...al"lflt_lutalczt_luucﬁltal“2+‘ ot Yutatm .
Then v/ =g a9 where
c1—1 . m .
L . L .
qg=1l+ Z lipZ_,-=1a_/ 4 Z ]ipzj=1“.1'
i=1 i=cp

Here we used the fact that

i m
dy== )
Jj=1

Jj=i+1
By (6.14) and by the definition of v/, we know that £(v) < 2- (3 -2¥ — 5), and
moreover, since w_l (v") does not contain any letter aki, for k > 2 we obtain that

.p12

gl < p?
where the number of p’sis k — 1. For k = 2 we obtain |¢| < p” since in this case
¥~ 1(v’) is even a; free and of length less than 7. Set

cr—1
s = Z l,,pzj;la-" =kp_n—gq. (6.15)
y=ci
Then, for k > 2,
.‘_plz jplz
kp—2pP <s<kpyopr , (6.16)

where the number of p’s on each side is again k — 1 and respectively, for k = 2,
2p—2pT <s<?p+2p7, (6.17)

On the other hand, by (6.10) and since £(v) < 3 - (2¥T1 4 2%) — 10 by (6.6),

we have that
cr—1

> lu) <328 -5, (6.18)
i=c1+1
and, for each of these indices i, we know that ¥ ~!(u;) is ax_; free. Therefore,
for k > 2, the exponents of p in the sum expression (6.15) of s differ less than
12

Y
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where the number of p’s is k — 2. For k = 2 the same differences are less than
7 = 3.22 — 5 since in this case w_l(]_[fzz_qu u;) is even a; free and of length
less than 7.

We claim that this implies that

s="%p. (6.19)

In fact, for k = 2 we know by (6.12) that one summand in (6.15) is divisible by p~*
for some x > (p — 1) — 2 and therefore by the argument above each summand is
divisible by pP=2=6 So, s = §- p?~% and the only possible value for s in the
interval (6.17) is 2 p.

For k > 2 we obtain by (6.12) that one summand in (6.15) is divisible by p*
for some

pP!
x> p? —k
where the number of p’s is k — 1. Therefore, by the argument above each sum-
mand is divisible by p*" for some
.P]2 APP_Z
x'>x—p? > p?
where the number of p’sis k — 2. So we can write
pP2

S=8-pp

where the number of p’s is kK — 1, and § is some integer. As the term after § is
greater than the length of the interval from (6.16), we know that the only possible
value for s is kp. This proves (6.19).

Thus

cr—1 .
kp=Y lipZim,
i=c
Since all the Zj'=1 a; are different (as v is geodesic) and the /; are in (0, p), basic
arithmetics (a sum of products of powers of p with numbers smaller than p can
only give a power of p if there is only one summand, and the factor is 1) imply
that /., = 1 and ¢ = ¢1 + 1. Hence z can be written as

z= t_luc]tat_luQI.
Taking the logarithm in (6.19), this implies that Y ;1 | o; = k=1, Hence,

_k—1 el .
Ue, =G d P+Z[=| %

and
k—1

Uey =G a p+2?1=c2+1a[.
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We now apply the induction hypothesis with n := Z,Cl=_11 «; in the role of n,
which satisfies the assumptions as

c1—1
aZ'—l ''=G Uiuz...U¢;—1.-

We then apply the induction hypothesis again with np 1= Y /= ¢, @i 1n the role
of n, which satisfies the assumptions as

Y
a='=2"" =G UcyUcy+1 - -Um.

This gives for j = 1,2,
Lue,) = 3-2F — 5+ min{d,,,3- 2571 — 5} —min{d,, 2572}
So, as v contains 3m — 1 letters a and ¢ outside the u;, we obtain
E) = Lluey) + Lucy) + Luruz .. ue;—1) + €(uerer 41 - Um) +3m — 1
> L(ucy) + L(ucy) + dny + dpy +3m —1
> 3.2 43 — 11

2
+ ) “(min{d,,,3- 287" — 5} —min{d,, . 2572} + du,). (6220)
j=1
Observe that by (6.6), and since the term in the sum above is always non-negative,

we get that
d, > 2K71, 6.21)

We claim that for j = 1,2
do, <3281 -5 or dy, , =0. (6.22)

Indeed, suppose d,, >3- 2k=1 _ 5 Then by comparing (6.6) with (6.20), we
obtain that

3.2 _ 52K > min{d,, 3.2k — 5 —2k1
> 3m—6+1rnin{dnl,3-2k_1 — 5y — k2 + dp,
+ min{d,,.3- 2571 — 5y —d,, + dp,
>3m—6+3.2k1_5_0k2 3. 0k"1 _54
+ min{dy,,3-2F"1 — 5}
>3m—5+3-28—10 - 252 4 min{d,,.3- 271 —5}.
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Therefore, since m > 3,
—2k=1 > 1 —2k=2 | min{d,,,3- 2K — 5},
implying that
1> 22 4 min{d,,.3- 271 —5}.
Hence d,, = 0. In the same way we get that the assumption d,, > 3 - 2k=1_35

implies that d,,, = 0. This proves (6.22).

Let us define a new word v which is obtained from v by replacing z with
t_lﬁl_l Uat where the U; are geodesic words for @™ That is,

7= a'r ! !

gt .al"l—‘t_lﬁl_lﬁzml‘?t_ Uey - t~uptatn.

Clearly, v represents a”.

First, suppose that both v; contain a letter ¢. Note that then we may assume that
each of the ¥; starts with a#~1. Hence, d,, < £(v) — 2. Observe that also, d,,j. > 0.
Hence, by (6.22), d,, <3271 5.

By (6.6) and by (6.21),

((v) < 3.2k _ 54 g, —2k1,

Moreover, since
£(z) = L(uc,) + L(ue,) + 5.

and by (6.22), we obtain

dy < L(0) -2
<L)+ dny +dny +2 —L(z) =2
—_————
<L@—1v1 7 001)

<326 54 g, -2k 4 dy,, + dy,

2
_ 2(3 ok 54 dn; — min{d,,j,zk_z}) -5
j=1

2
<d, _2k—1 + sz—Z
j=1

E dn»

a contradiction.
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So we may assume that one of ¥, U2 does not contain a letter ¢, say v;. Then it
might not be true that d,, < £(v) —2. On the other hand, we can then use
Lem-ma 6.2. Hence the last calculation becomes

dn < £(D)
<L) +dn, +dn, +2—4L(2)
<328 544, — 2% 4 d, +dy,

2
=Y (32" =5+ dy;) — min{d,,. 22} + 8jay, 26 —5+2
j=1

<d, —2k"1 yok=2 8o, 6 +2
<dp =27 48, | pre + 2.

which yields a contradiction for k > 3. For k = 3 we deduce

_p+6

ni >7=3.22_5.

So by (6.22), d,, = 0. So we can substitute the last two lines of the calculation

above with
dy <dyp—22+1+2

Sdn_17

which is also a contradiction.
Soletk = 2. Then

() <3-22—547-2=3.23,

by (6.21). Therefore m < 3. If m = 3, then 213:1 o; = 0 and hence o¢, # o,.
Soae; = +2p and Qey; 7 2p. By Lemma 5.7 we get

2
D ) =3-2° -9

i=1
and
3
L) = > L) +3m—1>3-23 > ((v).
i=1
So we have k = m = 2. This implies v = alot_lucltat_IMCZa_”"‘lO and

Lw)=3-2>~-54+n>3-2>-5+d, 1,

which is impossible by (6.6). o
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