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Numerical solution of some boundary
value problems in nonlinear
magneto-elasticity

E Salas and R Bustamante

Abstract
In the context of the theory of nonlinear magneto-elastic deformations, the problem of the extension (shortening) of a
cylinder of finite length under the influence of a magnetic field applied far away in free space is studied. The boundary
value problem is solved using the finite element method. There exist exact solutions for the problem, which are based
on the assumption of working with infinitely long cylinders. In this communication, results are obtained for different rela-
tions between the radius of the cylinder and its length, comparing the results for the magnetic field between short and
long cylinders. As well as this, the influence of applying such external traction through the direct contact with an external
machine has been studied.
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Introduction

In the recent years there has been a growing interest in
the study of the behaviour of a relatively new class of
elastomers that react to magnetic fields. These materi-
als consist of a matrix made with a rubber-like material
filled with magneto-active particles; see, for example,
Albanese and Cunefare (2003), Bednarek (1999),
Boczkowska and Awietjan (2009), Bossis et al. (2001),
Farshad and Le Roux (2004), Ginder et al. (1999, 2000,
2001, 2002), Lokander and Stenberg (2003), Li and
Zhang (2008), Varga et al. (2005, 2006) and Yalcintas
and Dai (2004). These magneto-sensitive (MS) elasto-
mers are capable of undergoing large elastic deforma-
tions under the application of magnetic fields (see
Bednarek, 1999; Bossis et al., 2001; Ginder et al., 2002;
Jolly et al., 1996).

The application of these materials requires a deep
understanding of their mechanical and magnetic prop-
erties. The development of theories to understand the
interaction of electromagnetic fields with continua has
attracted the attention of the scientific community for a
long time; see, for example, the works by Eringen and
Maugin (1990), Hutter et al. (2006) and Maugin (1988).
In the case of solids interacting with magnetic fields, we
mention in particular the monograph by Brown (1966).
A revision of these theories has been carried out in the
recent years by different researchers, such as Brigadnov
and Dorfmann (2003), Dorfmann and Ogden (2003),

Kankanala and Triantafyllidis (2004), Ogden and
Steigmann (2010) and Steigmann (2004). We mention
especially the series of works by Dorfmann and Ogden
(2004a,b, 2005a,b), Vu and Steinmann (2007b, 2010a),
Barham et al. (2009, 2010) and Maugin (2009) among
others. Experimental data is currently scarce and can
be found, for example, in the works by Bellan and
Bossis (2002), Bossis et al. (2001), Ginder et al. (1999),
Jolly et al. (1996) and the recent paper by Danas et al.
(2012).

In the present work we consider as a starting point
the theory developed by Dorfmann and Ogden
(2004a,b, 2005a,b), which is based on the assumption
that there exists an amended total energy function and
on the use of a total stress tensor, which incorporates
in its definition the magnetic body forces. In the case
we want to solve some boundary value problems con-
sidering bodies made of MS materials, which are sur-
rounded by free space, it is necessary to solve two
highly nonlinear coupled partial differential equations
for the body, plus the simplified form of the Maxwell
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equations for the surrounding free space; as well as
this, it is required the satisfaction of some continuity
conditions for the stresses and the magnetic variables
across the boundary of the body (see, for example,
Kovetz, 2000). To obtain exact solutions for the prob-
lem described previously is very difficult, and so far all
exact solutions that can be found in the literature (see,
for example, Pucci and Saccomandi, 1993; Dorfmann
and Ogden, 2004a,b, 2005a,b) have been obtained
under the assumption of considering infinite geome-
tries, working, for example, with cylinders and tubes of
finite radius but infinite length, or slabs of finite thick-
ness but infinite length and width. The motivation of
such assumption lies in the need to deal with the conti-
nuity conditions for the magnetic variables (see, for
example, Kovetz, 2000).

Owing to the difficulties in solving boundary value
problems exactly even for simple finite geometries,
there is a need for numerical methods of solutions.
Some works presenting numerical results for MS bodies
undergoing large deformations have been published
recently, we mention, for example, the papers by
Barham et al. (2009, 2010), Bustamante et al. (2007,
2011) and Vu et al. (2007) (in the similar nonlinear
electro-elastic problem).

In Bustamante et al. (2011) we see some results for a
slab (plane strain problem) surrounded completely by
vacuum, deforming under the effect of a magnetic field
applied far away in the surrounding free space. The
boundary value problem was solved using the finite ele-
ment method with the commercial code (Comsol,
2007).

In the present work we use the same methodology
presented in Bustamante et al. (2011) in order to solve
an additional boundary value problem; the objective is
three-fold:

� For a MS cylinder surrounded by free space,
under the effect of an axial uniform magnetic
field applied far away, we study the effect of
considering different sizes for the exterior free
space.1 Theoretically such free space must be
infinite, but when working with a standard finite
element formulation, it is necessary to consider a
large but finite surrounding free space. The
interaction of the body with vacuum implies (in
the case of finite geometries) that the surround-
ing magnetic field is in general non-uniform (see,
for example, Bustamante et al. (2007, 2011) and
for the similar electro-elastic problem see Vu
and Steinmann (2010b)).
It is important to assess the effect of the size of
the surrounding free space on the distribution of
magnetic field inside the body, in order to obtain
(approximately) the minimum size of such exter-
ior free space, such that the body would behave

as if it would be surrounded by infinite free
space.

� A second main problem considered in this work
is to study the mechanical and especially the
magnetic behaviour of a cylinder, for different
relations between the radius and its length. The
exact solutions found, for example, in Pucci and
Saccomandi (1993) for the case of MS cylinders
or tubes, have been obtained under the assump-
tion of infinitely long bodies; under such
assumption, if the external (far away) axial com-
ponent of the magnetic field is uniform, then
inside the cylinder the field is also uniform and
only the axial component is not zero. When we
model the behaviour of cylinders of finite length,
near its corners the field is highly non-uniform
(see, for example, Bustamante et al., 2007), and
an interesting issue is to study the distribution of
magnetic field for cylinders of different lengths
(for a fixed value for the initial radius), in order
to see the difference in behaviour between the
cases of short and long MS cylinders.

� In some studies on the behaviour of magneto-
and electro-active bodies, only the MS and
electro-sensitive materials have been considered
in the analysis. As a first approximation that
seems to be a good starting point, however, as
pointed out, for example, by Bustamante et al.
(2007), the surrounding free space may have an
important effect on the behaviour of a MS body,
in particular when the geometries show corners
or other irregularities in their surfaces. Although
the model of a body surrounded by free space is
an improvement in comparison with the case of
considering only a MS body, from the point of
view of future applications, an infinite surround-
ing free space may not be the best approximation
for many practical situations, where we may
have the MS body interacting with other bodies
in a given device (see, for example, Figures 3, 4
and 5 in Bustamante, 2009). Having this in mind,
we study the behaviour of a body made of a MS
elastomer in contact with two large magneto-
active (approximately rigid) bodies, which are
used in order to simulate the interaction of the
MS body with an external machine (see Batra
(1972) and Bustamante (2009) for details about
that concept).

The structure of the paper is described now. In
Section 2 we present briefly the main equations of the
kinematics of deformation, the equations of magneto-
statics and the main elements of the theory for MS elas-
tomers of Dorfmann and Ogden (2004a,b, 2005b). In
Section 3 we discuss the boundary value problem in
nonlinear magneto-elasticity, and details are given on
the problem treated here, namely the extension
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(shortening) of a cylinder under a uniform axial mag-
netic field applied far away. In Section 4 some numeri-
cal results are presented for that problem. Finally, in
Section 5 some final remarks are given.

This work is based on the results presented in the
thesis by Salas (2012).

Basic equations

Kinematics and the equations of magneto-statics

We consider a body that in the reference configuration
B0 is stress free. The vector X denotes a point of the
body in the reference configuration. Under the effect of
external magnetic fields and mechanical loads, the par-
ticles of the body occupy the new position x=x(X),
where we are assuming there exists a one-to-one map-
ping x, and we only consider quasi-static deformations.
The current configuration is denoted by B. The displa-
cement field u is defined as

u= x� X: ð1Þ

The deformation gradient F and the right and left
Cauchy–Green tensors2 c, b are defined as

F=Gradx, c=FTF, b=FFT, ð2Þ

where ( )T is the transpose of a second-order tensor.
The differential operators gradient, divergence and curl
in the current configuration are denoted as

grad, div, curl,

respectively. In the reference configuration, where the
derivatives are taken with respect to X, the operators
are denoted as

Grad, Div, Curl:

We use the convention that the divergence operator
acts on the left leg of a second order tensor. We also
use the notation

J = detF, ð3Þ

and it is assumed that x is such that J.0. For more
details, see, for example, Ogden (1997).

The results presented in this paper are based on the
assumption of time-independent deformation and mag-
netic fields, considering also there is no free electric cur-
rent within the bodies.

The magnetic field and the magnetic induction in the
current configuration are denoted by H and B, respec-
tively. In free space they are related by (see Kovetz,
2000)

B=m0H, ð4Þ

where m0 is the permeability of vacuum.

For magnetizable materials an additional vector
field, the magnetization M is defined as

M=m�1
0 B�H: ð5Þ

For the problems considered in this work, under the
assumptions stated previously, the simplified form of
the Maxwell equations are (see Kovetz, 2000):

curlH= 0, divB= 0: ð6Þ

The magnetic field and the magnetic induction have
to satisfy the continuity conditions across the boundary
∂B (in absence of free surface electric currents):

n � ½½B��= 0, n3 ½½H��= 0, ð7Þ

where n is the outward unit normal vector to ∂B, and
where ½½ �� is defined, for example, as ½½B��=Bo � Bi,
where o and i signify outside and inside the material,
respectively.

Equations (6) and the continuity conditions (7) are
in Eulerian form. We can define Lagrangian counter-
parts of B and H as (see, for example, Dorfmann and
Ogden, 2004a,b, 2005b):

Bl = JF�1B, Hl =FTH: ð8Þ

Considering the identities J divB=Div(JF�1B) and
JF�1curlH=Curl (FTH), Equations (6) can be recast
in Lagrangian form as

CurlHl = 0, DivBl = 0, ð9Þ

while (7) become

N � ½½Bl��= 0, N3 ½½Hl��= 0, ð10Þ

where N is the unit outward normal vector to the refer-
ence boundary ∂B0, which is associated with n through
Nanson’s formula.

Magneto-mechanical equilibrium and constitutive
equations

We assume there are no mechanical body forces.
Following, for example, the treatment by Dorfmann
and Ogden (2004a,b, 2005b), the magnetic body forces
are calculated as the divergence of a second-order ten-
sor, which is added to the Cauchy stress tensor, obtain-
ing a total stress tensor t (in the current configuration).
The equilibrium equation can be expressed as

div t = 0, ð11Þ

and the total stress tensor has to satisfy the boundary
conditions

tn= ta + tmn, on ∂B, ð12Þ
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where ta is the mechanical traction and tm is the
Maxwell stress tensor, which is evaluated on the free
space near the boundary of the body, defined by (see,
for example, Jackson, 1999; Kovetz, 2000):

tm =B�H� 1

2
(B �H)I: ð13Þ

Remark. As mentioned in the Introduction, one objec-
tive of this work is to study the behaviour of some bod-
ies made with MS elastomers, when considering
interactions with free space and also with other external
bodies. The boundary condition (12) means we are
assuming that when a MS body is under the effect of a
mechanical traction, we need to add the Maxwell stres-
ses as an external load as well (see Bustamante et al.,
2008). When the MS body is in contact only with free
space, we still need to consider the term tmn as external
traction. As discussed by Bustamante (2009) an open
question is: What would be a better model for the situa-
tion where the body is under the effect of a mechanical
surface traction? The mechanical surface traction is a
simplified model of the actual contact of our MS body
with an external body, and if we agree about this, the
question is whether (12), where we also incorporated
the Maxwell stresses, is actually the best model for the
external traction. This is why in the present work we
explore the behaviour of a MS body, assuming that in
some parts of its boundary is perfectly attached to an
external body, which we call a ‘machine’.

In order to solve boundary value problems, we
require constitutive equations that relate the different
variables of the problem. We assume that the total
stress tensor can be expressed as a function of the
deformation gradient and the magnetic field. We use
the constitutive theory developed by Dorfmann and
Ogden (2004a,b, 2005b) due to its simplicity; in such a
case for compressible bodies we have

t = J�1F
∂O�

∂F
, B= � J�1F

∂O�

∂Hl
, ð14Þ

where O�=O�(F,Hl) is called the amended energy
function per unit of volume.

For an isotropic magneto-active body we have that
O�=O�(I1, I2, I3, I4, I5, I6), where the invariants Ii,
i= 1, 2, . . . , 6 are given as (see Spencer, 1971):

I1 =tr c, I2 =
1

2
½(tr c)2 � tr c2�, I3 = det c,

ð15Þ

I4 =Hl �Hl, I5 =(cHl) �Hl, I6 =(c2Hl) �Hl:

ð16Þ

From (14) the explicit expressions for t and B for
isotropic bodies are:

t = J�1½2O�1b+ 2O�2(I1b� b2)+ 2I3O
�
3I+ 2O�5bH� bH

+ 2O�6(bH� b2H+ b2H� bH)�, ð17Þ

B=� 2J�1(O�4bH+O�5b
2H+O�6b

3H), ð18Þ

respectively, where O�i =
∂O�
∂Ii

, i= 1, 2, . . . , 6.

A prototype energy function

For the numerical calculations, the same energy func-
tion O� used in Bustamante et al. (2011) is considered
here, which is a modified version of the function that
was proposed by Bustamante (2010) from experimental
data found in the papers by Ginder et al. (1999) and
Bellan and Bossis (2002). The energy function has the
form

O�=O�iso +O�vol +O�0, ð19Þ

where O�0 is a constant value and

O�iso =
1

2
(g0 + g1I4)(�I1 � 3)

� m0m1 log cosh

ffiffiffiffi
I4

p

m1

� �� �
� c0I4 + c1m0

�I5,

ð20Þ

O�vol =
1

2
k(J � 1)2, ð21Þ

where g0, g1, m0, m1, c0 =m0(c1 � 1)=2 and k are con-
stants. Regarding �I1 and �I5, these modified invariants
are given as (see, for example, Flory, 1961; Ogden,
1976)

�I1 = J�2=3I1, �I5 = J�2=3I5: ð22Þ

The values of the different constants in (20), (21) are
shown in Table 1.

Boundary value problem

In this section we speak about the boundary value
problem in nonlinear magneto-elasticity, and thereafter
details of the specific problems to be solved are given.

Two general types of boundary value problems are
studied, namely a body completely surrounded by free
space, as depicted in Figure 1(A), and a body in contact

Table 1. Values for the constants used in (20) and (21).

g0 g1 m0 m1 c1 m0 k
(Pa) (PaA�2m2) (T) (Am�1) (NA�2) (Pa)

105 �10�6 0.4998 309339.5 1250 1:2566310�6 105
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with two rigid magnetizable bodies, as depicted in
Figure 1(B), which is used in order to model the inter-
action with a machine.

Boundary value problem for a MS body surrounded
completely by free space

For this boundary value problem we need to solve
Equations (6) for the body B and the surrounding free
space B0. Let’s assume there exists a scalar potential u
such that

H= � gradu, ð23Þ

then (6)1 is satisfied automatically.3 Therefore, using
(23) and (4) for free space B0 we need to solve (6)2

div gradu= 0 in B0: ð24Þ

From (18) for B we have B= CCgradu, where
CC= 2J�1(O�4b+O�5b

2 +O�6b
3) is a second-order tensor

that depends on x and u. For the body B we need to
solve the nonlinear partial differential equation

div(CCgradu)= 0 in B: ð25Þ

For the body we also need to solve (11)

div t = 0: ð26Þ

We have two coupled nonlinear partial differential
equations for the body B, which have to be solved in
order to find x and u, while we have one linear partial
differential equation in B0 for u in vacuum.

Regarding the boundary or continuity conditions,
from the point of view of the magnetic variables, using
(23) the continuity conditions (7) becomes

½½u��= 0, n � ½½B��= 0, on ∂B: ð27Þ

If ∂B0= ∂B [ ∂B0‘ (see Figure 1(A)), for the far away
surface ∂B0‘ some boundary conditions are also needed.
In this work we assume that

u= ~u on ∂B0u‘ , B � n= 0 on ∂B0B‘ , ð28Þ

where ~u is a prescribed value for the potential and
∂B0u‘ \ ∂B0B‘ =[, ∂B0u‘ [ ∂B0B‘ = ∂B0‘.

Regarding the boundary conditions for the mechani-
cal part of the problem we have (see Figure 1(A)):

u= ~u on ∂Bu, tn= ta on ∂Bt, ð29Þ

where ~u is a given value for the displacement on a part
of ∂B.

Remark. Regarding the boundary condition (29)2, the
original continuity condition for the stress (12) requires
the addition of the term tmn as external traction. This
external traction, due to the Maxwell stresses calculated
with the magnetic field outside the body, has to be
applied on the surfaces free of mechanical traction (see
Bustamante et al., 2008); however, the application of that
condition is not clear for the surface ∂Bu and (29)1, where
a Dirichlet boundary condition is assumed to exist.

In this work as a first approximation, we do not con-
sider the effect of tmn as external traction for the parts
of the surface of the MS body in contact with free space.
Regarding the parts of the surface of the body under the
effect of mechanical traction, following the arguments
given by McMeeking and Landis (2005, paragraph after
Equation (11) in that paper) for the similar problem
considering electro-elastic bodies, the term tmn can be
considered as a part of the definition of ta.

In Figure 2(A) there is a depiction of a cylinder of
finite length, which is under the effect of a uniform axial
magnetic field applied far away.

It is assumed that x and u do not depend on the azi-
muthal position u (in a system of cylindrical coordi-
nates), and in Figure 2(B) is shown the axisymmetric
model of the cylinder and the free space surrounding it.
The MS cylinder has a radius rb and a length lb. The
free space is assumed to have a cylindrical shape far
away, it has a radius Rf and a length Lf . The bound-
aries of the cylinder and the free space are denoted as
(a), (b), ., (h), respectively.

Figure 1. (A) MS body surrounded completely by free space.
(B) MS body surrounded by free space and in contact with two
rigid bodies Bm1 , Bm2 .
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For this problem the boundary and the continuity
conditions (discussed previously in Section 2.1) are (see
Figure 2(B)) as follows:

� Boundaries (d), (f): A given constant value for
u=6~u, respectively.4

� Boundaries (a), (c): If (i) and (o) denote inside
and outside the body, when the body is still not
deformed, the condition (7)1 is equivalent to
B(i)

z =B(o)
z , where B(o)

z =m0H (o)
z . The scalar

potential u is continuous. On (c) an external
(uniform in the radial direction r) mechanical
traction ta = taz

ez can be applied. On (a) we
assume that uz = 0.

� Boundary (b): When the body is still not
deformed, the condition (7)1 is equivalent to
B(i)

r =B(o)
r , where B(o)

r =m0H (o)
r and u is continu-

ous. The surface is free of mechanical traction.
� Boundary (e): We assume that

B(o)
r =m0H (o)

r = 0.

The corners formed by the intersections of (a) with (b)
and (c) with (b) have a small radius, the presence of that
small radius is explained later on.

Boundary value problem for a MS elastomer in
contact with two semi-infinite almost rigid bodies

The interaction of a MS elastomer with rigid magnetiz-
able bodies was proposed by Bustamante (2009), as a
better model to consider external mechanical loads act-
ing on a MS body. In Bustamante (2009) it was
assumed that some parts of the MS body were perfectly

attached to rigid magnetizable semi-infinite external
bodies, which are used to model the interaction with
other bodies in a given device. In Figure 1(B) we have a
MS body B interacting with two almost rigid bodies
Bm1 , Bm2 , which are called the machine. The body B is
perfectly attached to Bm1 and Bm2 on ∂Ba and ∂Bb,
respectively. The bodies B, Bm1 , Bm2 are surrounded by
free space B0. The interface of B with B0 is denoted by
∂Bc, whereas the interfaces of Bm1 and Bm2 with B0 are
denoted by ∂Bm1

d , ∂Bm2

d , respectively. The surface of B0
far away is denoted by ∂B0‘, while the surfaces of Bm1

and Bm2 far away are denoted by ∂Bm1

‘ and ∂Bm2

‘ ,
respectively.

In the present work, we assume that Bm1 , Bm2 are
magnetizable bodies, which can be modelled as linear
isotropic magneto-elastic materials, i.e. we use the
decoupled constitutive equations:

B=mrm0H, t = CCe, ð30Þ

where C is a fourth-order constant tensor and e is the
linearized strain tensor. The following values for the
material parameters for the machine are used:

mr = 4000, E = 2 � 1011Pa,

n = 0:29, r= 7870 kgm�3,
ð31Þ

where E, n and r are the Young modulus, Poisson ratio
and density of the material, respectively.

Assuming that (23) is valid here, the boundary value
problem to solve is

divgradu= 0, in B0, ð32Þ

Figure 2. Model of a cylinder under the influence of an external axial magnetic field, which is uniform far away.
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divgradu= 0, divt = 0, in Bm =Bm1 [ Bm2 , ð33Þ

where t for Bm is given by (30)2.
For B we need to solve

div(CCgradu)= 0, divt = 0, in B, ð34Þ

where t is given by (17) for B.
As for the magnetic boundary and continuity condi-

tions we assume (see Figure 1(B))

½½u��= 0, n � ½½B��= 0, on ∂B= ∂Ba [ ∂Bb [ ∂Bc:

ð35Þ

The same conditions hold for ∂Bm1

d and ∂Bm2

d .
As for ∂B0‘ and ∂Bm1

‘ , ∂Bm2

‘ we have

u= ~u on ∂B0u‘ , B � n= 0 on ∂B0B‘ , ð36Þ

u= ~u on ∂Bm1u
‘ , B � n= 0 on ∂Bm1B

‘ , ð37Þ

u= ~u on ∂Bm2u
‘ , B � n= 0 on ∂Bm2B

‘ , ð38Þ

where ~u is a prescribed value for u and

∂B0u‘ [ ∂B0B‘ = ∂B0‘, ∂B
0u
‘ \ ∂B0B‘ =[, ∂Bm1u

‘ [ ∂Bm1B
‘ =

∂Bm1

‘ , ∂Bm1u
‘ \ ∂Bm1B

‘ =[, ∂Bm2u
‘ [ ∂Bm2B

‘ = ∂Bm2

‘ and

∂Bm2u
‘ \ ∂Bm2B

‘ =[.

Regarding the mechanical boundary conditions, on
∂Ba [ ∂Bb we assume ½½u��= 0, i.e. the bodies B and Bm1 ,
Bm2 are perfectly attached. On ∂Bc, if we assume as a
first approximation that we do not consider the
Maxwell stresses, we have tn= 0. On ∂Bm1

‘ we have
tn= ta, where ta is a given mechanical load; on the
other hand on ∂Bm2

‘ we assume that u= ~u, with ~u is a
given displacement field (which is usually zero).

In this problem the mechanical forces are applied
indirectly on the surface of the body B through the con-
tact with the bodies Bm1 , Bm2 .

In Figure 3 there is a depiction of the MS cylinder
and a machine, which is used to apply traction on it.

Assuming axial symmetry, u and x only depend on
the radial and axial positions r, z, respectively. The free
space and the machine are very large. The different
boundaries and interfaces are denoted as (a), (b), .,
(j). For these boundaries we have the following:

� Boundaries (d), (f): We assume we give constant
values for u=6~u, respectively.

� Boundary (e): We have Br =m0Hr = 0.
� Boundaries (a), (g) and (c), (h): For R\rb, the

scalar field u is continuous; regarding the conti-
nuity condition n � ½½B��= 0, when the body is still
undeformed that conditions is equivalent to5

Bi
z =Bm

z , where we have used the notation Bm to
denote the magnetic induction in the machine.
Regarding the mechanical conditions, we have
½½u��= 0, which is equal to ui = um across the
interfaces (a), (c).

For rb\R\rm (where rm is radius of the
machine) the continuity condition (27)2 is equiv-
alent to Bm

z =Bo
z and u is continuous, where we

have used the notation Bo to denote the mag-
netic induction outside the MS body in vacuum.

� Regarding the boundary (b), u is continuous,
and n � ½½B��= 0 must hold. When the body is
undeformed that condition is equivalent to
Br =Bo

r . The condition (29)2 is equivalent to
tn= 0.

� Finally, across (i) and (j) the continuity condition
½½u��= 0 is valid and (27)2 becomes Bm

r =Bo
r .

Numerical results for a cylinder under the
effect of a uniform axial magnetic field
applied far away

For the problems described in Sections 3.1 and 3.2 we
show some numerical results, which have been obtained
using the program Comsol multiphysics (Comsol,
2007). The behaviour of the MS body was modeled
modifying the piezoelectric modulus, considering that
in the quasi-static case, the fundamental equations of
electrostatics have the same form as in magnetostatics.
The magnetic field in vacuum was obtained using the
electrostatic modulus, and the influence of the defor-
mation of the body on the calculations of the field in

Figure 3. Model of a cylinder interacting with two external
bodies (machine).
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vacuum, was incorporated using the moving mesh tool
ALE. In order to obtain solutions for the nonlinear
problem, the damped Newton method was used
(Comsol, 2007).

The continuity conditions (27) are particularly criti-
cal for our numeric work, as mentioned in detail in the
Introduction. If a cylinder would have sharp corners,
then it is possible to show that to require (27) to be sat-
isfied, would mean to have a magnetic field with a mag-
nitude that goes to infinite in a small region near the
corners; such phenomena may create problems for stan-
dard numerical methods, therefore, in order to avoid
this, the corners were assumed to have a small radius.
For the results shown in this work a radius of 0.001 m
was assumed. In Figure 4 there is a detailed view of the
mesh density near one of the corners of a cylinder.

In the theory developed by Dorfmann and Ogden
(2004a,b, 2005b), the MS bodies are surrounded by an
infinite vacuum space. With standard finite element meth-
ods, it is not possible to model infinite geometries, there-
fore, for the surrounding free space depicted in Figure
2(B), we assume the existence of a large enough but finite
surrounding space, and the hypothesis is that for large
enough surrounding spaces, the behaviour of the body
would be the same as in the case of an infinite free space.

In our case for a cylinder of dimensions rb = 0:04 m,
lb = 0:3 m and free space of variable size (see Table 2),
for a far away field of magnitude, different sizes for the
surrounding free space were considered as shown in
Table 2.

In Figure 5 the influence of the size of the surround-
ing free space is considered, in this case for the axial
component of the magnetic induction Bz as a function
of the axial position Z, for the line R= 1 cm from the
axis of symmetry.

From (27)2 this component must be continuous
across the surface of the cylinder. The limits of the
region where the cylinder is located are denoted by

vertical dashed lines. The cases considered are from
Table 2, and we can notice that for cases 1—3 there is
almost no difference in the behaviour of Bz for the dif-
ferent sizes of the surrounding space, there is a slight

Figure 4. Mesh density near one of the corners of the cylinder.
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Figure 5. Effect of the size of the free surrounding space for
the axial component of the magnetic induction. The cases are
taken from Table 2. The line for the plot is R= 1 cm.

Table 2. Geometry of the surrounding free space used to
study the influence of the size of this space.

Model Vacuum
length Lf (m)

Vacuum
radius Rf (m)

Number
elements

1 2.3 1.0 526.952
2 1.7 0.7 131.648
3 0.9 0.4 32.912
4 0.7 0.2 8.228
5 0.5 0.1 2.057
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difference for case 4, and a rather large difference for
case 5, which is the situation with the smallest sur-
rounding free space. Therefore, at least regarding the
behaviour of Bz for that particular line, the size of the
surrounding space mentioned in case 3 would be large
enough, such that it would be equivalent to have the
cylinder surrounded by an infinite free space.

The exact solutions presented, for example, in Pucci
and Saccomandi (1993) are based in the assumption of
working with infinitely long cylinders, such that the
conditions (7) are not considered for the surfaces Z = 0,
Z = lb. The hypothesis is that for cylinders where the
length is very large in comparison with the radius, such
exact solutions are good approximations for the prob-
lem. We study the effect in the distribution of the field
of considering different relations between the lengths
and radii of the cylinders. In Table 3 we have the data
for the cylinders studied, the radius rb = 0:04 m is con-
stant and different lengths lb for the cylinders are con-
sidered. The length of the surrounding free space is
adapted to the different lengths of the cylinders. The
external far away magnetic field is 1:74 � 107Am�1 and
the same value is used for all cases.

In Figure 6 the axial component of the magnetic
induction Bz is plotted for the axial line R= 1 cm for
the cases mentioned in Table 3.

Some additional results for the case of a cylinder of
the dimensions rb = 0:04 m, lb = 0:3 m are shown, con-
sidering a free space of length Lf = 2:3 m and radius
Rf = 1:0 m, without any external mechanical load and
a far away magnetic field of magnitude 2:17Am�1.

In Figure 7 we have depictions of the deformed
cylinder, showing the behaviour of the two components
of the magnetic field. The original shape of the cylinder
(in the reference configuration) is denoted by the black
lines superposed on the figure.

We note that Hr is approximately zero in the center
of the cylinder, and that near the surfaces Z = 0, Z = lb
(in the reference configuration), the field changes rap-
idly especially near the corners.

In Figure 8(a) we have a depiction of the distribution
of J , which is very close to 1 for almost the whole cylin-
der but two small regions near the corners. In Figure
8(b) we see the behaviour of the axial component of the
total stress tensor tzz.

The continuity conditions (7) have been already
studied in Figures 5 and 6. In Figure 9 we see depic-
tions for the axial component of the magnetic induction
and for the radial component of the magnetic field,
which accordingly with (7), must be continuous across
the surfaces Z = 0, Z = lb; we notice that they are
indeed continuous.

In Section 3.2 we discussed in detail about how
actual mechanical loads can be applied on a MS body.
Surface traction can only be applied if a MS body is in
contact with an external ‘machine’. We are interested in
comparing the behaviour of a MS cylinder interacting
with a machine, with the case of a cylinder that is sur-
rounded completely by free space. Far away an exter-
nal magnetic field of magnitude 2450Am�1 is applied
on the surfaces (d) and (f) (indirectly by prescribing u,
see Figure 3).

From Figure 10 we can see the difference between
the case the traction is applied with a ‘machine’ and the
case the external traction ta = 80kPaez is applied
directly on the cylinder, assuming that is surrounded
completely by free space. A first preliminary conclusion
from these results, is that the application of a force
through a machine does have an influence on the beha-
viour of the MS cylinder. This conclusion is reinforced
when we note the results shown in Figure 11, where we
have depictions of Bz and Hr for some axial lines at
R=0.01, 0.02 and 0.03 m, crossing the cylinder and
free space.

The continuity conditions (7) are satisfied, and if we
compare these results with the results shown in Figure
9, we see important differences between the plots for Bz,
although we must remember that the results shown in
Figure 9 were obtained for a cylinder free of any exter-
nal mechanical traction.
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Figure 6. Effect in the axial component of the magnetic
induction of considering different relations for the length and
radius of the cylinder. The cases correspond to the situations
listed in Table 3. The line for the plot is R= 1 cm.

Table 3. Geometry of the cylinder and free space used to
study the effect in the field of considering different ratios
between the length and radius of the cylinder.

Model Cylinder
length lb (m)

Vacuum
length Lf (m)

Vacuum
radius Rf (m)

1 0.1 2.3 1.0
2 0.2 2.5 1.0
3 0.3 3.3 1.0
4 0.5 5.5 2.0
5 0.7 7.7 2.4
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Figure 8. Deformed cylinder. In (a) we see the behaviour of J. On the right we have the distribution of the component tzz of the
total stress tensor.

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

2

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2
r = 0.01
r = 0.02
r = 0.03

r = 0.01
r = 0.02
r = 0.03

Z/
l b Z/
l b

Bz/B0 Hr/H0

Figure 9. Deformed cylinder. Continuity for Bz and for Hr for different axial lines.

Figure 7. Deformed cylinder. On the left we see the behaviour of the radial component of the magnetic field Hr (current
configuration). On the right we see the behaviour of the axial component of the magnetic field Hz.
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Final remarks

As explained in the Introduction, in some of the recent

works on nonlinear magneto-elasticity, we see models

where only the MS bodies are taken into account, dis-

regarding the effect that the surrounding free space

may have in the distribution of magnetic field and

deformation inside the MS body. However, as shown,

for example, by Vu and Steinmann (2010b) for a simi-

lar problem involving electro-elastic bodies, in some

situations it may be important to consider the interac-

tion with the surrounding free space. In the present

work we have studied different problems concerning
the behaviour of a MS cylinder, such as to find the
smallest size of the surrounding free space to have an
approximate model of an infinite surrounding space, to
study the effect on the distribution of magnetic field of
considering larger or shorter cylinders and finally, to
analyze the effect of applying external mechanical
forces through the direct contact with an external body,
which we have called a ‘machine’.

The results shown in the present work were obtained
under the simplification that Maxwell stresses were not
taken into account as external traction (see

Figure 10. Axial component of the magnetic field Hz for the deformed cylinder. In (a) a MS cylinder is depicted interacting with a
traction machine, where the reference configuration is presented by the black lines, and the machine is represented by the upper and
lower cylinders. In (b) there is a depiction of a deformed MS cylinder assuming the body completely surrounded by free space, and a
traction force ta is applied on the surface Z = lb .
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Figure 11. Continuity conditions for a cylinder interacting with a machine: (a) Bz and (b) Hr plotted for different axial lines.
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Bustamante, 2009). When considering MS elastomers
surrounded by free space, there are five main important
problems in order to obtain good results from the
numerical point of view:

� the MS bodies behave in a nonlinear manner
with a strong coupling between strains and mag-
netic fields;

� the MS bodies can show relatively large
deformations;

� the deformation of the MS body has an influ-
ence on the way the external magnetic field is
distributed;

� high concentration of external field can be
observed near points of the surface of the body
with rapid changes in the geometry;

� the requirement the continuity conditions for the
magnetic field and the stresses are satisfied (see
Kovetz, 2000; Bustamante et al., 2007) implies
additional problems from the numerical point of
view.

In a recent work by Bustamante and Ogden (2012) the
second variation was calculated for this problem, and
from those results it becomes clear that a solution for
the boundary value problem may not be a minimum for
the associate functional, further complicating the search
for numerical results. An alternative method to look for
solutions could be to use a bisection method to look for
a first approximation for the solution, and as a second
step, to use that first approximation as a starting point
for a standard Newton method, in order to find a final
improved solution.

Regarding the incorporation of the Maxwell stres-
ses, these are calculated with the magnetic field outside
the body (see Equation (13)); but H= � gradu, there-
fore the error in the calculations of u due to the discre-
tization used in the finite element method, increases
with the application of the gradient operator; more-
over, near the surface of the body, especially near the
corners, there can be a rapid change in the field outside,
which may create some problems with the convergence
of the standard Newton method.

Despite the problems described previously, we
obtained interesting results, for example, for relatively
short cylinders we observed a relatively marked depar-
ture of the numerical solutions regarding the deforma-
tions of the bodies, as can be seen from Figure 7, where
we note non-homogeneous deformations, especially
near the middle part of the cylinder, which should be
compared with the exact solutions, where cylinders are
assumed to deform (in the axial direction) in a uniform
way.

Second, we studied in a detailed manner the effect of
considering surrounding free spaces of different sizes,
finding a ‘minimum’ size, for which a MS cylinder

cannot feel the difference between that finite space and
a larger or infinite surrounding space.

Realizing that for more realistic models we need to
study the interaction of our MS bodies with other
external bodies, we obtained some results, where our
cylinders interacted with external ‘machines’, which are
made of stiffer materials. From Figures 10 and 11 we
observe that the deformation and distribution of mag-
netic field (or magnetic induction) can be affected sig-
nificantly with such interactions, therefore, it is
necessary to study such problems in more detail for
future works.

It has been shown with some numerical examples
that there is a need to study the effect of the surround-
ing space, when modelling the behaviour of MS bodies
of finite size. Such analysis may not only be important
as a tool for design when using such materials, but can
also be of some use when performing experimental
work, in order to determine the properties of, for exam-
ple, MS elastomers, since if we are able to measure the
magnetic field near the surface of a body, then we
could determine in a more precise manner how the field
is distributed inside the MS bodies by considering the
continuity condition (7). The effect of considering the
Maxwell stresses will be studied in a future communica-
tion, which will require the development of new non-
linear solvers, in order to overcome the numerical
problems mentioned previously.

Let us elaborate more about the experimental data
available and the status of the results presented in our
communication. The numerical results presented in our
paper are based on a constitutive equation proposed by
Bustamante (2010) (see Section 5.2.1 and Figures 2 and
3 therein). In that work there is a detailed description
about the experimental data available and the difficul-
ties encountered in order to propose good and realistic
expressions for the total energy function. The main data
used in order to propose Equation (130) of Bustamante
(2010) was obtained from the papers by Bellan and
Bossis (2002) and Ginder et al. (1999). In Bellan and
Bossis (2002) one can find experimental information for
a MS elastomer composed of 15% of magneto-active
particles per volume. The most important information
corresponds to the results for the stresses in terms of
the strains for traction tests considering different exter-
nal magnetic fields (see Bellan and Bossis, 2002, Figures
2 and 3). The rest of the information, in particular
regarding the magnetic behaviour, was obtained from
Ginder et al. (1999, Figure 4), which is necessary to
point out was obtained for a MS elastomer composed
of a different proportion of particles (27% of particles
per volume).

The information provided by Bellan and Bossis
(2002) and Ginder et al. (1999) is not enough to pro-
pose a definite expression for the total energy function.
Not only has the paucity of experimental information
been a problem for all researchers working on the

Salas and Bustamante 167

 at UNIVERSIDAD DE CHILE on July 31, 2015jim.sagepub.comDownloaded from 

http://jim.sagepub.com/


theoretical and numerical modelling for these materials,
but also the fact that the little experimental information
provided and the procedures used to perform such
experiments are in general not very well described by
the experimentalists.6

Another problem is that most of the experimental
results presented in the literature would correspond to
average values for the stresses, strains and magnetic
variables. One of the main points addressed in our work
was the effect in the behaviour of a MS body if one con-
siders the continuity condition for the magnetic vari-
ables. One must agree that the results presented in this
communication suggest that near points, where the geo-
metry of the MS body changes rapidly, we can expect
large values for the magnetic field (although presented
only in small regions). Moreover, such non-uniform
fields may cause non-uniform deformations for the
body, which can be observed in Varga et al. (2005,
Figure 4) and Böse (2007, Figure 7). In addition, many
researchers doing experiments are mostly interested in
the dynamic behaviour of these materials, because of
the possible applications in vibration control (see, for
example, Farshad and Le Roux, 2004), therefore, they
have obtained quantities such as the dynamic modulus,
which is a concept useful for problems considering
small strains, which may not be valid in the case of
moderately large elastic deformation in MS solids.7

Therefore, one should understand that to propose
more realistic expressions for the energy function is a
difficult work, which has not been addressed completely
yet. Several researchers have considered other methods
to find such constitute expressions (see, for example,
Borcea and Bruno, 2001; Chatzigeorgiou et al., 2012;
Ivaneyko et al., 2011; Ponte-Castañeda and Galipeau,
2011).

In order to be able to propose more realistic expres-
sions for the energy function, the experimentalists
should use as a basis for their work some of the exact
solutions for MS bodies presented, for example, by
Dorfmann and Ogden (2004a,b, 2005a,b) and Pucci
and Saccomandi (1993). These solutions are approxi-
mations of real problems, since they are valid for infi-
nite or semi-infinite bodies (in order to avoid problems
with the continuity conditions for the magnetic vari-
ables). These solutions are approximations also because
of the way external forces are applied on such infinite
bodies. There are several such solutions, for example,
the extension of an infinitely long bar, the extension
and inflation of a tube, the inflation, extension and tor-
sion of a tube (in these three examples under the effect
of an axial magnetic field), plus other problems involv-
ing bending and shear of rectangular slabs. The experi-
mentalists could use two or three of these simple
problems, such as the extension of a cylindrical bar
under traction and the finite shear of a slab, as theoreti-
cal basis to obtain meaningful data, in order to propose
a first approximation for the energy function. Such

expression for the energy function can be used in a
finite element code to study the same simple problems
numerically; however, such numerical code needs to
address problems such as the proper way to consider
the interface between the exterior free space and the
machine with the MS bodies. To develop such codes is
still a work in progress, only some issues have been
addressed by the different research groups working on
this topic worldwide. Using such a code, one could
model the behaviour of the same bodies considered for
the experimental work, and in an iterative process to
adjust the values of the constants until obtaining a
good degree of agreement for the different results.
Additional geometries could be studied using such a
code and that refined expression for the energy func-
tion, and one could compare those results with the
experimental information obtained from those addi-
tional problems.

Considering the shortcomings mentioned previously,
it was difficult to compare the results presented in this
paper with the experimental data available in the litera-
ture. The main idea of the present work was not neces-
sarily to obtain numerical results that would fit
perfectly with the little experimental information avail-
able, but to call attention of the interested researchers
to the possible influence of considering the external free
space on the numerical results, and also of considering
different and more realistic ways to apply external
mechanical loads on a MS body. To consider the sur-
rounding free space may have an important influence
on the results obtained, and the same happens if one
considers (from the point of view of mathematical
modelling) a load applied through the contact (bond-
ing) with an external machine. The results of that last
case are very different from the case the forces are
applied in the traditional manner, where the forces are
applied in the model without considering the need of
interaction with an external body.
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Notes

1. In the original theoretical works by Dorfmann and Ogden
(2004a,b, 2005a,b), it is assumed that the free space which
surrounds the bodies is of infinite size. The same assump-
tion has been used in Bustamante et al. (2008).

2. We use lowercase characters in order to denote the
Cauchy–Green strain tensors, to avoid problems with the
notation used to denote the magnetic induction field B

(commonly used in the literature on electromagnetism).
3. We need to remark that from the physical point of view

the scalar magnetic potential does not have a clear
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physical meaning; we use it due to the simplicity of work-
ing with this potential from the mathematical point of
view. From the physical point of view, the vector potential
A, which is connected to the magnetic induction through
the relation B=curlA, is considered to have a clearer
physical meaning (see, for example, Semon and Taylor,
1996).

4. Far away from the boundaries of the cylinder, the appli-
cation of 6~u on (d) and (f) generates a uniform axial
magnetic field H in vacuum.

5. The bodies Bm1 , Bm2 are assumed to be made of a mate-
rial that is much stiffer than B, therefore, we can expect
that the surfaces (h), (f) do not deform much, as a result
in this problem Bi

z =Bm
z can be considered valid for the

whole process.
6. In a paper by Danas et al. (2012) one can find more

recent experimental data for MS elastomers (see Figures

3 and 4 therein), but it cannot be used in the numerical
modelling of the present paper, since their work was
based on a different theory, considering the magnetiza-
tion field instead the magnetic field as the independent
magnetic variable (and a MS elastomer composed of
25% of particles per volume). Another recent reference
where one can find experimental data is the paper by
Boczkowska and Awietjan (2012), see in particular
Figure 12 therein, where one find plots for the magnetiza-
tion versus the magnetic field and Figure 14 for the stres-
ses versus the strains in a compression test, where it is
interesting to note that the stress is zero when there is no
strain, but the magnetization is different to zero, which is
a strange result, considering that in such a situation from
the physical point of view we must expect a non-zero
stress in order to maintain that zero strain (see, for exam-
ple, Bellan and Bossis, 2002, Figures 2 and 3 therein).

7. See, for example, Bellan and Bossis (2002, Figures 8 and
9), Ginder et al. (1999, Figures 2 and 3) and the results
presented by Deng and Gong (2008), Major et al. (2009),
Mitsumata (2009); Mitsumata and Ohori (2011),
Miedzinska et al. (2010), Gordaninejad et al. (2012),
Kashima et al. (2012), Bica (2012), Zhu et al. (2012),
Ying et al. (2013) and Ghafoorianfar et al. (2013).
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Degree Thesis, Departamento de Ingeniera Mecánica, Uni-

versidad de Chile.

Semon MD and Taylor JR (1996) Thoughts on the magnetic
vector potential. Am J Phys 64: 1361–1369.

Spencer AJM (1971) Theory of invariants. In Eringen AC

(ed.), Continuum Physics, Vol. 1. New York: Academic
Press, pp. 239–353.

Steigmann DJ (2004) Equilibrium theory for magnetic elasto-

mers and magnetoelastic membranes. Int J Nonlinear Mech

39: 1193–1216.
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