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To Philippe Flajolet, a mathematical discontinuity, a tamer of singularities.

A two-row array of integers

αn =

(
a1 a2 · · · an
b1 b2 · · · bn

)
is said to be in lexicographic order if its columns are in lexicographic order (where

character significance decreases from top to bottom, i.e., either ak < ak+1, or bk � bk+1

when ak = ak+1). A length � (strictly) increasing subsequence of αn is a set of indices

i1 < i2 < · · · < i� such that ai1 < ai2 < · · · < ai� and bi1 < bi2 < · · · < bi� . We are interested

in the statistics of the length of a longest increasing subsequence of αn chosen according

to Dn, for different families of distributions D = (Dn)n∈N, and when n goes to infinity.

This general framework encompasses well-studied problems such as the so-called longest

increasing subsequence problem, the longest common subsequence problem, and problems

concerning directed bond percolation models, among others. We define several natural

families of different distributions and characterize the asymptotic behaviour of the length

of a longest increasing subsequence chosen according to them. In particular, we consider

generalizations to d-row arrays as well as symmetry-restricted two-row arrays.
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1. Introduction

Suppose that we select uniformly at random a permutation π of [n]
def
= {1, . . . , n}. We can

associate to this permutation the two-row lexicographically (column) sorted array

απ =

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
.

We denote by lis(π) the length of a longest increasing subsequence of απ . The determina-

tion, as n → ∞, of the first moments of lis(π) has been a problem of much interest for a long

time (for surveys see [1, 26, 30] and references therein). This line of research led to what is

considered a major breakthrough: the determination by Baik, Deift and Johansson [7] of,

after proper scaling, the distribution of lis(·). Baik and Rains [8] studied variations where,

instead of permutations of [n], involutions, signed permutations, and signed involutions

are selected at random. Generalizations where d − 1 random permutations are selected

can be restated as problems concerning longest increasing subsequences of d-row arrays.

Furthermore, there are other quite relevant instances, that go far beyond those relating

to permutations, where the general problem formulated in the abstract also arises. In

order to illustrate this claim, as well as to stress the adequacy of the level of generality at

which we have chosen to frame our work, our next section describes two other scenarios

encompassed by the general framework concerning multi-row arrays that we consider.

1.1. Two more examples

Suppose that we select uniformly at random two words μ and ν from Σn, where Σ is

some finite alphabet of size k. We can associate to (μ, ν) the two-row lexicographically

sorted array αμ,ν where
(
i
j

)
is a column of αμ,ν if and only if the ith character of μ

is the same as the jth character of ν (for an example, see Figure 1). The length of a

longest common subsequence of μ and ν, denoted by lcs(μ, ν), is defined as the length

of a longest increasing subsequence of αμ,ν . Since the mid-1970s, it has been known [16]

that the expectation of lcs(μ, ν), when normalized by n, converges to a constant γk (the

so-called Chvátal–Sankoff constant). The determination of the exact value of γk , for k

fixed, remains a challenging open problem. To the best of our knowledge, the asymptotic

distribution theory of the longest common subsequence problem is essentially uncharted

territory. Generalizations where d random words of length n are chosen from a finite

alphabet Σ can also be restated as problems concerning longest increasing subsequences

of d-row arrays.

We now discuss yet another instance, previously considered by Seppäläinen [29], and

encompassed by the framework described above. Fix a parameter 0 < p < 1 and let n be a

positive integer. For each site of the lattice [n]2, let a point be present (the site is occupied)

with probability p and absent (the site is empty) with probability q = 1 − p, independently

of all the other sites. Let ω : [n]2 → {0, 1} be an encoding of the occupied/empty sites

(1 representing an occupied site and 0 a vacant one). We can associate to ω a two-row

lexicographically sorted array αω where
(
i
j

)
is a column of αω if and only if site (i, j) ∈ [n]2

is occupied. Let L(ω) equal the number of sites on a longest strictly increasing path of

occupied sites according to ω, where a path (x1, y1), (x2, y2), . . . , (xm, ym) of points on [n]2 is



256 M. Kiwi and J. A. Soto

1 1 2 2 3 3 4 5 5

3 5 1 2 3 5 4 3 5

Figure 1. Lexicographically ordered two-row array αμ,ν associated with words μ = abaca and ν = bbaca (note

in particular that lcs(μ, ν) = lis(αμ,ν ) = 4).

strictly increasing if x1 < x2 < · · · < xm and y1 < y2 < · · · < ym. Observe that L(ω) equals

the length of a longest increasing subsequence of αω . Subadditivity arguments easily imply

that the expected value of L(ω), when normalized by n, converges to a constant δp,2. Via

a reformulation of the problem as one of interacting particle systems, Seppäläinen [29]

shows that δp,2 = 2
√
p/(1 +

√
p). Also worth noting is that the same object αω arises in

the study of the asymptotic shape of a directed bond percolation model (see [29, § 1] for

details). Symmetric variants, where for example site (i, j) is occupied if and only if (j, i)

is occupied, can be easily formulated. Generalizations where d-dimensional lattices are

considered can also be restated as problems concerning longest increasing subsequences

of d-row arrays. However, to the best of our knowledge, neither of the latter two variants

has been considered in the literature.

1.2. Reformulation

Thus far, we have described well-studied scenarios where the general problem formulated

in the abstract naturally arises. This motivates our work. However, for the sake of clarity

of exposition and in order to use more convenient notation, it will be preferable to

reformulate the issues we are interested in as one concerning hyper-graphs. To carry out

this reformulation, below we introduce some useful terminology and then address in this

language the problem of determining the statistics of the length of a longest increasing

subsequence of a randomly chosen lexicographically sorted d-row array.

Let A1, . . . , Ad be d disjoint (finite) sets, also called colour classes. We assume that over

each Ai there is a total order relation, which by some abuse of notation, we denote

� in all cases. When we consider subsets of a totally ordered colour class we always

assume the subset inherits, and thus respects, the original order. A d-partite hyper-graph

over totally ordered colour classes A1, . . . , Ad with edge set E ⊆ A1 × · · · × Ad is a tuple

H = (A1, . . . , Ad;E), and its edge set is denoted by E(H). The set A1 ∪ · · · ∪ Ad is called the

vertex (or node) set of H and is denoted by V (H). For A′
i ⊆ Ai with 1 � i � d and hyper-

graph H = (A1, . . . , Ad;E), we denote by H |A′
1×···×A′

d
the hyper-subgraph of H restricted

to A′
1 × · · · × A′

d, i.e., the hyper-graph with node set V ′ = A′
1 ∪ · · · ∪ A′

d and edge set

E ∩ A′
1 × · · · × A′

d. We say that two hyper-graphs are disjoint if their corresponding vertex

sets are disjoint. Let KA1 ,...,Ad
denote the complete d-partite hyper-graph over colour classes

A1, . . . , Ad whose edge set is A1 × · · · × Ad. Henceforth, we denote the cardinality of Ai by

ni. If we identify Ai with [ni], then we write Kn1 ,...,nd instead of KA1 ,...,Ad
. If n1 = · · · = nd,

then we write K (d)
n instead of Kn1 ,...,nd . Over the edge set of KA1 ,...,Ad

we consider the natural

partial order relation � defined by

(v1, . . . , vd) � (v′
1, . . . , v

′
d) ⇐⇒ vi � v′

i for all 1 � i � d.
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Figure 2. An example of a 3-partite hyper-graph H with 36 vertices and 10 hyper-edges. Rows depict

partitions, nodes are depicted as circles, and hyper-edges are shown as lines (when hyper-edges share a vertex,

disambiguation is done by labelling the line segments corresponding to the same hyper-edge). Note that L(H) = 4

(the edges belonging to a largest non-crossing matching are depicted as thicker lines).

We say that a collection of node-disjoint edges M ⊆ E(H) is a non-crossing hyper-matching

if for every pair of edges e, f ∈ M it holds that e � f or f � e. When H = (A1, . . . , Ad;E)

is such that E(H) is a non-crossing hyper-matching, we say that H is a non-crossing

d-partite hyper-graph, or simply a non-crossing hyper-matching. Furthermore, we let

L(H) denote the size of a largest non-crossing hyper-matching of H (for an example,

see Figure 2) and let L(F) be the random variable L(H) when H is chosen according

to a distribution F over d-partite hyper-graphs. When we want to stress that we are

dealing with only two colour classes, we will speak of graphs and matchings instead of

hyper-graphs and hyper-matchings.

Now, consider a family of distributions D = (D(KA1 ,...,Ad
)) where each D(KA1 ,...,Ad

) is

a probability distribution over subgraphs of KA1 ,...,Ad
. In this work we are interested in

understanding what we refer to as the longest non-crossing matching problem, i.e., the

behaviour of the expectation of L(H) when H is chosen according to various distinct

families of distributions D = (D(K (d)
n )) and n goes to infinity. Of course, in order to be

able to derive some meaningful results we will need some assumptions on the distributions

D(K (d)
n ). Below, we encompass in a definition a minimal set of assumptions that are both

easy to establish and general enough to capture several relevant scenarios.

Definition 1. Let D = (D(KA1 ,...,Ad
)) be a family of distributions where D(KA1 ,...,Ad

) is a

probability distribution over the collection of hyper-subgraphs of KA1 ,...,Ad
. We say that D

is a random d-partite hyper-graph model if, for H chosen according to D(KA1 ,...,Ad
), the

following two conditions hold.

(1) Monotonicity. If A′
i ⊆ Ai with 1 � i � d and n′

i = |A′
i|, then the distribution of H |A′

1×···×A′
d

is D(Kn′
1 ,...,n

′
d
).

(2) Block independence. If A′
i, A

′′
i ⊆ Ai are disjoint with 1 � i � d, then the hyper-graphs

H ′ = H |A′
1×···×A′

d
and H ′′ = H |A′′

1×···×A′′
d

are independent (and so, L(H ′) and L(H ′′) are

also independent).

For some of the results we will establish (in particular for the symmetric binomial

random graph model), the following weaker notion will suffice.

Definition 2. Let D = (D(K (d)
n )) be a family of distributions where each D(K (d)

n ) is a

probability distribution over the collection of hyper-subgraphs of K (d)
n . We say that D is
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a weak random d-partite hyper-graph model if, for H chosen according to D(K (d)
n ), the

following two conditions hold.

(1) Weak monotonicity. If A′ ⊆ [n], |A′| = n′, then the distribution of H |A′×···×A′ is D(K (d)
n′ ).

(2) Weak block independence. If A′, A′′ ⊆ [n] are disjoint sets, then H ′ = H |A′×···×A′ and

H ′′ = H |A′′×···×A′′ are independent (and so L(H ′) and L(H ′′) are also independent).

The reader may easily verify that the following distributions (on which we will focus

attention) give rise to random d-partite hyper-graph models.

• Σ(Kn1 ,...,nd , k), the random d-word model : the distribution over the set of hyper-subgraphs

obtained from Kn1 ,...,nd when each element in the vertex set of Kn1 ,...,nd is uniformly

and independently randomly assigned one of k letters and where an edge is always

discarded if its nodes are not assigned the same letters.

• G(Kn1 ,...,nd , p), the d-dimensional binomial random hyper-graph model : the distribution

over the set of hyper-subgraphs H of Kn1 ,...,nd where the events {H | e ∈ E(H)} for

e ∈ E(Kn1 ,...,nd ) have probability p and are mutually independent.

The model Σ(Kn1 ,...,nd , k) is referred to as the random word model because it arises when

one considers the letters of d words ω1, . . . , ωd of length n1, . . . , nd, respectively. The letters

in each word are chosen uniformly and independently from a finite alphabet of size k.

Then, each word is identified with a colour class of a hyper-subgraph H of Kn1 ,...,nd whose

hyper-edges are the (v1, . . . , vd) ∈ V (H) for which v1, . . . , vd have been assigned the same

letter. It is easy to see that the longest common subsequence of ω1, . . . , ωd equals � if

and only if L(H) = �. The random word model thus encompasses the longest common

subsequence problem discussed above. Similarly, the attentive reader probably already

noticed that the binomial random graph model also encompasses the already discussed

point lattice process considered by Seppäläinen [29].

Inspired by the work of Baik and Rains [8] cited above, where symmetric variants

of the longest increasing subsequence problem were considered, we will also study the

following symmetric version of the binomial random graph model (see Figure 3).

• S(Kn,n, p), the symmetric binomial random graph model : the distribution over the set of

subgraphs H of Kn,n where (i, j) ∈ E(H) if and only if (j, i) ∈ E(H), for 1 � i < j � n

and all the events {H | (i, j), (j, i) ∈ E(H)} for 1 � i < j � n, have probability p and

are mutually independent.

Note that (S(Kn,n, p))n∈N is not a random model according to Definition 1, but it is a weak

random model according to Definition 2.

Henceforth, given a random bipartite graph model D = (D(·)), any value that is constant

across the distributions D(·) will be called the internal parameter of the model, e.g., 1/p

and k in G(·, p) and Σ(·, k), respectively.

The main purpose of this work is to establish a general result, referred to as the

Main Theorem, with a minimal set of easily verifiable hypothesis, that characterizes the

(adequately normalized) limit behaviour of E[L(D(K (d)
n , p))] when d is fixed and both n

and the internal parameter t go to infinity. We also show several applications of our Main

Theorem. Specifically, we characterize aspects of the limiting behaviour for the three
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Figure 3. A bipartite graph in the support of S(K12,12, p).

previously introduced random hyper-graph models. In the following section we formally

state our Main Theorem and the results of its application.

1.3. Main contributions

A straightforward application of Talagrand’s inequality (as stated in [23, Theorem 2.29])

yields that both L(Σ(Kn,n, k)) and L(G(Kn,n, p)) are concentrated around any one of their

(potentially not unique) medians. As we shall see, the same is true for L(Σ(K (d)
n , k))

and L(G(K (d)
n , p)). Somewhat equivalent statements hold for the symmetric binomial

random graph model. The following general notion encompasses the concentration type

requirement the random hyper-graph models will need to satisfy in order for our Main

Theorem to be applicable.

Definition 3. Let F be a distribution over d-partite hyper-graphs. We say that F has

concentration constant h if there exists a median Med of L(F) such that, for all s � 0,

Pr
[
L(F) � (1 − s)Med

]
� 2 exp

(
−hs2Med

)
,

Pr
[
L(F) � (1 + s)Med

]
� 2 exp

(
−h

s2

1 + s
Med

)
.

We say that the random d-partite hyper-graph model D = (D(·)) has concentration

constant h if each D(·) has concentration constant h.

Note that if one can estimate a median of L(F) for some distribution F , show that

the median and mean are close, and establish that F has a concentration constant, then

one can derive a concentration (around its mean) result for L(F). Unfortunately, it is

generally not easy to estimate a median of L(D(Kn1 ,...,nd)) for the distributions D(Kn1 ,...,nd )

we consider; however, we will be able to approximate them under some assumptions

on n1, . . . , nd. In particular, we will show that there is a median that is proportional to

the geometric mean of n1, . . . , nd. The following definition captures the aforementioned

assumptions we will need, and the sort of approximation guarantee that we can establish.

Definition 4. Let D = (D(Kn1 ,...,nd )) be a random d-partite hyper-graph model with internal

parameter t. Fix n1, . . . , nd and let

N =

( d∏
i=1

ni

)1/d

and S =

d∑
i=1

ni

denote the geometric mean and sum of n1, . . . , nd, respectively. We say that D admits a

(c, λ, θ)-approximate median (or simply a (c, λ, θ)-median) for some c > 0 and 0 � λ � θ if,
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for all δ > 0, there are sufficiently large constants a(δ), b(δ), and t′(δ), such that for all

t � t′, for which

N � atλ, (1.1: size lower bound condition)

Sb � tθ, (1.2: size upper bound condition)

it holds that every median Med of L(D(Kn1 ,...,nd )) satisfies

(1 − δ)
cN

tλ
� Med � (1 + δ)

cN

tλ
.

In other words, if D = (D(Kn1 ,...,nd )) is a a random d-partite hyper-graph model with

internal parameter t that admits a (c, λ, θ)-median, and N (resp. S) as in the preceding

definition are such that N = Ω(tλ) (resp. S = O(tθ)), then for sufficiently large t, every

median of L(D(n1, . . . , nd)) will be close to cNt−λ. Although the approximate median

notion defined above might at first glance seem artificial, we will see that it is possible to

obtain such types of approximations for the random hyper-graph models we are interested

in.

Returning to our discussion, the relevance of the notion of approximate median, when

the random hyper-graph model admits a concentration constant, is that it allows us to

derive concentration bounds around an approximation of the median, which in turn will

be closed to the mean. Endowed with such estimates of the mean, we can easily derive

the sought-after limiting behaviour of these expected values. This, in essence, is the crux

of our approach to tackling all variants of the largest non-crossing matching problem.

Unfortunately, the approximation of Med[L(D(n1, . . . , nd))] guaranteed by the existence

of a (c, λ, θ)-median, as in Definition 4, holds for the rather restrictive condition (1.2):

b

d∑
i=1

ni � tθ.

However, the monotonicity and block independence properties of random hyper-graph

models allow us to relax the restriction and still obtain essentially the same conclusion.

More precisely, it will be possible to obtain the same guarantee, but requiring only that

the sum of the ni is not too large in comparison with the geometric mean of the ni.

Moreover, and of crucial importance, under the same conditions one can show that the

median and mean of L(D(n1, . . . , nd)) are close to each other. The following result, which

is the main result of this work, precisely states the claims made in the preceding informal

discussion.

Theorem 1.1 (Main Theorem). Let D = (D(Kn1 ,...,nd)) be a random hyper-graph model with

internal parameter t and concentration constant h which admits a (c, λ, θ)-median. Fix

n1, . . . , nd and let N and S denote the geometric mean and sum of n1, . . . , nd, respectively.

Let 0 � η � λ/(d − 1) be such that η < θ − λ, and g : R+ → R+ be such that g = O(tη).
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For all ε > 0 there exist t0 and A sufficiently large that if t � t0 satisfies N � Atλ (size

constraint) and S � g(t)N (balance constraint), then

(1 − ε)
cN

tλ
� E

[
L(D(Kn1 ,...,nd ))

]
� (1 + ε)

cN

tλ
, (1.3)

and the following bounds hold:

• If Med is a median of L(D(Kn1 ,...,nd)), then

(1 − ε)
cN

tλ
� Med � (1 + ε)

cN

tλ
. (1.4)

• There is an absolute constant K > 0 such that

Pr

[
L(D(Kn1 ,...,nd)) � (1 − ε)

cN

tλ

]
� exp

(
−Khε2 cN

tλ

)
, (1.5)

Pr

[
L(D(Kn1 ,...,nd)) � (1 + ε)

cN

tλ

]
� exp

(
−Kh

ε2

1 + ε

cN

tλ

)
. (1.6)

Moreover, if n1 = · · · = nd = n and D = (D(K (d)
n )) is just a weak random hyper-graph model,

then the the lower bounds in (1.3) and (1.4), and inequality (1.5), still hold.

As a consequence of the above-stated Main Theorem, with some additional work, we

can derive several results concerning the asymptotic behaviour of the expected length of

a largest non-crossing matching for all of the random models introduced above. Our first

two applications of the Main Theorem concern the random binomial hyper-graph model

(G(K (d)
n , p))n∈N and the random word model (Σ(K (d)

n , k))n∈N. The asymptotic behaviour

of the length of a largest non-crossing hyper-matching for both of these models is

(interestingly!) related to a constant cd that arises in the work of Bollobás and Winkler [11]

concerning the height of a largest chain among random points independently chosen in

the d-dimensional unit cube [0, 1]d. Specifically, for the random binomial hyper-graph

model, we show the following.

Theorem 1.2. For 0 < p < 1, and d ∈ N, d � 2, there exists a constant δp,d such that

lim
n→∞

1

n
E
[
L(G(K (d)

n , p))
]

= inf
n∈N

1

n
E
[
L(G(K (d)

n , p))
]

= δp,d,

and δp,d/ d
√
p → cd when p → 0.

When the underlying model is the one that arises when considering the length of a

longest common subsequence of d randomly chosen words over a finite alphabet, i.e., the

random d-word model, we establish the following.

Theorem 1.3. For k, d ∈ N, with d � 2, there exists a constant γk,d such that

lim
n→∞

1

n
E
[
L(Σ(K (d)

n , k))
]

= inf
n∈N

1

n
E
[
L(Σ(K (d)

n , k))
]

= γk,d,

and k1−1/dγk,d → cd when k → ∞.
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The d = 2 cases of Theorems 1.2 and 1.3 were established by Kiwi, Loebl and

Matoušek [25]. This work generalizes and strengthens the arguments developed in [25]

and elicits new connections with other previously studied problems (most notably in [11]).

Finally, we consider symmetric versions of random graph models introduced above and

show how the Main Theorem, plus some additional observations, allows us to characterize

some aspects of the asymptotic behaviour of the length of a longest non-crossing matching.

Specifically, we prove the following result.

Theorem 1.4. For 0 < p < 1, there exists a constant σp such that

lim
n→∞

1

n
E
[
L(S(Kn,n, p))

]
= inf

n∈N

1

n
E
[
L(S(Kn,n, p))

]
= σp,

and σp/
√
p → 2 when p → 0.

1.4. Related problems

A natural question in connection to longest increasing subsequences of multi-row arrays

is that of computing the length lis(α) of a d-row array α, and more generally, finding a

longest increasing subsequence of maximum length. One can easily show that these tasks

can be performed by a simple dynamic program in time O(nd), where n is the number of

columns of α. The latter holds under no assumption about the way in which instances

are generated. A more interesting question arises if one maintains the consideration that

the arrays are generated by a random process, but revealed one column at a time: How

well can one sequentially choose (without clairvoyance) an increasing subsequence? For

two-row arrays obtained from randomly and uniformly chosen permutations of [n], the

question was considered by Samuels and Steele [28], who demonstrated an asymptotically

optimal policy which prescribes selection of a variable if and only if it exceeds the last

variable selected so far by no more than a threshold parameter. The limiting upper

bound
√

2n was derived by careful analysis of the dynamic programming equation for

computing the longest increasing subsequence (see Gnedin [21] for a simple proof along

these lines). Coffman, Flatto and Weber [17] noted that the increasing subsequence

problem can be regarded as a particular case of the sequential selection problem with

a sum constraint. They used this connection to derive an elegant upper bound for non-

clairvoyant policies based on sums of order statistics (see also Bruss and Robertson [15],

Rhee and Talagrand [27], and Boshuizen and Kertz [12]). Baryshnikov and Gnedin [9]

considered an extension to a scenario which, cast in the terminology of this work, can be

thought of as relating to d-row arrays for d > 2 (see [13, 14] for other variants). For more

recent work concerning sequential selection policies for longest increasing subsequence-

type problems (e.g., unimodal and alternating increasing subsequences), see Arlotto, Chen,

Shepp and Steele [2] and Arlotto and Steele [3, 4].

There is a rich family of related problems in which a decision maker considers a

(randomly generated) sequence of n objects and must decide whether to accept or reject

each one at the time of presentation. Perhaps the most famous one is the classic secretary

problem (see, e.g., Dynkin [19] or Gilbert and Mosteller [20]), in which the objects are

real values, the decision maker can only select a single one, and his goal is to maximize
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the probability of selecting the maximum. On more complex scenarios, the decision

maker must select more than one object, in such a way that the selected subset satisfies a

combinatorial constraint. The case mentioned above of selecting an increasing subsequence

is an example of this setting. Many other interesting variants such as selecting a feasible

set of a knapsack (see Babaioff, Immorlica, Kempe and Kleinberg [5]), or an independent

set in a matroid (see Babaioff, Immorlica and Kleinberg [6] for the original formulation,

and Dinitz [18] for a recent survey) have been proposed. The study of generalizations of

the secretary problem is a very active research area, both in applied probability and in

online algorithms.

1.5. Organization

For the sake of clarity of exposition and given that the arguments employed are different,

we prove the lower and upper bounds (as well as lower and upper tail bounds) of

the statement of the Main Theorem in separate sections. Specifically, in Section 2, we

establish all the lower bounds and lower tail bounds claimed in the Main Theorem. In

Section 3, we prove the upper bounds and upper tail bounds stated in the Main Theorem,

thence completing its proof. Finally, in Section 4, we apply the Main Theorem to three

distinct scenarios. Specifically, we consider the cases where the underlying random model

is the binomial random hyper-graph model, the random word model, and the symmetric

binomial random graph model.

2. Lower bounds

In this section we will establish the lower bounds claimed in the statement of the Main

Theorem, i.e., the lower bounds in (1.3) and (1.4), and inequality (1.5).

Let D, c, λ, θ, η, and ε be as in the statement of the Main Theorem. Let δ > 0 be

sufficiently small that

(1 − δ)2(1 − 2δ) � 1 − ε

2
, (2.1: definition of δ)

and let a = a(δ), b = b(δ) and t′ = t′(δ) as guaranteed by the definition of a (c, λ, θ)-median.

Since g = O(tη), there are constants Cg > 1 and tg � 1 such that g(t) � Cgt
η for all

t � tg . Choose A sufficiently large that

A � max

{
2a

1 − δ
,

2

1 − (1 − δ)d
Cd−1
g tη(d−1)−λ

g ,
2

hδ2c
ln(2/δ),

16 ln(2)

hcε2

}
. (2.2)

Since η < θ − λ, we can choose t0 > max{tg, t′(δ)} sufficiently large that, for all t � t0,

g(t) � Cgt
η and CgbAt

η � tθ−λ. (2.3)

Now, assume t > t0 and that the geometric mean N and sum S of n1, . . . , nd satisfy the

size and balance constraints of the Main Theorem. These constraints guarantee that

N � Atλ and S � g(t)N � CgNtη. (2.4)

Finally, assume H is chosen according to D(Kn1 ,...,nd).
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2n1 3n1 4n1n1A1

A2

A3
2n3 3n3 4n3n3

H1 H2 H3 H4

n2 2n2 3n2 4n2

Figure 4. Illustration, for d = 3 and q = 4, of the construction of blocks H1, . . . , Hq .

If the ni satisfy the size conditions (1.1) and (1.2) of the definition of a (c, λ, θ)-median

and since the model admits a concentration constant, we would then have a concentration

bound around cNtλ for L(H). Unfortunately, when some of the ni are large, then S

will be large, and the size upper bound condition (1.2) need not be satisfied, leaving us

without the desired concentration bound. To overcome this situation, we split H into

hyper-subgraphs H1, . . . , Hq of roughly the same size, which we will refer to as blocks. The

blocks will be vertex-disjoint, and the proportion between the sizes of the colour classes

in each Hi will be roughly the same as the one in H . However, the crucial new aspect is

that the size upper bound condition (1.2) will be satisfied in each block Hi allowing us to

derive a concentration bound for L(Hi). This will later allow us to obtain a concentration

bound for L(H); details follow.

Let q = �N/(Atλ)�. For each 1 � j � d, let n′
j = �nj/q�. Henceforth, let N ′ and S ′ denote

the geometric mean and the sum of the n′
j . Denote the jth colour class of H by Aj . Recall

that Aj is totally ordered. Let Aj,1 be the first n′
j elements of Aj , let Aj,2 be the following

n′
j elements of Aj , and so on and so forth up to defining Aj,q . Clearly, the Aj,i are disjoint

but do not necessarily cover all of Aj . Now, for 1 � i � q, define Hi as the hyper-subgraph

of H restricted to A1,i × · · · × Ad,i (for an illustration, see Figure 4). Observe that the

proportion between the sizes of the colour classes of Hi is roughly the same as the one

among the colour classes of H .

Note that by monotonicity, the distribution of Hi is D(Kn′
1 ,...,n

′
d
). Moreover, since

the Hi are disjoint, by block independence, their distributions are independent. Thus

L(H1), . . . , L(Hq) are independent random variables. A crucial, though trivial, observation

is that

L(H) �
q∑

i=1

L(Hi). (2.5)

On the other hand, by definition of q and (2.4), we obtain

N

Atλ
� q � N

Atλ
+ 1 � 2N

Atλ
. (2.6: estimate of q)

An important but non-trivial observation is that each n′
j � 1, or equivalently, that

nj � q. In fact, we will show the stronger claim nj � 2N/Atλ. We do this by contradiction.

Suppose without loss of generality that n1 < 2N/Atλ. Using that the arithmetic mean of
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{n2, . . . , nd} is larger than or equal to their geometric mean, we get

S �
d∑

i=2

ni � (d − 1)

d∏
i=2

n
1/(d−1)
i = (d − 1)

Nd/(d−1)

n
1/(d−1)
1

> (d − 1)N

(
Atλ

2

)1/(d−1)

.

By (2.2),

A � 2

1 − (1 − δ)d
Cd−1
g tη(d−1)−λ

g � 2Cd−1
g .

Combining this with the previous inequality, and using the hypothesis λ/(d − 1) � η of

the Main Theorem, we get

S > (d − 1)NCgt
λ/(d−1) � NCgt

η,

which contradicts (2.4) and completes the proof of the claim.

In order to estimate the geometric mean N ′ of n′
1, . . . , n

′
d, the next result will be useful.

Lemma 2.1. If x1, . . . , xd are real numbers greater than or equal to 1, then

d∏
j=1

(xj − 1) �
d∏

j=1

xj −
( d∑

j=1

xj

)d−1

.

Proof. Clear for d = 1. For d � 2, by the induction hypothesis, the fact that xd � 1, and

since

max
j=1,...,d−1

xj �
d−1∑
j=1

xj,

we obtain

d∏
j=1

xj −
d∏

j=1

(xj − 1) = (xd − 1)

(d−1∏
j=1

xj −
d−1∏
j=1

(xj − 1)

)
+

d−1∏
j=1

xj

� (xd − 1)

(d−1∑
j=1

xj

)d−2

+

d−1∏
j=1

xj � (xd − 1)

(d−1∑
j=1

xj

)d−2

+

(d−1∑
j=1

xj

)d−1

=

(d−2∑
j=1

xj

)d−2(
xd − 1 +

d−1∑
j=1

xj

)
�

(d−2∑
j=1

xj

)d−2 d∑
j=1

xj.

The desired conclusion follows immediately from the fact that the xj are positive.

Using the definition of

N ′ =

d∏
j=1

(�nj/q�)1/d,
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the preceding lemma, and our previous observation that each n′
j � 1, we conclude that

N

q
=

d∏
j=1

(
nj

q

)1/d

� N ′ �
( d∏

j=1

(
nj

q
− 1

))1/d

�
( d∏

j=1

nj

q
−

( d∑
j=1

nj

q

)d−1)1/d

=
N

q

(
1 − q

Sd−1

Nd

)1/d

.

By (2.4) and our estimate (2.6) of q,

q
Sd−1

Nd
� 2

A
Cd−1
g tη(d−1)−λ.

Given the way we have chosen A, we have that (1 − qSd−1/Nd)1/d � 1 − δ, and thus

N

q
� N ′ � N

q
(1 − δ). (2.7: estimate of N ′)

Based on the preceding estimate of N ′ and the estimate for q, we will now show that

n′
1, . . . , n

′
d satisfy the size conditions (1.1) and (1.2) required by the definition of a (c, λ, θ)-

median. Indeed, by our estimates (2.7) and (2.6) of N ′ and q, and (2.2),

N ′ � N

q
(1 − δ) � 1

2
Atλ(1 − δ) � atλ.

Moreover, by the definition of S ′, (2.6), (2.4), and (2.3),

S ′b � Sb

q
� SbAtλ

N
� CgbAt

λ+η � tθ.

Now, choose H ′ according to D(Kn′
1 ,...,n

′
d
) and let Med′ be a median of L(D(Kn′

1 ,...,n
′
d
)).

By the definition of a (c, λ, θ)-median, we get that cN ′t−λ(1 − δ) � Med′ � cN ′t−λ(1 + δ).

Moreover, using the definition of the constant of concentration, we get

Pr

[
L(H ′) � (1 − 2δ)

cN ′

tλ

]
� Pr

[
L(H ′) �

(
1 − δ

1 − δ

)
Med′

]

� 1 − 2 exp

(
−h

δ2

(1 − δ)2
Med′

)
� 1 − 2 exp

(
−h

δ2

1 − δ

cN ′

tλ

)
.

Using Markov’s inequality, we get

E[L(H ′)] � (1 − 2δ)
cN ′

tλ

(
1 − 2 exp

(
−h

δ2

1 − δ

cN ′

tλ

))
.

As observed above, N ′ � Atλ(1 − δ)/2, so by the choice of A (see (2.2)) we get that

E[L(H ′)] � (1 − 2δ)(1 − δ)cN ′t−λ.

Hence, using that L(H) �
∑q

i=1 L(Hi), (2.7), (2.1) and elementary algebra,

E[L(H)] �
q∑

i=1

E[L(Hi)] � (1 − 2δ)(1 − δ)q
cN ′

tλ

� (1 − 2δ)(1 − δ)2 cN

tλ
� (1 − ε/2)

cN

tλ
.
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We have thus established the lower bound claimed in (1.3).

Now, we proceed to show (1.5). Note that

Pr

[
L(H) � (1 − ε)

cN

tλ

]
�

∑
(s1 ,...,sq)∈N

q

s1+···+sq�(1−ε)cNt−λ

Pr[L(Hi) = si, i = 1, . . . , q]. (2.8)

Let T be the set of indices of the summation in the preceding displayed equation. Also,

for T = (s1, . . . , sq) belonging to T , let PT denote Pr[L(Hi) = si, i = 1, . . . , q]. We will show

that PT is exponentially small with respect to cNt−λ. More precisely, we will show that

lnPT � q ln(2) − cNt−λhε2/8. Recalling that the L(Hi) are independent and distributed as

L(H ′) when H ′ is chosen according to D(Kn′
1 ,...,n

′
d
),

PT =

q∏
i=1

Pr[L(Hi) = si] �
(
Pr[L(H ′) � si]

)q
.

Again, by the way in which H ′ is chosen, the definition of Med′, and the definition of

a (c, λ, θ)-median, for i such that si � (1 − δ)cN ′t−λ � Med′ � (1 + δ)cN ′t−λ � 2cN ′t−λ, it

holds that

Pr[L(H ′) � si] = Pr

[
L(H ′) �

(
1 − Med′ − si

Med′

)
Med′

]

� 2 exp

(
−h

(Med′ − si)
2

Med′

)
� 2 exp

(
− htλ

2cN ′ ((1 − δ)cN ′t−λ − si)
2

)
.

Hence, for all 1 � i � q,

Pr[L(H ′) � si] � 2 exp

(
− htλ

2cN ′
(
max{0, (1 − δ)cN ′t−λ − si}

)2
)
,

and then

− lnPT � −
q∑

i=1

ln Pr[L(H ′) � si]

� −q ln(2) +
htλ

2cN ′

q∑
i=1

(
max{0, (1 − δ)cN ′t−λ − si}

)2
.

By the Cauchy–Schwarz inequality, our estimate (2.7) of N ′, the fact that

s1 + · · · + sq � (1 − ε)cNt−λ,

and since by the definition of δ (see (2.1)) we know that (1 − δ)2 � 1 − ε/2,√√√√q

q∑
i=1

(
max{0, (1 − δ)cN ′t−λ − si}

)2 �
q∑

i=1

max{0, (1 − δ)cN ′t−λ − si}

� (1 − δ)cN ′qt−λ −
q∑

i=1

si � (1 − δ)2cNt−λ − (1 − ε)cNt−λ � cNε

2tλ
.
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Combining the last two displayed inequalities and recalling our estimate (2.7) of N ′, we

get the desired bound for PT , since

− lnPT � −q ln(2) +
htλ

2cN ′q
· c

2N2ε2

4t2λ
� −q ln(2) +

hcNε2

8tλ
.

By (2.8) and using the standard estimate
(
a
b

)
� (ea/b)b, we have

Pr

[
L(H) � (1 − ε)

cN

tλ

]
�

∑
T∈T

PT � |T | · max
T∈T

PT �
(

�(1 − ε)cNt−λ� + q

q

)
· max
T∈T

PT

� exp

(
q ln

(
2e[1 + (1 − ε)cNt−λ/q]

)
− hcNε2

8tλ

)
.

Now, by the estimate of q (2.6) we know that N � qAtλ � 2N. Thus, if we require that A

is sufficiently large that ln(2e[1 + (1 − ε)cA]) � Ahcε2/32, we get that

Pr

[
L(H) � (1 − ε)

cN

tλ

]
� exp

(
2N

Atλ
ln(2e[1 + (1 − ε)cA]) − hcNε2

8tλ

)

� exp

(
−hε2cN

16tλ

)
.

This proves the lower bound claimed in (1.5).

What remains is to show the lower bound in (1.4). By the estimate of q (see (2.6)) we

have N � Atλ, which together with our choice of A (see (2.2)) implies that

exp

(
−hε2cN

16tλ

)
� exp

(
−hε2c

16
A

)
� 1

2
.

Combining the last two displayed equations, it follows that

Pr
[
L(H) � (1 − ε)cNt−λ

]
� 1

2
,

implying that any median of L(H) must be at least (1 − ε)cNt−λ.

Remark. The reader may check that all claims proved in this section would still hold

if, instead of D = (D(Kn1 ,...,nd)), we had worked with a weak random hyper-graph model

D = (D(K (d)
n )). Indeed, if this were the case, then for H chosen according to D(K (d)

n ), the

hyper-graphs H1, . . . , Hq obtained above from H would have all their colour classes of

equal size, and the weak random hyper-graph model assumption is all that would be

needed to carry forth the arguments laid out in this section.

3. Upper bounds

In this section we will establish the upper bounds claimed in the statement of the Main

Theorem, i.e., the upper bounds in (1.3) and (1.4), and inequality (1.6). The proof of

the latter of these bounds, the upper tail bound, is rather long. For sake of clarity of

exposition, we have divided its proof into three parts. First, in Section 3.1, we introduce

some useful variables. In Section 3.2, we establish (1.6) for not too large values of the
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geometric mean N. Then, in Section 3.3, we consider the case where N is large. Finally,

in Section 3.4, we conclude the proof of the bounds claimed in the Main Theorem.

3.1. Basic variable definitions

For the rest of this section, let D, c, λ, θ, η, and ε be as in the statement of the Main

Theorem. Define

δ = min

{
1,

ε2

1 + ε
,
ε

6

}
. (3.1: definition of δ)

Let a = a(δ), b = b(δ) and t′ = t′(δ) as guaranteed by the definition of a (c, λ, θ)-median.

Choose A so that

A = max

{
a

δ
,
8 ln(2)

hδc

}
. (3.2)

For technical reasons, it will be convenient to fix constants α and β such that

λ < α < β < θ − η.

We shall also encounter two constants K1 and K2, depending solely on d. Since g = O(tη),

there are constants Cg > 1 and tg � t′ such that for all t � tg it holds that g(t) � Cgt
η ,

and

max{9Atλ, e} � tα � tβ � 1

bdCg

tθ−η, (3.3)

2αK1

δcK2h
tλ � tα

ln(t)
. (3.4)

Now consider t � tg and positive integers n1, n2, . . . , nd with geometric mean N, summing

up to S , and satisfying both the size (N � Atλ) and balance constraints (S � g(t)N) of the

Main Theorem. Furthermore, define M = cNt−λ and choose H according to D(Kn1 ,...,nd).

In the following two sections, we separately consider the case where N is less than or

(respectively) is at least tβ .

3.2. Upper tail bound for not too large values of N

Throughout this section, we assume N < tβ . We will show that H satisfies the size bound

restrictions (1.1) and (1.2) in the definition of a (c, λ, θ)-median. The fact that D admits a

concentration constant h will allow us to obtain a bound on the upper tail of L(H).

Let t � tg . Since N satisfies both the size and balance constraints of the Main Theorem,

by (3.2), (3.3), and the definition (3.1) of δ,

N � Atλ � atλ

δ
� atλ,

Sb � g(t)bN < Cgbt
η+β � tθ

d
� tθ.

Thus, n1, . . . , nd satisfy both the size lower and upper bound conditions (1.1) and (1.2) of

the definition of a (c, λ, θ)-median. Hence, if H is chosen according to D(Kn1 ,...,nd), then

every median Med of L(H) is at a distance of at most δM from M. By simple algebra,

the definitions of the concentration constant and the (c, λ, θ)-median, and given that by
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the definition of δ we know that δ < ε, we have

Pr
[
L(H) � (1 + ε)M

]
= Pr

[
L(H) �

(
1 +

(1 + ε)M − Med

Med

)
Med

]

� 2 exp

(
−h

((1 + ε)M − Med)2

(1 + ε)M

)
� exp

(
ln(2) − h

(ε − δ)2

1 + ε
M

)
.

Again by the way in which δ is defined we have that δ � ε/2 and δ � ε2/(1 + ε). Using

this, (3.2) and recalling that N � Atλ and M = cNt−λ, we have

Pr
[
L(H) � (1 + ε)M

]
� exp

(
Ahδc

8
− hε2

4(1 + ε)
M

)

� exp

(
hδNc

8tλ
− hε2

4(1 + ε)
M

)
� exp

(
− hε2

8(1 + ε)
M

)
.

We have thus established (1.6) for N < tβ .

3.3. Upper tail bound for large values of N

We now consider the case where N � tβ . The magnitude of N is such that we cannot

directly apply the definition of a (c, λ, θ)-median to a hyper-graph generated according

to D(Kn1 ,...,nd), and thus derive the sought-after exponentially small tail bound. We again

resort to the block partitioning technique introduced in the proof of the lower bound.

However, both the block partitioning and the analysis are more delicate and involved in

the case of the upper bound.

3.3.1. Block partition. Let l = tα, L = Cgt
η+α and

mmax = �(1 + ε)M�. (3.5)

In what follows, we shall upper-bound the probability that H chosen according to

D(Kn1 ,...,nd) has a non-crossing hyper-matching of size at least mmax, i.e., the probability

that L(H) � mmax.

We begin with a simple observation: since different edges of a non-crossing hyper-

matching of H cannot have vertices in common, L(H) � ni for all i. It immediately

follows that L(H) is upper-bounded by the geometric mean of the ni, that is, L(H) � N.

Thus, if mmax > N, then Pr
[
L(H) � mmax

]
= 0. This justifies why, in the ensuing discussion,

we assume that mmax � N.

Let J be a non-crossing hyper-subgraph of Kn1 ,...,nd such that the number of edges of

J is (exactly equal to) mmax. We shall partition the edge set of J into consecutive sets of

edges which we will refer to as blocks. The partition will be such that for any colour class,

the set of vertices appearing in a block are ‘not too far apart’, the precise meaning to be

clarified shortly. The maximum number of edges in any block will be smax, where

smax =

⌊
l

N
mmax

⌋
. (3.6)

Given two edges e and ẽ of J , such that e � ẽ, we let [e, ẽ] denote the collection of edges

f of J such that e � f � ẽ. We now define a partition into blocks of the edge set of J ,
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Figure 5. Partition into blocks of a hyper-graph. Each block [ei, ẽi] (shown in light grey) contains at most smax

edges and at most L vertices from each colour class.

denoted by P(J), as follows: P(J) = {[ei, ẽi] | 1 � i � q} where the ei, the ẽi, and q are

determined via the following inductive process.

• e1 is the first (smallest according to �) edge of J .

• Assuming ei = (v(i)
1 , v

(i)
2 , . . . , v

(i)
d ) has already been defined, ẽi = (̃v(i)

1 , ṽ
(i)
2 , . . . , ṽ

(i)
d ) is the

last edge of J satisfying the following two conditions (see Figure 5 for an illustration):

– [ei, ẽi] has at most smax elements,

– ṽ
(i)
j − v

(i)
j � L for all 1 � j � d (where we have relied on the abuse of notation

entailed by our identification of the jth colour class of Kn1 ,...,nd with the set

{1, 2, . . . , nj} endowed with the natural order).

• Assuming ẽi has already been defined and provided there are edges e of J strictly

larger than ẽi, we define ei+1 to be the smallest such e.

Clearly, the value taken by q above depends on J . Nevertheless, we will show that the

following estimate of q = |P(J)| holds for all J non-crossing hyper-subgraphs of Kn1 ,...,nd:

N

l
� |P(J)| � 3N

l
. (3.7: estimate of q)

Note that each block has at most smax edges and recall that |E(J)| = mmax. Thus,

q � mmax/smax � N/l.

Now, we say that a block is short if it is either [eq, ẽq] or a block with exactly smax edges.

Let I0 be the collection of indices of short blocks. It follows that mmax � (|I0| − 1)smax.

Furthermore, since mmax � M = cNt−λ, we have

mmax

smax
� N

l
· 1

1 − N/(lmmax)
� N

l
· 1

1 − tλ−α/c
.

Since (3.4) implies that tλ−α < c/2, we conclude that |I0| � 2N/l.

Say a block is regular if it is not short, and let I1 = [q] \ I0 be the set of indices of

such blocks. We shall use the term block cover for the collection of all nodes between the

first edge of the block (inclusive) and the first edge of the next block (exclusive). By the

definition of block partition, if the ith block is regular, then for some colour class j we

must have v
(i+1)
j − v

(i)
j > L. Hence,

d∑
j=1

(v(i+1)
j − v

(i)
j ) > L.
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In other words, a regular block gives rise to a block cover of cardinality at least L. Since

every node belongs to at most one block cover, |I1| � S/L. Recalling that L = Cgt
ηl and

that S satisfies the balance condition (hence, S � Cgt
ηN for t � tg), we conclude that

|I1| � N/l.

Putting together the conclusions reached in the last two paragraphs, we see that

q = |I0| + |I1| � 3N/l, which establishes the claimed estimate of q.

3.3.2. Partition types. Let si be the number of edges of J in the ith block [ei, ẽi] of the

partition P(J). Let q be the number of blocks of P(J). We refer to the (3q)-tuple

T = (e1, ẽ1, s1, . . . , eq, ẽq, sq)

as the type of partition P(J), and denote it by T (P(J)). Furthermore, let T be the

collection of all possible partition types of non-crossing hyper-subgraphs of Kn1 ,...,nd with

exactly mmax edges.

Lemma 3.1. There is a constant K1, depending only on d, such that

|T | � exp

(
K1

N

l
ln(l)

)
.

Proof. Observe that each ei is completely determined by specifying its vertices. Hence,

the number of ways of choosing e1, . . . , eq is at most the number of ways of choosing q

elements from each node colour class, i.e., at most
∏d

i=1

(
ni
q

)
. The number of choices for

ẽ1, . . . , ẽq is bounded by the same quantity. On the other hand, since J has exactly mmax

edges, the number of choices for s1, . . . , sq is at most the number of ways of summing

up to mmax with q positive integer summands. Since we are assuming that mmax � N (see

comment in the second paragraph of Section 3.3.1), the aforementioned quantity can be

bounded by
(
N
q

)
. Using that

(
a
b

)
� (ea/b)b we obtain, for fixed q, that the number of types

is at most (
N

q

)( d∏
i=1

(
ni

q

))2

�
(
eN

q

)q( d∏
i=1

(eni/q)

)2q

=

(
eN

q

)q+2qd

.

Recalling our estimate (3.7) for q, we get that

|T | �
�3N/l�∑
q=�N/l�

(
eN

q

)q(1+2d)

� 3N

l
(el)3(1+2d)N/l .

Since ln(x) � x for all x > 0 and by (3.3), we know that l = tα � e, and

ln |T | � ln

(
3N

l

)
+ (1 + 2d)

3N

l
(1 + ln(l)) � (2 + 2d)

3N

l
(1 + ln(l)).

Since 1 + ln l � 2 ln l, the desired conclusion follows choosing K1 = 12(1 + d).

3.3.3. Probability of a block partition occurring. The purpose of this section is to show

that for a given fixed type T , the probability that a hyper-graph chosen according to
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D(Kn1 ,...,nd ) contains a hyper-subgraph of type T with mmax edges is exponentially small in

M. Specifically, we will prove the following result.

Lemma 3.2. For T ∈ T , let PT denote the probability that a hyper-subgraph randomly

chosen according to D(Kn1 ,...,nd ) contains a non-crossing hyper-subgraph J with mmax edges

such that T (P(J)) = T . Then, for some absolute constant K2 > 0,

PT � exp

(
−K2h

ε2

1 + ε
M

)
.

We now proceed with the proof of the preceding result. Let T = (e1, ẽ1, s1, . . . , eq, ẽq, sq).

As before, for all i, let ei = (v(i)
1 , v

(i)
2 , . . . , v(i)

q ) and ei = (̃v(i)
1 , ṽ

(i)
2 , . . . , ṽ(i)

q ). Let H be chosen

according to D(Kn1 ,...,nd ), and let Hi be the hyper-subgraph of H induced by the nodes

between ei and ẽi, that is,

v
(i)
1 , v

(i)
1 + 1, . . . , ṽ(i)

1 , v
(i)
2 , v

(i)
2 + 1, . . . , ṽ(i)

2 , . . . , v
(i)
d , v

(i)
d + 1, . . . , ṽ(i)

d .

Note that Hi is distributed according to D(K
n

(i)
1 ,n

(i)
2 ,...,n

(i)
d

), where n
(i)
j = ṽ

(i)
j − v

(i)
j + 1 is the

size of the jth colour class of Hi. Moreover, if there is a non-crossing hyper-subgraph J

of H such that T (J) = T , then it must hold that L(Hi) � si, for all i = 1, . . . , q. Since by

hypothesis, D satisfies the block independence property, the events L(Hi) � si, i = 1, . . . , q,

are independent, so

PT �
q∏

i=1

Pr
[
L

(
D(K

n
(i)
1 ,n

(i)
2 ,...,n

(i)
d

)
)

� si

]
.

Now, let Ni and Si denote the geometric mean and sum of n
(i)
1 , . . . , n

(i)
d , respectively. The

ith term in the product of the last displayed equation will be small provided the sizes

of the colour classes of Hi, i.e., the n
(i)
j , satisfy the size conditions (1.1) and (1.2) of the

definition of a (c, λ, θ)-median. Unfortunately, this may not occur for every i, somewhat

complicating the analysis. Below we see how to handle this situation.

Since T (P(J)) = T , we know that n
(i)
1 , n

(i)
2 , . . . , n

(i)
d � L. Recalling that α < β and ap-

plying (3.3), we conclude that Sib � dbL = Cgdbt
η+α � Cgdbt

η+β � tθ , so the size upper

bound condition (1.2) of the definition of a (c, λ, θ)-median holds. However, the same

might not be true regarding the size lower bound condition Ni � atλ. In order to handle

this situation, we artificially augment the size of the blocks where the condition fails.

Specifically, for all i = 1, . . . , q and j = 1, . . . , d we define

n
(i)
j = max{δnjAtλ/N, n

(i)
j }.

Unsurprisingly, we let Ni and Si denote the geometric mean and sum of the n
(i)
j ,

respectively. Observe that when we augment the sizes of the colour classes of the

hyper-graphs chosen, by the monotonicity property of random hyper-graph models, the

probability of finding a non-crossing hyper-subgraph of size at least si increases. Hence,

PT �
q∏

i=1

Pr
[
L

(
D

(
K

n
(1)
i ,...,n

(d)
i

))
� si

]
�

q∏
i=1

Pr
[
L

(
D

(
K

n
(1)
i ,...,n

(d)
i

))
� si

]
. (3.8)
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We claim that the Ni and Si satisfy the size conditions (1.1) and (1.2) in the definition of

a (c, λ, θ)-median. Indeed since n
(i)
j � L, and

δnj
Atλ

N
� δnj

tα

N
� δ

Stα

N
� δg(t)tα � δCgt

α+η = δL � L,

it follows that n(i)
j � L. Thence, by the same argument used to bound Si before augmenting

the block sizes, Sib � tθ . On the other hand, by (3.2) we have A � a/δ; therefore

Ni =

( d∏
j=1

n
(i)
j

)1/d

� δAtλ

N

( d∏
j=1

nj

)1/d

= δAtλ � atλ.

This concludes the proof of the stated claim.

Now, let Medi be a median of

L
(
D

(
K

n
(1)
i ,...,n

(d)
i

))
.

By the definition of a (c, λ, θ)-median,

(1 − δ)cNit
−λ � Medi � (1 + δ)cNit

−λ.

Hence, for all i such that si � (1 + δ)cNit
−α � Medi, and using that h is a concentration

constant for the random model D, we get

Pr
[
L

(
D

(
K

n
(1)
i ,...,n

(d)
i

))
� si

]
� 2 exp

(
−h

(si − Medi)
2

si

)

� 2 exp

(
−h

(si − (1 + δ)cNit
−λ)2

si

)
.

Since si � smax, we get that for all i,

Pr
[
L

(
D

(
K

n
(1)
i ,...,n

(d)
i

))
� si

]
� 2 exp

(
−h

(max{0, si − (1 + δ)cNit
−λ})2

si

)

� 2 exp

(
−h

(max{0, si − (1 + δ)cNit
−λ})2

smax

)
.

Using the last bound and (3.8),

− lnPT � − ln

( q∏
i=1

Pr
[
L

(
D

(
K

ni,...,n
(d)
i

))
� si

])

� −q ln(2) +
h

smax

q∑
i=1

(
max{0, si − (1 + δ)cNit

−λ}
)2
. (3.9)

We now focus on the summation in the last term in the preceding displayed equation.

We bound it from below by the following generalization of Hölder’s inequality (see for

example [22, Theorem 11]): For any collection of positive real numbers xi,j , 1 � i � q,

1 � j � d,

q∑
i=1

d∏
j=1

xi,j �
d∏

j=1

( q∑
i=1

xdi,j

)1/d

. (3.10)
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Setting xi,j = (n(i)
j )1/d in the aforementioned inequality, observing that by the definition of

n
(i)
j we have n

(i)
j � n

(i)
j + δnjAt

λ/N, and recalling that the sum of n(1)
j , . . . , n

(q)
j is at most nj ,

q∑
i=1

Ni �
( d∏

j=1

q∑
i=1

n
(i)
j

)1/d

�
( d∏

j=1

q∑
i=1

(n(i)
j + δnjAt

λ/N)

)1/d

� N(1 + δqAtλ/N).

Because of our estimate (3.7) for q and (3.3), we conclude that

q∑
i=1

Ni � N(1 + 3δAtλ−α) � N(1 + δ/3) � N(1 + δ).

By the Cauchy–Schwarz inequality and recalling that the sum of the si is mmax = �(1 +

ε)M�, √√√√q

q∑
i=1

(
max{0, si − (1 + δ)cNit−λ}

)2

�
q∑

i=1

max{0, si − (1 + δ)cNit
−λ}

� mmax − (1 + δ)ct−λ

q∑
i=1

Ni � M(1 + ε) − M(1 + δ)2.

Let us now see that the just derived lower bound is actually positive. Recall that by the

definition of δ (see (3.1)) we know that δ � ε/6 and δ � 1, so

(1 + ε) − (1 + δ)2 = ε − 2δ − δ2 � ε − 3δ � ε/2.

We then have √√√√q

q∑
i=1

(
max{0, si − (1 + δ)cNit−λ}

)2

� εM

2
.

Combining the last inequality with (3.9), and since smax � (l/N)(1 + ε)M, we find that

− lnPT � −q ln(2) +
h

qsmax
· ε

2M2

4
� −q ln(2) +

hNε2M

4q(1 + ε)l
.

Our estimate (3.7) for q states that q � 3N/l. Moreover, l = tα � 9Atλ by (3.3); therefore

− lnPT � −N ln(2)

3Atλ
+

hε2M

12(1 + ε)
=

cN

tλ

(
hε2

12(1 + ε)
− ln(2)

3Ac

)
.

By (3.2) and definition (3.1) of δ we know that A � 8 ln(2)/(hcδ) and δ � ε2/(1 + ε),

implying that

− lnPT � cN

tλ

(
hε2

12(1 + ε)
− hδ

24

)
� ε2

1 + ε
· hM

24
.

We have thus shown that Lemma 3.2 holds taking K2 = 1/24.
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3.3.4. Upper tail bound. We are now ready to finally prove (1.6) for N � tβ . First, note

that

Pr
[
L

(
D

(
Kn1 ,...,nd

))
� mmax

]
�

∑
T∈T

PT � |T | · max
T∈T

PT .

By Lemmas 3.1 and 3.2, using the fact that l = tα by our choice of tg , so (3.4) would

hold, and recalling that by definition (3.1) of δ we have δ � ε2/(1 + ε), and given that

M = cNt−λ, we have

Pr
[
L

(
D

(
Kn1 ,...,nd

))
� mmax

]
� exp

(
K1

N

l
ln(l) − K2h

ε2

1 + ε
M

)
= exp

(
K1α

N

tα
ln(t) − K2h

ε2

1 + ε
M

)

� exp

(
δK2h

2

cN

tλ
− K2h

ε2

1 + ε
M

)
� exp

(
− K2hε

2

2(1 + ε)
M

)
.

We thus conclude that (1.6) holds for any constant K � K2/2 (since K2 = 1/24, any

K � 1/48 would do).

3.4. Upper bounds for the mean and median

We will now establish the two remaining unproved bounds claimed in the Main Theorem,

i.e., (1.3) and (1.4).

Fix ε = ε0 > 0 and choose δ, A, α, β, Cg , tg , K1 and K2 as in Section 3.1. We can

view δ as a function of ε, henceforth denoted by δ(ε). Similarly, we can view A and tg
as functions of δ, denoted by A(δ) and tg(δ) respectively. Let A′ be a sufficiently large

constant such that

exp

(
−Kh

ε2
0

4(1 + ε0/2)
cA′

)
� ε0

28
, and

7

6Kh
� ε0

4
cA′. (3.11: definition of A′)

Observe that by definition, δ(ε) = 1 for every ε � 6. Moreover, let

δ0 = δ(ε0/2), Ã = max{A(δ0), A(1), A′}, and t̃g = max{tg(δ0), tg(1)}.

Let t � t̃g and consider the positive integers n1, . . . , nd with geometric mean N and

summing S satisfying the size and balance constraints in the statement of the Main

Theorem, i.e.,

N � Ãtλ, and Sb � g(t)N.

The choice of t̃g and Ã guarantee that (1.6) holds for ε = ε0/2 and for all ε � 6.

As usual, let H be chosen according to D(Kn1 ,...,nd ) and let M = cNt−λ. We follow Iverson

and use the bracket notation [[X]] = 1 if event X is true, and [[X]] = 0 otherwise. Observe

that

E[L(H)] = E
[
L(H) · [[0 � L(H) < (1 + ε0/2)M)]]

]
+ E

[
L(H) · [[(1 + ε0/2)M � L(H) < 7M]]

]
+ E

[
L(H) · [[L(H) � 7M]]

]
.

Let us now upper-bound separately each of the terms in the right-hand side of the

preceding displayed equation. The first one is trivially upper-bounded by (1 + ε0/2)M.
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Using (1.6), the fact that N � Ãtλ � A′tλ, and the definition (3.11) of A′, we obtain

E
[
L(H) · [[(1 + ε0/2)M � L(H) < 7M]]

]
� 7MPr

[
L(H) > (1 + ε0/2)M

]
� 7M exp

(
−Kh

ε2
0

4(1 + ε0/2)
· cN
tλ

)
� 7M exp

(
−Kh

ε2
0

4(1 + ε0/2)
· cA′

)
� Mε0

4
.

Now let us consider the third term. For ε � 6, (1.6) holds and ε/(1 + ε) � 6/7. Further-

more, using that M = cNt−λ � cÃ � cA′, and the definition (3.11) of A′,

E
[
L(H) · [[L(H) � 7M]]

]
=

∫ ∞

7M

Pr
[
L(H) > t

]
dt = M

∫ ∞

6

Pr
[
L(H) > (1 + ε)M

]
dε

� M

∫ ∞

6

exp

(
−Kh

ε2

1 + ε
· M

)
dε � M

∫ ∞

6

exp

(
−6Kh

7
· Mε

)
dε

= M

(
6Kh

7
M

)−1

exp

(
−36Kh

7
· M

)
�M

(
6Kh

7
· cA′

)−1

� Mε0

4
.

Summarizing, we have that E[L(H)] � (1 + ε0)M, which proves (1.3).

Finally, we establish (1.4). Again, let ε > 0 and choose δ, A, α, β, Cg , tg , K1 and K2 as

in Section 3.1. Let

A′ = max

{
A,

(1 + ε) ln(2)

Khcε2

}
. (3.12: definition of A′)

Now, let t � tg and n1, . . . , nd be positive integers with geometric mean N and summing up

to S , satisfying the size and balance constraints with respect to the just defined constant

A′, that is,

N � A′tλ, and Sb � g(t)N.

By (1.6) and (3.12), it follows that

Pr
[
L(H) � (1 + ε)M

]
� exp

(
−Kh

ε2

1 + ε
· cN
tλ

)
� exp

(
−Kh

ε2

1 + ε
· cA′

)
� 1

2
.

Hence, every median of L(H) is at most (1 + ε)M, thus establishing (1.4) and completing

the proof of the Main Theorem.

4. Applications

4.1. Preliminaries

For future reference we determine below concentration constants for the binomial and

word models.

Proposition 4.1. The d-dimensional binomial random hyper-graph model admits a concen-

tration constant of 1/4. The random d-word model admits a concentration constant of 1/(4d).

Proof. Let H be chosen according to G(Kn1 ,...,nd , p). Since L(H) depends exclusively on

whether or not an edge appears in H (and by independence among these events), it follows

that L(H) is 1-Lipschitz, i.e., |L(H) − L(H�{e})| � 1. Moreover, if L(H) � r, then there
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is a set of r edges witnessing the fact that L(H) � r, for every H containing such a set of

r edges. A direct application of Talagrand’s inequality (as stated in [23, Theorem 2.29])

proves the claim about the concentration constant for the d-dimensional binomial random

hyper-graph model. The case of the random d-word model is similar and left to the reader

to verify.

Also, for the sake of conciseness and in order to avoid irritating reiteration of by now

default notation, throughout this section, whenever not explicitly defined, N and S always

denote the geometric mean and sum of the positive integers n1, . . . , nd, respectively.

4.2. Random binomial hyper-graph model

In this section we apply the Main Theorem to the d-dimensional binomial random

hyper-graph model.

We will show that the constant c in the definition of a (c, λ, θ)-median for this model

is related to a constant that arises in the study of the asymptotic behaviour of the

length of a longest increasing subsequence of d − 1 randomly chosen permutations of

[n], when n goes to infinity. We first recall some known facts about this problem.

Given positive integers d and n, consider d permutations π1, . . . , πd of [n]. We say that

{(ij , π1(ij), . . . , πd(ij)) | 1 � j � �} is an increasing sequence of (π1, . . . , πd) of length � if

i1 < i2 < · · · < i� and πt(i1) < πt(i2) < · · · < πt(i�) for 1 � t � d. We let lisd+1(n) denote

the random variable corresponding to the length of a longest increasing subsequence

of (π1, . . . , πd) when π1, . . . , πd are randomly and uniformly chosen. The study of the

asymptotic characteristics of the distribution of lisd(n) will be henceforth referred to as

Ulam’s problem in d dimensions (note that the d = 2 case corresponds precisely to the

setting discussed in the first paragraph of the Introduction).

Ulam’s problem in d dimensions can be restated geometrically as follows. Consider

choosing �x(1), . . . ,�x(n) uniformly and independently in the d-dimensional unit cube [0, 1]d

endowed with the natural componentwise partial order. Let Hd(n) be the length of a

largest chain C ⊆ {�x(1), . . . ,�x(n)}. It is not hard to see that Hd(n) and lisd(n) follow the

same distribution. Bollobás and Winkler [11] have shown that for every d there exists a

constant cd such that Hd(n)/ d
√
n (and thus also lisd(n)/ d

√
n) goes to cd as n → ∞. Only the

values c1 = 1 and c2 = 2 are known for these constants. However, in [11] it is shown that

ci � ci+1 and ci < e for all i, and that limd→∞ cd = e.

Now, let us go back to our discussion concerning the random binomial hyper-graph

model. Our immediate goal is to estimate a median of L(G(Kn1 ,...,nd , p)). Consider H

chosen according to G(Kn1 ,...,nd , p) and let H ′ be the hyper-subgraph of H obtained from

H after removal of all edges incident to nodes of degree at least 2. Let E = E(H)

and E ′ = E(H ′). In order to approximate a median of L(G(Kn1 ,...,nd , p)) it will be useful

to estimate first the expected value of L(H ′). We now come to a crucial observation:

L(H ′) is precisely the length of a largest chain (for the natural order among edges)

contained in E ′, or equivalently the length of a longest increasing subsequence of d − 1

permutations of {1, . . . , |E ′|}. The preceding observation will enable us to build on the

known results concerning Ulam’s problem and use them in the analysis of the longest non-

crossing matching problem for the random binomial hyper-graph model. In particular,



Longest Increasing Subsequences of Randomly Chosen Multi-Row Arrays 279

the following concentration result due to Bollobás and Brightwell [10] for the length of a

d-dimensional longest increasing subsequence will be useful for our purposes.

Theorem 4.2 (Bollobás and Brightwell [10, Theorem 8]). For every d � 2, there is a

constant Dd such that, for m sufficiently large and 2 < λ < m1/2d/ log logm,

Pr

[
|lisd(m) − E

[
lisd(m)

]
| > λDdm

1/2d log(m)

log log(m)

]
� 80λ2e−λ2

.

We will not directly apply the preceding result. Instead, we rely on the following.

Corollary 4.3. For every d � 2, t > 0 and α > 0, there exists m0 = m0(t, α, d) sufficiently

large that if m � m0, then

Pr
[
|lisd(m) − cdm

1/d| > tcdm
1/d

]
� α.

Proof. Let Dd be the constant in the statement of Theorem 4.2. By definition of Ulam’s

constant, we know that limn→∞ E[lisd(m)]/ d
√
m = cd. Hence, we can choose m0 = m0(t, α, d)

sufficiently large that for all m � m0, Theorem 4.2 holds, and in addition the following

conditions are satisfied:

|E
[
lisd(m)

]
− cdm

1/d| < 1

2
tcdm

1/d, (4.1)

λ = λ(m)
def
=

tcd

2Dd

· m
1/2d log log(m)

log(m)
� m1/2d

log log(m)
and 80λ2e−λ2 � α. (4.2)

(Both conditions can be satisfied since (log log(m))2 = o(log(m)) and λ(m) → ∞ when

m → ∞.) It follows that for all m > m0,

Pr
[
|lisd(m) − cdm

1/d| > tcdm
1/d

]
� Pr

[
|lisd(m) − E

[
lisd(m)

]
| + |E

[
lisd(m)

]
− cdm

1/d| > tcdm
1/d

]
� Pr

[
|lisd(m) − E

[
lisd(m)

]
| > 1

2
tcdm

1/d

]

= Pr

[
|lisd(m) − E

[
lisd(m)

]
| > λDdm

1/2d log(m)

log log(m)

]
� 80λ2e−λ2

.

For future reference, we recall a well-known variant of Chebyshev’s inequality.

Proposition 4.4 (Chebyshev’s inequality for indicator random variables). Let X1, . . . , Xm be

random variables taking values in {0, 1} and let X denote X1 + · · · + Xm. Also, let

Δ =
∑
i,j:i�=j

E[XiXj].
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Then, for all t � 0,

Pr
[
|X − E[X]| � t

]
� 1

t2

(
E[X](1 − E[X]) + Δ

)
.

Moreover, if X1, . . . , Xm are independent, then

Pr
[
|X − E[X]| � t

]
� E[X]

t2
.

Proof. Observe that since Xi is an indicator variable, then E[X2
i ] = E[Xi]. Thus, if we let

V[X] denote the variance of X,

V[X] = E[X2] − (E[X])2 =

m∑
i=1

E[X2
i ] + Δ − (E[X])2 = E[X](1 − E[X]) + Δ.

A direct application of Chebyshev’s inequality yields the first bound claimed. The second

stated bound follows from the first one, and the fact that if X1, . . . , Xm are independent,

then Δ � (E[X])2.

We will also need the following two lemmas.

Lemma 4.5. Let N and S denote the geometric mean and sum of n1, . . . , nd. If

Ñ =

( d∏
j=1

(nj − 1)

)d

,

then Nd − Ñd � Sd−1.

Proof. Direct application of (3.10).

Lemma 4.6. Let N and S denote the geometric mean and sum of n1, . . . , nd. If

Ñ =

( d∏
j=1

(nj − 1)

)d

,

then the following hold:

E[|E|] = Ndp, (4.3)

E[|E ′|] = Ndp(1 − p)N
d−Ñd � Ndp(1 − Sd−1p), (4.4)

E[|E \ E ′|] � NdSd−1p2. (4.5)

Moreover, for all η > 0,

Pr
[
|E| − E[|E|] � ηE[|E|]

]
� 1

η2E[|E|] . (4.6)
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Proof. Let K = Kn1 ,...,nk , and for each e ∈ E(K) let Xe and Ye denote the indicators of

the events e ∈ E and e ∈ E ′, respectively. Note that

|E| =
∑

e∈E(K)

Xe and |E ′| =
∑

e∈E(K)

Ye.

Clearly, E[Xe] = p for all e ∈ E(K). Moreover, e ∈ E ′ if and only if e ∈ E and no edge

f ∈ E \ {e} intersects e. Since the number of edges in E(K) that intersect any given

e ∈ E(K) is exactly Nd − Ñd, we have that

E[Ye] = p(1 − p)N
d−Ñd

.

Observing that |E(K)| = Nd, we obtain (4.3) and the first equation in (4.4). On the other

hand, since (1 − p)m � 1 − pm and by Lemma 4.5, we can finish the proof of (4.4) by

noting that

E[|E ′|] = Ndp(1 − p)N
d−Ñd � Ndp(1 − (Nd − Ñd)p) � Ndp(1 − Sd−1p).

Inequality (4.5) is a consequence of (4.3), (4.4), and the fact that E ′ ⊆ E, as follows:

E[|E \ E ′|] = E[|E| − |E ′|] � NdSd−1p2.

Applying Chebyshev’s inequality for independent indicator random variables to the

collection {Xe | e ∈ E(K)} yields (4.6).

We are now ready to exploit the fact, already mentioned, that L(H ′) equals the length

of a longest increasing subsequence of d − 1 permutations of {1, . . . , |E ′|}, and then apply

Corollary 4.3 in order to estimate its value. Formally, we prove the following claim.

Proposition 4.7. Let δ > 0, d � 2, and N and S be the geometric mean and sum of positive

integers n1, . . . , nd, respectively. Moreover, let M = cdNp1/d, where cd is the d-dimensional

Ulam constant. Then, there is a constant C = C(δ, d) sufficiently large that the following

hold.

• If Np1/d � C and 12S2d−2p2−1/d � dd−1δcd, then every median of L(G(Kn1 ,...,nd , p)) is at

most (1 + δ)M.

• If Np1/d � C and 12Sd−1p � δ, then every median of L(G(Kn1 ,...,nd , p)) is at least (1 −
δ)M.

Proof. To prove that every median of L(G(Kn1 ,...,nd , p)) is at most (1 + δ)M, it suffices

to show that Pr[L(H) � (1 + δ)M] is at most 1/2. To establish the latter, note that

L(H) � L(H ′) + |E \ E ′|, and hence

Pr
[
L(H) � (1+δ)M

]
� Pr

[
|E \ E ′| � Mδ

2

]
+ Pr

[
L(H ′) � (1 + δ/2)M

]
� Pr

[
|E \ E ′| � Mδ

2

]
+ Pr

[
|E ′| � (1 + δ/2)

Md

cdd

]

+ Pr

[
L(H ′) � (1 + δ/2)M, |E ′| < (1 + δ/2)

Md

cdd

]
.
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We now separately upper-bound each of the latter three terms. For the first one, we rely

on Markov’s inequality, inequality (4.4) of Lemma 4.6, the fact that N � S/d, and our

hypothesis, to conclude that

Pr

[
|E \ E ′| � Mδ

2

]
� 2

Mδ
E
[
|E \ E ′|

]
� 2NdSd−1p2

δcdNp1/d

=
2Nd−1Sd−1p2−1/d

δcd
� 2S2d−2p2−1/d

dd−1δcd
� 1

6
.

To bound the second term, note that |E| � |E ′|, and recall (4.3) and (4.6) of Lemma 4.6,

so

Pr

[
|E ′| � (1 + δ/2)

Md

cdd

]
= Pr

[
|E| � (1 + δ/2)E[|E|]

]
� 4

δ2E[|E|] =
4

δ2Ndp
.

Since by assumption Ndp � Cd, it suffices to take Cd � 24/δ2 in order to derive an upper

bound of 1/6 for the second term.

Finally, we focus on the third term. Let m = �(1 + δ/2)Md/cdd�. Recall that conditioned

on |E ′| = n′, the random variable L(H ′) follows the same distribution as lis(n′). Thus, since

n � n′ implies that lis(n) dominates lis(n′), and given that (1 + x)a � 1 + ax for x � −1

and 0 < a < 1,

Pr

[
L(H ′) � (1 + δ/2)M, |E ′| < (1 + δ/2)

Md

cdd

]
� Pr

[
lisd(m) � 1 + δ/2

(1 + δ/2)1/d
cdm

1/d

]

� Pr

[
lisd(m) � 1 + δ/2

1 + δ/(2d)
cdm

1/d

]
= Pr

[
lisd(m) �

(
1 +

(d − 1)δ

2d + δ

)
cdm

1/d

]
.

Setting t = (d − 1)δ/(2d + δ) and requiring that Cd � m0 + 1 with m0 = m0(t, 1/6, d) as in

Corollary 4.3, and since by assumption Ndp � Cd, we have

m = �(1 + δ/2)Md/cdd� = �(1 + δ/2)Ndp� � �Cd� � m0.

Thus, we can apply Corollary 4.3 and conclude that

Pr
[
L(H ′) � (1 + δ/2)M, |E ′| < (1 + δ/2)Md/cdd

]
� 1

6
.

In summary, Pr
[
L(H) � (1 + δ)M

]
� 3(1/6) = 1/2, as we wanted to show.

Now, to prove that every median of L(G(Kn1 ,...,nd , p)) is at least (1 − δ)M, it suffices to

show that Pr
[
L(H) � (1 − δ)M

]
is at most 1/2. Note that L(·) is non-negative, so we can

always assume that δ � 1. Since L(H ′) � L(H),

Pr
[
L(H) � (1 − δ)M

]
� Pr

[
|E| � (1 − δ)

Md

cdd

]
+ Pr

[
L(H ′) � (1 − δ)M, |E| > (1 − δ)

Md

cdd

]

� Pr

[
|E| � (1 − δ)

Md

cdd

]
+ Pr

[
|E \ E ′| � (δ/2)

Md

cdd

]

+ Pr

[
L(H ′) � (1 − δ)M, |E ′| > (1 − δ/2)

Md

cdd

]
.
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As above, we separately bound each of the three latter terms. In the case of the first term,

by (4.3) and (4.6) of Lemma 4.6,

Pr

[
|E| � (1 − δ)

Md

cdd

]
= Pr

[
|E| � (1 − δ)E[|E|]

]
� 1

δ2E[|E|] =
1

δ2Ndp
.

Since by assumption Ndp � Cd, it suffices to take Cd � 6/δ2 in order to establish an upper

bound of 1/6 for the term under consideration.

To bound the second term, simply apply Markov’s inequality, use (4.5) of Lemma 4.6,

and recall that by assumption 12pSd−1 � δ. An upper bound of 1/6 follows for the term

under consideration.

Now, to bound the third term, let m = �(1 − δ/2)Md/cdd�. Recall that conditioned

on |E ′| = n′, the random variable L(H ′) follows the same distribution as lis(n′). Thus,

since n′ � n implies that lis(n′) dominates lis(n), some basic arithmetic and given that

(1 + x)a � 1 + ax for x � −1 and 0 < a < 1,

Pr

[
L(H ′) � (1 − δ)M, |E ′| > (1 − δ/2)

Md

cdd

]
� Pr

[
lisd(m) � (1 − δ)M

]
� Pr

[
lisd(m) � 1 − δ

(1 − δ/2)1/d
cdm

1/d

]
� Pr

[
lisd(m) � (1 − δ/2)1−1/dcdm

1/d
]

� Pr

[
lisd(m) �

(
1 − δ

2

(
1 − 1

d

))
cdm

1/d

]
.

Taking t = (δ/2)(1 − 1/d), requiring that C � (m0/(1 − δ/2))1/d with m0 = m0(t, 1/6, d) as

in Corollary 4.3, and since by assumption Ndp � Cd, we get

m � (1 − δ/2)
Md

cdd
= (1 − δ/2)Ndp � (1 − δ/2)Cd � m0.

Thus, we can apply Corollary 4.3 and conclude that the third term is also upper-bounded

by 1/6.

Summarizing, Pr
[
L(H) � (1 − δ)M

]
� 3(1/6) = 1/2, as we wanted to show.

Corollary 4.8. Let d � 2. If t = 1/p, then the model (G(Kn1 ,...,nd , p)) of internal parameter t

admits a (c, λ, θ)-median where

(c, λ, θ) =

(
cd,

1

d
,

2d − 1

2d(d − 1)

)
.

Proof. Let H be chosen according to G(Kn1 ,...,nd , p), M = cN/tλ = cdNp1/d, δ > 0, and

let C(δ) be as in Proposition 4.7. Define a(δ) = C(δ), b(δ) = (12/(δdd−1cd))
1/(2d−2) and

t′(δ) sufficiently large that t > t′(δ) and t1−1/(2d) < (δ/12)t(b(δ))d−1. Note that if t > t′(δ),

N � a(δ)t1/d, and Sb(δ) � t(2d−1)/(2d(d−1)), then the hypothesis of Proposition 4.7 will be

satisfied, and thence every median of L(H) will be between (1 − δ)M and (1 + δ)M.
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Recalling that by Proposition 4.1 we know that h = 1/4 is a concentration constant for

the d-dimensional binomial random hyper-graph model, by Corollary 4.8 and the Main

Theorem, we obtain the following.

Theorem 4.9. Let ε > 0 and g : R → R be such that, for a given 0 � η < 1/(2d(d − 1)),

we obtain g(t) = O(tη). Fix n1, . . . , nd and let N and S denote their geometric mean and sum,

respectively. There exists a sufficiently small p0 and sufficiently large A such that if p � p0,

Np1/d � A and S � g(1/p)N, then for M = cdNp1/d where cd is the d-dimensional Ulam

constant,

(1 − ε)M � E
[
L(G(Kn1 ,...,nd , p))

]
� (1 + ε)M,

and the following hold.

• If Med
[
L(G(Kn1 ,...,nd , p))

]
is a median of L(G(Kn1 ,...,nd , p)),

(1 − ε)M � Med
[
L(G(Kn1 ,...,nd , p))

]
� (1 + ε)M.

• There is an absolute constant C > 0 such that

Pr
[
L(G(Kn1 ,...,nd , p)) � (1 − ε)M

]
� exp(−Cε2M),

Pr
[
L(G(Kn1 ,...,nd , p)) � (1 + ε)M

]
� exp

(
−C

ε2

1 + ε
M

)
.

We are now ready to prove Theorem 1.2, which is the main result of this section, and

which was stated in the main contributions section.

Proof of Theorem 1.2. Let n, n′, n′′ be positive integers such that n = n′ + n′′. Clearly,

E
[
L(G(K (d)

n , p))
]

� E
[
L(G(K (d)

n′ , p))
]

+ E
[
L(G(K (d)

n′′ , p))
]
.

By subadditivity, it follows that the limit of E
[
L(G(K (d)

n , p))
]

when normalized by n exists

and equals δp,d = infn∈N E
[
L(G(K (d)

n , p))/n
]
. A direct application of Theorem 4.9 yields

that δp,d/ d
√
p → cd when p → 0.

4.3. Random word model

In this section, we consider the random d-word model. The structure, arguments and type

of derived results are similar to those obtained in the preceding section. However, the

intermediate calculations are somewhat longer and more involved.

As in the preceding section, we first show that the random model under consideration

admits a (c, λ, θ)-median. Now consider H chosen according to Σ(Kn1 ,...,nd , k) and let H ′ be

the hyper-subgraph of H obtained from H as in the preceding section (i.e., by removal of

all edges incident to nodes of degree at least 2). Let E = E(H) and E ′ = E(H ′). For the

random word model, the analogue of Lemma 4.6 is as follows.
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Lemma 4.10. For positive integers n1, . . . , nd, let N and S be the geometric mean and sum,

respectively. Then,

E[|E|] =
Nd

kd−1
, (4.7)

E[|E ′|] =
Nd

kd−1

(
k − 1

k

)S−d

� Nd

kd−1

(
1 − S

k

)
, (4.8)

E[|E \ E ′|] � NdS

kd
. (4.9)

Moreover, for all η > 0,

Pr[|E ′| − E[|E ′|] � ηE[|E ′|]] � 1

η2E[|E ′|] +
1

η2

((
k − 1

k − 2

)2d−1

− 1

)
. (4.10)

Proof sketch. Consider K , Xe, and Ye exactly as defined in the proof of Lemma 4.6.

Note that now

E
[
Xe

]
= 1/kd−1 and E

[
Ye

]
= (1 − 1/k)S−d/kd−1 � (1 − S/k)/kd−1.

Recalling that |E(K)| = Nd, both (4.7) and the first equation of (4.8) follow. To con-

clude (4.8) and (4.9), just note that

E[|E \ E ′|] =
∑

e∈E(K)

(
E[Xe] − E[Ye]

)
� NdS

kd
.

The last inequality in the statement of the lemma follows from Proposition 4.4, and noting

that if e ∩ f �= ∅, then E[YeYf] = 0, while if e ∩ f = ∅, then

E[YeYf] = E[Ye]E[Yf]

(
k(k − 2)

(k − 1)2

)S−1(
k − 1

k − 2

)2d−1

� E[Ye]E[Yf]

(
k − 1

k − 2

)2d−1

.

We can now estimate the median of L(Σ(Kn1 ,...,nd , k)).

Proposition 4.11. Let δ > 0, d � 2, and N and S be the geometric mean and sum of positive

integers n1, . . . , nd, respectively. Moreover, let M = cdN/k1−1/d, where cd is the d-dimensional

Ulam constant. Then, there are sufficiently large constants C = C(δ) and K = K(δ) such

that the following hold.

• If k � K , N � Ck1−1/d, 12Sd � δcdk
d−1+1/d, and S � k/2, then every median of

L(Σ(Kn1 ,...,nd , k)) is upper-bounded by (1 + δ)M.

• If k � K , N � Ck1−1/d, and S � δk/2, then every median of L(Σ(Kn1 ,...,nd , k)) is at least

(1 − δ)M.

Proof sketch. We proceed as in the proof of Proposition 4.7. To establish the first stated

claim it suffices to show that Pr
[
L(H) � (1 + δ)M

]
is at most 1/2. Thus, it is enough to

show that under the hypothesis of the first item, each of the following three terms can be



286 M. Kiwi and J. A. Soto

bounded by 1/6:

Pr

[
|E \ E ′| � Mδ

2

]
, Pr

[
|E ′| � (1 + δ/2)

Md

cdd

]
,

Pr

[
L(H ′) � (1 + δ/2)M, |E ′| < (1 + δ/2)

Md

cdd

]
.

To bound the first term, we rely on Markov’s inequality, the fact that N < S , inequal-

ity (4.9) of Lemma 4.10, and the hypothesis, to obtain

Pr

[
|E \ E ′| � Mδ

2

]
� 2SNd−1

δcdkd−1+1/d
� 2Sd

δcdkd−1+1/d
� 1

6
.

To bound the second term, we note that by (4.8) of Lemma 4.10 we have that

Md/cdd � E
[
|E ′|

]
� (1 − S/k)Nd/kd−1,

and we then apply (4.10) of Lemma 4.10, to obtain

Pr

[
|E ′| � (1 + δ/2)

Md

cdd

]
� 4kd−1

δ2Nd(1 − S/k)
+

4

δ2
(48δ2).

By hypothesis, S � k/2, so if K = K(δ) is sufficiently large, then the right-hand side of

the last displayed inequality is at most 8/(δ2Cd) + 1/12, which is at most 1/6 provided

Cd � 96/δ2.

Now, to bound the third term, we consider m = �(1 + δ/2)Md/cdd� and proceed as in

Proposition 4.7, and similarly obtain

Pr

[
L(H ′) � (1 + δ/2)M, |E ′| < (1 + δ/2)

Md

cdd

]
� Pr

[
lisd(m) �

(
1 +

(d − 1)δ

2d + δ

)
cdm

1/d

]
.

Setting t = (d − 1)δ/(2d + δ) and choosing C so Cd � m0 + 1, where m0 = m0(t, 1/6, d) is

as in Corollary 4.3, some basic algebra yields that m = �(1 + δ/2)Nd/kd−1� � �Cd� � m0,

so the hypothesis of Corollary 4.3 is satisfied, and hence its conclusion gives the 1/6

sought-after upper bound.

The proof of the second claimed item follows the same argument as the analogous item

of Proposition 4.7. We leave the details to the interested reader.

Corollary 4.12. The model (Σ(Kn1 ,...,nd , k)) of internal parameter k admits a (c, λ, θ)-median

where

(c, λ, θ) =

(
cd, 1 − 1

d
, 1 − 1

d
+

1

d2

)
.

Proof. Choose H according to Σ(Kn1 ,...,nd , k). Let M = cN/kλ = cdN/k1−1/d, δ > 0, and

C(δ) and K(δ) be as in Proposition 4.11. Define a(δ) = C(δ), b(δ) = (12/(δcd))
1/d and

k′(δ) > K(δ) sufficiently large that k > k′(δ) and k1−1/d+1/d2
< min{δ, 1}b(δ)k/2. Ob-

serve that if k > k′(δ), N � a(δ)k1−1/d, and Sb(δ) � k1−1/d+1/d2
, then the hypothesis of



Longest Increasing Subsequences of Randomly Chosen Multi-Row Arrays 287

Proposition 4.11 will be satisfied, and thence every median of L(H) will be between

(1 − δ)M and (1 + δ)M.

Recalling that by Proposition 4.1 we have that h = 1/(4d) is a concentration constant

for the random d-word model, by the preceding corollary and the Main Theorem, we

obtain the following.

Theorem 4.13. Let ε > 0 and g : R → R be such that g(k) = O(kη) for a given 0 � η <

1/d2. Fix n1, . . . , nd and let N and S denote their geometric mean and sum, respectively.

There exists sufficiently large constants k0 and A such that if k � k0, N � Ak1−1/d and

S � g(k)N, then for M = cdN/k1−1/d, where cd is the d-dimensional Ulam constant,

(1 − ε)M � E
[
L(Σ(Kn1 ,...,nd , k))

]
� (1 + ε)M,

and the following hold.

• If Med
[
L(Σ(Kn1 ,...,nd , k))

]
is a median of L(Σ(Kn1 ,...,nd , k)),

(1 − ε)M � Med
[
L(Σ(Kn1 ,...,nd , k))

]
� (1 + ε)M.

• There is an absolute constant C > 0 such that

Pr
[
L(Σ(Kn1 ,...,nd , k)) � (1 − ε)M

]
� exp

(
−C

d
ε2M

)
,

Pr
[
L(Σ(Kn1 ,...,nd , k)) � (1 + ε)M

]
� exp

(
−C

d

ε2

1 + ε
M

)
.

We are now ready to prove Theorem 1.3, which is this section’s main result, and which

was stated in the main contributions section.

Proof of Theorem 1.3. Let n, n′, n′′ be positive integers such that n = n′ + n′′. Clearly,

E
[
L(Σ(K (d)

n , k))
]

� E
[
L(Σ(K (d)

n′ , k))
]

+ E
[
L(Σ(K (d)

n′′ , k))
]
.

By subadditivity, it follows that the limit of E
[
L(Σ(K (d)

n , k))
]

when normalized by n exists

and equals

γk,d = inf
n∈N

E
[
L(Σ(K (d)

n , k))/n
]
.

A direct application of Theorem 4.13 yields that k1−1/dγk,d → cd when k → ∞.

4.4. Symmetric binomial random graph model

Throughout this section we focus on the study of L(D) when D is S(Kn,n, p), as defined in

the Introduction.

First, we study the behaviour of L(G) when G is chosen according S(Kn,n, p). Recall

that in this case, the collection of events {(x, y), (y, x)} ⊆ E(G) are independent, and each

one occurs with probability p. Also note that (x, y) ∈ E(G) if and only if (y, x) ∈ E(G).

Any graph for which this equivalence holds will be said to be symmetric, thus motivating

the use of the word ‘symmetric’ in naming the random graph model. As usual, we begin
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our study with the determination of the concentration constant for the random model

under study.

Lemma 4.14. The symmetric binomial random model (S(Kn,n, p))n∈N admits a concentration

constant of 1/4.

Proof. Direct application of Talagrand’s inequality (see [23, Theorem 2.29]).

As in the study of the binomial model (Section 4.2) and the word model (Section 4.3),

given a graph G chosen according to S(Kn,n, p) we will consider a reduced graph G′

obtained from G by removal of all edges incident to nodes of degree at least 2. An

important observation is that the graph G′ thus obtained is also symmetric. Since G′ is

symmetric, the number of vertices of degree 1 in each of the two colour classes of G′

must be even, say 2m. Thus, the arcs between nodes of degree 1 in G′ can be thought

of as an involution of [2m] without fixed points. In fact, given that the distribution of

G′ is invariant under permutation of its nodes, the distribution of G′ is also invariant

under this permutation, and the resulting associated involution is distributed as a random

involution of [2m] without fixed points. We shall see that under proper assumptions L(G)

and L(G′) are essentially equal. Thus, L(G) behaves (approximately) like the length of a

longest increasing subsequence of a randomly chosen involution of [2m] without fixed

points. This partly explains our recollection below of some results about the length of a

longest increasing subsequence of randomly chosen involutions.

Let I2m be the distribution of a uniformly chosen involution of [2m] without fixed

points. Let L(I2m) denote the length of the longest increasing subsequence of an involution

chosen according to I2m. Baik and Rains [8] showed that the expected value of L(I2m)

is roughly 2
√

2m, for m large. Moreover, Kiwi [24, Theorem 5] established the following

concentration result for L(I2m) (we state the result in a weaker form).

Theorem 4.15. For m sufficiently large and every 0 � s � 2
√

2m,

Pr
[
|L(I2m) − E[L(I2m)]| � s + 32(2m)1/4

]
� 4exp

(
− s2

16e3/2
√

2m

)
.

Corollary 4.16. For every 0 � t � 1 and α > 0 there exists a m0 = m0(t, α) sufficiently large

that, for all m � m0,

Pr
[
|L(I2m) − 2

√
2m| � 2t

√
2m

]
� α.

Proof. Let m0 = m0(t, α) be sufficiently large that Theorem 4.15 and the following

conditions hold for all m > m0:

• |E[L(I2m)] − 2
√

2m| + 32(2m)1/4 � t
√

2m,

• 4e−t2
√

2m/16e3/2 � α.
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It follows that

Pr
[
|L(I2m) − 2

√
2m| � 2t

√
2m

]
� Pr

[
|L(I2m) − E[L(I2m)]| � 2t

√
2m − |E[L(I2m)] − 2

√
2m|

]
� Pr

[
|L(I2m) − E[L(I2m)]| � t

√
2m + 32(2m)1/4

]
� 4e−t2

√
2m/16e3/2

.

We now proceed to show that the symmetric random model S(Kn,n, p) admits a (c, λ, θ)-

median, where the constant c is related to a constant that arises in the study of the

asymptotic behaviour of L(I2m). We will need the following analogues of Lemmas 4.6

and 4.10.

Lemma 4.17. Let n be a positive integer. Let G be chosen according to S(Kn,n, p). If E and

E ′ denote E(G) and E(G′), respectively, then

E[|E|] = pn(n − 1), (4.11)

E[|E ′|] = pn(n − 1)(1 − p)2n−4, (4.12)

E[|E \ E ′|] � 2p2n(n − 1)(n − 2). (4.13)

Moreover, for η > 0,

Pr[||E| − E[|E|]| � ηE[|E|]] � 2

η2E[|E|] . (4.14)

Proof sketch. For i �= j, let Xi,j and Yi,j denote the indicator of the event (i, j) ∈ E and

(i, j) ∈ E ′, respectively. Observing that

E[Xi,j] = p, E[Yi,j] = p(1 − p)2n−4, |E| =
∑
i,j:i�=j

Xi,j and |E ′| =
∑
i,j:i�=j

Yi,j ,

equations (4.11) and (4.12) follow. Since E ′ ⊆ E, it follows that |E \ E ′| = |E| − |E ′|.
Inequality (4.13) follows from (4.11) and (4.12) observing that (1 − p)2n−4 � 1 − (2n − 4)p.

To establish (4.14) we observe that |E| can also be expressed as 2
∑

i<j Xi,j and that

{Xi,j | i < j} is a collection of independent random variables. To conclude, note that

Δ
def
=

∑
(i,j),(k,l):i<j,k<l

(i,j)�=(k,l)

E[Xi,jXk,l] =

(
n

2

)((
n

2

)
− 1

)
p2 � E[|E|]2

4
,

and apply Chebyshev’s inequality for indicator random variables to conclude (4.14).

Proposition 4.18. Let δ > 0, 0 < p � 1 and n be a positive integer. There is a sufficiently

large constant C1 = C1(δ), and sufficiently small constants C2 and C3, such that the following

hold.

• If C1/p � n2 � C2δ/p
3/2, then every median of L(S(Kn,n, p)) is at most 2(1 + δ)n

√
p.

• If C1/p � n2 � C3δ
2/p2, then every median of L(S(Kn,n, p)) is at least 2(1 − δ)n

√
p.
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Figure 6. Illustration of (a) a graph G in the support of S(K12,12, p) and (b) the graph O in the support of

O(K12,12, p) obtained from G by removal of all edges (x, y) such that x � y. Thicker edges represent a non-crossing

matching M of G, and the associated non-crossing matching N of O with edge set {(min{x, y},max{x, y}) | (x, y) ∈
E(M)}, respectively.

Proof. Similar to the proof of Proposition 4.7.

We immediately have the following.

Corollary 4.19. The model (S(Kn,n, p))n∈N of internal parameter t = 1/p admits a (2, 1/2, 3/4)-

median.

We now define an auxiliary distribution which will be useful for our study.

• O(Kn,n, p), the oriented symmetric binomial random graph model: the distribution over

the set of subgraphs H of Kn,n where the events {H | (i, j) ∈ E(H)} for 1 � i < j � n,

have probability p and are mutually independent, and the events {H | (i, j) ∈ E(H)},

1 � j � i � n, have probability 0.

(For an illustration of the distinction between distributions S(Kn,n, p) and O(Kn,n, p), see

Figure 6.)

The following result justifies why we can henceforth work with either L(S(Kn,n, p)) or

L(O(Kn,n, p)).

Lemma 4.20. The random variables L(S(Kn,n, p)) and L(O(Kn,n, p)) are identically distrib-

uted.

Proof. Let O be a graph in the support of O(Kn,n, p). We can associate with O a graph G

over the same collection of vertices and having edge set {(x, y) | (x, y) ∈ E(O) or (y, x) ∈
E(O)}. Clearly, G is a symmetric subgraph of Kn,n and hence it belongs to the support

of S(Kn,n, p). It is easy to see that the mapping from O to G is one-to-one. Moreover,

the probability of G being chosen under S(Kn,n, p) is exactly equal to the probability of

occurrence of O under O(Kn,n, p).

On the other hand, if M is a non-crossing subgraph of G, then there is a non-crossing

subgraph of O (and hence of G), say N, whose size is the same as that of M. Indeed,
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it suffices to take as the collection of edges of N the set {(min{x, y},max{x, y}) | (x, y) ∈
E(M)}. (See Figure 6 for an illustration of the relation between M and N.) We get that

L(G) = L(O), which concludes the proof.

We are now ready to prove the main result of this section.

Theorem 4.21. For every ε > 0 there is a sufficiently small constant p0 and a sufficiently

large constant A such that, for all p � p0 and n � A/
√
p,

(1 − ε)2n
√
p � E

[
L(S(Kn,n, p))

]
� (1 + ε)2n

√
p, (4.15)

and the following hold.

• If Med
[
L(S(Kn,n, p))

]
is a median of L(S(Kn,n, p)),

(1 − ε)2n
√
p � Med

[
L(S(Kn,n, p))

]
� (1 + ε)2n

√
p. (4.16)

• There is an absolute constant C > 0 such that

Pr
[
L(S(Kn,n, p)) � (1 − ε)2n

√
p
]

� exp
(
−Cε2n

√
p
)
, (4.17)

Pr
[
L(S(Kn,n, p)) � (1 + ε)2n

√
p
]

� exp

(
−C

ε2

1 + ε
n
√
p

)
. (4.18)

Proof. Unfortunately, (S(Kn,n, p))n∈N is not a random hyper-graph model, so we cannot

immediately apply the Main Theorem. However, it is a weak random hyper-graph model.

Hence, we can still use the Main Theorem to prove the lower bounds in (4.15) and (4.16),

and inequality (4.17), using the fact that the model S(Kn,n, p) with internal parameter

t = 1/p has a concentration constant h = 1/4 (Lemma 4.14) and admits a (2, 1/2, 3/4)-

median (Corollary 4.19).

To prove the remaining bounds, consider a bipartite graph H chosen according to

G(Kn,n, p), and let O be the graph obtained from H by deletion of all its edges (x, y) such

that x � y. Since O is a subgraph of H , it immediately follows that L(O) � L(H). Note

that O follows the distribution O(Kn,n, p). By Lemma 4.20, L(O) has the same distribution

as L(S(Kn,n, p)). Hence, if n and p satisfy the hypothesis of Theorem 4.9,

E
[
L(S(Kn,n, p))

]
= E[L(O)] � E[L(H)] � (1 + ε)2n

√
p,

Med
[
L(S(Kn,n, p))

]
= Med[L(O)] � Med[L(H)] � (1 + ε)2n

√
p,

and provided C is as in Theorem 4.9,

Pr
[
L(S(Kn,n, p)) � (1 + ε)2n

√
p
]

= Pr
[
L(O) � (1 + ε)2n

√
p
]

� Pr
[
L(H) � (1 + ε)2n

√
p
]

� exp

(
−C

ε2

1 + ε
2n

√
p

)
.

This concludes the proof of the stated result.

We can now establish Theorem 1.4.
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Proof of Theorem 1.4. Let n, n′, n′′ be positive integers such that n = n′ + n′′. Clearly,

E
[
L(S(Kn,n, p))

]
� E

[
L(S(Kn′ ,n′ , p))

]
+ E

[
L(S(Kn′′ ,n′′ , k))

]
.

By subadditivity, the limit of E[L(S(Kn,n, p))] when normalized by n exists and it is equal

to

σp = inf
n∈N

E
[
L(S(Kn,n, p))/n

]
.

A direct application of Theorem 4.21 yields that σp/
√
p → 2 when p → 0.
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[22] Hardy, G., Littlewood, J. E. and Pólya, G. (1952) Inequalities, second edition, Cambridge

University Press.

[23] Janson, S., �Luczak, T. and Rucinski, A. (2000) Random Graphs, Wiley.

[24] Kiwi, M. (2006) A concentration bound for the longest increasing subsequence of a randomly

chosen involution. Discrete Appl. Math. 154 1816–1823.
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