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Abstract. In this paper we study the asymptotic behavior of the following non-
local inhomogeneous dispersal equation

ut(x, t) =
∫

R
J

(
x− y

g(y)

)
u(y, t)
g(y)

dy − u(x, t) x ∈ R, t > 0,

where J is an even, smooth, probability density, and g, which accounts for a
dispersal distance, is continuous and positive. We prove that if g(|y|) ∼ a|y| as
|y| → ±∞ for some 0 < a < 1, there exists a unique (up to normalization) positive
stationary solution, which is in L1(R). On the other hand, if g(|y|) ∼ |y|p, with
p > 2 there are no positive stationary solutions. We also establish the asymptotic
behavior of the solutions of the evolution problem in both cases.

1. Introduction

Integro-differential equations have been used in population ecology to model the long range
dispersal of species. A simple model for nonlocal dispersal is the following convolution equation in
the real line:

(1.1) ut(x, t) =
∫

R
J(x− y)u(y, t)dy − u(x, t) x ∈ R, t ∈ R,

here u(x, t) accounts for the density of a population at site x and time t, and J is an even probability
density. In this model, the rate at which individuals of site y move to site x, given by J(x − y),
only depends on the distance between sites x and y, thus dispersal is homogeneous in space. In the

1
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last years, there have been several works that consider the effect of a heterogenous environment
adding a growth term to equation (1.1) which is space dependent, as in [17, 18, 12, 6, 9, 8].

Another way in which the heterogeneity of the environment can affect the distribution of a
species is through space-dependent dispersal strategies. In [2] the dispersal equation

(1.2) ut(x, t) =
∫

R
J

(
x− y

g(y)

)
u(y, t)
g(y)

dy − u(x, t) x ∈ R, t ∈ R,

is proposed. The function g(y) accounts for the dispersal distance which depends on the departing
point. In this equation, the rate at which individuals arrive at site x is

∫

R
J

(
x− y

g(y)

)
u(y, t)
g(y)

dy,

while the rate at which individuals leave site x is
∫

R
J

(
x− y

g(x)

)
u(x, t)
g(x)

dy = u(x, t).

In this model the dispersal is not homogeneous and under suitable time scaling, when J approxi-
mates Dirac’s delta, this equation resembles ut = ∆(g2u) (see [5, 13]).

The objective of this paper is to address a basic issue for equation (1.2), which is to study the
asymptotic behavior of its solutions when u(·, 0) ∈ L1(R), trying to understand the role played by
the function g.

From now on we will assume that the following hold:

(J1) J is an even, positive, Hölder continuous function,
∫
R J(x)dx = 1 and supp J = [−1, 1].

(g1) g is a positive continuous function.

Basic properties for (1.2) are the global existence of solutions when u(·, 0) ∈ L1(R), the mass
preserving property (i.e.

∫
R u(x, t)dx =

∫
R u(x, 0)dx for all t), and infinite speed of propagation,

that is if u(·, 0) ≥ 0 a.e. and u(·, 0) 6= 0, then u(·, t) > 0 a.e. for t > 0. We refer to [2] for details.
The dispersal distance function g affects the location of the sites that can be reached from a

certain departure point, as well as the location of the sites that can reach a given point. Indeed,
note that since supp J = [−1, 1] then the individuals departing from a site x will move to sites
satisfying |y − x| < g(x). Also, observe that

(1.3) J

(
x− y

g(y)

)
6= 0 if and only if |x− y| < g(y);

hence, the only points y that contribute to the the integral term in (1.2) are those where g(y) >
|x− y|. We denote this set Dx = {y / |x− y| < g(y)} which accounts for the domain of dependence
of x. In the case where 0 < κ1 < g(y) < κ2 for all y it is easy to check that

(x− κ1, x + κ1) ⊂ Dx ⊂ (x− κ2, x + κ2),

which means that the domain of dependence consists roughly in an interval of fixed size around the
point. As we will discuss below, in this case the asymptotic behavior of the finite mass solutions
of (1.2) is basically the same as when g is a constant.

Observe that if g becomes unbounded as y →∞ (or y → −∞) then as x →∞ the set Dx will
contain points y such that |y − x| → ∞, that is, points whose distance from x become unbounded
will be in the domain of dependence of x. Moreover, if g(y)

|y| > a > 1 for large |y|, then for all x the
set Dx is unbounded. Thus, the dispersal term in equation (1.2) can behave quite different from
the one in (1.1). We will see that in these cases the behavior of the solutions does actually differ
from the case when g is constant.

The asymptotic behavior of the solutions of (1.2) for g = 1 is already understood; in this case
all solutions with finite mass converge to 0 locally in R as t → ∞ (see [1] for precise estimates).
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The same happens when g is a continuous function bounded above and below, as was shown in [2].
A key point to prove this last result was the use of the following energy functional defined in [16]:

(1.4) E(u) =
∫

R

u2

p
dx,

where p is a positive steady state solution of (1.2), i.e. it satisfies

(1.5) p(x) =
∫

R
J

(
x− y

g(y)

)
p(y)
g(y)

dy x ∈ R.

It can be shown that E′ is given by

(1.6) E′(t) = −
∫

R

∫

R
J

(
x− y

g(y)

)
p(y)
g(y)

(
u(x, t)
p(x)

− u(y, t)
p(y)

)2

dx dy,

thus, if limt→∞ u(·, t) → v locally, then v
p should be a constant. In the case that g is bounded

above and below, it is shown in [2] that any positive solution p of (1.5) is bounded above and
below, hence v ≡ 0. If p happens to be in L1(R) then we should have that v = 〈u(·,0)〉

〈p〉 p, where 〈·〉
denotes the average of a function, and limt→∞ u(·, t) → v in L1(R). In this case, we see that the
pure dispersal equation will always produce an inhomogeneous asymptotic distribution, when the
initial condition is nontrivial.

In the present paper, we will provide examples that show how the behavior of g near ±∞ affects
the existence and profiles of the positive solutions of (1.5). This type of dependence was hinted
in [2]. Indeed, it was proved that if g is bounded above, then (1.5) has a positive solution; and
if g is bounded away from zero at ±∞ then the positive solution of (1.5) (which is unique up to
a multiplicative constant) is bounded above and below, while if lim|y|→∞ g(y) = 0 any positive
solution is unbounded. As the behavior of g near ±∞ becomes unbounded we have that L1(R)
solutions do appear. Actually, we will show:

Theorem 1.1. Suppose that

0 < lim inf
|y|→∞

g(y)
|y| ≤ lim sup

|y|→∞

g(y)
|y| < 1.

Then (1.5) has a unique positive solution p, up to a multiplicative constant, and it belongs to L1(R).
In this case, all solutions of (1.2) with initial value u(·, 0) ∈ L1(R) converge in L1(R) to λp where
λ = 〈u(·,0)〉

〈p〉 .

It turns out that, when g grows faster than linearly at ±∞, the stationary problem (1.5) does
no longer have a positive solution. More precisely, we will prove the following result:

Theorem 1.2. Suppose that, for some p > 2,

0 < lim inf
|y|→∞

g(y)
|y|p ≤ lim sup

|y|→∞

g(y)
|y|p < ∞.

Then (1.5) does not have any positive solution. In this case, all solutions of (1.2) with initial value
u(·, 0) ∈ L1(R) converge to 0 in L1

loc(R).

The last theorem can be generalized to the case p > 1, but we are only dealing here with p > 2
for simplicity.

These two results shed some light on the relationship between the behavior of g at ±∞ and the
existence and profile of the positive solutions of (1.5). Finally, we should mention that other types
of results relating the behavior of g and the profile of the positive solutions of (1.5) are obtained
in [3], when the problem is considered in a bounded domain and g vanishes near the boundary.
For instance, if for all y we have that 0 < g(y) ≤ adist(y, ∂I), where I is a bounded interval and
a < 1, then the positive solutions of (1.5) become unbounded on ∂I.

The paper is organized as follows: in Section §2 we will establish some preliminary results
regarding the energy E defined above and the convergence of solutions of (1.2). In Section §3 we
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will prove Theorem 1.1, using an approximation procedure, and Section §4 will be devoted to the
proof of Theorem 1.2.

2. Preliminary results

In this section we will prove some preliminary results needed to characterize the asymptotic
behavior of the solutions of the initial value problem

(2.7)





ut(x, t) =
∫

R
J

(
x− y

g(y)

)
u(y, t)
g(y)

dy − u(x, t) x ∈ R, t ∈ R,

u(x, 0) = u0(x) ∈ L1(R).

We define the operator T : L1(R) → L1(R) by

Tv(x) =
∫

R
J

(
x− y

g(y)

)
v(y)
g(y)

dy,

which is continuous. Problem (2.7) above can be written as ut = Tu − u, with u(·, 0) = u0, and
it can be shown with a simple application of semigroup theory that for u0 ∈ L1(R) there exists a
unique solution u ∈ C1(R, L1(R)) of (2.7), which in addition satisfies

(2.8) ‖u(·, t)‖L1 ≤ ‖u0‖L1 .

As was mentioned above, we will study the behavior of solutions of (2.7) using the energy functional

E(u) =
∫

R

u2

p
dx,

where p is a positive supersolution of (1.2), that is, it satisfies

(2.9)
∫

R
J

(
x− y

g(y)

)
p(y)
g(y)

dy − p(x) ≤ 0 x ∈ R.

We will prove the following result:

Proposition 1. Suppose that (J1) and (g1) hold, and that for all R > 0 there exists ρ(R) > 0
such that Dx ⊂ B(0, ρ(R)) for all |x| ≤ R. Moreover, assume that there exists a continuous p > 0
which satisfies (2.9). If

(i) p 6∈ L1(R), then, as t →∞, all solutions of (2.7) converge to 0 in L1
loc(R).

(ii) p ∈ L1(R), then, as t → ∞, all solutions u of (2.7) converge in L1(R) to λp, where
λ =

∫
R u0dx/

∫
R pdx.

The proof of this proposition is based on showing that, for a class of initial conditions u0, E(u)
is well defined for all t, it is decreasing as a function of t, and E′(u) → 0 as t →∞.

Suppose that there exists a continuous p > 0 satisfying (2.9). As was done in [3], we define the
Banach space Xp = {u ∈ C(R) | ‖u‖p < ∞}, where

‖u‖Xp = sup
x∈R

|u(x)|
p(x)

.

It can be proved (see Theorems 7 and 8 of [3]) that if the initial condition u0 ∈ Xp then there
exists a unique solution u ∈ C1(R, Xp) of (2.7), moreover

(2.10) ‖u(·, t)‖Xp ≤ ‖u0‖Xp for all t > 0.

Notice that for u0 ∈ L1(R) ∩Xp we have from (2.10) that

|u(x, t)|2
p(x)

6 ‖u(·, t)‖Xp |u(x, t)| ≤ ‖u0‖Xp |u(x, t)|,

thus for all t > 0, E(t) := E(u)(t) is well defined and, by (2.8), it satisfies

E(u) ≤ ‖u0‖Xp‖u0‖L1 .
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Proof of Proposition 1. The proof of (i) follows the ideas of Lemmas 10 and 11 in [3]. We
provide the details for completeness. Taking u0 ∈ Xp ∩ L1(R), the function E(t) is well defined.
Observe that by (2.8) we obtain ‖ut‖L1 = ‖J ∗ u‖L1 + ‖u‖L1 = 2‖u‖L1 ≤ 2‖u0‖L1 , and by (2.9)
and (2.10) we have

|ut| ≤
∫

R
J

(
x− y

g(y)

)
p(y)
g(y)

|u(y, t)|
p(y)

dy +
|u(x, t)|

p(x)
p(x) ≤ ‖u0‖Xp

p(x) + ‖u0‖Xp
p(x),

whence ‖ut‖Xp 6 2‖u0‖Xp . Also, differentiating (2.7) we easily get ‖utt‖L1 ≤ 4‖u0‖L1 and

‖utt‖Xp
6 4‖u0‖Xp

. Then, E ∈ C2(0,+∞) and E′ = 2
∫
R

uut

p dx, E′′ = 2
∫
Ω
(u2

t

p + uutt

p )dx,
from where we obtain that

|E′′| ≤ 2(‖ut‖Xp
‖ut‖L1 + ‖u‖Xp

‖ut‖L1) ≤ 12‖u0‖Xp
‖u0‖L1 ,

and E′′(t) is bounded. The derivative of E is given by (1.6), thus E is decreasing and since E′′ is
bounded, we obtain that E′ → 0 as t →∞.

Now we claim that, for any sequence tn → ∞, u(·, tn) converges uniformly in compact sets.
Indeed, we see that if x, z ∈ B(0, R), then Tu(x, t) ≤ ‖J‖∞ supy∈B(0,ρ(R))

1
g(y)‖u0‖L1(R) and

(2.11)

|Tu(x, t)− Tu(z, t)| ≤
∫

R

∣∣∣∣J
(

x− y

g(y)

)
− J

(
z − y

g(y)

)∣∣∣∣
|u(y, t)|

g(y)
dy

≤ CJ |x− z|α
∫

B(0,ρ(R))

|u(y, t)|
g(y)1+α

dy ≤ CJ sup
y∈B(0,ρ(R))

1
g(y)1+α

|x− z|α‖u‖L1 ,

where 0 < α < 1 and CJ are the Hölder exponent and constant of J , respectively. Therefore, the
family {Tu(·, t)}t>0 is locally bounded and equicontinuous. On the other hand, multiplying (2.7)
by es and integrating in [0, t] we obtain that

u(x, t) = e−tu0(x) +
∫ t

0

es−tTu(x, s)dx.

Thus, except possibly for a subsequence, the sequence {u(·, tn)}∞n=1 converges uniformly on compact
sets of R as n → ∞ to a function u. Using (1.6) we must have u = λp, where λ is a constant.
In addition, Fatou’s lemma implies λp ∈ L1(R), so when p 6∈ L1(R) we have λ = 0, and we
conclude that u(·, t) → 0 locally uniformly. If p ∈ L1(R) then by dominated convergence we have∫
R u(·, tn)dx → λ

∫
R pdx and so λ =

∫
R u0dx/

∫
R pdx and the convergence is in L1(R).

Finally, to conclude the general result we proceed by a density argument using that C∞0 (R) ⊂ Xp

hence Xp is dense in L1(R) and inequality (2.8). ¤

Remark 1. It is interesting to note that if p ∈ L1(R) is continuous and positive, and satisfies
(2.9), then it is a stationary solution of (2.7), that is, it satisfies (1.5). Indeed, integrating (2.9) in
R and using Fubini’s theorem, we obtain

∫

R
p(x)dx ≥

∫

R

∫

R
J

(
x− y

g(y)

)
p(y)
g(y)

dydx =
∫

R

∫

R
J

(
x− y

g(y)

)
1

g(y)
dx p(y)dy =

∫

R
p(y)dy.

Whence we deduce that p has to satisfy (1.5).

3. Existence of positive steady states in L1(R)

In this section we will prove Theorem 1.1, which establishes the existence of an integrable
positive solution of (1.5). Throughout this section we will assume that

(g2) there exist M > 0 and 0 < a < 1 such that g(x) ≤ a|x| for all |x| ≥ M .

We observe that under this assumption we have that for all x

(3.12) Dx ∩ {y / |y| ≥ M} ⊂
{

y :
1

1 + a
|x| ≤ |y| ≤ 1

1− a
|x|

}
.
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It follows in particular that, for all R > 0 there exists ρ(R) such that Dx ⊂ B(0, ρ(R)) for all
|x| ≤ R.

The proof of Theorem 1.1 will rely on the use of the following function, defined in [2]:

Wp(x) =
∫ ∞

0

∫ x+w

x−w

p(s)
∫ 1

w
g(s)

J(z) dz ds dw.

It is proved in [2] that, provided that Wp is well defined, p is a positive solution of (1.5) if and only
if Wp is a constant. Observe that if w

g(s) < 1 with |s− x| < w we need that s ∈ Dx. Therefore, by
(g2) w has to belong to a bounded set, which generally depends on x. Moreover, it can be easily
checked that if |x| < R, with R > 0 fixed, there exists MR > 0 such that

Wp(x) =
∫ MR

0

∫ x+w

x−w

p(s)
∫ 1

w
g(s)

J(z) dz ds dw.

To obtain solutions of (1.5) we will proceed as in [2]: we will construct first solutions of a related
problem in a bounded interval, and then, passing to the limit, we will construct solutions in R.

For N > 0, we consider the following finite interval problem

(3.13)
∫ N

−N

J

(
x− y

g(y)

)
p(y)
g(y)

dy −
∫ N

−N

J

(
x− y

g(x)

)
p(x)
g(x)

dy = 0 x ∈ [−N, N ],

which can be written as
TNp(x) = aN (x)p(x) x ∈ [−N, N ],

where

TNv =
∫ N

−N

J

(
x− y

g(y)

)
v(y)
g(y)

dy, and aN (x) =
∫ N

−N

J

(
x− y

g(x)

)
1

g(x)
dy.

It follows by (J1) and (g1) that TN : C([−N, N ]) → C([−N, N ]) is compact and strongly positive,
and the function aN is bounded above and below. Thus, by Krein-Rutman theorem there exists
λ > 0 and a positive function p ∈ C([−N,N ]) such that

∫ N

−N

J

(
x− y

g(y)

)
p(y)
g(y)

dy = λ

∫ N

−N

J

(
x− y

g(x)

)
p(x)
g(x)

dy x ∈ [−N,N ].

Integrating in [−N, N ] and using Fubini’s theorem we see that λ = 1, and therefore p is a positive
solution of (3.13). This solution is unique up to multiplicative constants, so that we can select it
such that p(0) = 1. Let us denote by pN the solution so chosen.

We observe that for every R > 0, there exists N0 such that for all N > N0 any solution pN of
(3.13) satisfies

(3.14)
∫

R
J

(
x− y

g(y)

)
pN (y)
g(y)

dy − pN (x) = 0 x ∈ [−R, R].

Proposition 2. Assume that (g1), (g2) and (J1) are satisfied. Then there exists a positive con-
tinuous solution of (1.5).

Proof. Fix R > 0 and let N0 be defined as in (3.14). By Theorem 1.3 in [7] there exist C2
R > C1

R > 0
such that for all |x| < ρ(R) we have C1

RpN (0) < pN (x) < C2
RpN (0). Since pN (0) = 1 it follows

that pN is uniformly bounded above and below in |x| < ρ(R).
If x, z ∈ B(0, R) and N > N0 then

|pN (x)− pN (z)| ≤
∫

B(0,ρ(R))

∣∣∣∣J
(

x− y

g(y)

)
− J

(
z − y

g(y)

)∣∣∣∣
pN (y)
g(y)

dy

≤ CJC2
R|x− z|α

∫

B(0,ρ(R))

1
g(y)1+α

dy ≤ κR|x− z|α,
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so that {pN}N>0 is equicontinuous in B(0, R). Therefore, by means of Arzelá-Ascoli’s theorem
and with a diagonal procedure, {pN} converges locally uniformly to a positive continuous function
p. Passing to the limit in (3.14), we see that p satisfies (1.5). ¤

Proof of Theorem 1.1. We will prove that if p is any positive solution of (1.5), then p ∈ L1(R).
Once we have shown this, uniqueness is be deduced with the help of Proposition 1.

First of all, we normalize p such that Wp ≡ 1. By our hypotheses, there exist c ∈ (0, 1) and
M > 0 such that g(x) > c|x| for |x| > M . Then, for x > M :

(3.15) 1 = Wp(x) ≥
∫ δx

δ
2 x

∫ x+ δ
2 x

x

p(s)
∫ 1

δx
g(s)

J(z) dz ds dw,

where δ > 0 will be chosen suitably. Since g(s) > c|s| in the interval [x, x + δ
2x], we have

∫ 1

δx
g(s)

J(z) dz ≥
∫ 1

δx
cx

J(z) dz =
∫ 1

δ
c

J(z) dz ≥ 1
4

> 0

provided that δ is chosen small. Then from (3.15) we obtain,
∫ x+ δ

2 x

x

p(s) ds ≤ 8
δx

.

If we define x0 = x, xn+1 = (1 + δ
2 )xn, n ∈ N we obtain recursively

∫ xn+1

xn

p(s) ds ≤ 8
δxn

=
8
δx

1
(1 + δ

2 )n
,

for every n ∈ N. Adding up in n yields
∫ ∞

x

p(s) ds ≤ 16
δ2x

.

It can be shown analogously that, for x < −M ,
∫ x

−∞ p(s) ds ≤ 16
δ2|x| ; therefore p ∈ L1(R), as was

to be shown. ¤

4. Nonexistence of positive steady states

In this section we will prove Theorem 1.2; hence from now on we assume

(g2*) There exist p > 2, M, C1, C2 > 0 such that C1|x|p ≤ g(x) ≤ C2|x|p for all |x| > M .

We will show that under this hypothesis (1.5) does not have any positive solution, and therefore
all solutions of (2.7) converge to 0 in L1

loc(R).
Note that in this situation for all x ∈ R the set Dx = {y / |x − y| ≤ g(y)} is unbounded. We

observe that by taking Mx suitably large, we have that

J

(
x− y

g(y)

)
≥ 1

2

for |y| > Mx. Thus, every positive solution p should verify

p(x) ≥ 1
2

∫

|y|≥Mx

p(y)
g(y)

dy.

Hence, to give meaning to the concept of solution of (1.5) we should require p
g ∈ L1(R).

Lemma 4.1. Suppose that there exists a nonnegative solution p of (1.5). Then p is continuous
and belongs to L2(R).
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Proof. Due to our hypotheses, the function g is bounded from below. Then

|p(x)− p(z)| ≤ CJ

∫

R

∣∣∣∣
x− z

g(y)

∣∣∣∣
α

p(y)
g(y)

dy ≤ C1|x− y|α
∫

R

p(y)
g(y)

dy,

where as before α,CJ are the Hölder exponent and constant of J , respectively, and C1 = CJ/ infR g.
Thus p is continuous.

Let us show that p is also bounded. To prove this, notice that by taking M large enough there
exists C > 0 such that Dx ⊂ {y / |y| ≥ C|x|1/p} for all |x| > M ; hence

p(x) ≤ ‖J‖∞
∫

|y|≥C|x|1/p

p(y)
g(y)

dy,

and in particular p(x) → 0 as |x| → ∞; thus p ∈ L∞. Finally, for |x| > M

p(x) ≤ ‖J‖∞‖p‖∞
∫

|y|≥C|x|1/p

1
g(y)

dy ≤ C0|x|
1−p

p ,

for a suitable constant C0 > 0. Since p > 2, we get that p ∈ L2(R). ¤

Proof of Theorem 1.2. We observe that 1
g ∈ L1(R), and then

∫

R

∫

R
J

(
x− y

g(y)

)2 1
g(y)2

dy dx =
∫

R

∫

R
J

(
x− y

g(y)

)2 1
g(y)2

dx dy =
∫

R
J(z)2dz

∫

R

1
g(y)

dy < ∞,

thus T is a Hilbert-Schmidt operator. Hence T : L2(R) → L2(R), T ∗ : L2(R) → L2(R) are
compact.

If there exists a solution p of (1.5), we deduce by Lemma 4.1 that p ∈ L2(R), and then by
Krein-Rutman theorem µ = spr(T ) ≥ 1, is an eigenvalue associated to positive eigenfunctions for
T and T ∗ in L2(R). Thus, there exists q ∈ L2(R) such that q ≥ 0 a.e. and

(4.16)
∫

R
J

(
x− y

g(x)

)
q(y)
g(x)

dy = µq(x), a.e.

Let us prove that q is continuous. Observe that the integration in (4.16) is performed in the
set Ox := B(x, g(x)), the ball of center x and radius g(x). Moreover if we choose and arbitrary
compact set K and x, z ∈ K, then Ox ∪Oz ⊂ K̄ for some compact set K̄, so that

µ|q(x)g(x)− q(z)g(z)| ≤
∫

Ox∪Oz

∣∣∣∣J
(

x− y

g(x)

)
− J

(
z − y

g(z)

)∣∣∣∣ q(y)dy

≤
(∫

K̄

∣∣∣∣J
(

x− y

g(x)

)
− J

(
z − y

g(z)

)∣∣∣∣
2

dy

)1/2

‖q‖L2

≤ CJ

(∫

K̄

∣∣∣∣
x− y

g(x)
− z − y

g(z)

∣∣∣∣
2α

dy

)1/2

‖q‖L2

≤ CJ |K̄| 1
g(x)αg(z)α

(M |g(z)− g(x)|+ |xg(z)− zg(x)|)α ‖q‖L2 ,

where CJ , α are the Hölder constant and exponent of J , respectively, and M = supK̄ |y|. Hence
qg is continuous, and so is q.

On the other hand, q(x) → 0 as |x| → +∞. Actually, we can even obtain an estimate of the
decay of q. More precisely, it follows from (4.16) that:

(4.17) µ2q(x)2 ≤
∫

R
J

(
x− y

g(x)

)2 1
g(x)2

dy

∫

R
q2(y)dy ≤ 1

g(x)

∫

R
J2(z)dz

∫

R
q2(x)dx,

so that q ≤ C 1
|x|p/2 for large |x| and some C > 0.
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Since q is continuous and q(x) → 0 as |x| → ∞, it is clear that the maximum of q is achieved at
some point x0, and then by (4.16) evaluated at x0:

µ max q =
∫

R
J

(
x0 − y

g(x0)

)
q(y)
g(x0)

dy ≤ max q.

Since q is nontrivial, we deduce µ < 1, which is a contradiction. Thus no positive solutions p of
(1.5) may exist.

In spite of the nonexistence result above, there exists a continuous supersolution p of (1.5).
According to Remark 1 , we have p 6∈ L1(R), so that by 1 we obtain that any solution of (2.7)
converges to 0 in L1

loc(R).
To conclude the proof, it only remains to construct the supersolution. Take h ∈ L2(R) ∩ C(R)

with h > 0 in R. It is easy to check (cf. the proof of Theorem 1.2) that the operator T : L1(R) →
L1(R) is compact and I − T is invertible. Then the unique solution of (I − T )p = h is given by
the series p =

∑∞
n=0 Tnh ≥ 0 which converges in L1(R). Clearly p ≥ Tp, hence p satisfies (2.9). It

can also be proved that p is continuous; indeed, since p = Tp + h and

|Tp(x)− Tp(z)| ≤ CJ |x− z|α
∫

R

p(y)
g(y)1+α

dy ≤ CJ |x− z|α‖g−(1+α)‖L2‖p‖L2 .

the continuity of p follows by that of h. This concludes the proof. ¤
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