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1. Introduction. In this paper, we consider sets of the form

X =X4R1S5 2= 8x ∈�n
+
2 Rx ∈ S91 where (1a)

{

R= 6r1: : : rn7 is a real q × n matrix1

S ⊂�q is a nonempty closed set with 0 y S0
(1b)

In other words, our set X is the intersection of a closed convex cone with a pre-image by a linear mapping. This
model goes back to Johnson [18], where S was a finite set: constraints Rx = b were considered for several
right-hand sides b. Here, we rather consider a general (possibly infinite) set S and a varying constraint matrix R.
The closed convex hull of X does not contain 0 (see Lemma 2.1) and we are then interested in separating 0
from X: we want to generate cuts, i.e., inequalities that are valid for X, which we write as

c>x ≥ 11 for all x ∈X0 (2)

1.1. Motivating examples. Our first motivation comes from (mixed) integer linear programming.

Example 1.1 (An Integer Linear Program). Let us first consider a pure integer program, which consists
in optimizing a linear function over the set defined by the constraints

Dz= d ∈�m1 z ∈�p
+0 (3)

Set n 2= p−m, assume the matrix D to have full row-rank m and select m independent columns (a basis). The
corresponding decomposition z= 4x1 y5 into nonbasic and basic variables amounts to writing the above feasible set
as the intersection of �n ×�m with the polyhedron

P 2=
{

4x1 y5 ∈�n
+

×�m
+
2 Ax+ y = b

}

(4)

for suitable m× n matrix A and m-vector b.
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Relaxing the nonnegativity constraint on the basic variables y, we obtain the classical corner polyhedron
(Gomory [14]), namely, the convex hull of

{

4x1 y5 ∈�n
+

×�m2 Ax+ y = b
}

0

This model has the form (1) if we set

q = n+m1 R=

[

I
−A

]

1 S =�n
× 4�m

− 8b951 (5)

where �m − 8b9 denotes the translation of �m by the vector −b. Assuming b y�m, the above S is a closed set not
containing the origin.

For m= 1, (4) has a single constraint

n
∑

j=1

ajxj + y = b1 y ∈�1 x ∈�n
+
3

the celebrated Gomory cut (Gomory [13]) is

∑

j2 fj≤f0

fj

f0

xj +
∑

j2 fj>f0

1 − fj

1 − f0

xj ≥ 11 (6)

where fj = aj −�aj� and f0 = b−�b�. Inequality (6) is valid for the corner polyhedron and cuts off the basic
solution 4x = 01 y = b5. In the x-space �n, this inequality is a cut as defined in (2). We will demonstrate in
Example 2.8 how to recover such a cut from our formalism.

Except for the translation by the basic solution 401 b5, S is quasi instance independent. This is actually a crucial
feature; it determines the approach developed in this paper, namely, cut-generating functions to be developed below.

Example 1.2 (A Mixed-Integer Linear Program). In our integer program (3), let us now relax not only
nonnegativity of the basic variables but also integrality of the nonbasic variables: the corner polyhedron is further
relaxed to the convex hull of

{

4x1 y5 ∈�n
+

×�m2 Ax+ y = b
}

0

We are still in the context of (1) with

q =m1 R= −A1 S =�m
− b3

this is the model considered in Andersen et al. [1] for m= 2, and in Borozan and Cornuéjols [8] for general m.
Other relevant references are Basu et al. [5, 6], Dey and Wolsey [12], Gomory and Johnson [15], and Johnson [18].

This type of relaxation can be used when (3) becomes a mixed-integer linear program

Dz= d ∈�m1 z≥ 01 zj ∈�1 j ∈ J 1

where J is some subset of 811 : : : 1 p9. Extract a basis as before and choose a subset of basic variables indexed
in J ; call m′ ≤m the number of rows in this restriction and b′ ∈�m′

the resulting restriction of b (in other words,
ignore a number m−m′ of linear constraints). Relax nonnegativity of the m′ remaining basic variables, as well as
integrality of the nonbasic variables indexed in J . This results in (1), with

q =m′1 R= −A1 S =�m′

− b′0

Any cut for this set X is a fortiori a valid inequality for the original mixed-integer linear program.
When m′ = 1, a classical example of such inequalities is

∑

j2 aj>0

aj

f0

xj −
∑

j2 aj<0

aj

1 − f0

xj ≥ 10 (7)

Actually, Gomory’s mixed-integer cuts (Gomory [13]) combine (6) for the integer nonbasic variables with the
above formula for the continuous ones.

Model (1) occurs in other areas than integer programming and we give another example.
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Example 1.3 (Complementarity Problem). Still using P of (4), let

E ⊂ 81121 : : : 1m9× 81121 : : : 1m9 and C 2= 8y ∈�m
+
2 yiyj = 01 4i1 j5 ∈E9

(in this paper, ⊂ stands for inclusion and ( for strict inclusion).
The set of interest is then P ∩ 4�n ×C5. It can be modeled by (1), where

q =m1 R= −A1 S =C − b0

Cuts have been used for complementarity problems of this type, for example, in Júdice et al. [19].

We will retain from these examples the dissymetry between S (a very particular and highly structured set) and R

(an arbitrary matrix). Keeping this in mind, we will consider that 4q1S5 is given and fixed, whereas 4n1R5 is
instance-dependent data: our cutting problem can be viewed as parametrized by 4n1R5. This point of view is
natural for the last two examples; but some preprocessing (to be seen in Example 2.8) is needed to apply it to
Example 1.1: by (5), S does depend on the data through its dimension q, which depends on n.

1.2. Introducing cut-generating functions. To generate cuts in the present situation, it would be convenient to
have a mapping, taking instances of (1) as input, and producing cuts as output. What we need for this is a function

�q
3 r 7→ �4r5 ∈�1

which, applied to the columns rj of a q × n matrix R (an arbitrary matrix, with an arbitrary number of columns)
will produce the n coefficients cj 2= �4rj5 of a cut (2). We stress the fact that � must assign a number �4r5 to any
r ∈�q : the function � is defined on the whole space.

Thus, we require from our � to satisfy

x ∈X =⇒

n
∑

j=1

�4rj5xj ≥ 11 (8)

for every instance X of (1). Such a � can then justifiably be called a cut-generating function (CGF). The notation �

refers to representation, which will appear in Definition 2.6. One of the most well-known cut-generating functions
in integer programming is the so-called Gomory function (Gomory [13]), which we presented in Examples 1.1
and 1.2. The corresponding cuts can be generated quickly, so they are a powerful tool in computations; indeed,
they drastically speed up integer-programming solvers (Bixby and Rothberg [7]).

So far, a CGF is a rather abstract object, as it lies in the (vast!) set of functions from �q to �; but the following
observation allows a drastic reduction of this set.

Remark 1.4 (Dominating Cuts). Consider in (2) a vector c′ with c′
j ≤ cj for j = 11 : : : 1 n; then c′>x ≤ c>x

whenever x ≥ 0. If c′ is a cut, it is tighter than c in the sense that it cuts a bigger portion of �n
+

. We can impose
some “minimal” character to a CGF, in order to reach some “tightness” of the resulting cuts.

With this additional requirement, the decisive Theorem 2.3 will show that a CGF can be imposed to be convex
positively homogeneous (and defined on the whole of �q ; positive homogeneity means �4tr5= t�4r5 for all r ∈�q

and t > 0). This is a fairly narrow class of functions indeed, which is fundamental in convex analysis. Such
functions are in correspondence with closed convex sets and in our context, this correspondence is based on the
mapping � 7→ V defined by

V = V 4�5 2= 8r ∈�q 2 �4r5≤ 191 (9)

which turns out to be a cornerstone: via Theorem 2.5, (9) establishes a correspondence between the CGF’s and the
so-called S-free sets. As a result, cut-generating functions can alternatively be studied from a geometric point of
view, involving sets V instead of functions �. This situation, common in convex analysis, is often very fruitful.
With regard to Remark 1.4, observe that V 4�5 increases when � decreases: small �’s give large V ’s. However the
converse is not true because the mapping in (9) is many-to-one and therefore has no inverse. A first concern will
therefore be to specify appropriate correspondences between (cut-generating) functions and (S-free) sets.
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1.3. Scope of the paper. The aim of the paper is to present a formal theory of minimal cut-generating
functions and maximal S-free sets, valid independently of the particular S. Such a theory would gather and
synthetize a number of papers dealing with the above problem for various special forms for S: Lovász [21],
Andersen et al. [1], Borozan and Cornuéjols [8], Dey and Wolsey [12], Basu et al. [5, 6], and references therein.
For this, we use basic tools from convex analysis and geometry. Readers not familiar with this field may use
Hiriart-Urruty and Lemaréchal [17, Chapter C] for an elementary introduction, although Hiriart-Urruty and
Lemaréchal [16], Rockafellar [23] are more complete.

The paper is organized as follows:
— Section 2 states more accurately the concepts of CGF’s and S-free sets.
— Section 3 studies the mapping (9). We show that the pre-images of a given V (the representations of V ) have

a unique largest element �V and a unique smallest element �V ; in view of Remark 1.4, the latter then appears
as the relevant inverse of � 7→ V 4�5.

— In §4, we study the correspondence V ↔�V . We show that different concepts of minimality come into play
for � in Remark 1.4. Geometrically they correspond to different concepts of maximality for V .

— We also show in §5 that these minimality concepts coincide in a number of cases.
— Finally we have a conclusion section, with some suggestions for future research.
The ideas in §§2 and 3 extend, in a natural way, the earlier works mentioned above. However, §§4 and 5 contain

new results.

2. Cut-generating functions: Definitions and first results. We begin with making sure that our framework is
consistent. We will use conv 4X5 [respectively, conv4X5] to denote the convex hull [respectively, closed convex
hull] of a set X.

Lemma 2.1. With X given as in (1), 0 y conv4X5.

Proof. Assume X 6= �, otherwise we have nothing to prove. Since 0 does not lie in the closed set S, there is
�> 0 such that s ∈ S implies �s�1 ≥ �; and by continuity of the mapping x 7→Rx, there is � > 0 such that
�x�1 ≥ � for all x ∈X ⊂�n

+
. This means

�x�1 =

n
∑

j=1

�xj � =
n
∑

j=1

xj ≥ �1 for all x ∈X0

In other words, the hyperplane
∑

j xj ≥ � separates 0 from X, hence from conv4X5. �
Remember that we are interested in functions � satisfying (8) for any 4n1R5 in (1). There are too many such

functions; we now proceed to specify exactly which ones are relevant.

2.1. Sublinear cut-generating functions suffice. The following lemma, inspired from Claim 1 in the proof of
Basu et al. [5, Lemma 23], is instrumental for our purpose.

Lemma 2.2. Let � be a CGF. For all sets of K vectors rk ∈�q and nonnegative coefficients �k, the following
relation holds:

K
∑

k=1

�krk = 0 =⇒

K
∑

k=1

�k�4rk5≥ 00

Proof. Call e ∈�q the vector of all ones and � ∈�K the vector of �k’s; take t ≥ 0 and define the vectors
in �K+q

x 2=

[

0
e

]

1 d 2=

[

�
0

]

1 so that x+ td =

[

t�
e

]

∈�K+q
+ 0

Then pick s ∈ S; make an instance of (1) with n=K + q and R 2= 6r1: : : rK �D4s57, where the q × q matrix D4s5
is the diagonal matrix whose diagonal is the vector s. Observing that

R4x+ td5= t
∑

k

�krk +D4s5e = s1

x+ td is feasible in the resulting instance of (1a): (8) becomes

t
K
∑

k=1

�k�4rk5≥ 1 − z1

where z is a fixed number gathering the result of applying � to the columns of D4s5. Letting t → +� proves the
claim. �
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Now we introduce some notation. The domain and epigraph of a function �2 �q →�∪ 8+�9 are

dom� 2= 8r ∈�q 2 �4r5 <+�9 and epi� 2= 84r1 z5 ∈�q+12 z≥ �4r590

If dom� is the whole of �q (i.e., �4r5 is a finite real number for all r ∈�q), we say that � is finite valued; a
convex finite-valued function is continuous on �q . A function is said to be sublinear if it is convex and positively
homogeneous; or equivalently if its epigraph is a convex cone. The conical hull cone 4epi�5 of epi� is the set of
nonnegative combinations of points 4r1 z5 ∈ epi�:

r =

K
∑

k=1

�krk1 z=

K
∑

k=1

�kzk1 with zk ≥ �4rk51 �k ≥ 01 k = 11 : : : 1K1

where K is an arbitrary integer. This conical hull is itself the epigraph of a sublinear function �̄, called the
sublinear hull of �. Its value at r is the smallest possible of the above z’s:

�̄4r5 2= inf
{ K
∑

k=1

�k�4rk52
K
∑

k=1

�krk = r1�k ≥ 0
}

0 (10)

Of course �̄≤ �; in the spirit of Remark 1.4, our next result establishes that a CGF can be improved by taking its
sublinear hull.

Theorem 2.3. If � is a CGF, then �̄ of (10) is nowhere −� and is again a CGF.

Proof. Express every r ∈ �q as a nonnegative combination:
∑

k�krk − r = 0, hence (Lemma 2.2)
∑K

k=1 �k�4rk5+�4−r5≥ 0 and �̄4r5≥ −�4−r5 >−�.
Then take an instance R= 6rj 7

n
j=1 of (1b). If it produces X = � in (1a), there is nothing to prove. Otherwise

fix x̄ ∈X.
Any positive decomposition rj =

∑

k �j1 krj1 k of each column of R satisfies

s̄ 2=Rx̄ =

n
∑

j=1

x̄jrj =

n
∑

j=1

x̄j

K
∑

k=1

�j1 krj1 k =R+x+1

where x+ ∈�nK denotes the vector with coordinates �j1 kx̄j ≥ 0 and R+ the matrix whose nK columns are rj1 k.
Then R+ is a possible instance of (1b) and R+x+ = s̄ ∈ S, so the CGF � separates x+ from 0:

1 ≤
∑

j1 k

�4rj1 k54�j1 kx̄j5=

n
∑

j=1

( K
∑

k=1

�j1 k�4rj1 k5

)

x̄j 0 (11)

Apply the definition of an infimum: for each �> 0 we can choose our decompositions 4rj1 k1�j1 k5 so that

K
∑

k=1

�j1 k�4rj1 k5≤ �̄4rj5+ �1 for j = 11 : : : 1 n

which yields with (11)

1 ≤

n
∑

j=1

4�̄4rj5+ �5x̄j =

n
∑

j=1

�̄4rj5x̄j + �
n
∑

j=1

x̄j 0

Since � is arbitrarily small—and x̄ is fixed—we see that �̄ does satisfy (8). �

In view of Remark 1.4, Theorem 2.3 allows us to restrict our attention to CGF’s that are sublinear; and their
domain is the whole space by definition. We are now in a position to explain the use of the operation (9) in our
context.

2.2. Cut-generating functions as representations. From now on, a CGF � will always be understood as a
(finite-valued) sublinear function. By continuity and because �405= 0, V 4�5 in (9) is a closed convex neighborhood
of 0 in �q . Besides, its interior and boundary are, respectively,

int4V 4�55= 8r ∈ V 2 �4r5 < 191 bd 4V 4�55= 8r ∈ V 2 �4r5= 190 (12)
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This follows from the Slater property �405= 0 (see, e.g., Hiriart-Urruty and Lemaréchal [17, Proposition D.1.3.3]);
it can also be checked directly:

— by continuity, �4r̄5 < 1 implies �4r5≤ 1 for r close to r̄ ; and
— by positive homogeneity, �4r̄5= 1 implies �4r5= 1 + � for r = 41 + �5r̄ .

The relevant neighborhoods for our purpose are the following:

Definition 2.4 (S-Free Set). Given a closed set S ⊂ �q not containing the origin, a closed convex
neighborhood V of 0 ∈�q is called S-free if its interior contains no point in S: int4V 5∩ S = �.

Let us make clear the importance of this definition.

Theorem 2.5. Let the sublinear function �2 �q →� and the closed convex neighborhood V (of 0 ∈�q)
satisfy (9). Then � is a CGF for (1) if and only if V is S-free.

Proof. Let V be S-free; in view of (12), �4r5≥ 1 for all r ∈ S. In particular, take a q × n matrix R, x ∈X of
(1a) and set r 2=Rx ∈ S. Then, using sublinearity,

1 ≤ �4Rx5= �

( n
∑

j=1

xjrj

)

≤

n
∑

j=1

xj�4rj53

� is a CGF.
Conversely, suppose V is not S-free: again from (12), there is some r1 ∈ S such that �4r15 < 1. Take in (1b) the

instance 4n1R5= 411 6r175. Then 1 ∈X (r1 ∈ S), so c1 2= �4r15 < 1 cannot be a cut. �
This allows a new definition of CGF’s, much more handy than the original one.

Definition 2.6 (CGF as Representation). Let V ⊂ �q be a closed convex neighborhood of the origin.
A representation of V is a finite-valued sublinear function � such that

V = 8r ∈�q 2 �4r5≤ 190 (13)

We will say that � represents V .
A sublinear cut-generating function for (1) is a representation of an S-free set.

A finite-valued sublinear function � represents a unique V = V 4�5, well-defined by (13). One easily checks
monotonicity of the mapping V 4 · 5:

�≤ �′
=⇒ V 4�5⊃ V 4�′50 (14)

Conversely, one may ask whether a given closed convex neighborhood of the origin V always has a representation.
In fact, (13) fixes via (12) the value �4r5= 1 on the boundary of V ; whether this set of prescribed values can be
extended to make a sublinear function on the whole of �q is not obvious. This will be the subject of §3, where we
will see that this is indeed possible; there may even be infinitely many extensions, and we are interested in the
small ones. Now we illustrate the material introduced so far with some examples.

2.3. Examples. We start with a simple one-dimensional example supporting the claim that the mapping
�→ V of (13) is many-to-one—or equivalently that a given V may have several representations.

Example 2.7. With q = 1, consider V = 7−�117. In �1, the positively homegeneous functions have the form

�4r5=

{

�r for r ≥ 01

�r for r ≤ 01

they are convex when �≥ �.
Taking r = 1 ∈ V in (13) imposes �≤ 1, and taking r = 1 + �y V (�> 0) imposes �> 1/41 + �5. Altogether

�= 1. On the other hand, letting r → −�, the property �r ≤ 1 imposes �≥ 0.
Conversely, we easily see that, for any � ∈ 60117, the function

�4r5=

{

r for r ≥ 01

�r for r ≤ 01

is sublinear and satisfies (13). Thus, the representations of V are exactly the functions of the form �4r5= max 8r1�r9,
for � ∈ 60117.

This example suggests—and Lemma 3.2 will confirm—that nonuniqueness appears when V is unbounded.
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V

SS

V

Figure 1. Two S-free sets for q = 2.

Example 1.2 is quite suitable for illustration, Figure 1 visualizes it for q = m = 2. The dots are the set
S =�2 − 8b9. The stripe V of the left part, called a split set, is used in the framework of disjunctive cuts. Other
neighborhoods can be considered, for example, triangles (right part of the picture) as in Andersen et al. [1].

With q = 1, no need for a picture and the calculations in Example 1.2 can be worked out. In this case, X ⊂�n
+

is defined by a>x ∈�− b, i.e., (1) with r = −a and S =�− 8b9. The only possible S-free neighborhoods of the
origin are the segments r ∈ 6−r−1 r+7 with

−f0 = �b� − b ≤ −r− < 0 < r+ ≤ �b� − b = 1 − f00

For a representation � of this segment, the equations �4r+5= 1 and �4−r−5= 1 fix in a unique way

�4r5=















r

r+
if r ≥ 0,

−
r

r−
if r ≤ 0.

Choose the extreme values for r+ and r− to obtain

cj = �4−aj5=















aj

f0

if aj ≤ 0,

−aj

1 − f0

if aj ≥ 0,

which is just (7).
Finally, let us show how Gomory cuts (6) can be obtained as CGF’s.

Example 2.8. Still in Example 1.2, take q =m= 1; we want to separate the set defined by

n
∑

j=1

ajxj + y = b1 y ∈�1 x ∈�n
+

from the origin (remember that b y�). This set has the form (1) with

q = n+ 11 R=

[

I
−a>

]

1 S =�n
× 4�− 8b950

Introduce the vector � ∈�n+1 defined by

�n+1 2= 1 and for j = 11 : : : 1 n2 �j 2=

{

�aj� if fj ≤ f01

�aj� if fj > f01

and its scalar product �>r =
∑n

j=1 �jxj + y with r = 4x1 y5 ∈�n+1. Then define

V 2= 8r2 �b� − b ≤�>r ≤ �b� − b90 (15)

The assumption b y� implies that 40105 ∈ int4V 5; therefore V is a closed convex neighborhood of the origin.
Furthermore, V is S-free: in fact, b+�>r is an integer for every r = 4x1 y5 ∈ S and therefore it cannot be strictly
between the two consecutive integers �b� and �b�. We claim that any representation of V produces Gomory cuts.
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Call ej the jth unit vector of �n, so that the n columns of R are

rj =

(

ej
−aj

)

0

Direct calculations give

�>rj =

{

�aj� − aj = −fj if fj ≤ f01

�aj� − aj = 1 − fj if fj > f00

For each j = 11 : : : 1 n, consider three cases.
(i) If �>rj > 0 (which implies fj > f0), there is t > 0 such that t�>rj = �b� − b > 0, namely,

t =
�b� − b

�>rj
=

�b� − b

�aj� − aj

=
1 − f0

1 − fj
0

(ii) If �>rj < 0 (which implies 0 < fj ≤ f0), there exists likewise t > 0 such that t�>rj = �b�− b < 0, therefore

t =
f0

fj
0

(iii) If �>rj = 0 (which implies aj ∈�), trj ∈ V for any t > 0.
In (i) and (ii), the computed value of t puts trj on the boundary of V . Let � represent V ; then by (12) and

positive homogeneity, �4rj5= 41/t5�4trj5= 1/t in cases (i) and (ii) and �4rj5= 0 in case (iii). Altogether,

�4rj5=



















fj

f0

if fj ≤ f0,

1 − fj

1 − f0

if fj > f0,

for j = 11 : : : 1 n; we recognize Gomory’s formula (6).
As mentioned after Definition 2.6, the n values �4rj5 can be extended to make a sublinear function on the whole

of �n+1. This will be confirmed in the next section but can be accepted here, thanks to the simple form (15) of V :
a stripe orthogonal to � . Indeed, the above calculations are designed so as to construct �4r5= 1 for each r such
that �>r = �b�− b > 0 as in (i) (respectively, �>r = �b�− b < 0 as in (ii)). Then �4r5 is given by positive
homogeneity for any r such that �>r 6= 0; and �≡ 0 on �⊥.

3. Largest and smallest representations. In this section, we study the representation operation introduced in
Definition 2.6. The main result is that our closed convex neighborhood V has a largest and a smallest representation.
This result was already given in Caprari and Zaffaroni [9], Basu et al. [4], and Zaffaroni [24], with weaker
assumptions in the latter work (which came to our knowledge only after the present paper was completed). Here
we emphasize the geometric counterpart of the result, we put the proof of Basu et al. [4] in perspective, and we
take advantage of our stricter assumptions to develop finer results that will be useful in the sequel.

3.1. Some elementary convex analysis. First recall some basic theory (see, e.g., Hiriart-Urruty and
Lemaréchal [17, Chapter C]), which will be central in our development. In what follows, V will always be a
closed convex neighborhood of 0 ∈�q .

A common object in convex analysis is the gauge

�q
3 r 7→ �V 4r5 2= inf 8� > 02 r ∈ �V 91 (16)

a (nonnegative) finite-valued sublinear function. Applying for example Hiriart-Urruty and Lemaréchal
[17, Theorem C.1.2.5] with the notation 4x1C1 r5 replaced by 4r1V 115, we obtain the relation

V = 8r ∈�q 2 �V 4r5≤ 190

Thus �V represents V ; this first confirms that Definition 2.6 is consistent.
Another fundamental object is the support function of an arbitrary set G⊂�q , defined by

�q
3 r 7→ �G4r5 2= sup

d∈G

d>r0 (17)
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This function is easily seen to be sublinear, to grow when G grows, and to remain unchanged if G is replaced by
its closed convex hull: �G = �conv4G5. Besides, it is finite valued if (and only if) G is bounded.

Conversely, every (finite-valued) sublinear function � is the support function of a (bounded) closed convex set,
unambiguously defined by

G=G� 2= 8d ∈�q 2 d>r ≤ �4r5 for all r ∈�q9 (18)

(note: G� is closed and convex because it is an intersection of half spaces; actually, G� is just the subdifferential
of � at 0). We then say that � supports G� . The correspondence � ↔G defines a one-to-one mapping between
finite-valued sublinear functions and bounded closed convex sets (the mapping � 7→G of (18) extends to sublinear
functions in �∪ 8+�9 but such an extension is not needed here).

Remark 3.1 (Primal-Dual Notation). Equation (17) involves two variables, d and r , both written as
column vectors; nevertheless, they lie in two mutually dual spaces. In this paper, we keep going back and forth
between these two spaces; even though they are the same �q , we make a point to distinguish between the two. The
notation r , V 1 : : : [respectively, d, G1 : : : ] will generally be used for primal elements [respectively, for dual ones].
Most of the time, we will deal with support functions �G4r5 of dual sets; but we will also consider the support
function �V 4d5 of our primal neighborhood V .

Being finite-valued sublinear, the gauge of V supports a compact convex set, obtained by replacing � by �V

in (18). Since �V ≥ 0, we guess from positive homogeneity that this set is just the polar of V :

{

d ∈�q 2 d>r ≤ �V 4r5 for all r ∈�q
}

=
{

d ∈�q 2 d>r ≤ 1 for all r ∈ V
}

=2 V �0 (19)

Write (19) as V � = 8d ∈�q 2 �V 4d5≤ 19 to see that �V represents V �; thus, the support function of V is the gauge
of V �, so that the polar of V � is V itself: 4V �5� = V . These various properties are rather classical; see, for example,
Hiriart-Urruty and Lemaréchal [17, Proposition C.3.2.4, Corollary C.3.2.5], with 4d1C1 s5 replaced by 4r1V 1d5.

Now remember Example 2.7: V may have several representations. Any such representation � supports a set G�

and we will see that the polar of G� is again V itself; G� is a pre-image of V for the polarity mapping. We thus
obtain a new concept: a prepolar of V is a set G such that

G� 2= 8r ∈�q 2 �G4r5≤ 19= V 1

or equivalently �G represents V .
The property 4V �5� = V means that the standard polar V � is itself a prepolar—which is somewhat confusing;

and it turns out to be the largest one (Corollary 3.3); or equivalently, its support function �V � = �V turns out to be
the largest representation of V . The main result of this section states that V has also a smallest prepolar, or
equivalently a smallest representation (Proposition 3.6); keeping Remark 1.4 in mind, this is exactly what we want.
This result is actually Theorem 1 in Basu et al. [4]; here we use elementary convex analysis and we insist more on
the geometric aspect.

3.2. Largest representation. Introduce the recession cone V� of V . Using the property 0 ∈ V , it can be
defined as

V� = 8r ∈�q 2 tr ∈ V for all t > 09=
⋂

�>0

�V 1

and the second relation shows that V� is closed; taking in particular �= 1 shows that

V� ⊂ V 0 (20)

One then easily sees from (16) that �V 4r5= 0 if r ∈ V�. Yet, for any other representation � of V , (13) just
imposes �4r5≤ 0 at this r and we may a priori have �4r5 < 0: the possible representations of V may differ on V�;
see Example 2.7 again. We make this more precise.

Lemma 3.2 (Representations and Recession Cone). For all representations � of the closed convex neigh-
borhood V ,

�4r5≤ 0 ⇐⇒ r ∈ V� and �4r5 < 0 =⇒ r ∈ int4V�50

Besides, all representations coincide on the complement of int4V�5 in �q .
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�

� = �V

0

V

V∞

� ≤ �V ≡ 0

�

Figure 2. All representations coincide except in int4V�5.

Proof. By positive homogeneity, �4r5≤ 0 implies �4tr5≤ 0 < 1 (hence tr ∈ V ) for all t > 0; this implies
r ∈ V�. Conversely, �4r5 > 0 implies �4tr5 > 1 for t large enough: using 0 ∈ V again, r cannot lie in V�.

To prove the second implication, invoke continuity of �: if �4r5 < 0, � is still negative in a neighborhood of r ,
this neighborhood is contained in V�.

Besides, take a half line emanating from 0 but not contained in V�; it certainly meets the boundary of V ,
at a point r̄ , which is unique (see, e.g., Hiriart-Urruty and Lemaréchal [17, Remark A.2.1.7]). By (12), every
representation � satisfies �4r̄5= 1; and by positive homogeneity, the value of this representation is determined all
along the half line. In other words, all possible representations of V coincide on the complement W of V�; and by
continuity, they coincide also on the closure of W , which is the complement of int4V�5. �

Figure 2 illustrates the difference between the recession cone (where the gauge is “maximal”) and the rest of the
space (where it is the representation). Altogether, the gauge appears as the largest representation:

Corollary 3.3 (Maximality of the Gauge). All representations � of V satisfy �≤ �V , with equality on
the complement of int4V�5.

Geometrically, all prepolars G are contained in the polar of V :

G�
= V =⇒ G⊂ V �0

In particular, V has a unique representation �= �V (and a unique prepolar V �) whenever int4V�5= �.

Proof. Just apply Lemma 3.2, observing from (16) that the gauge is nonnegative.
Geometrically, the inequality between support functions becomes an inclusion: the set G supported by � is

included in the set V � supported by �V (see, e.g., Hiriart-Urruty and Lemaréchal [17, Theorem C.3.3.1]). �
The next subsection will use the support function �V . It is positive on �q\809, and even more: for some � > 0,

V contains the ball B4�5 centered at 0 of radius �, hence

��d� = �B4�54d5≤ �V 4d51 for all d ∈�q 0 (21)

Then V � is bounded since the relation �V 4d5≤ 1 implies �d� ≤ 1/�.

3.3. Smallest representation. The previous subsection dealt with polarity in the usual sense, viewing the
gauge as a special representation. However, we are rather interested in small representations. Geometrically, we are
interested in small prepolars, and the following definitions are indeed relevant:

{

Ṽ � 2= 8d ∈ V �2 d>r = �V 4d5= 1 for some r ∈ V 91

V̂ � 2= 8d ∈ V �2 �V 4d5= 190
(22)

From (12), V̂ � 6= � if V has a boundary, i.e., if V 6=�q . Obviously, Ṽ � ⊂ V̂ �. Besides, (21) implies that the two
sets are bounded. There is a slight difference between the two, suggested by Figure 2 and specified on Figure 3,
where the dashed line represents them both. We see that d1 lies in V̂ � but not in Ṽ �; and d2 lies in both. On this
example, V̂ � is closed but Figure 5 will show that it need not be so. Although quite similar, we introduce the two
sets for technical reasons, when proving that they have the same closed convex hull—which is our required
smallest prepolar.

Lemma 3.4. The sets in (22) satisfy Ṽ � ⊂ V̂ � ⊂ cl4Ṽ �5. It follows that V̂ � and Ṽ � have the same closed convex
hull. In particular, Ṽ � 6= � whenever V̂ � 6= �.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

8.
74

] 
on

 1
5 

Ju
ly

 2
01

5,
 a

t 1
3:

40
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Conforti et al.: Cut-Generating Functions
286 Mathematics of Operations Research 40(2), pp. 276–301, © 2015 INFORMS

d2

V

0

V∞

d1

V º
~

Figure 3. Activity in V �.

Proof. The first inclusion is clear. To prove the second inclusion, recall two properties:
— the domain dom ¡�V of a subdifferential is dense in the domain dom�V of the function itself: see, e.g.,

Hiriart-Urruty and Lemaréchal [17, Theorem E.1.4.2];
— the subdifferential ¡�V 4d5 is the face of V exposed by d: see, e.g., Hiriart-Urruty and Lemaréchal

[17, Proposition C.3.1.4].
Thus, d y Ṽ � implies ¡�V 4d5= �; in other words, Ṽ � ⊃ dom ¡�V . Taking closures,

cl Ṽ �
⊃ cl4dom ¡�V 5⊃ dom�V 3

the required inclusion follows, since the last set obviously contains V̂ �.
It follows from the second inclusion that

conv4V̂ �5⊂ conv4cl4Ṽ �550

On the other hand, the first inclusion implies that conv4V̂ �5 (a closed set) contains the closure of Ṽ �: cl4Ṽ �5⊂

conv4V̂ �5. This inclusion remains valid by taking the closed convex hulls:

conv4cl4Ṽ �55⊂ conv4V̂ �53

the two sets coincide. The last statement is clear since the closure of the empty set is the empty set. �

To help understand this construction, consider the polyhedral case, say V = conv 8pi9i + cone 8ri9i. Then the
linear program defining �V 4d5

— has no finite solution if some d>ri is positive, i.e., if d y 4V�5
�,

— is solved at some extreme point pi otherwise.
In this situation, the two sets in (22) coincide and are closed; they are a union of hyperplanes of equation d>pi = 1
(facets of V �), for pi describing the extreme points of V . Besides, the polar V � is defined by

d>pi ≤ 1 and d>ri ≤ 00

Example 3.5. For later use, we detail the calculation on a simple instance. Take for V the polyhedron of
Figure 4, defined by the three inequalities

�≤ 11 � ≤ 11 � ≤ 2 +�3

p1p2

V

C

B

A

�

�

Figure 4. Constructing Ṽ � or V̂ �.
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here 4�1�5 denotes a primal point in �2 (we take row vectors for typographical convenience). The two extreme
points p1 = 41115 and p2 = 4−1115 of V define the two segments (facets of V �) 6A1B7 and 6B1C7.

As for V �, it has first the two constraints d>pi ≤ 1 (yielding the above two segments). Besides, the two extreme
rays r1 = 401−15 and r2 = 4−11−15 of V� make two more constraints d>ri ≤ 0, so that V � is the convex hull of
A, B, C , and 0. If V had a fourth constraint, say � ≥ −1, then 0 would be moved down to D = 401−15—and enter
Ṽ � and V̂ �.

The closed convex hull thus revealed deserves a notation, as well as its support function: we set

V • 2= conv4Ṽ �5= conv4V̂ �5 and �V 2= �V • = �Ṽ � = �V̂ � 0 (23)

For example in Figure 4, V • is the triangle conv8A1B1C9. In fact, the next result shows that �V is the small
representation we are looking for. From now on, we assume V 6=�q , otherwise V • = �, �V ≡ −�; a degenerate
situation, which lacks interest anyway.

Proposition 3.6 (Smallest Representation). Any � representing V 6=�q satisfies �≥�V . Geometrically,
V • is the smallest closed convex set whose support function represents V .

Proof. Our assumption implies that neither V̂ � nor Ṽ � is empty (recall Lemma 3.4). Then take an arbitrary d
in Ṽ �. We have to show that d>r ≤ �4r5 for all r ∈�q ; this inequality will be transmitted to the supremum over d,
which is �V 4r5.

Case 1. First let r be such that �4r5 > 0. Then r̄ 2= r/�4r5 lies in V , so that d>r̄ ≤ �V 4d5= 1. In other words,
d>r̄ = 4d>r5/�4r5≤ 1, which is the required inequality.

Case 2. Now let r be such that �4r5≤ 0, so that r ∈ V� by Lemma 3.2. Since d ∈ Ṽ �, we can take rd ∈ V such
that d>rd = 1. Being exposed, rd lies on the boundary of V : by (12), �4rd5= 1.

By definition of the recession cone, rd + tr ∈ V for all t > 0 and, by continuity of �, �4rd + tr5 > 0 for t small
enough. Apply Case 1:

d>rd + td>r = d>4rd + tr5≤ �4rd + tr5≤ �4rd5+ t�4r51

where we have used sublinearity. This proves the required inequality since the first term is 1 + td>r and the last
one is 1 + t�4r5.

The geometric counterpart is proved just as in Corollary 3.3. �
Thus, V does have a smallest representation, which is the support function of V •. Piecing together our results,

we can now fully describe the polarity operation.

3.4. The set of prepolars. First of all, it is interesting to link the two extreme representations/prepolars
introduced so far, and to confirm the intuition suggested by Figure 4:

Proposition 3.7. Appending 0 to V • gives the standard polar:

�V = max 8�V 1091 i.e., V �
= conv4V •

∪ 8095= 60117V •0

Proof. For r ∈ V�, �V 4r5= 0, while �V 4r5≤ 0 (Proposition 3.6). For r y V�, Lemma 3.2 gives �V 4r5=

�V 4r5 > 0 because �V and �V are two particular representations.
Altogether, the first equality holds. Its geometric counterpart is Hiriart-Urruty and Lemaréchal [17, Theo-

rem C.3.3.2]; and because V • is convex compact, its closed convex hull with 0 is the sets of �d+ 41 −�50 for
� ∈ 60117. �

In summary, the set of representations—or of prepolars—is fully described as follows.

Theorem 3.8. The representations of V (a closed convex neighborhood of the origin) are the finite-valued
sublinear functions � satisfying

�V • =�V ≤ �≤ �V = �V � = max 801�V 90 (24)

Geometrically, the prepolars of V , i.e., the sets G whose support function represents V , are the sets sandwiched
between the two extreme prepolars of V :

G�
= V ⇐⇒ V •

⊂ conv4G5⊂ V �
= conv4V •

∪ 8095= 60117V •0
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�

�

P º = P º

1

~

u

d

V = P

r(d )

�

Figure 5. Trouble appears if the neighborhood has no asymptote.

Proof. In view of Corollary 3.3 and Propositions 3.6, 3.7, we just have to prove that a � satisfying (24) does
represent V . Indeed, if r ∈ V then �4r5≤ �V 4r5≤ 1; if r y V , then 1 <�V 4r5≤ �4r5. The geometric counterpart is
again standard calculus with support functions. �

We end this section with a deeper study of prepolars, which will be useful in the sequel. The next result
introduces the polar cone 4V�5

�. When G is a cone, positive homogeneity can be used to replace the right-hand
side “1” in (19) by any positive number, or even by “0”: in particular,

V �

�
2= 4V�5

�
= 8r ∈�q 2 �V�

4r5≤ 090 (25)

The notation V �
�

is used for simplicity, although it is somewhat informal; 4V�5
� and 4V �5� differ, the latter is 809

since V � is bounded.

Lemma 3.9 (Additional Properties of Prepolars). With the notation (22), (23), (25),
(i) V �

�
is the closure of dom�V , and

(ii) �+V̂
� =�+V

• =�+V
� = dom�V .

Proof. First of all, let d y V �
�

: there is r ∈ V� (�+r ∈ V ) and d>r > 0; then d>4tr5→ +� for t → +� and
�V 4d5 cannot be finite, i.e., d y dom�V . Thus, dom�V ⊂ V �

�
; hence cl4dom�V 5⊂ V �

�
because V �

�
is closed.

To prove the converse inclusion, take r y 4dom�V 5
�: there is d such that �V 4d5 < +� and d>r > 0.

Then d>4tr5 → +� when t → +�; if r were in V�, then tr would lie in V and �V 4d5 would be +�,
a contradiction. Thus we have proved V� ⊂ 4dom�V 5

�. Taking polars and knowing that dom�V is a cone,
V �

�
⊃ 4dom�V 5

�� = cl4dom�V 5 (see Hiriart-Urruty and Lemaréchal [17, Proposition A.4.2.6]). This proves (i).
To prove (ii), observe first that V̂ � ⊂ V • ⊂ V � ⊂ dom�V ; and because dom�V is a cone,

�+V̂
�
⊂�+V

•
⊂�+V

�
⊂ dom�V 0 (26)

On the other hand, take 0 6= d ∈ dom�V , so that �V 4d5 > 0 by (21) and 41/�V 4d55d ∈ V̂ �: d ∈�+V̂
�. Since 0 also

lies in �+V̂
�, we do have dom�V ⊂�+V̂

�; (26) is actually a chain of equalities. To complete the proof, observe
from Proposition 3.7 that �+V

� =�+V
•. �

Beware that really pathological prepolars can exist, Figure 5 illustrates a well-known situation. Its left part
displays the parabolic neighborhood V = P ⊂�2 defined by the constraint � ≤ 1 −

1
2�

2. A direction d = 4u1 v5
with v > 0 exposes the point r4d5. When v ↓ 0, the component of r4d5 along d (namely, �) goes to +�, which
does bring trouble. Computing r4d5 is an exercise resulting in

�P 4d5= �P 4u1 v5=















0 if d = 0,

v+
u2

2v
if v > 0,

+� if v ≤ 0;

(27)

two phenomena are then revealed.
— First, V̂ � is defined by the equation

v+
u2

2v
= 11 i.e., 24v2

− v5+ u2
= 00

This is an ellipse passing through the origin (right part of Figure 5); yet 0 cannot lie in V̂ �, since �P 405= 0 6= 1.
Thus, P̂ � is not closed and, more importantly, 0 ∈ P •.

— The second phenomenon is a violent discontinuity of �P at 0. In fact, fix �> 0 and let dk = 4�/k11/k25;
then dk → 0, while �P 4dk5→ �2/2, an arbitrary positive number.
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Both phenomena are due to (local) unboundedness of �P on its domain, which is thus not closed; if 4uk1 vk5 ∈ dom�P

tends to any 4u105 with u 6= 0, then �P 4uk1 vk5→ +�. Ruling out such a behaviour brings additional useful
properties.

Corollary 3.10 (Safe Prepolars). If 0 y V •, then

�+V̂
�
=�+V

•
=�+V

�
= dom�V = V �

�
(28)

and intV� 6= � (the polar V �
�

is a so-called pointed cone).

Proof. When 0 y V •, �+V
• is closed (Hiriart-Urruty and Lemaréchal [17, Proposition A.1.4.7]). Then apply

Lemma 3.9: by (ii) dom�V is closed and (28) follows from (i).
Now we separate 0 from V •: there is some r such that �V •4r5 < 0. By continuity of the finite-valued convex

function �V • , this inequality is still valid in a neighborhood of r : �V • ≤ 0 over some nonzero ball B around r . By
Lemma 3.9(ii),

�V �
�
4d5= ��+V

•4d5= sup
t≥0

sup
d∈V •

td>r = sup
t≥0

t�V •4d51

so that �V �
�

enjoys the same property: by (25), B is contained in 4V �
�
5�. Hiriart-Urruty and Lemaréchal [17,

Proposition A.4.2.6] finishes the proof. �
Property (28) means closedness of dom�V and is rather instrumental. We mention another simple assumption

implying it.

Proposition 3.11. If V =U +V�, where U is bounded, then dom�V = V �
�

.

Proof. The support function of a sum is easily seen to be the sum of support functions: �V = �U +�V�
.

Every d ∈ V �
�

then satisfies �V 4d5= �U 4d5, a finite number when U is bounded. �
Let us put this section in perspective. The traditional gauge theory defines via (16), (19) the polarity

correspondence V ↔ V � for compact convex neighborhoods of the origin. We generalize it to unbounded
neighborhoods, whose standard gauge is replaced via Definition 2.6 by their family of representations. Each
representation �, which may assume negative values, gives rise to ¡�405—which we call a prepolar of V .
Theorem 3.8 establishes the existence of a largest element (the usual polar V �) and of a smallest element (V •) in
the family of (closed convex) prepolars of V . Gauge theory is further generalized in Zaffaroni [24], in which 0
may lie on the boundary of V . Our stricter framework allows a finer analysis of the smallest prepolar; in particular,
the property 0 y V • helps avoid nasty phenomena.

4. Minimal CGF’s, maximal S-free sets. Remembering Remark 1.4, our goal in this section is to study the
concept of minimality for CGF’s. Geometrically, we study the concept of maximality for S-free sets. In fact, the
two concepts are in correpondence via (14); but a difficulty arises because the reverse inclusion does not hold
in (14). As a result, several definitions of minimality and maximality are needed.

4.1. Minimality, maximality. In our quest for small CGF’s, the following definition is natural.

Definition 4.1 (Minimality). A CGF � is called minimal if the only possible CGF �′ ≤ � is � itself.

Knowing that a CGF � represents V 4�5 and that �V 4�5 ≤ � represents the same set, a minimal CGF is certainly a
smallest representation:

� is a minimal CGF =⇒ �=�V 4�5 = �V 4�5• 0 (29)

In addition, V 4�5 must of course be a special S-free set when � is minimal. Take for example S = 819⊂�,
V = 6−11+17; then �4r5 2= �r � is the smallest (because unique) representation of V but is not minimal:
�′4r5 2= max 801 r9 is also a CGF, representing V ′ = 7−�1+17.

From (14), a smaller � describes a larger V ; so Definition 4.1 has its geometrical counterpart:

Definition 4.2 (Maximality). An S-free set V is called maximal if the only possible S-free set V ′ ⊃ V is
V itself.

The two objects are indeed related.

Proposition 4.3. If V is a maximal S-free set, then its smallest representation �V is a minimal CGF.

Proof. Take a CGF �′, representing the S-free set V ′ = V 4�′5. If �′ ≤�V , then V ′ ⊃ V ; and if V is maximal,
V ′ = V . Then �′ ≥�V =�V ′ by Proposition 3.6. �
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0

V

S = {2}1

Figure 6. A linear CGF is always maximal.

Besides, these objects do exist.

Theorem 4.4. Every S-free set is contained in a maximal S-free set. It follows that there exists a maximal
S-free set and a minimal CGF.

Proof. Let V be an S-free set. In the partially ordered family 4F1⊂5 of all S-free sets containing V , let
8Wi9i∈I be a totally ordered subfamily (a chain) and define W 2=

⋃

i∈I Wi. Clearly, W is a neighborhood of the
origin; its convexity is easily established, let us show that its closure is S-free.

Remember from Hiriart-Urruty and Lemaréchal [17, Theorem C.3.3.2(iii)] that the support function of a union is
the (closure of the) supremum of the support functions:

�int4W5 = �W = cl
(

sup
i∈I

�Wi

)

= cl
(

sup
i∈I

�int4Wi5

)

= �∪i int4Wi5
0

Having the same support function, the two open convex sets int4W5 and
⋃

i int4Wi5 coincide: r ∈ int4W5 means
r ∈ int4Wi5 for some i; because Wi is S-free, r y S and our claim is proved. Thus, the chain 8Wi9 has an upper
bound in F; in view of Zorn’s lemma, F has a maximal element.

Now (1b) implies that a ball centered at 0 with a small enough radius is S-free; and there exists a maximal
S-free set containing it. Proposition 4.3 finishes the proof. �

The maximal S-free sets can be explicitly described for some special S’s: �q (Lovász [21]), the intersection of
�q with an affine subspace (Basu et al. [5]), with a rational polyhedron (Basu et al. [6]), or with an arbitrary
closed convex set (Morán and Dey [22], Averkov [2]). Unfortunately, the “duality” between minimal CGF’s
and maximal S-free sets is deceiving, as the two definitions do not match: the set represented by a minimal
CGF need not be maximal. In fact, when � is linear, the property introduced in Definition 4.1 holds vacuously:
no sublinear function can properly lie below a linear function. Thus, a linear CGF � is always minimal; yet, a
linear � represents a neighborhood V 4�5 (a half space), which is S-free but has no reason to be maximal. See
Figure 6 with n= 1, the set V = 7−�117 (represented by �4x5= x) is 829-free but is obviously not maximal.

A more elaborate example reveals the profound reason underlying the trouble: for an S-free set W containing V ,
�W need not be comparable to �V .

Example 4.5. In Example 3.5, take for S the union of the three lines with respective equations

�= 11 � = 11 � = 2 +�1

so that V is clearly maximal S-free.
Now shrink V to Vt (left part of Figure 7) by moving its right vertical boundary to �≤ 1 − t. Then A is

moved to At = 41/41 − t5105; there is no inclusion between the new V •
t = conv8At1B1C9 and the original

V • = conv8A1B1C9; this is the key to our example.
Let us show that �Vt

is minimal, even though Vt is not maximal. Take for this a CGF �≤�Vt
, which represents

an S-free set W ; by (14), W ⊃ Vt . We therefore have

�W • =�W ≤ �≤�Vt
= �V •

t
1 i.e., W •

⊂ V •

t

and we proceed to show that equality does hold, i.e., the three extreme points of V •
t do lie in W •.

Vt
•

At

W•

Vt rA

rC

B

C
At

B

C

Figure 7. The mapping V 7→ V • is not monotonic.
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— If At yW •, the right part of Figure 7 shows that W • is included in the open upper half space. Knowing that

W = 4W •5� = 8r2 d>r ≤ 1 for all d ∈W •91

this implies that W� has a vector of the form rA = 4�1−15 (�> 0); W cannot be S-free.
— If C y W •, there is rC ∈ �2 such that C>rC > �W •4rC5 = �W 4rC5 (we denote also by C the 2-vector

representing C). For example rC = 4−2105 ∈ bd 4V 5 (see the right part of Figure 7), so that

C>rC = 1 >�W •4−2105=�W 4−21050

By continuity, �W 4−2 − �105 ≤ 1 for � > 0 small enough. Since �W represents W , this implies that
4−2 − �105 ∈W ; W (which contains Vt) is not S-free.

— By the same token, we prove that B ∈W • (the separator rB = 40115 ∈ bd 4V 5 does the job).
We have therefore proved that W • = V •

t , i.e., �W =�Vt
, i.e., �Vt

is minimal.

The next section makes a first step toward a theory relating small CGF’s and large S-free sets.

4.2. Strong minimality, asymptotic maximality. First, let us give a name to those minimal CGF’s
corresponding to maximal S-free sets.

Definition 4.6 (Strongly Minimal CGF). A CGF � is called strongly minimal if it is the smallest
representation of a maximal S-free set.

The strongly minimal CGF’s can be characterized without any reference to the geometric space.

Proposition 4.7. A CGF � is strongly minimal if and only if, for every CGF �′,

�′
≤ max 801 �96= �V 4�5 = �V 4�5� 7 =⇒ �′

≥ �0 (30)

Proof. Take first a maximal V . Every CGF �′ ≤ �V represents an S-free set V ′, which contains V—see (13)—so
that V ′ = V by maximality, i.e., �′ represents V as well; hence �′ ≥�V by Proposition 3.6. Thus, �4=�V 5
satisfies (30).

Now let � satisfy (30), we have to show that V 2= V 4�5 is maximal. Taking in particular �′ =�V in (30) shows
that � must equal �V . Let V ′ ⊃ V be S-free; we have 4V ′5� ⊂ V �, i.e.,

�V ′ = �4V ′5� ≤ �V � = �V = max 801 �90

Now �′ 2= �V ′ is a CGF, so �′ ≥ �=�V by (30); by Theorem 3.8, �′ represents not only V ′ but also V , i.e.,
V ′ = V : V is maximal. �

In §3 we have systematically developed the geometric counterpart of representations; this exercise can be
continued here. In fact, the concept of minimality involves two properties from a sublinear function:

— it must be the smallest representation of some neighborhood V—remember (29),
— this neighborhood must enjoy some maximality property.

In view of the first property, a CGF can be imposed to be not only sublinear but also to support a set that is a
smallest prepolar. Then Definition 4.1 has a geometric counterpart: minimality of �=�V = �V • means

G′ ⊂ V • and 4G′5� is S-free =⇒ G′ = V •1 i.e., 4G′5� = V 0
6�′ = �G′ ≤ �7 6�′ is a CGF7 6�′ = �7

Likewise for Definition 4.6: strong minimality of �= �V = �V � means

G′ ⊂ V � and 4G′5� is S-free =⇒ G′ ⊃ V •1 i.e., 4G′5� ⊂ V 0
6�′ = �G′ ≤ �V 7 6�′ is a CGF7 6�′ ≥ �7

These observations allow some more insight into the 4 · 5• operation.

Proposition 4.8. Let �=�V = �V • be a minimal CGF. If an S-free set W satisfies W • ⊂ V •, then W = V .

Proof. The smallest representation �′ 2=�W = �W • of the S-free set W is a CGF; and from monotonicity of
the support operation, �′ ≤ �. Then minimality of � implies �′ = �, i.e., W • = V •, an equality transmitted to the
polars: W = 4W •5� = 4V •5� = V . �
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This result confirms that nonequivalence between minimal CGF’s and maximal S-free sets comes from
nonmonotonicity of the mapping V 7→ V •—or of V 7→�V . To construct Example 4.5, we do need a W ⊃ V such
that W • 6⊂ V •.

Then comes a natural question: how maximal are the S-free sets represented by minimal CGF’s? For this, we
introduce one more concept.

Definition 4.9. An S-free set V is called asymptotically maximal if every S-free set V ′ ⊃ V satisfies V ′
�

= V�.

It allows a partial answer to the question.

Theorem 4.10 (Minimal ⇒ Asymptotically Maximal). The S-free set represented by a minimal CGF is
asymptotically maximal.

Proof. Let �V be a minimal CGF and take an S-free set V ′ ⊃ V . Introduce the set G 2= V • ∩ 4V ′
�
5�. Inclusions

translate to inequalities between support functions:

�G ≤ �V • =�V 1 (31)

and we proceed to prove that this is actually an equality. Let us compute the set W 2=G� represented by �G. The
support function of an intersection is obtained via an inf-convolution (formula (3.3.1) in Hiriart-Urruty and
Lemaréchal [17, Chapter C] for example): �G4 · 5 is the closure of the function

r 7→ inf
{

�V •4r15+�4V ′
�5�4r252 r1 + r2 = r

}

0

In this formula, �V • =�V and the support function of the closed convex cone 4V ′
�
5� is the indicator of its polar

V ′
�

: the above function is
r 7→ inf

{

�V 4r152 r1 + r2 = r1 r2 ∈ V ′

�

}

0

Now use (12): because �G represents W , to say that r ∈ int4W5 is to say that the above infimum is strictly
smaller than 1, i.e., that there are r1, r2 such that

r1 + r2 = r1 r2 ∈ V ′

�
1�V 4r15 < 11 i.e., r1 + r2 = r1 r2 ∈ V ′

�
1 r1 ∈ intV 0

In a word,
int4W5= V ′

�
+ int4V 5⊃ int4V 5 3 01

where we have used the property 0 ∈ V ′
�

. Remembering the inclusion V ⊂ V ′ and the definition of a recession cone,
we also have

int4W5= V ′

�
+ int4V 5⊂ V ′

�
+ int4V ′5⊂ V ′

�
+V ′

⊂ V ′0

Altogether, 0 ∈ int4W5⊂ int4V ′5. As a result, W4=G�5 is an S-free closed convex neighborhood of the origin: its
representation �G is a CGF and minimality of �V = �V • implies with (31) that �G = �V • .

By closed convexity of both sets V • and G= V • ∩ 4V ′
�
5�, this just means G= V •, i.e., 4V ′

�
5� ⊃ V •. By polarity,

V ′
�

⊂ 4V •5� = V (invoke Theorem 3.8). The cone V ′
�

, contained in the neighborhood V , is also contained in its
recession cone: V ′

�
⊂ V�. Since the converse inclusion is clear from V ′ ⊃ V , we have proved V ′

�
= V�: V is

asymptotically maximal. �

5. Favourable cases. Despite Example 4.5, a number of papers have established the equivalence between
maximal S-free sets and minimal CGF’s, for various forms of S. This equivalence is indeed known to hold in a
number of situations:

(a) when S is a finite set of points in �q − b; see Johnson [18] and more recently Dey and Wolsey [12];
(b) when S is the intersection of �n with an affine space; this was considered in Borozan and Cornuéjols [8]

and Basu et al. [5];
(c) when S = P ∩ 4�q − b5 for some rational polyhedron P ; and this was considered in Dey and Wolsey [12]

and Basu et al. [6].
Accordingly, we investigate in this section the question: when does minimality imply strong minimality? So we

consider an S-free set V , whose smallest representation �V = �V • is minimal, hence V is asymptoticaly maximal
(Theorem 4.10); we want to exhibit conditions under which V is maximal. We denote by L= 4−V�5∩V� the
lineality space of V (the largest subspace contained in the closed convex cone V�) and our result is the following.
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V∞

rk

V∞k

S

Figure 8. Constructing in S an unbounded sequence “tending to” V .

Theorem 5.1. Suppose 0 ∈ S̄ 2= conv4S5. A minimal �V is strongly minimal whenever one of the following
two properties (i) and (ii) holds:

(i) V� ∩ S̄� = 809 (in particular S bounded),

(ii)
4ii51 S̄ =U + S̄� with U bounded, and
4ii52 V� ∩ S̄� = L∩ S̄�.

This theorem generalizes the above-mentioned results: (i) is a weakening of (a) and (ii) weakens (b) or (c). Note
that (ii)2 generalizes (i) (to an unbounded V� ∩ S̄); the price to pay is assumption (ii)1, whose role is to exclude an
asymptotic behaviour of S̄ similar to that of P in Figure 5 (see Proposition 3.11).

However, the interesting point does not lie in the above assumptions (a)–(ii). Recalling that the whole issue lies
in unboundedness of V , our proof of Theorem 5.1 uses Theorem 4.10 as follows. Starting from an S-free set V ,
which is asymptotically maximal but not maximal, we construct a sequence of neighborhoods V k satisfying
V k

�
) V�. Then V k is not S-free: there is some rk ∈ S ∩ int4V k5; see Figure 8.

Besides, our construction is organized in such a way that V k “tends to” V and, by nonmaximality of V , rk is
unbounded but “tends to” V . More precisely,

the cluster points of the normalized sequence 8rk9 lie in S̄� ∩V�.

Decomposing rk = lk +uk along L and L⊥, we also prove that uk is unbounded but “tends to” S̄ ∩L⊥, more
precisely

the cluster points of the normalized sequence 8uk9 lie in S̄� ∩L⊥.

We believe that these are key properties of nonmaximal S-free sets. Having established them, the whole business
is to find appropriate assumptions under which existence of our unbounded sequences is impossible; (a)–(ii) are
such ad hoc assumptions.

Obtaining rk and uk is a fairly complicated operation, which we divide into a series of lemmas. For a reason
that will appear in (39), we may assume 0 y V •. Then we enlarge V to V k by chopping off a bit of V • as follows.
Take an extreme ray �+dV of V �

�
. By (28), its intersection with V • is a nonempty segment 6dV 1 tVdV 7, with

1 ≤ tV <+�. Given a positive integer k, we introduce the open neighborhood of 6dV 1 tVdV 7:

N k 2= 6dV 1 tVdV 7+B4011/k5=
⋃

1≤t≤tV

B4tdV 11/k51 (32)

where B4d1�5 is the open ball of center d and radius �. We remove N k from V •, thus obtaining a set C, closed
hence compact; its convex hull

Gk 2= convC1 with C 2= V •
\N k

=
{

d ∈ V •2 �d− tdV � ≥ 1/k for all t ∈ 611 tV 7
}

(33)

is convex compact. Figure 9 illustrates our construction.
Note for future use that the distance from every d ∈ 6dV 1 tVdV 7 to C does not exceed 1/k; and the same holds

for Gk ⊃C. Formally,
∀ d̄ ∈ 6dV 1 tVdV 71 ∃dk ∈Gk such that �dk − d̄� ≤ 1/k0 (34)
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V•

�+Gk

Nk

tVdVdV

Figure 9. Chopping off V • near an extreme ray.

Remark 5.2. The above construction would become substantially simpler, and N k would reduce to the open
ball B4dV 11/k5, if V • ∩�+dV reduced to a singleton, i.e., if tV = 1; but this property need not hold when �V is
not continuous.

To make a counterexample, start from the parabola of Figure 5. We already know that �P 4dk5 can tend to any
nonnegative value when dk → 0. However 0 ∈ P •; alternatively, the domain of �P is not closed. In fact, we need a
discontinuous sublinear function that is locally bounded on its domain—and this requires three variables. Thus, we
first bound �P by defining

f 4d5 2= 1 +

{

�P 4d5 if �P 4d5≤ 1,

+� otherwise1

(the “1+” appearing above is just aimed at getting 0 in the interior of V ). Although no longer positively
homogeneous, f is still convex, its domain is the compact convex set P •, on which 1 ≤ f ≤ 2; when dk ∈ P • tends
to 0, f 4dk5 can tend to any value in 61127. To complete the construction, we take the so-called perspective of f :

�2
×� 3 4d1w5 7→ �4d1w5 2=











wf 4d/w5 if w > 0,

0 if 4d1w5= 40105,

+� otherwise1

whose positive homogeneity is clear. Actually, � is known to be convex and to support a closed convex set V ; see
Hiriart-Urruty and Lemaréchal [17, §B.2.2] (in particular Remark 2.2.3), where our 4d1w5 is called 4x1 u5. Besides,
the property f ≥ 1 implies that V is a neighborhood of the origin; remember (21).

Now take 4d1w5 ∈ V̂ � ⊂ dom� , so that d′ 2= 4d/w5 ∈ dom f and w > 0. Then use positive homogeneity:

1 = �4d1w5 =⇒
1
w

= �4d′115= f 4d′5 ∈ 61127 =⇒ w ≥
1
2
0

Thus, V̂ � is separated from the origin (by the hyperplane w ≥
1
2 ) and this property is transmitted to its closed

convex hull V •. On the other hand, � inherits the discontinuities of f . In fact, choose � ∈ 61127 and construct a
sequence 8dk9 in dom f tending to 0, such that f 4dk5→ �. Since �4dk115= f 4dk5 > 0, positive homogeneity gives

�

(

dk

f 4dk5
1

1
f 4dk5

)

= 11 hence
(

dk

f 4dk5
1

1
f 4dk5

)

∈ V̂ �0

Pass to the limit,
(

dk

f 4dk5
1

1
f 4dk5

)

→

(

01
1
�

)

∈ cl V̂ �
⊂ V •0

Since � was arbitrary in 61127, the intersection of V • with the ray 809×�+ contains the whole segment
809× 6 1

2 117.

Viewing Gk of (33) as a prepolar, we set
V k 2= 4Gk5�0

Of course, V • ⊃Gk+1 ⊃Gk and V ⊂ V k+1 ⊂ V k. The closed convex neighborhood V k enjoys all of the properties
listed in §3, in particular those coming from 0 yGk.
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Lemma 5.3 (Enlarging V�). Assume 0 y V •; let �+dV be an extreme ray of V �
�

and assume that �+dV ( V �
�

(�+dV is properly contained in V �
�

). Given an integer k > 0, construct N k, Gk, V k as above. Then Gk 6= � for k
large enough (say k ≥ k0) and

(i) V� ( V k
�

for k ≥ k0,
(ii)

⋂

k≥k0
V k = V .

Proof. If Gk were empty for all k, we would have V • ⊂N k for all k, hence V • would reduce to 6dV 1 tVdV 7.
In view of (28), this would imply �+dV = V �

�
, which our assumption rules out.

Every d ∈Gk is a convex combination
∑

i �idi with each di in V •\N k ⊂ V �
�

. None of these di’s can lie in
6dV 1 tVdV 7⊂N k, and none of their convex combinations either because of extremality of �+dV . We conclude that

Gk
∩ 6dV 1 tVdV 7= �0 (35)

Now, we see from Theorem 3.8 that

�+4V
k5• ⊂�+G

k
⊂�+4V

k5�3

but from Proposition 3.7, this is actually a chain of equalities:

�+4V
k5• =�+G

k0 (36)

Besides, 4V k5• ⊂ Gk ⊂ V •, hence 0 y 4V k5• and we can apply (28) to V k. Then we write

4V k
�
5� = �+4V

k5•

= �+G
k

( �+V
•

= V �
�
0

[(28)]
[(36)]

[consequence of (35)]
[(28) again]

Thus, 4V k
�
5� ( V �

�
, which implies (i) since polarity is an involution between closed convex cones.

To prove (ii), take r̄ in
⋂

k V
k; we have to prove that r̄ ∈ V (the other inclusion being obvious). If r̄ y V there is

a separating hyperplane d̄2 �V 4d̄5 < d̄>r̄ . Normalizing d̄ via (28), we have altogether

r̄ ∈
⋂

k

V k1 d̄ ∈ V̂ �1 d̄>r̄ > 13 (37)

but �Gk represents V k, so (37) gives

�Gk4r̄5≤ 1 < d̄>r̄ 1 hence d̄ yGk0

Then d̄ ∈ V • ∩N k for all k (large enough), i.e., d̄ ∈ 6dV 1 tVdV 7. Introduce dk ∈Gk from (34):

�dk − d̄� ≤
1
k

and d>

k r̄ ≤ �Gk4r̄5≤ 10

Passing to the limit, d̄>r̄ ≤ 1; a contradiction to (37). Therefore r̄ ∈ V . �

Now we assume the existence of an S-free set W containing V ; it satisfies in particular

W •
⊂W �

⊂ V �
= 60117V •0 (38)

If W • ⊂ V •, this W is of no use to disprove maximality of V (Proposition 4.8). We are therefore in the situation

W •
6⊂ V •1 which implies from (38)2 0 y V •0 (39)

Thus, W • contains some points out of V •. The key argument for our analysis is that one of these points lies on an
extreme ray of V �

�
—which will be the dV of Lemma 5.3, crucial to construct the unbounded sequence 8rk9 of

Figure 8.

Lemma 5.4 (Constructing an Appropriate Extreme Ray). Let W ⊃ V satisfy (39). There is an extreme
ray �+dV of V �

�
such that the set N k defined by (32) satisfies W � ∩N k = � for k large enough.
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W º e

de

–
b

V•B

bj0

Figure 10. The extreme ray �+bj0 contains some point in V •\W •.

Proof. From (39), we are in the framework of Corollary 3.10; Figure 10 is helpful to follow the proof. If
Ŵ � ⊂ V • then W • = conv4Ŵ �5⊂ V •, contradiction. So there is e ∈ Ŵ � (hence �W 4e5= 1) which does not lie in
V •; because V ⊂W , i.e., �V ≤ �W , this e satisfies �V 4e5 < 1 (otherwise �V 4e5= 1, hence e ∈ V̂ � ⊂ V •).

Then construct de 2= 41/�V 4e55e ∈ V̂ � (remember (21): �V 4e5 > 0). For every e′ ∈ 601 e7, the segment 6e′1 de7
contains e. Being a convex set, V • cannot contain such an e′ (otherwise it would contain e as well). As a result,
the compact convex sets V • and 601 e7 can be separated: there is l ∈�q (appropriately scaled) such that

max801 e>l9 < 1 < min
d∈V •

d>l0 (40)

Observe that
1 > e>l = �V 4e5d

>

e l > 00 (41)

Now introduce the closed convex set

B 2= 8b ∈ V �

�
2 b>l = 190

Clearly, �+B ⊂ V �
�

. Conversely, apply (28): every nonzero d ∈ V �
�

can be scaled to some td ∈ V •. By (40),
td>l > 1, then d can be scaled again to td/4td>l5, which lies in B. We have shown

�+B = V �

�
0 (42)

By (28), every b ∈B can be obtained by scaling some d ∈ V̂ �: b = td; and t = 1/4d>l5 ∈ 70116 by (40). This
means that

B ⊂ 70116V̂ �
⊂ V �3 (43)

B is therefore bounded (and closed because V �
�

is closed), hence compact.
Using (41), scale e to b̄ 2= 41/4e>l55e ∈ B and express b̄ =

∑

j �jbj as a convex combination of extreme points
bj of B (Minkowski’s Theorem). Then

�W 4b̄5=
1
e>l

�W 4e5=
1
e>l

> 10

By convexity of �W , there is some j0 such that �W 4bj0
5 > 1 (we may have �W 4bj0

5= +�). Altogether, we have
exhibited

bj0
extreme in B and satisfying 1 <�W 4bj0

50

Extremality of bj0
in B implies extremality of the ray �+bj0

in �+B, i.e., in V �
�

because of (42). The intersection
of W � with this extreme ray is some 601 dW 7 (dW may be 0) which, by definition of a polar, does not contain bj0

.
Since b>

j0
l = 1 (because bj0

∈ B), d>l < 1 for all d ∈ 601dW 7. Then, (40) shows that 601dW 7 and 6dV 1 tVdV 7 are
separated.

As a result, the two compact sets W � and 6dV 1 tVdV 7 are disjoint. If there were dk ∈W � ∩N k for all k, then the
bounded sequence 8dk9 would have some cluster point d∗; but W � is closed: d∗ would lie in W � ∩ 6dV 1 tVdV 7,
contradiction. �

The set B constructed in the above proof is a so-called basis of the pointed cone V �
�

. The case �W 4bj0
5= +�,

dW = 0 corresponds to a W as in Figure 5; it occurs in Figure 10. This latter picture is still helpful to follow the
next proof. Recall that L is the lineality space of V .
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Proposition 5.5. Assume 0 ∈ S̄ = conv4S5. If a minimal CGF � represents the S-free set V = V 4�5, which is
not maximal, then V k exists as described by Lemma 5.3. There is rk ∈ V k ∩ S, decomposed as rk = lk + uk with
lk ∈ L and uk ∈ L⊥, such that

for some K ⊂�, lim
k∈K

�rk� = +� and lim
k∈K

�uk
� = +�0

Proof. If all of the S-free sets W containing V satisfy W • ⊂ V •, then V is maximal (Proposition 4.8). Thus,
there is an S-free set W ⊃ V satisfying (39) and we can construct dV as in Lemma 5.4.

If �+dV = V �
�

, then V̂ � = V • = 8dV 9 and V � = 601 dV 7 (Proposition 3.7): the S-free set V , represented by �V � , is
the half space 8r2 d>

V r ≤ 19, which separates 0 from S̄; this is ruled out by assumption.
Otherwise, �+dV ( V �

�
: we can apply Lemma 5.3 and construct the sequence of neighborhoods V k. By

minimality of �V , V k cannot be S-free (Lemma 5.3(i) and Theorem 4.10): there exists rk lying
— in intV k, hence from (12)

1 >�Gk4rk51 (44)

— and in S, hence rk y intW : �W •4rk5≥ 1; since W • is compact,

∃ ek ∈W • such that e>

k r
k
≥ 10 (45)

Now we claim that there is �> 0 such that

tkek ∈ V •
∩N k1 for some tk ≥ 1 + � and all k large enough0 (46)

Using (28), scale ek (nonzero from its definition) to tkek ∈ V •; and note from (38) that tk ≥ 1. Then (45) implies
that tkek yGk: otherwise

1 ≤ e>

k r
k
≤ tke

>

k r
k
≤ �Gk4rk5

by definition of a support function; this contradicts (44). It follows that tkek ∈ V • ∩N k, which is far from W •

(Lemma 5.4); (46) is proved.
Now we can conclude. First, let d̄ ∈ 6dV 1 tVdV 7 be a cluster point of the bounded sequence 8tkek9. Next, use

(46), (45), (44) to write for all d ∈Gk

1 + �≤ tk ≤ tke
>

k r
k
= 4tkek −d5>rk +d>rk < 4tkek −d5>rk + 10

This holds in particular for d = dk stated in (34):

�< 4tkek −dk5
>rk0 (47)

Then we obtain with the Cauchy-Schwarz inequality

�< �tkek − d̄+ d̄−dk��r
k
� ≤

(

�tkek − d̄� +
1
k

)

�rk�0

Furthermore, decompose rk = lk + uk in (47) and observe that both e>
k l

k and d>
k l

k are 0 (lk ∈ L and ek and dk lie
in V �

�
⊂ L⊥). So (47) gives also

�< 4tkek −dk5
>uk

≤

(

�tkek − d̄� +
1
k

)

�uk
�0

Both statements are proved since there is K ⊂� such that limk∈K �tkek − d̄� = 0. �

As suggested in the beginning of this section, proving Theorem 5.1 is now easy. An S-free set represented by a
minimal CGF will be automatically maximal under any assumption contradicting the existence of our unbounded
sequences.

Proof of Theorem 5.1. Construct the sequences 8rk9 and 8uk9 of Proposition 5.5.
Case (i). Extract a cluster point r̂ of the normalized subsequence 8rk9k∈K : for some K ′ ⊂K,

lim
k∈K′

rk

�rk�
= r̂ 0
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Then take an arbitrary M > 0. We know that M/�rk� ≤ 1 if k is large enough in K ′ so, because both 0 and rk lie
in V k ∩ S̄,

M

�rk�
rk ∈ V k

∩ S̄1 for large enough k ∈K ′0

By closedness, this implies Mr̂ ∈ S̄, hence r̂ ∈ S̄� because M is arbitrary. The same argument using Lemma 5.3(ii)
gives r̂ ∈ V�.

Let us sum up. If V is not maximal, then V� ∩ S̄� contains a vector r̂ of norm 1; this contradicts (i).
Case (ii). Write uk = rk − lk ∈ V k −L= V k +L⊂ V k +V� ⊂ V k. Then proceed as in Case (i): extract a cluster

point û of 8uk/�uk�9K and argue that 4M/�uk�5uk ∈ V k ∩L⊥ to exhibit

û ∈ V� ∩L⊥ and �û� = 10 (48)

Besides, uk is the projection onto L⊥ (a linear operator) of rk ∈ S ⊂U + S̄�; hence

uk
∈ ProjL⊥U + ProjL⊥ S̄�0

By (ii)1, ProjL⊥U is a bounded set, so our cluster direction û lies in ProjL⊥ S̄�:

û= ŝ − l̂1 for some ŝ ∈ S̄� and l̂ ∈ L0

Use (48):
S̄� 3 ŝ = û+ l̂ ∈ V� +L= V�3

then use (ii)2:
ŝ ∈ V� ∩ S̄� = L∩ S̄�0

As a result, û= ŝ − l̂ lies in L; use (48) again: û ∈ L∩L⊥ cannot have norm 1.
Thus, in this case also, V has to be maximal. �
Let us insist once more: the core of our proof is Proposition 5.5. Then (i) and (ii) appear as ad hoc assumptions

to contradict the existence of the stated unbounded sequences; other similar assumptions might be designed.

6. Conclusion and perspectives. In this paper, we have laid down some basic theory toward studying the
cutting paradigm for sets of the form (1). We have introduced for this the concept of cut-generating functions,
which allowed us to put in perspective an abundant literature devoted to S-free sets. We have revealed the
discrepancy between minimality and maximal S-freeness; and we have recovered existing theorems (Johnson [18],
Borozan and Cornuéjols [8], Basu et al. [5], Dey and Wolsey [12], Basu et al. [6]), dealing with mere minimality,
exhibiting the intrinsic arguments allowing their proofs. Our theory necessitated a generalization of the polarity
correspondence to certain unbounded sets; we have conducted it via a systematic exploitation of the correspondence
between sublinear functions and closed convex sets.

A number of questions arise from this theoretical work. Some are suggested by §3:
Question 1. Given a convex compact set G, can we detect whether it is the minimal prepolar of V 2=G�? And

if not, can we compute 4G�5•?
Question 2. Knowing that our generalization of polarity goes along with that of Zaffaroni [24], linking the two

works should certainly be instructive. For example, we define the prepolar by (23), which looks quite different
from the set Q in Zaffaroni [24, Proposition 5.1]. Yet the two sets have to coincide, at least when 0 ∈ intV ; can
this be clarified? And can we explain what happens when 0 becomes a boundary point of V ? Also, does this other
definition help answer question 1?

These are limited to pure convex analysis; concerning the CGF theory itself, some other questions have a
concrete interest:

Question 3. Is it possible to characterize exactly the S-free sets represented by minimal CGF’s? A converse
form of Theorem 4.10 should be desirable.

Question 4. One might want to consider more general models. For example, it should not be too difficult to
replace the “ground set” �n

+
of (1a) by some other closed convex cone; say the cone of positive semi-definite

matrices, which would open the way toward cutting SDP relaxations. Kilinç-Karzan [20] opens interesting
perspectives for this. Another generalization would be inspired by the approach of Gomory [14] of Example 1.1:
there, X has the form

8x ∈�n
+
2 −Ax ∈�m

− b93

S =�m − b lies in a smaller space but the ground set �n
+

is no longer convex, so sublinear CGF’s are now
ruled out. Instead, CGF’s in this context are subadditive, periodic, and satisfy a certain symmetry condition
(Gomory and Johnson [15]).
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�

V
c

X

�

�

�

Figure 11. Not all cuts are obtained from a CGF.

Question 5. Perhaps the most crucial question is whether CGF’s do generate all possible cuts, i.e., whether (8)
is able to produce all possible c’s satisfying (2). This turns out to be a tough nut to crack, we conclude the paper
with some considerations for future research concerning it.

The following counterexample shows that the answer to question 5 is no in general.

Example 6.1 (CGF’s Need Not Generate All Cuts). In �2, take S = 40115∪ 84�1−159. The left part of
Figure 11, drawn in the S-space, clearly shows that, if the unit-vector 41105 lies in the recession cone of an S-free
set V , then it lies on the boundary of this cone.

Now take the identity matrix for R: in the x = 4�1�5-space, X reduces to the singleton 40115 in �2 (right part of
Figure 11). It can be separated from the origin by the cut � ≥ � + 1, obtained with c = 4−1115>. Knowing that
the first column of R is r1 = 41105>, a CGF � producing this c must therefore have �4r15= −1. In view of
Lemma 3.2, 41105 lies in the interior of V�; but we have seen that no V can satisfy this.

Negative cj ’s are therefore troublesome, a general sufficiency theorem is out of reach. To eliminate cj < 0, we
can restrict the class of instances:

Proposition 6.2. If the recession cone of conv4X5 is the whole of �n
+

, then every cut c lies in �n
+

.

Proof. Each basis vector ej of �n lies in 6conv4X57�: picking some x ∈X,

c>4x+ tej5= c>x+ tcj ≥ 1 for all t ≥ 03

let t → +� to see that cj ≥ 0. �

This result might suggest that the trouble in Example 6.1 is due to the difference between the recession cones of
conv4X5 and of the ground set �n

+
in (1a). However, the assumption introduced in Proposition 6.2 does not

suffice, as even cj = 0 brings trouble. In fact, make a “more nonlinear” variant of Example 6.1: instead of
the horizontal line � = −1, take for S the curve � = −1/��� (� 6= 0). This leaves X = 8401159 unchanged;
c = 40115> is a cut and a CGF � generating it has �4r15= 0; this � represents a set V 4�5, which has 4�+105 in its
recession cone. Being a neighborhood of the origin, V 4�5 contains A 2= 401−�5 for small enough �> 0; also,
B 2= 4r105 ∈ V 4�5� ⊂ V 4�5 for all r > 0 (see Figure 12); by convexity, the whole segment 6A1B7 lies in V 4�5,
which therefore cannot be S-free.

In these two examples, the conical hull of the rj ’s does not cover the whole of S. In fact, S contains points that
can be reached by no x ∈�n

+
; these points have nothing to do with the problem, so forcing V not to contain them

is unduly demanding. Then one may ask whether CGF’s are able to describe all possible cuts, for all possible
instances such that S ⊂ cone 4r11 : : : 1 rn5. This is an open question. Here we limit ourselves to a reasonably simple
sufficiency result, proved with the help of a “comfortable” assumption; it motivated the generalization obtained
recently in Cornuéjols et al. [11].

�

A

B

�

Figure 12. Trouble appears when V� is an asymptote of S.
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Theorem 6.3. Let an instance of (1) be as described by Proposition 6.2 and assume

cone 4r11 : : : 1 rn5 2=

{ n
∑

j=1

�jrj 2 �j ≥ 01 j = 11 : : : 1 n
}

=�q 0

Then every cut can be obtained from a CGF.

Proof. Let c ∈�n
+

and set

J+ 2= 8j ∈ 811 : : : 1 n92 cj > 091 J0 2= 8j ∈ 811 : : : 1 n92 cj = 090

Then introduce in �q the vectors
r ′

j 2=
rj

cj
1 for j ∈ J+

and the polyhedron

V 2=G+K1 with

{

G 2= conv 8r ′
j 2 j ∈ J+91

K 2= cone 8rj 2 j ∈ J090

Claim 1. V is a neighborhood of the origin. In fact, our assumption means that �q = cone 4G5+K: every
d̄ ∈�n has the form

d̄ = t̄ḡ + k̄1 with t̄ ≥ 01 ḡ ∈G1 k̄ ∈K0

Then compute �V 4d̄5 for nonzero d̄.
Case 1. t̄ = 0. Fixing g ∈G so that g + tk̄ ∈ V for all t ≥ 0, we have

�V 4d̄5= �V 4k̄5≥ k̄>4g + tk̄5= k̄>g + t�k̄�21 for all t > 03

let t → +� to see that �V 4d̄5= +�.
Case 2. t̄ > 0. Scale d̄ to t̄−1d̄ ∈G+K = V to obtain �V 4d̄5≥ t̄−1�d̄�2 > 0.

Altogether, we have proved that �V 4d̄5 > 0 for all d̄ 6= 0, i.e., 0 ∈ int4V 5.
Claim 2. V is S-free. Take r̄ ∈ int4V 5. For �> 0 small enough, r̄ + �r̄ ∈ V :

41 + �5r̄ =
∑

j∈J+

�jr
′

j +
∑

j∈J0

�jrj1 with �j1�j ≥ 01
∑

j∈J+

�j = 10

Divide by 1 + � and set �j = �j/41 + �5, �j =�j/41 + �5 to get

r̄ =
∑

j∈J+

�jr
′

j +
∑

j∈J0

�jrj1 for �j1�j ≥ 01
n
∑

j=1

�j < 10

Introduce the vector x̄ ∈�n whose coordinates are

x̄j 2=







�j

cj
if j ∈ J+1

�j if j ∈ J00

Observe that x̄ ≥ 0 and that

Rx̄ =

n
∑

j=1

x̄jrj =
∑

j∈J+

�j

cj
rj +

∑

j∈J0

�jrj = r̄ 0

If r̄ ∈ S then x ∈X by definition (1a); but

c>x̄ =
∑

j∈J+

cj
�j

cj
=
∑

j∈J+

�j ≤

n
∑

j=1

�j < 1

and x cannot lie in X if c is a cut. We have proved that int4V 5∩ S = �, i.e., that V is S-free.
Conclusion. We have proved that the gauge �V is a CGF; besides

— for j ∈ J0, rj is a direction of recession of V : �V 4rj5= 0 = cj ; and
— for j ∈ J+, the property r ′

j ∈ V gives

1 ≥ �V 4r
′

j5=
1
cj
�V 4rj51 hence �V 4rj5≤ cj 0

In summary, �V is a CGF dominating the cut c. �
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To make question 5 less ambitious, one may ask whether CGF’s can reproduce the set of cuts “globally.” In fact,
the set of c’s satisfying (2) is a closed convex set: the opposite of the reverse polar X−, in the terminology of
Balas [3] and Cornuéjols and Lemaréchal [10]. Then consider the set RS of all representations of a given S-free
set. Given 4n1R5, form the set C of c ∈�n whose coordinates are �4rj5, where � describes RS . Is it true that
conv4C5= −X−? This question is open. If the answer is yes, one more question occurs: Example 4.5 tells us that
RS cannot be reduced to the maximal S-free sets; then, what sort of maximality can be imposed while preserving
“completeness” of RS? An answer should need answering question 3 first.
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