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Abstract

For the abelian self-dual Chern-Simons-Higgs model we address existence issues
of periodic vortex configurations—the so-called condensates—of nontopological
type as k ! 0, where k > 0 is the Chern-Simons parameter. We provide a
positive answer to the longstanding problem on the existence of nontopological
condensates with magnetic field concentrated at some of the vortex points (as a
sum of Dirac measures) as k ! 0, a question that is of definite physical interest.
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1 Introduction and Statement of Main Results
The Chern-Simons vortex theory is a planar theory that is physically relevant

in connection with high critical temperature superconductivity, the quantum Hall
effect, and anyonic particle physics, as widely discussed by Dunne [19]. Hong-
Kim-Pac [24] and Jackiw-Weinberg [25] have proposed an abelian self-dual model
where the electrodynamics is governed only by the Chern-Simons term. Over the
Minkowski space .R1C2; g/, with metric tensor g D diag.1;�1;�1/, the model is
described by the following Lagrangian density:

L.A; �/ D
k

4
�˛ˇ
A˛Fˇ
 CD˛�D

˛� �
1

k2
j�j2

�
j�j2 � 1

�2
;

where the Chern-Simons coupling parameter k > 0 measures the strength of the
Chern-Simons term and the antisymmetric Levi-Civita tensor �˛ˇ
 is fixed with
�012 D 1. The metric tensor g is used to lower and raise indices in the usual
way, and the standard summation convention over repeated indices is adopted. The
gauge potential A D �iA˛ dx˛ is a 1-form (a connection over the principal bundle
R1C2�U.1/),A˛ W R1C2 ! R for ˛ D 0; 1; 2, and the Higgs field � W R1C2 ! C
is the matter field. The gauge field FA D �

i
2
F˛ˇ dx

˛ ^ dxˇ is a 2-form (the
curvature of A), where F˛ˇ D @˛Aˇ � @ˇA˛, and the Higgs field � is weakly
coupled with the gauge potential A through the covariant derivativeDA as follows:
DA� D D˛� dx

˛, D˛� D @˛� � iA˛� for ˛ D 0; 1; 2.
The self-dual regime has been identified by Hong-Kim-Pac [24] and Jackiw-

Weinberger [25] through the choice of the “triple well” potential 1
k2
j�j2.j�j2�1/2,

which yields to a Bogomol0nyı̆ reduction [5] for the Chern-Simons-Higgs model,
as we discuss below. Vortices are time-independent (x0 is the time variable) confi-
gurations .A; �/ that solve the Euler-Lagrange equations

(1.1)

(
D�D

�� D � 1
k2
.j�j2 � 1/.3j�j2 � 1/�;

k
2
��˛ˇF˛ˇ D J

� WD i
�
�D�� � �D��

�
;

and have finite energy. In the self-dual regime, for energy-minimizing vortices (at
given magnetic flux) the second-order Euler-Lagrange equations are equivalent to
the first-order self-dual equations

(1.2)

8̂<̂
:
D˙� D 0;

F12 ˙
2
k2
j�j2.j�j2 � 1/ D 0;

kF12 C 2A0j�j
2 D 0;

where D˙ D D1 ˙ iD2, and the last equation is usually referred to as the Gauss
law. In what follows, we restrict our attention to energy-minimizing vortices (at
given magnetic flux), and we will simply refer to them as vortices.

In the physical interpretation, the electric field EE D .@1A0; @2A0; 0/ is pla-
nar, the magnetic field EB D .0; 0; F1;2/ is in the orthogonal direction, and J 0,
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EJ D .J 1; J 2/ can be identified with the charge density and current density, respec-
tively, as in the classical Maxwell theory. Thanks to the Gauss law, vortices are both
electrically and magnetically charged, a physically relevant property that was ab-
sent in the abelian Maxwell-Higgs model [26,37]. Notice that A and � are not ob-
servable quantities, as they are defined only up to a gauge transformation, whereas
the electric and magnetic fields as well as the magnitude j�j of the Higgs field de-
fine gauge-independent quantities. The second and third equations in (1.2) only
involve observable quantities, whereas the first one DC� D 0 (or D�� D 0)—a
gauge-invariant version of the Cauchy-Riemann equations—implies holomorphic-
type properties for the Higgs field � (or x�) in a suitable gauge. Following an
approach first developed by Taubes [37] for the abelian Maxwell-Higgs model,
vortices .�;A/ can be found in the form

(1.3)
� D e

u
2
˙i

PN
jD1Arg.´�pj /;

A0 D ˙
1

k
.j�j2 � 1/; A1 ˙ iA2 D �i.@1 ˙ i@2/ log�;

as soon as u D log j�j2 solves the elliptic problem

(1.4) ��u D
1

�2
eu.1 � eu/ � 4�

NX
jD1

ıpj ;

where � D k
2

and p1; : : : ; pN are the zeroes of � (repeated according to their
multiplicities)—usually referred to as the vortex points (with the convention N D
0 if � 6D 0). We refer the interested reader to [36,39] and the references therein for
more details and for an extensive discussion of several gauge field theories.

For planar vortices, the finite energy condition
R

R2 e
u.1 � eu/ < C1 imposes

two possible asymptotic behaviors at infinity. The topological behavior j�j2 D
eu ! 1 as j´j ! 1 gives the vortex number N the topological meaning of
winding number for � at infinity (up to a˙ sign, depending on whether DC� D 0
or D�� D 0), yielding to quantization effects for the energy E, the magnetic flux
ˆ, and the electric charge Q in the class of topological N -vortices: E D 2�N ,
ˆ D ˙2�N , and Q D ˙2�kN . The existence of planar topological vortices
has been addressed in [23,33,38]. The nontopological behavior j�j2 D eu ! 0 as
j´j ! 1 has no counterpart in the abelian Maxwell-Higgs model, and the possible
coexistence of topological and nontopological N -vortices is the main new feature
in Chern-Simons theories.

After the seminal work [32] in a radial setting with a single vortex point (see
also [10] for related results), it has been a challenging problem to find planar non-
topologicalN -vortices [7,8] for an arbitrary configuration of p1; : : : ; pN . Surpris-
ingly, two different classes have been found by using different limiting problems:
the singular Liouville equation in [7] and the Chern-Simons equation ��U D
eU .1 � eU / � 4�ı0 in [8]. Since the latter problem has no scale invariance, in [8]
the points p1; : : : ; pN are taken along the vertices of a regular N -polygon in order
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to glue together U.x�pj
�
/, j D 1; : : : ; N , for there is no freedom to adjust the

height at each pj to account for the interaction, but the approximating function has
an invertible linearized operator.

Since the theoretical prediction by Abrikosov [2], the appearance of a lattice
structure, in the form of spatially periodic vortices, has been experimentally ob-
served. To account for it, the model is formulated on

� D
˚
´ D t!1 C s!2 W .t; s/ 2

�
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

�	
;

where !1; !2 2 C n f0g satisfy Im.!2
!1
/ > 0. Condensates are time-independent

configurations .A; �/ that solve the Euler-Lagrange equations (1.1), have finite
energy, and satisfy the ’t Hooft boundary conditions [34]:

(1.5)
ei�k.´C!k/�.´C !k/ D e

i�k.´/�.´/;

A0.´C !k/ D A0.´/; .Aj C @j �k/.´C !k/ D .Aj C @j �k/.´/;

for all ´ 2 �1 [ �2 n �k and k D 1; 2 where �1 D f´ D t!1 �
1
2
!2 W jt j <

1
2
g,

�2 D f´ D �1
2
!1Ct!2 W jt j <

1
2
g, and �1 and �2 are real-valued smooth functions

defined in neighborhoods of �2[f!1C�2g and �1[f!2C�1g, respectively. For
energy-minimizing vortices (at given magnetic flux) the Euler-Lagrange equations
(1.1) are still equivalent to the self-dual ones (1.2). Since (1.5) just reduces to a
double periodicity for the observable quantities F12 and j�j in �, a configuration
.A; �/ in the form (1.3) does solve (1.2) as soon as u D log j�j2 is a doubly
periodic solution of (1.4) in �; see [6, 35] for an exact derivation.

Hereafter, up to a translation, let us assume that � 6D 0 on @� (i.e., p1; : : : ; pN 2
�) in such a way the winding number deg.�; @�; 0/ is well-defined, and the vortex
number N is simply given by j deg.�; @�; 0/j. By (1.5) we still have quantization
effects as in the case of planar topological vortices: E D 2�N , ˆ D ˙2�N , and
Q D ˙2�kN , where the˙ sign depends on whetherDC� D 0 orD�� D 0. Let
us assume that DC� D 0 (there is no loss of generality at the possible expense of
replacing � by x�) and restrict our attention to energy-minimizing condensates (at
given magnetic flux), simply referred to as condensates.

Letting G.´; p/ be the Green function of �� in � with pole at p,(
��G.´; p/ D ıp �

1
j�j

in �;R
�G.´; p/d´ D 0;

one is led to consider the following equivalent regular version of (1.4):

(1.6) ��v D
1

�2
eu0Cv.1 � eu0Cv/ �

4�N

j�j
in �

in terms of v D u� u0, where u0 D �4�
PN
jD1G.´; pj / and the potential eu0 is

a smooth nonnegative function that vanishes exactly at p1; : : : ; pN . By translation
invariance, notice that G.´; p/ D G.´ � p; 0/, and G.´; 0/ can be decomposed as
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G.´; 0/ D � 1
2�

log j´j CH.´/, where H is a (not doubly periodic) function with
�H D 1

j�j
in �. If v is a solution of (1.6), by integration over � notice that

(1.7)
Z
�

eu0Cv.1 � eu0Cv/ D

Z
�

j�j2.1 � j�j2/ D 2�2
Z
�

F12 D 4�N�
2

in view of (1.2), yielding to the necessary condition

16�N�2 D j�j � 4

Z
�

�
eu0Cv �

1

2

�2
< j�j

for the solvability. According to [6], Caffarelli and Yang show the existence of
0 < �c <

p
j�j=16�N so that (1.4) has a maximal doubly periodic solution u�

for 0 < � < �c , while no solution exists for � > �c . Notice that (1.6) admits a
variational structure with energy functional

J�.v/ D
1

2

Z
�

jrvj2 C
1

2�2

Z
�

�
eu0Cv � 1

�2
C
4�N

j�j

Z
�

v

where v 2 H 1.�/ D fv 2 H 1
loc.R

2/ W v doubly periodic in �g. Later, Tarantello
[35] shows that the maximal solution u� is a local minimum for J� in H 1.�/, and
a second solution u� is found as a mountain pass critical point for J�.

To each solution u of (1.4) we can associate the N -condensate .A; �/ in the
form (1.3) (with the C sign as we agreed), and let .A�; ��/, .A�; ��/ be the ones
corresponding to u�, u�. Concerning the asymptotic behavior as � ! 0, by (1.7)
we can expect two classes of N -condensates:

� j�j ! 1 as � ! 0 (“topological” behavior),
� j�j ! 0 as � ! 0 (“nontopological” behavior),

to be understood in suitable norms. For example, .A�; ��/ exhibits “topological”
behavior:

j��j ! 1 in Cloc.x� n fp1; : : : ; pN g/;

with

(1.8) .F12/� * 2�

NX
jD1

ıpj in the sense of measures

as � ! 0 according to (1.7); see [35]. The concentration property (1.8) for the ma-
gnetic field has a definite physical interest and supports the use of the terminology
“vortex points” for the zeroes p1; : : : ; pN of the Higgs field �. The N -condensate
.A�; ��/ has in general a different asymptotic behavior as � ! 0:

(i) When N D 1, j��j ! 0 in Cm.x�/ for all m � 0, and .F12/� is a compact
sequence in L1.�/ (see [35]).
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(ii) When N D 2, j��j ! 0 in C.x�/ and either .F12/� is a compact sequence
in L1.�/ or .F12/� * 4�ıq in the sense of measures, for some q 6D
p1; p2 with u0.q/ D max� u0, depending on whether

I.v/ D
1

2

Z
�

jrvj2 � 8� log
�Z
�

eu0Cv
�
C
8�

j�j

Z
�

v

attains its infimum or not in H 1.�/ (see [31] and also [18]).
(iii) When N � 3, j��j ! 0 in C.x�/ and .F12/� * 2�Nıq in the sense of

measures for some q 6D p1; : : : ; pN with u0.q/ D max� u0 (see [12]).

In [17] it is shown that N -condensates .A; �/ exist such that j�j ! 0 a.e. in
� as � ! 0. Concerning the case N D 2, it is a very difficult question, which
has been discussed in [9, 27] for p1 D p2, to know whether I attains the infimum
in H 1.�/. An alternative approach of perturbative type has been shown to be
successful for N D 2 [29] (see also [20] among other things) by constructing a
sequence of 2-condensates for which the second alternative in (ii) does hold for a
critical point q of u0. The same approach works as well for N � 3 provided the
concentration points of the magnetic field are not vortex points.

The existence of nontopological N -condensates with magnetic field concen-
trated at vortex points as � ! 0 (as in (1.8)) is the main issue from a physi-
cal viewpoint and has not been answered so far. A first partial answer has been
provided by Lin and Yan [28], who construct N -condensates .A�; ��/ so that
.F12/� * 2�Nıpj in the sense of measures as � ! 0, as soon as N > 4 and pj
is a simple vortex point in fp1; : : : ; pN g. As in [8], they make use of the Chern-
Simons equation ��U D eU .1 � eU / � 4�ı0 as limiting problem, which is not
suitable for managing multiple concentration points. Moreover, such a condensate
does satisfy max� j��j � c > 0 for � small and j��j ! 0 in Cloc.x� n fpj g/, which
fits the notion of “nontopological” behavior in a weak sense. Our aim is to extend
toN -condensates the perturbative approach developed by Chae and Imanuvilov [7]
for planar N -vortices based on the use of the singular Liouville equation as a limi-
ting problem.

As far as nontopological behavior, let us stress that the problem on the torus
is much more rigid than the planar case, as is well illustrated by the quantization
property ˆ D 2�N (valid just in the doubly periodic situation). For example,
when F12 is concentrated like a Dirac measure at a vortex point pl , by the use of
Liouville profiles it is natural, as we will see, to have 4�.nlC1/ as a concentration
mass of F12 at pl , where nl is the multiplicity of pl in the set fp1; : : : ; pN g,
and then the relation 2�N D 4�

Pm
lD1.nl C 1/ holds in the sense of measures

as soon as F12 * 4�
Pm
lD1.nl C 1/ıpl . In particular, the concentration of the

magnetic field cannot take place at all the vortex points p1; : : : ; pN as in the planar
case [7]. Let us stress that theN -condensates constructed in [30] have exactly such
a concentration property and then violate the balancing condition (1.9).



CONDENSATES FOR CHERN-SIMONS MODEL 1197

Our aim is to provide a general answer to the long-standing question on the ex-
istence of nontopologicalN -condensates with magnetic field concentrated at some
vortex points. Compared with [7], our main result is rather surprising and reads as
follows.

THEOREM 1.1. Let fp1; : : : ; pmg be a subset of the vortex set fp1; : : : ; pN g … @�,
fpj gj be the remaining points, and nl ; nj be the corresponding multiplicities so
that

(1.9) 2�N D 4�

mX
lD1

.nl C 1/:

Letting H0 be a meromorphic function in � so that

jH0.´/j2 D eu0C8�
Pm
lD1.nlC1/G.´;pl /

(which exists and is unique up to rotations), assume that H0 has zero residue at
each p1; : : : ; pm. Letting �0.´/ D �.

R ´H0.w/dw/�1 (a well-defined meromor-
phic function), assume that

�D0 D

Z
�n��10 .B�.0//

eu0C8�
Pm
lD1.nlC1/G.´;pl /

�

mX
lD1

.nl C 1/

Z
R2nB�.0/

dy

jyj4
< 0

(1.10)

for small � > 0 and the “nondegeneracy condition” detA 6D 0, whereA is given by
(6.11). Then, for � > 0 small there exists N -condensate .A�; ��/ so that j��j ! 0

in C.x�/ and

(1.11) .F12/� * 4�

mX
lD1

.nl C 1/ıpl

weakly in the sense of measures, as � ! 0.

Notice that we can also allow some concentration point not to be a vortex point
by simply adding it to the vortex set with null multiplicity. In Section 5 we will
see that in the double-vortex case N D 2, Theorem 1.1 essentially recovers the
result in [20, 29] concerning single-point concentration, for the assumptions just
reduce to having the concentration point q 6D p1; p2 as a nondegenerate critical
point of u0 with D0 < 0 (for similar results concerning the Liouville equation,
see [4, 16, 21] in the case of bounded domains with Dirichlet boundary conditions
and [22] in the case of a flat 2-torus). Despite the complex statement, for a rec-
tangle � with p1 D 0, p2 D !1=2, p3 D !2=2, and p4 D .!1 C !2/=2, and
n1; n2; n3; n4 even multiplicities with n4=2 odd, we will check in Section 5 that
the assumptions of Theorem 1.1 do hold form D 1 and concentration point p1, up
to performing a small translation so to have pj 2 �. For computational simplicity,



1198 M. DEL PINO ET AL.

the nondegeneracy condition will be checked just for a square with n D n3 D 2

and .n1; n2/ D .2; 0/ or vice versa. Even more important, examples with m � 2
will be discussed in Section 6.

Following an approach developed by Tarantello [35] and exploited in [31], (1.6)
can be seen as a perturbed mean field equation (2.2) with potential eu0 and unper-
turbed part

(1.12) ��w D 4�N

�
eu0CwR
� e

u0Cw
�

1

j�j

�
:

Since eu0 vanishes like j´ � pl j2nl near each pl , l D 1; : : : ; m, the Liouville
equation ��U D j´j2neU will play a central role in the construction of an appro-
ximating function in the perturbative approach. Since

Uı;�0 D log
8ı2

.ı2 C j�0j2/2

does solve ��U D j� 00j
2eU in � n fpoles of �0g, a natural choice is �0 D ´nC1

when m D 1 and p1 D 0. Letting P be a projection operator on the space of dou-
bly periodic functions, the approximation rate of PUı;´nC1 is unfortunately not
sufficiently small to carry out the argument, a problem that often arises in pertur-
bation arguments and is usually overcome by refining the ansatz via linear theory
around the approximating function. However, such a procedure would require se-
veral subsequent refinements, resulting in a high level of complexity.

Inspired by [14], in Section 2 we will take advantage of the Liouville formula
to use the inner parameter �0, present in the Liouville formula, to get improved
profiles. Since

PUı;�0 � Uı;�0 � log.8ı2/C log j�0j4 C 8�.nC 1/G.´; 0/ as ı ! 0;

PUı;�0 is a good approximate solution of (1.12) if

j� 00j
2

j�0j4
D

ˇ̌̌̌�
1

�0

�0 ˇ̌̌̌2
D eu0C8�.nC1/G.´;0/:

By definition of H0, it is enough to find a meromorphic �0 with .1=�0/0 D H0, a
solvable equation if and only if H0 has zero residue at its unique pole 0. As we
will discuss in detail in Remark 4.4, the assumption on the residues of H0 is then
necessary in our context. Moreover, since H0 has a pole at 0 of multiplicity nC 2
and zeroes pj ’s of multiplicities nj , by the property H0.´ C !j / D ei�jH0.´/,
j D 1; 2, near @� for some �1; �2 2 R, we deduce that

0 D
1

2�i

Z
@�

H00
H0

d´ D nC 2 �
X
j

nj D 2.nC 1/ �N;

providing (1.9) as a necessary and sufficient condition for the existence of such H0
(the sufficient part in shown in next section). D0 < 0 and the nondegeneracy con-
dition will be necessary to determine ı and a, a sort of small translation parameter
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accounting for the perturbation term in (2.2), according to the asymptotic expan-
sion for the corresponding “reduced equations” as derived in Section 3. Theorem
1.1 is proved in Section 4 for m D 1 and in Section 6 when m � 2.

2 Improved Liouville Profiles

Let us decompose any solution v of (1.6) as v D wC c, where c D 1
j�j

R
� v. In

this way, w has zero average:
R
�w d´ D 0, and by (1.7) one has

e2c
Z
�

e2u0C2w � ec
Z
�

eu0Cw C 4�N�2 D 0:

This last identity then provides a relation between c and w in the form c D c˙.w/,
where

(2.1) ec˙.w/ D
8�N�2R

� e
u0Cw �

q
.
R
� e

u0Cw/2 � 16�N�2
R
� e

2u0C2w
;

whenever
� R
� e

u0Cw
�2
� 16�N�2

R
� e

2u0C2w � 0. The two possible choices
of plus and minus signs in (2.1) is another indication of multiple solutions for
(1.6). In [35], topological solutions are characterized to satisfy (2.1) with the plus
sign. Since we are interested to nontopological solutions, it is natural to restrict the
attention to the case c D c�.w/, reducing problem (1.6) to the following equation
in �:

(2.2)

8̂̂̂̂
<̂
ˆ̂̂:
��w D 4�N

�
eu0CwR
� e

u0Cw
�

1
j�j

�
C

64�2N 2�2.eu0Cw
R
� e

2u0C2w.
R
� e

u0Cw/�1�e2u0C2w/

.
R
� e

u0CwC
p
.
R
� e

u0Cw/2�16�N�2
R
� e

2u0C2w/2
;R

�w D 0:

Here and in the next sections, we first discuss the case m D 1 in Theorem
1.1. Assume that p is present n-times in fp1; : : : ; pN g, and denote by p0j s the
remaining points in the set fp1; : : : ; pN g with corresponding multiplicities n0j s.
Up to a translation, we are assuming that pj 2 � for j D 1; : : : ; N , a crucial
property that will simplify the arguments below. Since the assumptions in Theorem
1.1 for the concentration at p are just local properties, for simplicity in notation let
us simply consider the case p D 0.

Since eu0 behaves like j´j2n as ´ ! 0, the local profile of w near 0 will be
given in terms of solutions of the “singular” Liouville equation:

(2.3) ��U D j´j2neU :

Recall that by the Liouville formula the function

log
8jF 0j2

.1C jF j2/2



1200 M. DEL PINO ET AL.

does solve��U D eU in the set fF 0 6D 0g for any holomorphic map F . For entire
solutions of (2.3) with finite energy:

R
R2 j´j

2neU < C1, it is well-known that
necessarily F.´/ D .´nC1 � a/=ı, and then all the entire finite-energy solutions
of (2.3) are classified as

Uı;a.´/ D log
8.nC 1/2ı2

.ı2 C j´nC1 � aj2/2
; ı > 0; a 2 C:

Moreover, we have that
R

R2 j´j
2neUı;a D 8�.n C 1/. Since by construction the

corresponding v D w C c�.w/ will satisfy
1

�2
eu0Cv.1 � eu0Cv/ * 8�.nC 1/ı0

in the sense of measures, the condition

(2.4) 2�N D 4�.nC 1/

is necessary in view of (1.7).
Assume for simplicity eu0 D j´j2n. Since

R
� j´j

2neUı;a ! 8�.n C 1/ as
ı ! 0, by (2.4) we have the asymptotic matching of ��Uı;a D j´j2neUı;a and

4�N
j´j2neUı;aR
� j´j

2neUı;a
as ı ! 0:

To correct Uı;a into a doubly periodic function, we consider the projection PUı;a
of Uı;a as the solution of(

��PUı;a D ��Uı;a C
1
j�j

R
��Uı;a in �;R

� PUı;a D 0:

In this way, we gain the constant term
1

j�j

Z
�

�Uı;a D �
1

j�j

Z
�

j´j2neUı;a ! �
4�N

j�j
as ı ! 0

in view of (2.4), and we still need to check that the difference between ��Uı;a D
j´j2neUı;a and 4�N.j´j2nePUı;a/.

R
� j´j

2nePUı;a/ is asymptotically small. By an
asymptotic expansion of PUı;a in terms of Uı;a, we will see that the difference
is small (i.e., PUı;a is an approximating function of (2.2)) but behaves at most
like j´j2neUı;aO.j´j C ı2/, which is not sufficiently small. A first refinement of
the ansatz via the linear theory around PUı;a could improve the pointwise error
estimate into j´j2neUı;aO.j´j2 C ı2/, which unfortunately is in general still not
enough.

Since there is a strong mismatch between the dependence of Uı;a on ´nC1

and that of the error on ´ (or even on ´2), we should push such a procedure
through several subsequent refinements. Instead, we play directly with the in-
ner parameters present in the Liouville formula, for we have more flexibility in
the choice of F.´/ on bounded domains. Hereafter, let us fix an open, simply
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connected domain z� so that � � z� and z� \ .!1ZC !2Z/ D f0g, and set
M.�/ D f� j� W � meromorphic in z�g. Let ı 2 .0;C1/, a 2 C, and � 2M.�/

be a function that vanishes only at 0 with multiplicity nC 1. Since log j� 0.´/j2 is
harmonic in f� 0 6D 0g, the choice F.´/ D .�.´/ � a/=ı yields to solutions

Uı;a;� .´/ D log
8ı2

.ı2 C j�.´/ � aj2/2

of ��U D j� 0.´/j2eU in � n fpoles of �g, for Uı;a;� is a smooth function up to
f� 0 D 0g.

The aim is to find a better local approximating function PUı;a;� for a suitable
choice of � , where PUı;a;� solves

(2.5)

(
��PUı;a;� D j�

0.´/j2eUı;a;� � 1
j�j

R
� j�

0.´/j2eUı;a;� in �;R
� PUı;a;� D 0:

Notice that PUı;a;� is well-defined and smooth as long as � 2M.�/, no matter
if � has poles or not.

Recall that G.´; 0/ can be thought of as a doubly periodic function in C with
singularities on the lattice vertices !1ZC !2Z, and H.´/ D G.´; 0/C 1

2�
log j´j

is then a smooth function in 2� with �H D 1
j�j

. Since 2� is simply connected,
we can find an holomorphic function H� in 2� having the harmonic function
H�.j´j2=4j�j/ as real part. Since pj 2 �, take z� close to� so that z��pj � 2�
for all j D 1; : : : ; N . The function

(2.6)

H.´/ D
Y
j

.´ � pj /
nj exp

�
4�.nC 1/H�.´/ � 2�

NX
jD1

H�.´ � pj /

�
�

2j�j

NX
jD1

jpj j
2
C

�

j�j
´

NX
jD1

pj

�

is holomorphic in z� with

jH.´/j2 D
1

j´j2n
eu0C8�.nC1/H.´/

D e4�.nC2/H.´/�4�
P
j njG.´;pj / in z�

(2.7)

in view of (2.4). The meromorphic function H0.´/ D H.´/=´nC2 does satisfy
jH0.´/j2 D eu0C8�.nC1/G.´;0/ in z�.
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Remark 2.1. To simplify notation, we are considering the case p D 0. When
p 6D 0, by assuming z� � p � 2� the function

Hp.´/ D
Y
j

.´ � pj /
nj

� exp
�
4�.nC 1/H�.´ � p/C

�.nC 1/

j�j
jpj2 �

2�.nC 1/

j�j
´ xp

�

� exp
�
�2�

NX
jD1

H�.´ � pj / �
�

2j�j

NX
jD1

jpj j
2
C

�

j�j
´

NX
jD1

pj

�
is holomorphic in z� with

jHp.´/j2 D
1

j´ � pj2n
eu0C8�.nC1/H.´�p/

D e4�.nC2/H.´�p/�4�
P
j njG.´;pj / in z�

in view of (2.4). The meromorphic function Hp
0 .´/ D Hp.´/=.´ � p/nC2 does

satisfy jHp
0 .´/j

2 D eu0C8�.nC1/G.´;p/ in z�.

Hereafter, for a meromorphic function g in z�, the notation
R ´
g.w/dw stands

for the anti-derivative of g.´/, which is a well-defined meromorphic function in
the simply connected domain z� as soon as g has zero residues at each of its poles.
Since H.0/ 6D 0 by (2.7), we define

�0.´/ D �

�Z ´

H0.w/e�c0w
nC1

dw

��1
D �

�Z ´ H.w/e�c0wnC1

wnC2
dw

��1
;

(2.8)

where

(2.9) c0 D
1

H.0/.nC 1/Š
dnC1H
d´nC1

.0/

guarantees that the residue of H0.´/e�c0´
nC1

at 0 vanishes. By construction �0 2
M.�/ vanishes only at 0 with multiplicity nC 1, as needed, with

(2.10) lim
´!0

´nC1

�0.´/
D

H.0/
nC 1

;

and does solve

(2.11) j� 00.´/j
2
D j�0.´/j

4eu0C8�.nC1/G.´;0/e�2ReŒc0´nC1�

in view of (2.7).
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Let � 2M.�/ be a function that vanishes only at 0 with multiplicity nC1. For
a 2 C small there exist a0; : : : ; an so that f´ 2 z� W �.´/ D ag D fa0; : : : ; ang

(distinct points when a 6D 0). For a small the function

(2.12)

Ha;� .´/ D
Y
j

.´ � pj /
nj exp

�
4�

nX
kD0

H�.´ � ak/ �
2�

j�j
´

nX
kD0

ak

� 2�

NX
jD1

H�.´ � pj / �
�

2j�j

NX
jD1

jpj j
2
C

�

j�j
´

NX
jD1

pj

�
is holomorphic in z� with

(2.13) jHa;� .´/j2 D
1

j´j2n
eu0C8�

Pn
kD0H.´�ak/�

2�
j�j

Pn
kD0 jak j

2

in z�

in view of (2.4). The advantage in our construction of Ha;� , which might be carried
over in a simpler and more direct way, is the holomorphic/antiholomorphic depen-
dence in the ak’s as well as in ´, a crucial property as we will see in Appendix A.
When a D 0, then a0 D � � � D an D 0 and H D H0;� .

Endowed with the norm k�k WD k �
�0
k
1;z�

, the set M0.�/ D f� 2 M.�/ W

k�k < 1g is a Banach space. Let Br be the closed ball centered at �0 and radius
r > 0, i.e.,

(2.14) Br D
�
� 2M.�/ W





 ��0 � 1





1;z�

� r

�
:

For a 6D 0 and r small, the aim is to find a solution �a 2 Br of

�.´/ D �

"Z ´� �.w/ � aQn
kD0.w � ak/

wnC1

�.w/

�2Ha;� .w/
wnC2

e�ca;�w
nC1

dw

#�1
for a suitable coefficient ca;� . To be more precise, letting

ga;� .´/ D
�.´/ � aQn
kD0.´ � ak/

for jaj < � and � 2 Br ,

by Lemma A.1 we have that ga;� 2M.�/ never vanishes, and the problem above
gets rewritten as

(2.15) �.´/ D �

"Z ´ g2a;� .w/

g20;� .w/

Ha;� .w/
wnC2

e�ca;�w
nC1

dw

#�1
:

The choice

(2.16) ca;� D
1

.nC 1/Š

dnC1

d´nC1

"
g2a;� .´/g

2
0;� .0/

g2a;� .0/g
2
0;� .´/

Ha;� .´/
Ha;� .0/

#
.0/



1204 M. DEL PINO ET AL.

lets vanish the residue of the integrand function in (2.15). making the right-hand
side well-defined. Since �a 2 Br , the function �a vanishes only at 0 with multipli-
city nC 1 and satisfies

j� 0a.´/j
2
D j�a.´/ � aj

4 exp
�
u0 C 8�

nX
kD0

G.´; ak/ �
2�

j�j

nX
kD0

jakj
2

� 2ReŒca;�a´
nC1�

�(2.17)

in view of (2.13). The resolution of problem (2.15)–(2.16) will be addressed in
Appendix A.

We have the following expansion for PUı;a;� as ı ! 0:

LEMMA 2.2. There holds

(2.18)
PUı;a;� D Uı;a;� � log.8ı2/C 4 log jga;� j C 8�

nX
kD0

H.´ � ak/

C‚ı;a;� C 2ı
2fa;� CO.ı

4/

in C.�/, uniformly for jaj < � and � 2 Br , where

‚ı;a;� D �
1

j�j

Z
�

log
j�.´/ � aj4

.ı2 C j�.´/ � aj2/2

and fa;� is defined in (2.22). In particular, there holds

PUı;a;� D 8�

nX
kD0

G.´; ak/C‚ı;a;� C 2ı
2

�
fa;� �

1

j�.´/ � aj2

�
CO.ı4/

in Cloc.� n f0g/, uniformly for jaj < � and � 2 Br .

PROOF. Define

rı;a;� WD PUı;a;� � Uı;a;� C log.8ı2/ � 4 log jga;� j � 8�
nX
kD0

H.´ � ak/:

The function Uı;a;� satisfies ��Uı;a;� D j� 0.´/j2eUı;a;� just in� n fpoles of �g.
At the same time, the function �4 log jga;� j is harmonic in � n fpoles of �g and
has exactly the same singular behavior of Uı;a;� near each pole of � . It means that

(2.19) ��ŒUı;a;� C 4 log jga;� j� D j� 0.´/j2eUı;a;�

holds in the whole �. Since �H D 1
j�j

, by (2.5) and (2.19) we get that

��rı;a;� D
1

j�j

�
8�.nC 1/ �

Z
�

j� 0.´/j2eUı;a;�
�
:
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By Green’s representation formula we have that

rı;a;� .´/ D

Z
@�

Œ@�rı;a;� .w/G.w; ´/ � rı;a;� .w/@�G.w; ´/�ds.w/

C
1

j�j

Z
�

rı;a;� ;

(2.20)

where � is the unit outward normal of @� and ds.w/ is the line integral element.
Since as ı ! 0 there holds

rı;a;� .w/ D PUı;a;� .w/ � 8�

nX
kD0

G.w; ak/C 2
ı2

j�.w/ � aj2
CO.ı4/

in C 1.@�/ uniformly in jaj < � and � 2 Br ; by double periodicity of PUı;a;� �
8�
Pn
kD0G. � ; ak/ we get that

(2.21)
Z
@�

Œ@�rı;a;� .w/G.w; ´/ � rı;a;� .w/@�G.w; ´/�ds.w/ D

2ı2fa;� .´/CO.ı
4/

in C.x�/, where

(2.22) fa;� .´/ D

Z
@�

�
@�

1

j�.w/ � aj2
G.w; ´/ �

1

j�.w/ � aj2
@�G.w; ´/

�
ds.w/:

Inserting (2.21) into (2.20), we get that

rı;a;� .´/ D ‚ı;a;� C 2ı
2fa;� .´/CO.ı

4/(2.23)

in C.�/ uniformly in jaj < � and � 2 Br , where

‚ı;a;� WD
1

j�j

Z
�

rı;a;� D �
1

j�j

Z
�

log
j�.´/ � aj4

.ı2 C j�.´/ � aj2/2
:

The estimate (2.23) yields to the desired expansion for PUı;a;� as ı ! 0. �

Letting �a 2 Br be the solution of (2.15)–(2.16), we build up the correct approx-
imating function as W D PUı;a;�a . We need to control the approximation rate
of W for ı and � small enough by estimating the error term

R D �W C 4�N

 
eu0CWR
� e

u0CW
�

1

j�j

!

C
64�2N 2�2

�
eu0CW

R
� e

2u0C2W .
R
� e

u0CW /�1 � e2u0C2W
��R

� e
u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W
�2 :
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In order to simplify the notation, we set Uı;a D Uı;a;�a , ca D ca;�a , ‚ı;a D
‚ı;a;�a , and fa D fa;�a , and omit the subscript a in �a. We have the following
crucial result.

THEOREM 2.3. Let jaj < �
2

and set

� D �2ı�
2
nC1 max

�
1;
jaj

ı

� 2n
nC1

:(2.24)

The following expansions hold:

(2.25)

�W C 4�N

 
eu0CWR
� e

u0CW
�

1

j�j

!
D j� 0.´/j2eUı;a

�

"
e2ReŒca´nC1�

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da
� 1

#
C j� 0.´/j2eUı;aO.ı2j´j C ı2jaj

1
nC1 C ı2jcaj C ı

2nC3
nC1 /CO.ı2/

and

64�2N 2�2
�
eu0CW

R
� e

2u0C2W .
R
� e

u0CW /�1 � e2u0C2W
�

.
R
� e

u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W /2

D j� 0.´/j2eUı;a

"
8.nC 1/2�2

�j˛aj
2
nC1 ı

2
nC1

Ea;ı � �
2
j� 0.´/j2eUı;a

#

�
�
1CO.jcajj´j

nC1
C �/C o.1/

�
(2.26)

as �; ı ! 0, where ˛a, Fa, Ga, Da, and Ea;ı are given in (2.30), (2.34), (2.35),
(2.43), and (2.47), respectively.

PROOF. Recall that (2.15) implies the validity of (2.17), which, combined with
Lemma 2.2, yields to the following crucial estimate:

W D Uı;a � log.8ı2/C log j� 0.´/j2 � u0

C
2�

j�j

nX
kD0

jakj
2
C 2ReŒca´nC1�C‚ı;a C 2ı

2fa CO.ı
4/

(2.27)
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in C.�/ as ı ! 0, uniformly for jaj < �. Since by Lemma A.1 � D qnC1

in ��1.B�.0//, through the change of variables y D q.´/ in ��1.B�.0// D
q�1.B�1=.nC1/.0//, by (2.27) we have that

8ı2

e
2�
j�j

Pn
kD0 jak j

2C‚ı;aC2ı2fa.0/

Z
��1.B�.0//

eu0CW

D

Z
q�1.B

�1=.nC1/
.0//

j� 0.´/j2eUı;aC2ReŒca´nC1�CO.ı2j´jCı4/

D

Z
B
�1=.nC1/

.0/

8.nC 1/2ı2jyj2n

.ı2 C jynC1 � aj2/2
e2ReŒca.q�1.y//nC1�CO.ı2jyjCı4/:

(2.28)

Since q�1.y/ � y at y D 0, the following Taylor expansion holds:

(2.29) eca.q
�1.y//nC1

D 1C cay
nC1

C1X
kD0

˛kay
k

in B�1=.nC1/.0/, where the coefficients ˛ka depend on a through � D �a. In partic-
ular, we have that ˛a WD ˛0a takes the form

˛a D lim
´!0

´nC1

�.´/
6D 0:(2.30)

By (2.29) we then deduce that

e2ReŒca.q�1.y//nC1� D
ˇ̌
eca.q

�1.y//nC1
ˇ̌2

D 1C 2Re
�
cay

nC1
C1X
kD0

˛kay
k

�

C jcaj
2
jyj2nC2

C1X
k;sD0

˛ka˛
s
ay
kys:

(2.31)

Since

nX
jD0

�
ei

2�
nC1

j
�k
D

nX
jD0

ei
2�
nC1

j
D 0
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for all integers k … .nC 1/N, by the change of variables y ! ei
2�
nC1

jy we have
that

Z
B
�1=.nC1/

.0/

jyjmyk

.ı2 C jynC1 � aj2/2

D

nX
jD0

Z
B
�1=.nC1/

.0/\Cj

jyjmyk

.ı2 C jynC1 � aj2/2

D

Z
B
�1=.nC1/

.0/\C0

jyjmyk

.ı2 C jynC1 � aj2/2

nX
jD0

�
ei

2�
nC1

j
�k
D 0

(2.32)

for all m � 0 and integers k … .n C 1/N, where Cj is the sector of the plane

between the angles ei
2�
nC1

j and ei
2�
nC1

.jC1/.
Formula (2.32) tells us that many terms of the expansion (2.31) will give no

contribution when inserted in an integral formula like (2.28). Using the notation
� � � to denote such terms, we can rewrite (2.31) as

(2.33)

e2ReŒca.q�1.y//nC1�

D 1C 2Re
�
ca

C1X
kD0

˛k.nC1/a y.kC1/.nC1/
�
C jcaj

2
jyj2nC2

C1X
kD0

j˛ka j
2
jyj2k

C 2jcaj
2
jyj2nC2 Re

� C1X
kD0

C1X
mD1

˛ka˛
kCm.nC1/
a jyj2kym.nC1/

�
C � � � :

Setting

Fa.y/ D

C1X
kD0

˛k.nC1/a ykC1;(2.34)

Ga.y/ D jyj
2

�
2

C1X
kD0

C1X
mD1

˛ka˛
kCm.nC1/
a jyj

2k
nC1ym(2.35)

C

C1X
kD0

j˛ka j
2
jyj

2k
nC1

�
;
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through the change of variables y ! ynC1 we can rewrite (2.28) as

(2.36)

8ı2

.nC 1/e
2�
j�j

Pn
kD0 jak j

2C‚ı;aC2ı2fa.0/

Z
��1.B�.0//

eu0CW

D

Z
B�.0/

8ı2

.ı2 C jy � aj2/2

�
1C ReŒ2caFa.y/C jcaj2Ga.y/�

CO.ı2jyj
1
nC1 C ı4/

�
D 8� �

Z
R2nB�.0/

8ı2

jyj4
C

Z
B�.0/

8ı2

.ı2 C jy � aj2/2
ReŒ2caFa.y/C jcaj2Ga.y/�

CO.ı2jaj
1
nC1 C ı

2nC3
nC1 /:

Since jaj < �
2

and F is a holomorphic function in B�
2
.a/ � B�.0/, we can

expand Fa in a power series around y D a:

Fa.y/ D

1X
kD0

F
.k/
a .a/

kŠ
.y � a/k;(2.37)

and then get Z
B�.0/

8ı2

.ı2 C jy � aj2/2
ReŒcaFa.y/�

D

Z
B�=2.a/

8ı2

.ı2 C jy � aj2/2
ReŒcaFa.y/�CO.ı2jcaj/

D 8� ReŒcaFa.a/�CO.ı2jcaj/

(2.38)

in view of Z
B�=2.a/

.y � a/k

.ı2 C jy � aj2/2
D 0

for all integers k � 1. The map ReGa is just C 2C2=.nC1/.B�.0// and can be
expanded up to second order in y D a:

(2.39)
ReGa.y/ D ReGa.a/C hr ReGa.a/; y � ai

C
1

2
hD2 ReGa.a/.y � a/; y � ai CO.jy � aj

2.nC2/
nC1 /
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for y 2 B�
2
.a/, yielding to

(2.40)

jcaj
2

Z
B�.0/

8ı2

.ı2 C jy � aj2/2
ReGa.y/

D jcaj
2

Z
B�=2.a/

8ı2

.ı2 C jy � aj2/2
ReGa.y/CO.ı2jcaj2/

D 8�jcaj
2 ReGa.a/

C
jcaj

2

4
�ReGa.a/

Z
B�=2.a/

8ı2

.ı2 C jy � aj2/2
jy � aj2 CO.ı2jcaj

2/

D 8�jcaj
2 ReGa.a/C 4�jcaj2�ReGa.a/ı2 log

1

ı
CO.ı2jcaj

2/

in view ofZ
B�=2.a/

.y � a/1

.ı2 C jy � aj2/2
D

Z
B�=2.a/

.y � a/2

.ı2 C jy � aj2/2
D

Z
B�=2.a/

.y � a/1.y � a2/

.ı2 C jy � aj2/2
D 0;

Z
B�=2.a/

.y � a/21
.ı2 C jy � aj2/2

D

Z
B�=2.a/

.y � a/22
.ı2 C jy � aj2/2

D
1

2

Z
B�=2.a/

jy � aj2

.ı2 C jy � aj2/2
:

By inserting (2.38) and (2.40) into (2.36), we get that

8ı2

.nC 1/e
2�
j�j

Pn
kD0 jak j

2C‚ı;aC2ı2fa.0/

Z
��1.B�.0//

eu0CW

D 8� �

Z
R2nB�.0/

8ı2

jyj4
C 16� ReŒcaFa.a/�C 8�jcaj2 ReGa.a/

C 4�jcaj
2�ReGa.a/ı2 log

1

ı
CO.ı2jaj

1
nC1 C ı2jcaj C ı

2nC3
nC1 /:

(2.41)

By Lemma 2.2, (2.41), and Lemma A.1 we get that

ı2

�.nC 1/e
2�
j�j

Pn
kD0 jak j

2C‚ı;aC2ı2fa.0/

Z
�

eu0CW

D 1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C
1

2
jcaj

2�ReGa.a/ı2 log
1

ı

C
ı2

nC 1
Da CO

�
ı2jaj

1
nC1 C ı2jcaj C ı

2nC3
nC1

�
;

(2.42)
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where

�Da D

Z
�n��1.B�.0//

eu0C8�
Pn
kD0G.´;ak/�

2�
j�j

Pn
kD0 jak j

2

�

Z
R2nB�.0/

nC 1

jyj4
:

(2.43)

In view of (2.4) and
R
� j�

0.´/j2eUı;a D 8�.nC 1/CO.ı2/, by (2.27) and (2.42)
we have that

�W C 4�N

 
eu0CWR
� e

u0CW
�

1

j�j

!

D j� 0.´/j2eUı;a

"
4�N

e2ReŒca´nC1�CO.ı2j´jCı4/

8ı2e�
2�
j�j

Pn
kD0 jak j

2�‚ı;a�2ı2fa.0/
R
� e

u0CW
� 1

#

C
1

j�j

�Z
�

j� 0.´/j2eUı;a � 4�N

�

D j� 0.´/j2eUı;a

"
e2ReŒca´nC1�

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da
� 1

#
C j� 0.´/j2eUı;aO

�
ı2j´j C ı2jaj

1
nC1 C ı2jcaj C ı

2nC3
nC1

�
CO.ı2/

as ı ! 0, yielding to the validity of (2.25).
Introducing the notation B.w/ D 16�N.

R
� e

2u0C2w/.
R
� e

u0Cw/�2, we can
write the following expansion:

(2.44)
16�N

R
� e

2u0C2W

.
R
� e

u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W /2
D

B.W /

4
CO.�2B2.W //:

Arguing as for (2.42), the change of variables y D �.´/ yields

64ı4C
2
nC1

e
4�
j�j

Pn
kD0 jak j

2C2‚ı;a

Z
�

e2u0C2W(2.45)

D ı
2
nC1

Z
��1.B�.0//

j� 0.´/j4e2Uı;aCO.jcajj´j
nC1Cı2/

CO.ı4C
2
nC1 /

D 64.nC 1/3j˛aj
� 2
nC1

�

Z
B�.0/

ı4C
2
nC1 jyj

2n
nC1

.ı2 C jy � aj2/4

�
1CO.jcajjyj C ı

2
C jyj

1
nC1 /

�
CO.ı4C

2
nC1 / D
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D 64.nC 1/3j˛aj
� 2
nC1

�

Z
B�.0/

ı4C
2
nC1 jy C aj

2n
nC1

.ı2 C jyj2/4

�
1CO.ı2 C jyj

1
nC1 C jaj

1
nC1 /

�
CO.ı4C

2
nC1 /

in view of

j� 0.´/j2 D .nC 1/2j˛aj
�2
j´j2n.1CO.j´j//

D .nC 1/2j˛aj
� 2
nC1 j�.´/j

2n
nC1 .1CO.j�.´/j

1
nC1 //;

(2.46)

where ˛a is given by (2.30). We have thatZ
B�.0/

ı4C
2
nC1 jy C aj

2n
nC1

.ı2 C jyj2/4
D

Z
R2

jy C a
ı
j
2n
nC1

.1C jyj2/4
CO.ı4C

2
nC1 /

if jaj D O.ı/, andZ
B�.0/

ı4C
2
nC1 jy C aj

2n
nC1

.ı2 C jyj2/4
D

�
jaj

ı

� 2n
nC1

Z
R2

1

.1C jyj2/4

�
1CO

�
ı

jaj
C ı6

��

if jaj � ı, where in the latter we have used the expansion

jy C aj
2n
nC1 D jaj

2n
nC1 CO.jaj

n�1
nC1 jyj C jyj

2n
nC1 /:

Setting

Ea;ı WD

8̂<̂
:
R

R2
jyCa

ı
j
2n
nC1

.1Cjyj2/4
if jaj D O.ı/

�
3

�
jaj
ı

� 2n
nC1

if jaj � ı;

(2.47)

by (2.45) we get that

(2.48)
64ı4C

2
nC1

e
4�
j�j

Pn
kD0 jak j

2C2‚ı;a

Z
�

e2u0C2W D

64.nC 1/3j˛aj
� 2
nC1 .1C o.1//Ea;ı :

Since by a combination of (2.42) and (2.48) for B.W / we have that

(2.49) B.W / D 32
.nC 1/2

�ı
2
nC1

j˛aj
� 2
nC1 .1C o.1//Ea;ı
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in view of (2.4); by (2.44) and (2.49) we get that

(2.50)
16�N

R
� e

2u0C2W

.
R
� e

u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W /2
D

8
.nC 1/2

�ı
2
nC1

j˛aj
� 2
nC1 .1C o.1/CO.�//Ea;ı ;

where � is given by (2.24). As we have already seen in deriving (2.25), by (2.27)
we have that

eu0CWR
� e

u0CW
D
j� 0.´/j2eUı;a

4�N

�
1CO.jcajj´j

nC1
C jcajjaj C ı

2
jlog ıj/

�
;(2.51)

and in a similar way one can show that

(2.52)
64.nC 1/3

ı
2
nC1

j˛aj
� 2
nC1

e2u0C2WR
� e

2u0C2W
Ea;ı D

j� 0.´/j4e2Uı;a
�
1CO.jcajj´j

nC1/C o.1/
�

in view of (2.48). In conclusion, by (2.50)–(2.52) we have for the �2-term inR that

64�2N 2�2
R
� e

2u0C2W

.
R
� e

u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W /2

�

 
eu0CWR
� e

u0CW
�

e2u0C2WR
� e

2u0C2W

!

D j� 0.´/j2eUı;a

"
8.nC 1/2�2

�j˛aj
2
nC1 ı

2
nC1

Ea;ı � �
2
j� 0.´/j2eUı;a

#
�
�
1CO.jcajj´j

nC1
C �/C o.1/

�
in view of (2.4), proving the validity of (2.26). This completes the proof. �

Let us introduce the following weighted norm:

(2.53) khk� D sup
´2�

.ı2 C j�.´/ � aj2/1C


2

ı
 .j� 0.´/j2 C ı
2n
nC1 /

jh.´/j

for any h 2 L1.�/, where 0 < 
 < 1 is a small fixed constant. We have the
following:

COROLLARY 2.4. There exist positive constants ı0, �0, and C0 such that

(2.54) kRk� � C0
�
ıjcaj C ı

2�

C ı

2
nC1
�

jaj2C
 C jcajjaj

nC2
nC1 C �C �2

�
for any ı 2 .0; ı0/ and � 2 .0; �0/, where � is given by (2.24).
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PROOF. Since

e2ReŒca´nC1�

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da
� 1

D
e2ReŒca´nC1� � 1

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da

� 2ReŒcaFa.a/�CO.jcaj2jaj2 C ı2jlog ıj/

D 2ReŒca.´nC1 � ˛aa/�CO.jcaj2j´j2nC2 C jcajjaj2 C ı2jlog ıj/

D 2ReŒ˛aca.�.´/ � a/�CO.jcajj´jnC2 C jcajjaj2 C ı2jlog ıj/;

by Theorem 2.3 we deduce that

R D j� 0.´/j2eUı;a

�O
�
jcajj�.´/ � aj C jcajj´j

nC2
C jcajjaj

2
C ı2jlog ıj C �C �2

�
C �2j� 0.´/j4e2Uı;a.1CO.�//CO.ı2/

as ı ! 0, where � is given in (2.24). Given the estimates j´j D O.j�.´/j1=.nC1//
and j� 0.´/j2 D O.j�.´/j2n=.nC1// near 0, by setting y D �.´/ in ��1.B�.0// we
get that

kRk� D O

 
sup

y2B�.0/

ı2�
 Œjcajjy � aj C jcajjyj
nC2
nC1 C jcajjaj

2 C ı2jlog ıj C �C �2�

.ı2 C jy � aj2/1�


2

!

CO

 
sup

y2B�.0/

�2ı4�
 jyj
2n
nC1 Œ1CO.�/�

.ı2 C jy � aj2/3�


2

!

CO

 
sup

y2B�.0/

ı2�
 .ı2 C jy � aj2/1C
=2

.jyj
2n
nC1 C ı

2n
nC1 /

!
CO.ı2�
 /

D O

 
sup

y2B2�=ı.0/

ıjcajjyj C ı
nC2
nC1 jcajjyj

nC2
nC1 C jcajjaj

nC2
nC1 C ı2jlog ıj C �C �2

.1C jyj2/1�


2

!

CO

 
sup

y2B2�=ı.0/

�2ı�2.ı
2n
nC1 jyj

2n
nC1 C jaj

2n
nC1 /Œ1CO.�/�

.1C jyj2/3�


2

!

CO

 
sup

y2B�=ı.0/

ı
2
nC1
�
 .ı2C
 C jaj2C
 C ı2C
 jyj2C
 /

.jyj
2n
nC1 C 1/

!
CO.ı2�
 /

D O
�
ıjcaj C ı

2�

C ı

2
nC1
�

jaj2C
 C jcajjaj

nC2
nC1 C �C �2

�
as claimed. �
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3 The Reduced Equations
As we will discuss precisely in the next section, it will be crucial to study the

system
R
�RPZ0 D 0 and

R
�RPZ D 0, where PZ0 and PZ are the unique

solutions with zero average of �PZ0 D �Z0 � 1
j�j

R
��Z0 and �PZ D �Z �

1
j�j

R
��Z in �. Here the functions Z0 and Z are defined as follows:

Z0.´/ D
ı2 � j�.´/ � aj2

ı2 C j�.´/ � aj2
and Z.´/ D

ı.�.´/ � a/

ı2 C j�.´/ � aj2

and are (not doubly periodic) solutions of ��� D j� 0.´/j2eUı;a;�� in�. Through
the changes of variable y D �.´/ and y ! y�a

ı
, notice thatZ

�

�Z0 D �

Z
��1.B�.0//

j� 0.´/j2eUı;a;�Z0 CO.ı
2/

D �8.nC 1/ı2
Z

B�.0/

ı2 � jy � aj2

.ı2 C jy � aj2/3
CO.ı2/

D �8.nC 1/

Z
B�=ı.0/

1 � jyj2

.1C jyj2/3
CO.ı2/ D O.ı2/

(3.1)

and Z
�

�Z D �

Z
��1.B�.0//

j� 0.´/j2eUı;a;�Z CO.ı3/

D �8.nC 1/ı3
Z

B�.0/

y � a

.ı2 C jy � aj2/3
CO.ı3/

D �8.nC 1/

Z
B�=ı.0/

y

.1C jyj2/3
CO.ı3/ D O.ı3/

(3.2)

in view of Z
R2

1 � jyj2

.1C jyj2/3
D 0;

Z
R2

y

.1C jyj2/3
D 0:

By (3.1)–(3.2) the following expansions, useful in what follows, are easily de-
duced:

(3.3) PZ0 D Z0 �
1

j�j

Z
�

Z0 CO.ı
2/; PZ D Z �

1

j�j

Z
�

Z CO.ı/

in C.�/, uniformly in jaj < � and � 2 Br .
Notice that up to now there is no relation between a and ı. However, as we will

show in Remarks 3.2 and 3.3, the range jaj � ı is not compatible with solving
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simultaneously
R
�RPZ0 D 0 and

R
�RPZ D 0. Hence, we shall restrict our

attention to the case a D O.ı/ in the following sections, so that we can assume
that � D �2ı�2=.nC1/ in (2.24) and

Ea;ı D

Z
R2

jy C a
ı
j
2n
nC1

.1C jyj2/4
in (2.47):

We have the following:

PROPOSITION 3.1. Assume jaj � C0ı for some C0 > 0. The following expansions
hold as ı; �! 0:Z

�

RPZ0 D �16�.nC 1/j˛aj
2
jcaj

2ı2 log
1

ı
� 8�ı2Da

C 64.nC 1/3j˛aj
� 2
nC1�

Z
R2

.jyj2 � 1/jy C a
ı
j
2n
nC1

.1C jyj2/5

C o.ı2 C �/CO.ı2jcaj C jaj
1
nC1 ı2j log ıj C �2/

(3.4)

and Z
�

RPZ D 4�.nC 1/ı˛aca � 64.nC 1/
3
j˛aj
� 2
nC1�

Z
R2

jy C a
ı
j
2n
nC1y

.1C jyj2/5
(3.5)

C o.ıjcaj C ıjaj C �C ı
2/CO.�2/;

where � D �2ı�2=.nC1/ and ca D ca;�a , ˛a, and Da are given by (2.16), (2.30),
and (2.43), respectively.

PROOF. Through the changes of variable y D q.´/ in ��1.B�.0//, y ! ynC1,
and y ! y�a

ı
, we get that

Z
�

ı
 .j� 0.´/j2 C ı
2n
nC1 /

.ı2 C j�.´/ � aj2/1C


2

(3.6)

D

Z
��1.B�.0//

ı
 .j� 0.´/j2 C ı
2n
nC1 /

.ı2 C j�.´/ � aj2/1C


2

CO.ı
 /

D O

� Z
B
�1=.nC1/

.0/

ı
 .jyj2n C ı
2n
nC1 /

.ı2 C jynC1 � aj2/1C


2

�
CO.ı
 / D
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D O

� Z
B�.0/

ı
 .1C ı
2n
nC1 jyj�

2n
nC1 /

.ı2 C jy � aj2/1C


2

�
CO.ı
 /

D O

� Z
B�=ı.0/

1C jy C a
ı
j
� 2n
nC1

.1C jyj2/1C


2

�
CO.ı
 / D O.1/

in view of

Z
B�=ı.0/

jy C a
ı
j
� 2n
nC1

.1C jyj2/1C


2

�

Z
B1.0/

jyj�
2n
nC1 C

Z
R2

1

.1C jyj2/1C


2

< C1:

Hence, by Corollary 2.4 we get that

Z
�

jRj D O
�
ıjcaj C ı

2�

C ı

2
nC1
�

jaj2C
 C jcajjaj

nC2
nC1 C �C �2

�
:(3.7)

By (3.3) and (3.7) we deduce that

Z
�

RPZ0 D

Z
�

R.Z0 C 1/C o.ı
2/CO.�ı2 C �2ı2/(3.8)

in view of
R
�R D 0. Since by the Hölder inequality

Z
�

jZ0 C 1j D

Z
��1.B�.0//

2ı2

ı2 C j�.´/ � aj2
CO.ı2/

D O

� Z
B�.0/

jyj�
2n
nC1

ı2

ı2 C jy � aj2

�
CO.ı2/

D O

�
ı

1
nC1

Z
B�.0/

1

jyj
2n
nC1 jy � aj

1
nC1

�
CO.ı2/

D O

�
ı

1
nC1

� Z
B�.0/

1

jyj
2nC1
nC1

� 2n
2nC1

� Z
B�.0/

1

jy � aj
2nC1
nC1

� 1
2nC1

�
CO.ı2/

D O.ı
1
nC1 /;
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by (2.25) we have that

(3.9)

Z
�

.Z0 C 1/

�
�W C 4�N

�
eu0CWR
� e

u0CW
�

1

j�j

��
CO.ı2jcaj/C o.ı

2/

D

Z
��1.B�.0//

j� 0.´/j2eUı;a.Z0 C 1/

�

�
e2ReŒca´nC1�

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da
� 1

�

D

Z
B
�1=.nC1/

.0/

16.nC 1/2ı4jyj2n

.ı2 C jynC1 � aj2/3
�

�

�
e2ReŒca.q�1.y//nC1�

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da
� 1

�
:

We have that the expansion (2.33) still holds in this context, where the ellipses
( � � � ) stand for terms that give no contribution to the integral term of (3.9), as was
the case for formula (2.32):Z

B
�1=.nC1/

.0/

jyjmyk

.ı2 C jynC1 � aj2/3
D 0(3.10)

for all m � 0 and integer k … .nC 1/N. Hence, through the changes of variables
y ! ynC1 and y ! y�a

ı
, by the symmetries we have thatZ

B
�1=.nC1/

.0/

16.nC 1/2ı4jyj2n

.ı2 C jynC1 � aj2/3
e2ReŒca.q�1.y//nC1�

D

Z
B�.0/

16.nC 1/ı4

.ı2 C jy � aj2/3
ReŒ1C 2caFa.y/C jcaj2Ga.y/�

D

Z
B�.a/

16.nC 1/ı4

.ı2 C jy � aj2/3

�
1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/

C
1

4
jcaj

2�ReGa.a/jy � aj2 CO.jy � aj
2.nC2/
nC1 /

�
CO.ı4/

D 8�.nC 1/

�
1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/

C
1

4
jcaj

2�ReGa.a/ı2
�

CO.ı
2.nC2/
nC1 /

(3.11)
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in view of (2.37), (2.39), and

Z
R2

dy

.1C jyj2/3
D

Z
R2

jyj2

.1C jyj2/3
dy D

�

2
;

where Fa and Ga are given by (2.34) and (2.35), respectively. By (3.11) we can
rewrite (3.9) as

(3.12)

Z
�

.Z0 C 1/

"
�W C 4�N

 
eu0CWR
� e

u0CW
�

1

j�j

!#
D 8�.nC 1/

�

"
1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1

4
jcaj

2�ReGa.a/ı2

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da
� 1

#

CO.ı2jcaj/C o.ı
2/

D �16�.nC 1/j˛aj
2
jcaj

2ı2 log
1

ı
� 8�ı2Da CO.ı

2
jcaj C jaj

1
nC1 ı2jlog ıj/C o.ı2/

in view of �ReGa.a/ D 4j˛aj2 CO.jaj
1
nC1 /. By (2.26) we also deduce that

Z
�

64�2N 2�2.Z0 C 1/.e
u0CW

R
� e

2u0C2W .
R
� e

u0CW /�1 � e2u0C2W /�R
� e

u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W
�2

D

Z
��1.B�.0//

j� 0.´/j2eUı;a.Z0 C 1/

"
8.nC 1/2�2

�j˛aj
2
nC1 ı

2
nC1

Ea;ı � �
2
j� 0.´/j2eUı;a

#

�
�
1CO.jcajj´j

nC1
C �/C o.1/

�
CO.ı4�/

D
128.nC 1/3�2

�j˛aj
2
nC1 ı

2
nC1

Ea;ı

Z
B�.0/

ı4

.ı2 C jy � aj2/3

�
1CO.jcajjyj C �/C o.1/

�
� 128.nC 1/3�2j˛aj

� 2
nC1

�

Z
B�.0/

ı6jyj
2n
nC1

.ı2 C jy � aj2/5

�
1CO.jyj

1
nC1 C �/C o.1/

�
CO.ı4�/ D
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D 64.nC 1/3j˛aj
� 2
nC1 �2ı�

2
nC1Ea;ı

� 128.nC 1/3�2j˛aj
� 2
nC1

�

Z
B�.0/

ı6jy C aj
2n
nC1

.ı2 C jyj2/5

�
1CO.jyj

1
nC1 C �/C o.1/

�
C o.�C ı2/CO.�2/

in view of (2.46). Since

ı
2
nC1

Z
B�.0/

ı6jy C aj
2n
nC1

.ı2 C jyj2/5

�
1CO.jyj

1
nC1 C �/C o.1/

�
D

Z
R2

jy C a
ı
j
2n
nC1

.1C jyj2/5
C o.1/CO.�/

when jaj D O.ı/, we then have that

(3.13)
Z
�

64�2N 2�2.Z0 C 1/
�
eu0CW

R
� e

2u0C2W .
R
� e

u0CW /�1 � e2u0C2W
�

�R
� e

u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W
�2 D

64.nC 1/3j˛aj
� 2
nC1�

Z
R2

.jyj2 � 1/jy C a
ı
j
2n
nC1

.1C jyj2/5
C o.�C ı2/CO.�2/

in view of (2.47). Inserting (3.12) and (3.13) into (3.8), we get the validity of (3.4).

Remark 3.2. Notice that in the range jaj � ı we find that

ı
2
nC1

Z
B�.0/

ı6jy C aj
2n
nC1

.ı2 C jyj2/5

"
1CO

�
jyj

1
nC1 C �

�
jaj

ı

� 2n
nC1

�
C o.1/

#
D

�

4

�
jaj

ı

� 2n
nC1

�
1C o.1/CO

�
�

�
jaj

ı

� 2n
nC1

��
in view of the expansion

jy C aj
2n
nC1 D jaj

2n
nC1 CO

�
jaj

n�1
nC1 jyj C jyj

2n
nC1

�
;

so that the main order of
R
�RPZ0 in this range is essentially given by

�16�.nC 1/j˛aj
2
jcaj

2ı2 log
1

ı
� 8�ı2Da �

32�

3
.nC 1/3j˛aj

� 2
nC1�

�
jaj

ı

� 2n
nC1

:
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By (3.3) and (3.7) we deduce thatZ
�

RPZ D

Z
�

RZ C o.ıjcaj C ıjaj C �C ı
2/CO.�2ı/(3.14)

in view of
R
�R D 0. Since as before

Z
�

jZj D

Z
��1.B�.0//

ıj�.´/ � aj

ı2 C j�.´/ � aj2
CO.ı/

D O

� Z
B�.0/

jyj�
2n
nC1

ıjy � aj

ı2 C jy � aj2

�
CO.ı/

D O

�
ı

1
nC1

Z
B�.0/

1

jyj
2n
nC1 jy � aj

1
nC1

�
CO.ı/ D O.ı

1
nC1 /;

by (2.25) we have that

(3.15)

Z
�

Z

�
�W C 4�N

�
eu0CWR
� e

u0CW
�

1

j�j

��
CO.ı2jcaj/C o.ı

2/

D

Z
��1.B�.0//

j� 0.´/j2eUı;aZ

�

"
e2ReŒca´nC1�

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da
� 1

#

D

Z
B
�1=.nC1/

.0/

8.nC 1/2ı3jyj2n.ynC1 � a/

.ı2 C jynC1 � aj2/3

�
e2ReŒca.q�1.y//nC1�

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da

�

Z
B�.0/

8.nC 1/ı3.y � a/

.ı2 C jy � aj2/3

D

R
B
�1=.nC1/

.0/
8.nC1/2ı3jyj2n.ynC1�a/

.ı2CjynC1�aj2/3
e2ReŒca.q�1.y//nC1�

1C 2ReŒcaFa.a/�C jcaj2 ReGa.a/C 1
2
jcaj2�ReGa.a/ı2 log 1

ı
C

ı2

nC1
Da

in view of Z
B�.a/

8.nC 1/ı3.y � a/

.ı2 C jy � aj2/3
D 0:
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Since expansion (2.33) is still valid in view of (3.10), through the changes of vari-
ables y ! ynC1 and y ! y�a

ı
, by the symmetries we have thatZ

B
�1=.nC1/

.0/

8.nC 1/2ı3jyj2n.ynC1 � a/

.ı2 C jynC1 � aj2/3
e2ReŒca.q�1.y//nC1�

D

Z
B�.0/

8.nC 1/ı3.y � a/

.ı2 C jy � aj2/3
ReŒ1C 2caFa.y/C jcaj2Ga.y/�

D

Z
B�.a/

8.nC 1/ı3

.ı2 C jy � aj2/3

�
caF 0a.a/jy � aj

2

C
jcaj

2

2
.@1 C i@2/ReGa.a/jy � aj2 CO.jcaj2jy � aj3/

�
CO.ı3/

D 4�.nC 1/ı

�
caF 0a.a/C

1

2
jcaj

2.@1 C i@2/ReGa.a/
�

CO.ı2jcaj
2
C ı3/

(3.16)

in view of (2.37), (2.39), and
R

R2
jyj2

.1Cjyj2/3
dy D �

2
, where Fa and Ga are given

by (2.34) and (2.35), respectively. By (3.16) we can rewrite (3.15) asZ
�

Z

�
�W C 4�N

�
eu0CWR
� e

u0CW
�

1

j�j

��
D 4�.nC 1/ı

�
caF 0a.a/C

1

2
jcaj

2.@1 C i@2/ReGa.a/
�

C o.ıjcaj C ı
2/

D 4�.nC 1/ı˛aca C o.ıjcaj C ı
2/

(3.17)

in view of F 0a.a/ D ˛a CO.jaj/ and 1
2
.@1C i@2/ReGa.a/ D O.jaj/. Regarding

the second term of R, by (2.26) we have thatZ
�

64�2N 2�2Z
�
eu0CW

R
� e

2u0C2W .
R
� e

u0CW /�1 � e2u0C2W
�

�R
� e

u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W
�2

D

Z
��1.B�.0//

j� 0.´/j2eUı;aZ

"
8.nC 1/2�2

�j˛aj
2
nC1 ı

2
nC1

Ea;ı � �
2
j� 0.´/j2eUı;a

#

�
�
1CO.jcajj´j

nC1
C �/C o.1/

�
CO.ı3�/ D
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D
64.nC 1/3�2

�j˛aj
2
nC1 ı

2
nC1

Ea;ı

Z
B�.0/

ı3.y � a/

.ı2 C jy � aj2/3
dyŒ1CO.jcajjyj C �/C o.1/�

� 64.nC 1/3�2j˛aj
� 2
nC1

�

Z
B�.0/

ı5jyj
2n
nC1 .y � a/

.ı2 C jy � aj2/5

�
1CO.jyj

1
nC1 C �/C o.1/

�
CO.ı3�/

and then

(3.18)
Z
�

64�2N 2�2Z
�
eu0CW

R
� e

2u0C2W .
R
� e

u0CW /�1 � e2u0C2W
�

.
R
� e

u0CW C

q
.
R
� e

u0CW /2 � 16�N�2
R
� e

2u0C2W /2
D

� 64.nC 1/3j˛aj
� 2
nC1�

Z
R2

jy C a
ı
j
2n
nC1y

.1C jyj2/5
C o.�/CO.�2/;

in view of (2.46) andZ
B�.0/

ı3.y � a/

.ı2 C jy � aj2/3
dy D

Z
B�.a/

ı3.y � a/

.ı2 C jy � aj2/3
dy CO.ı3/ D O.ı3/:

Inserting (3.17) and (3.18) into (3.14), we get the validity of (3.5). �

Remark 3.3. Since for jaj � ı and n > 1

ı
2
nC1

Z
B�.0/

ı5jyj
2n
nC1 .y � a/

.ı2 C jy � aj2/5
D ı

2
nC1

Z
B�.0/

ı5jy C aj
2n
nC1y

.ı2 C jyj2/5
C o.1/

D
�n

12.nC 1/

�
jaj

ı

�� 2
nC1 a

ı
Œ1C o.1/�

in view of Z
R2

jyj2

.1C jyj2/5
D

Z
R2

1

.1C jyj2/4
�

Z
R2

1

.1C jyj2/5
D
�

12

and the expansion

jy C aj
2n
nC1 D jaj

2n
nC1 C

n

nC 1
jaj�

2
nC1 .ay C ay/CO.jaj�

2
nC1 jyj2 C jyj

2n
nC1 /;

notice that the main order of
R
�RPZ in this range is essentially given by

4�.nC 1/ı˛aca �
16

3
�n.nC 1/2�2ı�

2
nC1 j˛aj

� 2
nC1

�
jaj

ı

�� 2
nC1 a

ı
:
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Since ˛a is uniformly away from zero, the vanishing of
R
�RPZ, which is equi-

valent to having

�2ı�
2
nC1

�
jaj

ı

� 2n
nC1

� ˛acaa

is generally not compatible in the range jaj � ı with the vanishing of
R
�RPZ0

in view of Remark 3.2, which can take place only if c0 D 0 (in which case ca � a).
Indeed, the vanishing of

R
�RPZ and

R
�RPZ0 in the range jaj � ı implies the

contradiction jaj2 � ı2. This explains why we don’t consider the case jaj � ı.

4 Proof of the Main Results
In the previous section, we have built up an approximating function W D

PUı;a;�a . We will now look for solutions w of the form w D W C �, where
� is a small correcting term. In terms of �, problem (2.2) is equivalent to finding a
doubly periodic solution � of

(4.1) L.�/ D �ŒRCN.�/� in �

with
R
� � D 0. Recalling that B.w/ D 16�N.

R
� e

2u0C2w/.
R
� e

u0Cw/�2, the
nonlinear term N.�/, which is quadratic in �, is given by

(4.2)

N.�/ D 4�N

�
eu0CWC�R
� e

u0CWC�
�

eu0CWR
� e

u0CW
�

eu0CWR
� e

u0CW

�
� �

R
� e

u0CW �R
� e

u0CW

��
C

�
4�N�2B.W C �/

.1C
p
1 � �2B.W C �//2

�
4�N�2B.W /

.1C
p
1 � �2B.W //2

�
4�N�2DB.W /Œ��

.1C
p
1 � �2B.W //2

p
1 � �2B.W /

��
eu0CWC�R
� e

u0CWC�
�

e2.u0CWC�/R
� e

2.u0CWC�/

�
C

4�N�2B.W /�
1C

p
1 � �2B.W /

�2
�

�
eu0CWC�R
� e

u0CWC�
�

eu0CWR
� e

u0CW
�

eu0CWR
� e

u0CW

�
� �

R
� e

u0CW �R
� e

u0CW

��
�

4�N�2B.W /�
1C

p
1 � �2B.W /

�2� e2.u0CWC�/R
� e

2.u0CWC�/
�

e2.u0CW /R
� e

2.u0CW /

� 2
e2.u0CW /R
� e

2.u0CW /

�
� �

R
� e

2.u0CW /�R
� e

2.u0CW /

��

C
4�N�2DB.W /Œ��

.1C
p
1 � �2B.W //2

p
1 � �2B.W /

�

�
eu0CWC�R
� e

u0CWC�
�

eu0CWR
� e

u0CW
�

e2.u0CWC�/R
� e

2.u0CWC�/
C

e2.u0CW /R
� e

2.u0CW /

�
:

The linear operator L is given by

L.�/ D �� CK� C z
.�/;
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where

K D 4�N
eu0CWR
� e

u0CW
C

4�N�2B.W /�
1C

p
1 � �2B.W /

�2� eu0CWR
� e

u0CW
� 2

e2u0C2WR
� e

2u0C2W

�
and

z
.�/ D �4�N
eu0CW

R
� e

u0CW �

.
R
� e

u0CW /2

�
4�N�2B.W /�

1C
p
1 � �2B.W /

�2 eu0CW

.
R
� e

u0CW /2

Z
�

eu0CW �

C
8�N�2B.W /�

1C
p
1 � �2B.W /

�2 e2u0C2W

.
R
� e

2u0C2W /2

Z
�

e2u0C2W �

C 4�N�2
DB.W /Œ��

.1C
p
1 � �2B.W //2

p
1 � �2B.W /

 
eu0CWR
� e

u0CW
�

e2u0C2WR
� e

2u0C2W

!
with

DB.W /Œ�� D 2B.W /

 R
� e

2u0C2W �R
� e

2u0C2W
�

R
� e

u0CW �R
� e

u0CW

!
:

Notice that we can rewrite z
.�/ as

z
.�/ D �K
R
� e

u0CW �R
� e

u0CW

C
8�N�2B.W /

.1C
p
1 � �2B.W //2

p
1 � �2B.W /

 R
� e

2.u0CW /�R
� e

2.u0CW /
�

R
� e

u0CW �R
� e

u0CW

!

�

"
eu0CWR
� e

u0CW
C .

q
1 � �2B.W / � 1/

e2.u0CW /R
� e

2.u0CW /

#

D K
�
�

R
� e

u0CW �R
� e

u0CW

C
�2B.W /

.1C
p
1 � �2B.W //

p
1 � �2B.W /

�R
� e

2.u0CW /�R
� e

2.u0CW /
�

R
� e

u0CW �R
� e

u0CW

��
;

and L as

(4.3) L.�/ D �� CKŒ� C 
.�/�;

where


.�/ D �

R
� e

u0CW �R
� e

u0CW
C

�2B.W /

.1C
p
1 � �2B.W //

p
1 � �2B.W /

�

 R
� e

2.u0CW /�R
� e

2.u0CW /
�

R
� e

u0CW �R
� e

u0CW

!
:
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Let us observe that Z
�

R D

Z
�

L.�/ D

Z
�

N.�/ D 0:

Since the operator L is not invertible, equation L.�/ D �R � N.�/ is not
generally solvable. The linear theory we will develop in Appendix B states that L
has a kernel that is almost generated byPZ0, PZ, andPZ, yielding the following:

PROPOSITION 4.1. Let M0 > 0. There exists �0 > 0 small such that for any
0 < ı � �0, jlog ıj�2 � �0ı2=.nC1/, jaj � M0ı, and h 2 L1.�/ with

R
� h D 0

there is a unique solution �, d0 2 R, and d 2 C to

(4.4)

(
L.�/ D hC d0�PZ0 C ReŒd�PZ� in �R
� � D

R
� ��PZ0 D

R
� ��PZ D 0:

Moreover, there is a constant C > 0 such that

k�k1 � C

�
log

1

ı

�
khk�; jd0j C jd j � Ckhk�:

As a consequence, in Appendix C we will show the following:

PROPOSITION 4.2. Let M0 > 0. There exists �0 > 0 small such that for any
0 < ı � �0, jlog ıj2�2 � �0ı2=.nC1/, and jaj � M0ı, there is a unique solution
� D �.ı; a/, d0 D d0.ı; a/ 2 R, and d D d.ı; a/ 2 C to

(4.5)

(
L.�/ D �ŒRCN.�/�C d0�PZ0 C ReŒd�PZ� in �R
� � D

R
� ��PZ0 D

R
� ��PZ D 0:

Moreover, the map .ı; a/ 7! �.ı; a/ is C 1 with

(4.6) k�k1 � C jlog ıjkRk�:

The function W C � will be a true solution of equation (2.2) once we adjust ı
and a to have d0.ı; a/ D d.ı; a/ D 0. The crucial point is the following:

LEMMA 4.3. Let � D �.ı; a/, d0 D d0.ı; a/ 2 R, and d D d.ı; a/ 2 C be
the solution of (4.5) given by Proposition 4.2. There exists �0 > 0 such that if
0 < ı � �0, jaj � �0, and

(4.7)
Z
�

.L.�/CN.�/CR/PZ0 D 0;

Z
�

.L.�/CN.�/CR/PZ D 0

do hold, then W C � is a solution of (2.2), i.e., d0.ı; a/ D d.ı; a/ D 0.
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PROOF. Since by (3.3) and kZ0k1 C kZk1 � 2 it holds thatZ
�

�PZ0PZ0 D

Z
�

�Z0PZ0

D �

Z
��1.B�.0//

j� 0.´/j2eUı;aZ0.Z0 C 1/CO.ı
2/

D �16.nC 1/ı4
Z

B�.0/

ı2 � jy � aj2

.ı2 C jy � aj2/4
CO.ı2/

D �
8�

3
.nC 1/CO.ı2/

andZ
�

�PZPZ0 D

Z
�

�ZPZ0 D �

Z
��1.B�.0//

j� 0.´/j2eUı;aZ.Z0 C 1/CO.ı
2/

D �

Z
B�.0/

16.nC 1/ı5.y � a/

.ı2 C jy � aj2/4
CO.ı2/

D �

Z
B�.0/

16.nC 1/ı5y

.ı2 C jyj2/4
CO.ı2/ D O.ı2/;

in view of (3.1)–(3.2) andZ
R2

1 � jyj2

.1C jyj2/4
dy D 2

Z
R2

dy

.1C jyj2/4
�

Z
R2

dy

.1C jyj2/3
D
�

6
;

by (4.5) we rewrite the first condition of (4.7) as

0 D d0

Z
�

�PZ0PZ0 C

Z
�

ReŒd�PZPZ0�

D �
8

3
�.nC 1/d0 CO.ı

2
jd0j C ı

2
jd j/:

Similarly, the second condition of (4.7) gives

0 D d0

Z
�

�PZ0PZ0 C

Z
�

ReŒd�PZPZ0�

D �
8

3
�.nC 1/d0 CO.ı

2
jd0j C ı

2
jd j/:
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Similarly, this same condition gives that

0 D d0

Z
�

�PZ0PZ C

Z
�

1

2
Œd�PZ C xd�PZ�PZ

D �

Z
��1.B�.0//

1

2
j� 0.´/j2eUı;a ŒdZ C xd Z�Z CO.ı2jd0j C ıjd j/

D �4.nC 1/ xd

Z
R2

jyj2

.1C jyj2/4
CO.ı2jd0j C ıjd j/

in view of
R
��PZ0PZ D

R
��PZPZ0 D O.ı

2/, (3.2), and (3.3). Hence, (4.7)
can be simply rewritten as d0CO.ı2jd0jCı2jd j/ D 0, dCO.ı2jd0jCıjd j/ D 0.
Summing up the two relations, we then obtain jd0jC jd j D ıO.jd0jC jd j/, which
implies d0 D d D 0. �

Remark 4.4. Since � is sufficiently small, the system (4.7) will be a perturbation
of the reduced equations

R
�RPZ0 D 0,

R
�RPZ D 0. The integral coefficient

in (3.4) is negative for all a
ı

, as we will see in Appendix D. Since ˛a ! ˛0 D

H.0/=.nC 1/ 6D 0 and ca ! c0 as a! 0, we can always exclude the case c0 6D 0.
Indeed, in such a case the equation

R
�RPZ0 D 0 yields �2ı�2=.nC1/ � ı2jlog ıj

as ı ! 0 by means of (3.4) (we are implicitly assuming �2ı�2=.nC1/ ! 0, which
is a natural range for solving the reduced equations through (3.4)–(3.5)). This is
not compatible with

R
�RPZ D 0, which allows at most ı D O.�2ı�2=.nC1// by

means of (3.5).

The last ingredient is an expansion of the system (4.7) with the aid of Proposition
3.1:

PROPOSITION 4.5. Assume c0 D 0 and jaj � M0ı for some M0 > 0. The
following expansions hold as ı ! 0 and � ! 0:

Z
�

.L.�/CN.�/CR/PZ0

D �8�ı2D0

C 64.nC 1/
3nC5
nC1 jH.0/j�

2
nC1 �2ı�

2
nC1

Z
R2

.jyj2 � 1/jy C a
ı
j
2n
nC1

.1C jyj2/5

C o.ı2 C �2ı�
1
nC1 /CO.�4ı�

2
nC1 jlog ıj2 C �8ı�

4
nC1 jlog ıj2/

(4.8)
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and Z
�

.RC L.�/CN.�//PZ

D 4�ı.x‡aC x�xa/

� 64.nC 1/
3nC5
nC1 jH.0/j�

2
nC1 �2ı�

2
nC1

Z
R2

jy C a
ı
j
2n
nC1y

.1C jyj2/5

C o.ı2 C �2ı�
2
nC1 /CO.�4ı�

2
nC1 jlog ıj2 C �8ı�

4
nC1 jlog ıj2/;

(4.9)

where D0 and �;‡ are defined in (1.10) and Lemma A.2, respectively.

PROOF. First, note that from the assumptions and (2.54), we find that kRk� D
O.ı2�
 C � C �2/, where � D �2ı�2=.nC1/. Hence, since j
.�/j D O..1 C

�/k�k1/ in view of (2.49), by (4.6), (B.9), (B.10) and (C.3) we have that

(4.10)

Z
�

.RC L.�/CN.�//PZ0

D

Z
�

RPZ0 CO

�
.1C �/





zL�PZ0 C 1

j�j

Z
�

Z0

�




�

k�k1 C k�k
2
1

�

D

Z
�

RPZ0 C o.ı
2
C �/CO.�2 C �4/

and

(4.11)

Z
�

.RC L.�/CN.�//PZ

D

Z
�

RPZ CO

�
.1C �/





zL�PZ C 1

j�j

Z
�

Z

�




�

k�k1 C k�k
2
1

�

D

Z
�

RPZ C o.ı2 C �/CO.�2 C �4/

in view of PZ0 D O.1/ and PZ D O.1/, where zL.�/ D �� C K�. Since by
Lemma A.2 H.0/ca D �aC‡xaC o.jaj/ as a! 0 in view of c0 D 0, the desired
expansions (4.8)–(4.9) follow by a combination of (3.4)–(3.5) and (4.10)–(4.11).
We have used that ˛a ! ˛0 D H.0/=.nC 1/ as a ! 0 in view of (2.10), where
˛a is given by (2.30), and Da ! D0 as a! 0, where Da is given by (2.43). �
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Thanks to (4.8)–(4.9), the aim is to find .ı.�/; a.�// so that (4.7) hold. To sim-
plify the notation, we denote

'0.ı; a; �/ D

Z
�

.L.�/CN.�/CR/PZ0;

'.ı; a; �/ D

Z
�

.L.�/CN.�/CR/PZ;

and (4.7) reduces to finding a solution of

(4.12) '0.ı.�/; a.�/; �/ D '.ı.�/; a.�/; �/ D 0

for � small. We are now ready to prove our first main result, which clearly implies
the validity of Theorem 1.1 with m D 1.

THEOREM 4.6. Let H0 D H=´nC2, where H is given in (2.6), be a meromorphic
function in � with jH0.´/j2 D eu0C8�.nC1/G.´;0/ (which exists in view of (2.4)
and is unique up to rotations), and �0.´/ D �.

R ´H0.w/dw/�1. Assume that

(4.13)
dnC1H
d´nC1

.0/ D 0

and for some small � > 0

(4.14) D0 WD
1

�

� Z
�n��10 .B�.0//

eu0C8�.nC1/G.´;0/ �

Z
R2nB�.0/

nC 1

jyj4

�
< 0:

If the “nondegeneracy condition”

(4.15) j�j 6D

ˇ̌̌̌
‡ C

n.2nC 3/

nC 1
D0

ˇ̌̌̌
does hold, where � and ‡ are given in Lemma A.2, for � > 0 small there exist
a.�/; ı.�/ > 0 small so that w� D PUı.�/;a.�/;�a.�/ C �.ı.�/; a.�// solves (2.2)
with

4�N
eu0Cw�R
� e

u0Cw�
C
64�2N 2�2

�
eu0Cw�

R
� e

2u0C2w� .
R
� e

u0Cw� /�1 � e2u0C2w�
�

.
R
� e

u0Cw� C

q
.
R
� e

u0Cw� /2 � 16�N�2
R
� e

2u0C2w� /2

* 8�.nC 1/ı0

in the sense of measures as � ! 0.

Remark 4.7. For simplicity, we consider here just the case p D 0 in Theorem 4.6.
However, Theorem 4.6 still holds true for p 6D 0 by simply replacing in the state-
ment H the corresponding quantities in Hp and replacing in H0 the corresponding
quantities in Hp

0 , where the latter have been defined in Remark 2.1.
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PROOF. Since the equation '0.ı; a; �/ D 0 naturally requires ı2 � �2ı�2=.nC1/

in view of (4.8), we make the following change of variables:

ı D

�
.nC 1/�nC1

jH.0/j

� 1
nC2

� and � D
a

ı
:

The system (4.12) is equivalent to finding the zeroes of

��.�; �/ WD

�
.nC 1/�nC1

jH.0/j

�� 2
nC2

�
�
1

8
'0;

1

4��2
'

�
�

��
.nC 1/�nC1

jH.0/j

� 1
nC2

�;

�
.nC 1/�nC1

jH.0/j

� 1
nC2

��; �

�
;

which has the expansion ��.�; �/ D �0.�; �/ C o.1/ as � ! 0C, uniformly
for � in compact subsets of .0;C1/, in view of (4.8)–(4.9), where the map �0 W
R �C ! R �C is defined as

�0.�; �/ D

�
�D0�

2
�
8.nC 1/3

�
2
nC1

Z
R2

.jyj2 � 1/jy C �j
2n
nC1

.1C jyj2/5
; �� C ‡x�

�
16.nC 1/3

��
2.nC2/
nC1

Z
R2

jy C �j
2n
nC1 xy

.1C jyj2/5

�
:

We need to exhibit “stable” zeroes of �0 in .0;C1/�C, which will persist under

L1-small perturbations yielding to zeroes of �� as required. The easiest case is

given by the point .�0; 0/ that solves �0 D 0 for �0 D .8.nC1/
3I0

�D0
/
nC1
2.nC2/ > 0 in

view of the assumption (4.14) and (see (D.7))

I0 WD

Z
R2

.jyj2 � 1/jyj
2n
nC1

.1C jyj2/5
< 0:

Regarding �0 as a map from R3 into R3 and setting � D �1Ci�2,‡ D ‡1Ci‡2,
we have that

D�0.�0; 0/ D

0B@
2.nC2/
nC1

�D0�0 0 0

0 �1 C ‡1 C
n.2nC3/
nC1

D0 ‡2 � �2

0 �2 C ‡2 �1 � ‡1 �
n.2nC3/
nC1

D0

1CA
in view of (D.7) andZ

R2

jyj
2n
nC1

.1C jyj2/5
dy D �

Z 1
0

�
n
nC1

.1C �/5
d� D �I

n
nC1

5 :
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Since

detD�0.�0; 0/ D
2.nC 2/

nC 1
�D0�0

�
j�j2 �

ˇ̌̌̌
‡ C

n.2nC 3/

nC 1
D0

ˇ̌̌̌2�
6D 0

in view of assumption (4.15), the point .�0; 0/ is an isolated zero of �0 with non-
trivial local index. Since D�0.�0; 0/ is an invertible matrix, there exists � > 0

small so that jD�0.�0; 0/.���0; �/j � �j.���0; �/j. By a Taylor expansion of
�0, we can find r0 > 0 small so that

j��.�; �/j D j�0.�; �/j C o.1/ � �j.� � �0; �/j CO
�
.� � �0/

2
C j�j2

�
C o.1/

�
�

2
j.� � �0; �/j

for all .�; �/ 2 @Br.�0; 0/ and all r � r0 for � sufficiently small depending on r .
Then the map �� has in Br0.�0; 0/ a well-defined degree for all � small, and it then
coincides with the local index of �0 at .�0; 0/. In this way, the map �� has a zero
of the form .��; ��/ with �� ! �0 and j��j ! 0 as � ! 0. Therefore, we have
solved (4.12) for

ı.�/ D

�
.nC 1/�nC1

jH.0/j

� 1
nC2

�� and a.�/ D ı.�/��;

and the corresponding w� solve (2.2) and satisfy the required concentration prop-
erty as stated in Theorem 4.6. �

Remark 4.8. With some extra work, it is rather standard to see that (4.8) does hold
in a C 1-sense. For � in a bounded set, by IFT we can find � > 0 small so that the
first equation in ��.�; �/ D 0 can be solved by �.�; �/, depending continuously
in �, so that

�.�; �/! �.�/ WD

�
8.nC 1/3

�D0

Z
R2

.jyj2 � 1/jy C �j
2n
nC1

.1C jyj2/5

� nC1
2.nC2/

as � ! 0. In Appendix D it is proved thatZ
R2

.jyj2 � 1/jy C �j
2n
nC1

.1C jyj2/5
< 0 for all � 2 C;

yielding to �.�/ > 0 when D0 < 0. Plugging �.�; �/ into the second equation in
��.�; �/ D 0 we are reduced to finding a “stable” zero ofZ

R2

.jyj2 � 1/jy C �j
2n
nC1

.1C jyj2/5
.x‡� C x�x�/ � 2D0

Z
R2

jy C �j
2n
nC1y

.1C jyj2/5
D 0:

Notice that x‡� C x�x� acts in real notation as the multiplication for the matrix

A D

�
Re.� C ‡/ Im.‡ � �/
� Im.� C ‡/ Re.‡ � �/

�
:
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Since by Appendix D we have thatZ
R2

.jyj2 � 1/jy C �j
2n
nC1

.1C jyj2/5
D f .j�j/;

Z
R2

jy C �j
2n
nC1y

.1C jyj2/5
D g.j�j/�;

we can rewrite the above equation as A� D 2D0g.j� j/
f .j� j/

�. Letting .�1; e1/ be an
eigenpair of A with je1j D 1, we can find a solution �0 D j�0je1 as soon as
j�0j 6D 0 solve 2D0g.j�0j/

f .j�0j/
D �1. Since by Appendix D we know that f < 0 < g,

we can find solutions .��; ��/ of ��.�; �/ D 0 with �� bifurcating from �0 6D 0 as
soon as one of the eigenvalues of A is positive and belongs to 2D0g

f
.0;C1/. In

particular, by (D.7)–(D.8) and (D.10)–(D.11) we have that

g.0/

f .0/
D �

.2nC 3/.3nC 1/

4.nC 1/
;

g.j�j/

f .j�j/
! �

51

356
as j�j ! 1;

and the condition above is fullfilled if one of the eigenvalues of A lies in�
51

178
jD0j;

.2nC 3/.3nC 1/

2.nC 1/
jD0j

�
:

5 Examples and Comments
In this section, we will discuss the validity of (4.13)–(4.15) by providing some

examples. Let us recall that in Theorem 4.6 we were implicitly assuming that
fp1; : : : ; pN g � � and denoting for simplicity the concentration point p as 0. The
assumption fp1; : : : ; pN g � � simplifies the global construction in z� of H but
(4.13)–(4.15) just require the local existence for such H at 0 as well as for �0 and
H�. In this respect, the only relevant assumption is that the concentration point lies
in �, and so we will provide examples with 0 2 f zp1; : : : ; zpN g � x�. To be more
precise, let us explain the general strategy we will adopt below. Since we are in a
doubly periodic setting, the configuration of the vortex points has to be periodic in
x�: for all j D 1; : : : ; N the points . zpjC!1ZC!2Z/\ x� belong to f zp1; : : : ; zpN g
and have all the same multiplicity. Then, we can find J � f1; : : : ; N g so that the
points f zpj W j 2 J g are all nonzero, distinct modulo !1ZC !2Z and .f zpj W j 2
J gC!1ZC!2Z/\ x� D f zp1; : : : ; zpN gnf0g. Take now a translation vector � 2 �
so that f zp1 C �; : : : ; zpN C �g \ @� D ¿, or equivalently

.f zp1; : : : ; zpN g C � C !1ZC !2Z/ \ @� D ¿:
Then, it follows that . zpj C � C!1ZC!2Z/\� is composed of a single point pj
for all j D 1; : : : ; N . The idea is to apply Theorem 4.6, as formulated in Remark
4.7, to the translated vortex configuration ff�g [ f zpj C � W j 2 J gg … @� with
� as a concentration point. The validity of (4.13)–(4.15) in the translated situation
will follow by appropriate assumptions on f zp1; : : : ; zpN g.

Before stating our first result, let us introduce the notion of even vortex configu-
ration: � zpj 2 f zp1; : : : ; zpN g C !1Z C !2Z with the same multiplicity of zpj for
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all j D 1; : : : ; N . In the periodic case, notice that f zpj W j 2 J g is still an even
configuration. The validity of (4.13) is discussed in the following:

PROPOSITION 5.1. Assume n is even and the periodic vortex configuration is even
with 0 2 f zp1; : : : ; zpN g. Let H� be the function corresponding to p D � and the
remaining vortex points fpj W j 2 J g � �, as given in Remark 2.1. Then, there
holds

dkH�

d´k
.�/ D 0

for all odd numbers k.

PROOF. Since �� D � and the periodic vortex configuration f zp1; : : : ; zpN g
is even, we have that G.´/, H.´/, and e�4�

P
j2J njG.´; zpj / are even functions in

view of G.´; p/ D G.´ � p; 0/. So, it follows that

e4�.nC2/H.´��/�4�
P
j2J njG.´; zpjC�/ D e4�.nC2/H.´��/�4�

P
j2J njG.´;pj /

takes the same value at ˙´ C � for all ´ 2 �. For all ´ 2 �, the function H�

satisfies jH� j.´ C �/ D jH� j.�´ C �/, and then H� .´ C �/ D H� .�´ C �/ for
all ´ since H� is a holomorphic function. By differentiating k times at � , it yields
dkH�
d´k

.�/ D 0 when k is odd. �

The discussion of (4.14) is more interesting and will make use of the Weier-
strass elliptic function } to represent D0 in the case of an even periodic vortex
configuration. Furthermore, when � is a rectangle, the points pj are half-periods
and all the multiplicities are even numbers; by some ideas in [9] we will show
that assumption (4.14) holds if and only if n3=2 is an odd number, where n3 is
the multiplicity of the half-period .!1 C !2/=2. Due to the presence of high-order
derivatives (2.nC 1/th order) in (4.15), we will verify the validity of the “nonde-
generacy” condition in the simplest case n D n3 D 2 and � a square torus. As we
will see, the validity of (4.15) is just a computational matter that could be carried
out in great generality for each case of interest.

We have the following representation formula:

PROPOSITION 5.2. Assume that the periodic vortex configuration is even with 0 2
f zp1; : : : ; zpN g, and nj is even when zpj 2 f!1=2; !2=2; .!1 C !2/=2g. Let D�0 be
the coefficient corresponding to p D � and remaining vortex points fpj W j 2
J g � �, as given in Theorem 4.6. Then, for � small we have that D�0 is given by
(5.7) and does not depend on � .

PROOF. The Weierstrass elliptic function

}.´/ D
1

´2
C

X
.n;m/6D.0;0/

�
1

.´C n!1 Cm!2/2
�

1

.n!1 Cm!2/2

�
is a doubly periodic meromorphic function with a single pole in � at 0 of multi-
plicity 2. Moreover, the only branching points of } are simple and given by the
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three half-periods !1=2, !2=2, and !3=2 D .!1 C !2/=2, i.e., }0.!j =2/ D 0

and }00.!j =2/ 6D 0 for j D 1; 2; 3. For p 2 x� n f0g, note that 2�Œ2G.´; 0/ �
G.´; p/ � G.´;�p/� is a doubly periodic harmonic function in � with a singular
behavior �2 log j´j at ´ D 0. Moreover, it behaves like log j´ � pj at ´ D p and
log j´ C pj at ´ D �p when p 6D !1=2; !2=2; !3=2, and like 2 log j´ � pj if
p 2 f!1=2; !2=2; !3=2g. Thus, we have that

2�Œ2G.´; 0/ �G.´; p/ �G.´;�p/� D log j}.´/ � }.p/j C const

regardless of whether p is a half-period or not, in view of}.p/ D }.�p/, }0.p/ D
�}0.�p/ 6D 0 if p 6D !1=2; !2=2; !3=2 and }0.p/ D 0, }00.p/ 6D 0 if p 2
f!1=2; !2=2; !3=2g. Since the periodic vortex configuration is even, take I as the
minimal subset of J so that .f zpk;� zpk W k 2 I g C !1ZC !2Z/\f zpj W j 2 J g D
f zpj W j 2 J g and

ynk D

(
nk
2

if zpk is a half-period,
nk otherwise:

Letting N D n C
P
j2J nj and u0.´/ D �4�nG.´; 0/ � 4�

P
j2J njG.´; zpj /,

assumption (2.4) implies that

u0 C 8�.nC 1/G.´; 0/ D 4�
X
k2I

ynkŒ2G.´; 0/ �G.´; zpk/ �G.´;� zpk/�;

which yields

eu0C8�.nC1/G.´;0/ D const
ˇ̌̌ Y
k2I

.}.´/ � }. zpk//
ynk
ˇ̌̌2
:

The additional assumption that nj is even when zpj is a half-period is crucial to
having .}.´/ � }. zpj //ynj as a single-valued function. The function

H0.´/ D �0
Y
k2I

.}.´/ � }. zpk//
ynk ;

�0 D e
2�.nC2/H.0/�2�

P
j2J njG.0; zpj /;

(5.1)

is an elliptic function with a single pole at 0 of zero residue, which satisfies

(5.2) jH0j2 D eu0C8�.nC1/G.´;0/:
Then

�0.´/ D �

�Z ´

H0.w/dw
��1

D ���10

�Z ´Y
k2I

.}.w/ � }. zpk//
ynkdw

��1(5.3)

is a well-defined meromorphic function in 2� that satisfies

(5.4)
ˇ̌̌̌�
1

�0

�0
.´/

ˇ̌̌̌2
D jH0j2.´/ D eu0C8�.nC1/G.´;0/:
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Switching now to the translated vortex configuration f�g [ fpj W j 2 J g, let us
first notice that the total multiplicity is still N , and introduce u�0 D u0.´ � �/ D

�4�nG.´; �/ � 4�
P
j2J njG.´; pj /. We have that H�

0.´/ D H0.´ � �/ is a
meromorphic function in � with

jH�
0j
2
D eu

�
0C8�.nC1/G.´;�/

in view of (5.2). Since such a function H�
0 is unique up to rotations, we can assume

that H�
0 coincides with the function H0 corresponding to p D � and remaining

vortex points fpj W j 2 J g � �, as given in Theorem 4.6. Setting H.´/ D
´nC2H0.´/, we also have that

(5.5) H� .´/ D H.´ � �/

for all ´ 2 �. Letting

��0 .´/ D �

�Z ´

H�
0.w/dw

��1
with the correct choice of the constant in the integration

R ´, we easily deduce that

(5.6) ��0 .´/ D �0.´ � �/

for all ´ 2 � in view of . 1
��0
/0.´/ D . 1

�0
/0.´ � �/. Since .��0 /

�1.B�.0// � � D

.�0/
�1.B�.0// in view of (5.6), according to (4.14) let us rewrite D�0 as

�D�0 D

Z
�n.��0 /

�1.B�.0//

eu
�
0C8�.nC1/G.´;�/ �

Z
R2nB�.0/

nC 1

jyj4

D

Z
.���/n.�0/�1.B�.0//

eu0C8�.nC1/G.´;0/ �

Z
R2nB�.0/

nC 1

jyj4

D

Z
�n.�0/�1.B�.0//

eu0C8�.nC1/G.´;0/ �

Z
R2nB�.0/

nC 1

jyj4

by the double periodicity of eu0C8�.nC1/G.´;0/, once we assume for � small that
.�0/

�1.B�.0// � � \ .� � �/. By (5.4) and the change of variable ´ ! 1
�0
.´/

we get that

�D�0 D �D0 D

Z
�n.�0/�1.B�.0//

ˇ̌̌̌�
1

�0

�0 ˇ̌̌̌2
�

Z
R2nB�.0/

nC 1

jyj4

D Area
�
1

�0

�
� n ��10 .B�.0//

��
� .nC 1/Area.B1=�.0//:

(5.7)

By the Cauchy argument principle the number of preimages in � n ��10 .B�.0//

through the map 1
�0

is constant for all values in each connected component of
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C n . 1
�0
.@�/ [ @B1=�.0//, and the area of each of these components has to be

counted in (5.7) according to the multiplicity of preimages. �

Thanks to (5.7), we can now discuss the validity of (4.14).

PROPOSITION 5.3. Let � be a rectangle, and assume that the vortex configura-
tion is the periodic one generated by f0; !1

2
; !2
2
; !1C!2

2
g with even multiplicities

n; n1; n2; n3 � 0. Suppose that

(5.8)
n1

2
C
n2

2
C
n3

2
D
n

2
C 1:

Given D�0 as in Propostion 5.2, then D�0 < 0 .> 0/ when n3
2

is odd .even/.

PROOF. The balance condition (2.4) is satisfied in view of (5.8). Let zp1 D !1
2

,
zp2 D

!2
2

, and zp3 D !1C!2
2

be the three half-periods. When � is a rectangle, the
function } takes real values on @� and }00. zpj / > 0 for j D 1; 2, }00. zp3/ < 0. As
a consequence, we have that

(5.9)
}. zp1/ � }.´/ � 0; }.˙zp1 C i t/ � }. zp3/ � 0;

}.´/ � }. zp2/ � 0; }. zp3/ � }.˙zp2 C t / � 0;

for all ´ 2 @� and t 2 R. Write �0.´/ in (5.3) as

�0.´/ D .�1/
nCn2
2 ��10

�

�Z ´

.}. zp1/ � }.w//
n1
2 .}.w/ � }. zp2//

n2
2 .}. zp3/ � }.w//

n3
2 dw

��1
in view of (5.8). Since

d

dt

"
.�1/

nCn2
2

�0.˙zp2 C t /

#
D �0.}. zp1/ � }.˙zp2 C t //

n1
2 .}.˙zp2 C t / � }. zp2//

n2
2

� .}. zp3/ � }.˙zp2 C t //
n3
2 � 0

in view of (5.9), the function

.�1/
nCn2
2

�0
maps the horizontal sides of @� into horizontal segments with the same orientation.
In the same way, the vertical sides of @� are mapped into vertical segments with
the same/opposite orientation depending on whether n3

2
is an even/odd number.

So,

T WD
.�1/

nCn2
2

�0
.@�/

is still a rectangle with the same/opposite orientation and

.�1/
nCn2
2

�0. zp3/
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is the right upper/lower corner of T depending on whether n3
2

is an even/odd num-
ber. For � small, we then have that C n . 1

�0
.@�/ [ @B1=�.0// has three connected

components: the interior�0 of .�1/.nCn2/=2T , B1=�.0/n�0, and C nB1=�.0/. By
Lemma A.1 we have that values inB1=�.0/n�0 and CnB1=�.0/ have exactly nC1
and 0 preimages in� n ��10 .B�.0// through the map 1

�0
, respectively. By (5.7) we

have that �D�0 D Œk � .n C 1/�Area.�0/, where k is the number of preimages
corresponding to values in �0.

Since }.´/�}. zp3/ D
}00. zp3/
2

.´� zp3/
2CO.j´� zp3j

3/ as ´! zp3, we obtain
that "

.�1/
nCn2
2

�0

#0
.´/ D �.´ � zp3/

n3 CO.j´ � zp3j
n3C1/

and

.�1/
nCn2
2

�0.´/
�
.�1/

nCn2
2

�0. zp3/
D �

.´ � zp3/
n3C1

n3 C 1
CO.j´ � zp3j

n3C2/

as ´! zp3, where

� WD �0

�
�
}00. zp3/

2

�n3
2

Œ}. zp1/ � }. zp3/�
n1
2 Œ}. zp3/ � }. zp2/�

n2
2 > 0:

When n3
2

is an odd number,

.�1/
nCn2
2

�0. zp3/

is the right lower corner of T and the function .�1/.nCn2/=2=�0 maps f´ D zp3 C
�ei� j � � � � 3�

2
; 0 � � < �0g onto a region whose parts inside and outside T

are covered n3�2
4

and n3�2
4
C 1 times, respectively, in view of

.n3 C 1/� � .n3 C 1/� � .n3 C 1/
3�

2
D .n3 C 1/� C 2�

n3 � 2

4
C � C

�

2
:

Hence, near zp3 the map 1
�0

covers n3�2
4

and n3�2
4
C 1 times the interior and exte-

rior parts of �0 near 1
�0. zp3/

, respectively. Since 1
�0

covers nC 1 times every value

in B1=�.0/n�0, there should be n� n3�2
4

distinct points x 2 �n��10 .B�.0// away
from zp1; zp2; zp3, so that �0.x/ D �0. zp3/. Since � 00.x/ 6D 0 if x 6D zp1; zp2; zp3, it
follows that 1

�0
is a local homeomorphism around any such x, and then 1

�0
covers

exactly n and nC 1 times the interior and exterior parts of �0 near 1
�0. zp3/

, respec-
tively. Hence, it follows that k D n and �D�0 D �Area.�0/ < 0. When n3

2
is

even, in a similar way we get that k D nC 2 and �D�0 D Area.�0/ > 0. �

Now, to discuss (4.15) we further restrict our attention to the case n D n3 D 2

to get the following:
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PROPOSITION 5.4. Let� be a square of side a, a > 0, and assume that the vortex
configuration is the periodic one generated by f0; a

2
; ia
2
; aCia

2
g with multiplicities

2; n1; n2; 2 and .n1; n2/ D .2; 0/ (or vice versa). Then, for � 2 � assumption
(4.15) holds for the vortex configuration f�g [ fpj W j 2 J g � �.

PROOF. We are restricting our attention to the cases .n1; n2/ D .2; 0/ and .0; 2/
for they are the only possibilities to have even multiplicities satisfying (5.8) for
2; n1; n2; 2. Letting zp1 D a

2
, zp2 D ia

2
, and zp3 D aCia

2
be the three half-periods,

the “nondegeneracy condition” reads as

(5.10) j3.H� /00.�/f 03.�/CH� .�/f 0003 .�/j ¤

ˇ̌̌̌
6�

a2
b3.H� /00.�/ �

28

3
D�0

ˇ̌̌̌
in view of .H� /0.�/ D .H� /000.�/ D 0 by Proposition 5.1, where

fl.´/ D
1

lŠ

d l

dwl

�
2 log

w � q�0.´/

.q�0/
�1.w/ � ´

C 4�H�.´ � .q�0/
�1.w//

�
.0/;

bl D
1

lŠ

d l.q�0/
�1

dwl
.0/:

Since ��0 .´/ D �0.´ � �/ by (5.6), we deduce that q�0.´/ D q0.´ � �/ and

.q�0/
�1 D �Cq�10 , where q0 D ´Œ

�0.´/

´nC1
�
1
nC1 is defined out of �0 as in Appendix A.

Since H� .´/ D H.´� �/ in view of (5.5), by (5.7) the “nondegeneracy condition”
(5.10) gets rewritten in the original variables as

(5.11) j3H00.0/f 03.0/C �0f 0003 .0/j ¤
ˇ̌̌̌
6�

a2
b3H00.0/ �

28

3
D0

ˇ̌̌̌

in view of H.0/ D �0 (see (5.1)), where

fl.´/ D
1

lŠ

d l

dwl

"
2 log

w � q0.´/

q�10 .w/ � ´
C 4�H�.´ � q�10 .w//

#
.0/;

bl D
1

lŠ

d lq�10

dwl
.0/:

Since dkH
d´k

.0/ D 0 for all odd k 2 N, we have that

´3

�0.´/
D
�0

3
C

H00.0/
2

´2 �
H.4/.0/

24
´4 �

H.6/.0/

2160
´6 CO.´8/;
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and then

�0.´/ D
3

�0
´3 �

9H00.0/
2�20

´5 CO.´7/;

q0.´/ D
3
1
3

�
1=3
0

´ �
3
1
3H00.0/
2�
4=3
0

´3 CO.´5/;

q�10 .w/ D
�
1
3

0

3
1
3

w C
H00.0/
6

w3 CO.w5/;

as ´;w ! 0.
Direct computation shows that b3 D

H00.0/
6

and

f3.´/ D �
2

3�0.´/
C
2�0

9´3
C
2b3

´
�
2��0

9
.H�/000.´/ � 4�b3.H

�/0.´/

D
H.4/.0/

36
´C

H.6/.0/

3240
´3 �

2��0

9
.H�/000.´/

�
2�

3
H00.0/.H�/0.´/CO.´5/

as ´! 0. Since then

f 03.0/ D
H.4/.0/

36
�
2��0

9
.H�/.4/.0/ �

2�

3
H00.0/.H�/00.0/;

f 0003 .0/ D
H.6/.0/

540
�
2��0

9
.H�/.6/.0/ �

2�

3
H00.0/.H�/.4/.0/;

condition (5.11) is equivalent toˇ̌̌̌
H00.0/H.4/.0/

12
C
�0H.6/.0/

540
� 2�.H00.0//2.H�/00.0/

�
4��0

3
H00.0/.H�/.4/.0/ �

2��20
9

.H�/.6/.0/

ˇ̌̌̌
¤

ˇ̌̌̌
�

a2
jH00.0/j2 �

28

3
D0

ˇ̌̌̌
:

By the explicit expression (5.1) of H0, we have that

H.´/ D �0´4.}.´/ � }. zp1//.}.´/ � }. zp3//:

Replacing H with H
�0

, we can assume �0 D 1 and simply study the stronger con-
dition ˇ̌̌̌

H00.0/H.4/.0/

4
C

H.6/.0/

180
� 6�.H00.0//2.H�/00.0/(5.12)

� 4�H00.0/.H�/.4/.0/ �
2�

3
.H�/.6/.0/

ˇ̌̌̌
<
3�

a2
jH00.0/j2
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in view of Proposition 5.2 and (5.7). Letting

Gl D
X

.n;m/ 6D.0;0/

1

.n!1 Cm!2/l
; l � 3;

be the Eisenstein series, the Laurent expansion of } near 0 can simply be rewritten
as

}.´/ D
1

´2
C

1X
lD1

.2l C 1/G2lC2´
2l ;

and then

H.´/ D 1 � .}. zp1/C }. zp3//´2 C .}. zp1/}. zp3/C 6G4/´4

C .10G6 � 3G4}. zp1/ � 3G4}. zp3//´
6
CO.´8/

as ´! 0. Letting ej D }. zpj / for j D 1; 2; 3, recall that

(5.13)
e2 < e3 � 0 < e1; e1 C e2 C e3 D 0;

15G4 D �.e1e2 C e1e3 C e2e3/; 35G6 D e1e2e3;

with e3 D 0 if and only if � is a square (see [1]). By the expansion of H and
(5.13), we deduce that

H00.0/ D 2e2; H.4/.0/ D 24.e1e3 C 6G4/; H.6/.0/ D 720.10G6 C 3G4e2/;

and condition (5.12) gets rewritten asˇ̌̌̌
460G6 C 84G4e2 � 24�e

2
2.H

�/00.0/ � 8�e2.H
�/.4/.0/(5.14)

�
2�

3
.H�/.6/.0/

ˇ̌̌̌
<
12�

a2
e22

in view of (5.13).
From an explicit formula for the Green’s function (see [11]) we have that

H.´/ �
j´j2

4j�j
D Re

�
�
´2

4a2
C
i´

2a
C

1

12

�
�

1

2�
log

ˇ̌̌̌
ˇ1 � e

�
´
a

�
´

1Y
kD1

�
1 � e

�
kai C ´

a

���
1 � e

�
kai � ´

a

��ˇ̌̌̌
ˇ;

where e.´/ D e2�i´, which yields

H�.´/ D �
´2

4a2
C
i´

2a
C

1

12

�
1

2�
log

" 
1 � e

�
´
a

�
´

!
1Y
kD1

�
1 � e

�
kai C ´

a

���
1 � e

�
kai � ´

a

��#
:
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Direct but tedious computations show that

.H�/00.0/ D �
1

2a2
C

�

6a2
�
4�

a2

1X
kD1

�k.�k C 1/;

.H�/.4/.0/ D
�3

15a4
C
16�3

a4

1X
kD1

�k.�k C 1/.6�
2
k C 6�k C 1/;

.H�/.6/.0/ D
8�5

63a6

�
64�5

a6

1X
kD1

�k.�k C 1/.120�
4
k C 240�

3
k C 150�

2
k C 30�k C 1/;

where �k WD 1=.e2�k � 1/. On a square torus the Green function G.´; 0/ has
an additional symmetry, the invariance under �

2
-rotations. Therefore, H�.i´/ D

H�.´/ for all ´ 2 �, and then .H�/00.0/ D .H�/.6/.0/ D 0. Since e3 D G6 D 0,
condition (5.14) becomesˇ̌̌̌

28

5
e21 � 8�.H

�/.4/.0/

ˇ̌̌̌
<
12�

a2
e1(5.15)

in view of (5.13) and e1 D �e2 > 0.
From the study of the Weierstrass function } it is known that (see [3])

X
.n;m/¤.0;0/

1

.nCm�/4
D
�4

45
C
16�4

3

1X
m;kD1

k3e2�ikm�

for � 2 C with Im � > 0. The choice � D i leads to

15a4G4 D a
4e21 D

�4

3
C 80�4

1X
m;kD1

k3e�2�km

in view of (5.13), which turns (5.15) intoˇ̌̌̌
�4

3
C 112�4

1X
m;kD1

k3e�2�km

� 32�4
1X
kD1

�k.�k C 1/.6�
2
k C 6�k C 1/

ˇ̌̌̌

< 3�

p
�4

3
C 80�4

1X
m;kD1

k3e�2�km:

(5.16)
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Since numerically we can approximately compute

32�4
1X
kD1

�k.�k C 1/.6�
2
k C 6�k C 1/ � 5:9194;

80�4
1X

m;kD1

k3e�2�km � 14:7985;

we get the validity of (5.16), or equivalently (4.15), for the vortex configuration
f�g [ fpj W j 2 J g � �. �

As a combination of Propositions 5.1, 5.3, and 5.4 we finally get the following:

THEOREM 5.5. Let � be a square of side a, a > 0, and assume that the vor-
tex configuration is the periodic one generated by f0; a

2
; ia
2
; aCia

2
g with multipli-

cities 2; n1; n2; 2 and .n1; n2/ D .2; 0/ (or vice versa). Then, for � small the
assumptions of Theorem 4.6 hold for the slightly translated vortex configuration
f��.1C i/;��.1C i/C a

2
;��.1C i/C ia

2
;��.1C i/C aCia

2
g. In particular,

for � > 0 small we can find N -condensate .A�; ��/ so that j��j ! 0 in C.x�/ and

(5.17) .F12/� * 12�ı0

weakly in the sense of measures, as � ! 0, where f0; a
2
; ia
2
; aCia

2
g are the zeroes

of �� with multiplicities 2; n1; n2; 2 and .n1; n2/ D .2; 0/ (or vice versa).

As a final remark, observe that for n D 0 Theorem 4.6 essentially recovers the
result in [29] concerning single-point concentration in any torus � (see also [20]).
Notice that n D 0 corresponds to the concentration point 0 not really being a
singular point and thus a simpler approach is possible as in the above-mentioned
papers. By (2.4) the total multiplicity N is 2 produced by two vortex points
p1; p2 2 � n f0g. Assumption (4.13) is equivalent to having .logH/0.0/ D 0.
By the Cauchy-Riemann equations, the last condition can just be rewritten as

rŒ2Re logH�.0/ D r log jHj2.0/ D rŒ8�H C u0�.0/ D 0:

SincerH.0/ D 0 in view ofH.´/ D H.�´/, we have that (4.13) simply means
that 0 is a critical point of u0. Regarding (4.14), notice that D0 does not depend
on � > 0 small forZ
��10 .B�.0//n�

�1
0 .Br .0//

eu0C8�G.´;0/ �

Z
B�.0/nBr .0/

dy

jyj4
D

Area
�
B1=r.0/ n B1=�.0/

�
� �

�
1

r2
�
1

�2

�
D 0
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for all 0 < r � �, in view of (2.11) with c0 D 0. Therefore, D0 can be rewritten
as

D0 D
1

�

� Z
�n��10 .B�.0//

eu0C8�G.´;0/ �

Z
R2nB�.0/

dy

jyj4

�

D
1

�
lim
r!0

� Z
�n��10 .Br .0//

e8�H.´;0/Cu0

j´j4
�

Z
R2nBr .0/

1

jyj4

�
:

Since

�0.´/ D
´

�0
C

H00.0/
2�20

´3 CO.j´j5/

and ��10 .´/ D �0´CO.j´j
3/ with �0 D e4�H.0/�

u0.0/

2 , note that B�0r�Cr3.0/ �
��10 .Br.0// � B�0rCCr3.0/ for all r > 0 small for some constant C > 0. Thus,
there holds ˇ̌̌̌ Z

�n��10 .Br .0//

1

j´j4
e8�ŒH.´;0/�H.0;0/�CŒu0.´/�u0.0/�

�

Z
�nB�0r .0/

1

j´j4
e8�ŒH.´;0/�H.0;0/�CŒu0.´/�u0.0/�

ˇ̌̌̌

D O

� Z
B
�0rCCr

3 .0/nB�0r�Cr3
.0/

1

j´j2

�
D o.1/

as r ! 0 in view of rŒ8�H C u0�.0/ D 0, which yields the same expression
for D0 as in [20, 29]:

D0 D
�20
�

lim
r!0

� Z
�nBr .0/

1

j´j4
e8�ŒH.´;0/�H.0;0/�CŒu0.´/�u0.0/� �

Z
R2nBr .0/

1

jyj4

�
:

The “nondegeneracy condition” (4.15) reads asˇ̌̌̌
H00.0/
H.0/

� 4�.H�/00.0/

ˇ̌̌̌
D
ˇ̌
.logH/00.0/ � 4�.H�/00.0/

ˇ̌
¤
2�

j�j
;

in view of �0 D q0, b1 D �0,

f1.´/ D �4��0.H
�/0.´/C

2�0

´
�

2

�0.´/
;

and H0.0/ D 0. Setting H1.´/ D e�4�H
�.´/H.´/, we have that jH1.´/j2 D

eu0C
2�
j�j
j´j2 and
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.logH/00.0/ � 4�.H�/00.0/ D .logH1/00.0/ D 2.Re logH1/00.0/

D .log jH1j2/00.0/ D
�
u0 C

2�

j�j
j´j2

�00
.0/

D
1

4
Œ.u0/xx.0/ � .u0/yy.0/ � 2i.u0/xy.0/�

in view of (2.6)–(2.7), and the above condition turns into

0 6D
1

16

ˇ̌
.u0/xx.0/ � .u0/yy.0/ � 2i.u0/xy.0/

ˇ̌2
�
4�2

j�j2

D
1

16

�
.u0/xx.0/ � .u0/yy.0/

�2
C
1

4
.u0/

2
xy.0/ �

4�2

j�j2

D
1

16
.�u0/

2.0/ �
1

4
det D2u0.0/ �

4�2

j�j2
D �

1

4
det D2u0.0/:

In conclusion, when n D 0, the assumptions in Theorem 4.6 are equivalent to
having 0 as a nondegenerate critical point of u0.´/ D �4�G.´; p1/�4�G.´; p2/
with D0 < 0.

6 A More General Result
In this section we deal with the case m � 2 in Theorem 1.1. For more clarity,

let us denote the concentration points as �l , l D 1; : : : ; m, the remaining points in
the vortex set as pj , and the corresponding multiplicities by nl ; nj .

From Section 2 recall that H.´/ D G.´; 0/C 1
2�

log j´j is a smooth function in
2� with �H D 1=j�j, and H� is an holomorphic function in 2� with ReH� D
H � j´j2=4j�j. Up to a translation, we are assuming that pj 2 � for all j D
1; : : : ; N and taking z� close to � so that z� � pj � 2� for all j D 1; : : : ; N .
Arguing as for (2.6), the function

H.´/ D
Y
j

.´ � pj /
nj exp

�
4�

mX
lD1

.nl C 1/H
�.´ � �l/ � 2�

NX
jD1

H�.´ � pj /

C
�

j�j

mX
lD1

.nl C 1/.�l � 2´/�l �
�

2j�j

NX
jD1

jpj j
2

C
�

j�j
´

NX
jD1

pj

�
is holomorphic in z� and satisfies

jH.´/j2 D
� mY
lD1

j´ � �l j
�2nl

�
exp

�
u0 C 8�

mX
lD1

.nl C 1/H.´ � �l/

�
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in view of (1.9). For l D 1; : : : ; m the function

Hl.´/ D H.´/
Y
l 0 6Dl

.´ � �l 0/
�.nl0C2/

is holomorphic near �l and satisfies

jHl.´/j2 D exp
�
4�.nl C 2/H.´ � �l/C 4�

X
l 0 6Dl

.nl 0 C 2/G.´; �l 0/

� 4�
X
j

njG.´; pj /
�
:

(6.1)

To be more clear, let us say a few words comparing the casesm D 1 andm � 2.
When m D 1, notice that H satisfies jHj2 D eu0C8�.nC1/H.´/�2n log j´j in view
of (2.7). The function eu0C8�.nC1/H.´/�2n log j´j is a sort of effective potential for
(2.2) at 0, where eu0�2n log j´j is the nonvanishing part of eu0 and e8�.nC1/H.´/ is
the self-interaction of the concentration point 0 driven by PUı;0;�0 through (2.18).
When m � 2, (6.1) can be rewritten as

jHl.´/j2 D exp
�
u0 C 8�.nl C 1/H.´ � �l/

C 8�
X
l 0 6Dl

.nl 0 C 1/G.´; �l 0/ � 2nl log j´ � �l j
�

for l D 1; : : : ; m, yielding an effective potential for (2.2) at �l exhibiting an addi-
tional interaction term e8�

P
l0 6Dl .nl0C1/G.´;�l0 / generated by the effect of the con-

centration points �l 0 , l 0 6D l , through (6.12).
Setting H0 D H

.´��1/
n1C2:::.´��m/nmC2

, we now define �0 as

(6.2) �0.´/ D �

�Z ´

H0.w/ exp
�
�

mX
lD1

cl0.w � �l/
nlC1

Y
l 0 6Dl

.w � �l 0/
nl0C2

�
dw

��1
;

where

cl0 D
1

H0.�l/.nl C 1/Š
dnlC1Hl

d´nlC1
.�l/; l D 1; : : : ; m;

guarantees that all the residues of the integrand function in the definition of �0 van-
ish. The presence of the term

Q
l 0 6Dl.w � �l 0/

nl0C2 is crucial to compute explicitly
the cl0’s because

cl0.w � �l/
nlC1

Y
l 0 6Dl

.w � �l 0/
nl0C2 D O..w � �l 0/

nl0C2/

has a high-order effect near any other �l 0 , l 0 6D l . By construction �0 2 M.�/

vanishes only at the �l ’s with multiplicity nl C 1 and

lim
´!�l

.´ � �l/
nlC1

�0.´/
D

Hl.�l/

nl C 1
;
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and it also satisfies

j� 00.´/j
2
D j�0.´/j

4 exp
�
u0 C 8�

mX
lD1

.nl C 1/G.´; �l/

� 2

mX
lD1

Re
�
cl0.´ � �l/

nlC1
Y
l 0 6Dl

.´ � �l 0/
nl0C2

��
:

Under the assumptions of Theorem 1.1, notice that cl0 D 0 for all l D 1; : : : ; m

and ˇ̌̌̌�
1

�0

�0
.´/

ˇ̌̌̌2
D jH0.´/j2 D eu0C8�

Pm
lD1.nlC1/G.´;�l /:

Since each �l gives a contribution to the dimension of the kernel for the linea-
rized operator (4.3), the parameters ı and a are no longer enough to recover all
the degeneracies induced by the ansatz PUı;a;� for � 2 M.�/, a function that
vanishes only at the points �l , l D 1; : : : ; m, with multiplicity nl C 1. In our con-
struction, the correct number of parameters to use is 2m C 1, given by m small
complex numbers a1; : : : ; am and ı > 0 small, where the latter gives rise to the
concentration parameter ıl at �l , l D 1; : : : ; m, by means of (6.14). The request
that all the ıl ’s tend to 0 at the same rate is necessary as we will discuss later.

We need to construct an ansatz that looks as PUıl ;al ;�a;l near each �l for a sui-
table �a;l that makes the approximation near �l good enough. In order to localize
our previous construction, let us define PUıl ;al ;� as the solution of8̂<̂

:
��PUıl ;al ;� D �.j´ � �l j/j�

0.´/j2eUıl ;al ;�

�
1
j�j

R
� �.j´ � �l j/j�

0.´/j2eUıl ;al ;� in �;R
� PUıl ;al ;� D 0;

where � is a smooth radial cutoff function so that � D 1 in Œ��; ��, � D 0

in .�1;�2�� [ Œ2�;C1/, 0 < � < 1
2

minfj�l � �l 0 j; dist.�l ; @�/ W l; l 0 D
1; : : : ; m; l 6D l 0g. The approximating function is then built as W D

Pm
lD1 PUl ,

where Uıl ;al ;�a;l and PUıl ;al ;�a;l will be simply denoted by Ul and PUl .

Let us now explain how to find the functions �a;l , l D 1; : : : ; m. Setting

Blr D
�
� holomorphic in B2�.�l/ W





 ��0 � 1





1;B2�.�l /

� r

�
for l D 1; : : : ; m, Lemma A.1 still holds in this context for all � 2 Blr by simply
replacing 0; n with �l ; nl and z� with B2�.�l/. Then, for all � D .�1; : : : ; �m/ 2

Br WD B1r � � � � � Bmr and a D .a1; : : : ; am/ 2 Cm with kak1 < � there exist
points ali , l D 1; : : : ; m and i D 0; : : : ; nl , so that f´ 2 B2�.�l/ W �l.´/ D alg D

f�lCa
l
0; : : : ; �lCa

l
nl
g for all l D 1; : : : ; m. Arguing as for (2.12), for l D 1; : : : ; m
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the function

Hl
a;� .´/ D

Y
j

.´ � pj /
nj
Y
l 0 6Dl

.´ � �l 0/
nl0
Y
l 0 6Dl

nl0Y
iD0

.´ � �l 0 � a
l 0

i /
�2

� exp

 
4�

mX
l 0D1

nl0X
iD0

H�.´ � �l 0 � a
l 0

i / � 2�

NX
jD1

H�.´ � pj /

C
�

j�j

mX
l 0D1

.nl 0 C 1/.�l 0 � 2´/�l 0 �
�

2j�j

NX
jD1

jpj j
2

�
2�

j�j

mX
l 0D1

.´ � �l 0/

nl0X
iD0

al
0

i C
�

j�j
´

NX
jD1

pj

!

is holomorphic near �l and satisfies

(6.3) jHl
a;� .´/j

2
D j´ � �l j

�2nl exp
�
u0 C 8�

nlX
iD0

H.´ � �l � a
l
i /

C 8�
X
l 0 6Dl

nl0X
iD0

G.´; �l 0 C a
l 0

i / �
2�

j�j

mX
l 0D1

nl0X
iD0

jal
0

i j
2

�
in view of (1.9). Setting

glal ;�l .´/ D
�l.´/ � alQnl

iD0.´ � �l � a
l
i /
; ´ 2 B2�.�l/;

and

cla;� D

Q
l 0 6Dl.�l � �l 0/

�.nl0C2/

.nl C 1/Š

dnlC1

d´nlC1

�

" 
glal ;�l .´/g

l
0;�l

.�l/

glal ;�l .�l/g
l
0;�l

.´/

!2 Hl
a;� .´/

Hl
a;� .�l/

#
.�l/;

(6.4)

we aim to find a solution �a D .�a;1; : : : ; �a;m/ 2 Br of the system .l D 1;

: : : ; m/

(6.5)

�l.´/ D �

�Z ´ �glal ;�l .w/
gl0;�l .w/

�2 Hl
a;� .w/

.w � �l/
nlC2

� exp
�
�

mX
l 0D1

cl
0

a;� .w � �l 0/
nl0C1

Y
l 00 6Dl 0

.w � �l 00/
nl00C2

�
dw

��1
;
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where the definition of cla;� makes null the residue at �l of the integrand function
in (6.5). The function �a;l will vanish only at �l with multiplicity nlC1 and satisfy

(6.6)

j� 0a;l.´/j
2
D j�a;l.´/ � al j

4

� exp

 
u0 C 8�

mX
l 0D1

nl0X
iD0

G
�
´; �l 0 C a

l 0

i

�
�
2�

j�j

mX
l 0D1

nl0X
iD0

ˇ̌
al
0

i

ˇ̌2
� 2

mX
l 0D1

Re
�
cl
0

a;�a
.´ � �l 0/

nl0C1
Y
l 00 6Dl 0

.´ � �l 00/
nl00C2

�!

in view of (6.3).

Since Hl
0;� D Hl and cl0;� D cl0 for all l D 1; : : : ; m, when a D 0 the system

(6.5) reduces tom copies of (6.2) in eachB2�.�l/, l D 1; : : : ; m, and it is natural to
find �a branching off .�0; : : : ; �0/ for a small by IFT. Let us emphasize that each
�a;l , l D 1; : : : ; m, is close to �0jB2�.�l /, a crucial property to have D0 defined in
terms of a unique �0 (see (1.10)). Letting q0;l be the function so that �0 D q

nlC1
0;l

near �l , arguing as in Lemma A.2 we have the following:

LEMMA 6.1. For � small, there exists a C 1-map a 2 B�.0/! �a 2 Br so that �a
solves the system (6.4)–(6.5). Moreover, the map a 2 B�.0/! cla WD c

l
a;�a

is C 1

with

� l l WD H.�l/@al c
l
a

ˇ̌
aD0
D

1

nl Š

dnlC1

d´nlC1

�
Hl.´/f lnlC1.´/

�
.�l/;(6.7)

‡ l l WD H.�l/@xal c
l
a

ˇ̌
aD0
D �

2�.nl C 1/

j�jnl Š
blnlC1

dnlHl

d´nl
.�l/;(6.8)

and for j 6D l

� lj WD H.�l/@aj c
l
a

ˇ̌
aD0
D

nj C 1

.nl C 1/Š

dnlC1

d´nlC1

�
Hl.´/ zf

j
njC1

.´/
�
.�l/;(6.9)

‡ lj WD H.�l/@xaj c
l
a

ˇ̌
aD0
D �

2�.nj C 1/

j�jnl Š
b
j
njC1

dnlHl

d´nl
.�l/;(6.10)

where

f lnC1.´/ D
1

.nC 1/Š

dnC1

dwnC1

�
2 log

w � q0;l.´/

q�1
0;l
.w/ � ´

C 4�H�.´ � q�10;l .w//

�
.0/;

blnC1 D
1

.nC 1/Š

dnC1q�1
0;l

dwnC1
.0/;

and for j 6D l

zf
j
nC1.´/ D

1

.nC 1/Š

dnC1

dwnC1

�
�2 log

�
´ � q�10;j .w/

�
C 4�H�

�
´ � q�10;j .w/

��
.0/:
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Letting n D minfnl W l D 1; : : : ; mg, up to re-ordering, assume that n D n1 D

� � � D nm0 < nl for all l D m0 C 1; : : : ; m, where 1 � m0 � m. The matrix A in
Theorem 1.1 is the 2m � 2m matrix in the form

(6.11) A D

0B@ A
1;2
1;2 � � � A

2m�1;2m
1;2

:::
: : :

:::

A
1;2
2m�1;2m � � � A

2m�1;2m
2m�1;2m

1CA;
where the 2 � 2 blocks A2l

0�1;2l 0

2l�1;2l
are given by0BBBB@

Re

"
� l l
0

C ‡ l l
0

C
n.2nC3/D0ıl l0 jHl .�l /j

� 2
nC1

.nC1/
Pm0
jD1 jHj .�j /j

� 2
nC1

#
ImŒ‡ l l

0

� � l l
0

�

ImŒ� l l
0

C ‡ l l
0

� Im

"
� l l
0

� ‡ l l
0

�
n.2nC3/D0ıl l0 jHl .�l /j

� 2
nC1

.nC1/
Pm0
jD1 jHj .�j /j

� 2
nC1

#
1CCCCA

when l D 1; : : : ; m0 and by�
ReŒ� l l

0

C ‡ l l
0

� ImŒ‡ l l
0

� � l l
0

�

ImŒ� l l
0

C ‡ l l
0

� ImŒ� l l
0

� ‡ l l
0

�

�
when l D m0C 1; : : : ; m, with � l l

0

, ‡ l l
0

given by (6.7), (6.9) and by (6.8), (6.10),
respectively, and ıl l 0 , the Kronecker symbol.

Arguing as in Lemma 2.2, for l D 1; : : : ; m we have that

PUıl ;al ;�l D �.j´ � �l j/
�
Uıl ;al ;�l � log

�
8ı2l

�
C 4 log

ˇ̌
glal ;�l

ˇ̌�
C 8�

nlX
iD0

�
1

2�
.�.j´ � �l j/ � 1/ log

ˇ̌
´ � �l � a

l
i

ˇ̌
CH

�
´ � �l � a

l
i

��
C‚ıl ;al ;�l C 2ı

2
l fal ;�l CO

�
ı4l
�

and

PUıl ;al ;�l D 8�

nlX
iD0

G
�
´; �l C a

l
i

�
C‚ıl ;al ;�l

C 2ı2l

�
fal ;�l �

�.j´ � �l j/

j�l.´/ � al j
2

�
CO

�
ı4l
�(6.12)

hold in C.�/ and Cloc.� n f�lg/, respectively, uniformly for jaj < � and �l 2 Blr ,
where

‚ıl ;al ;�l D �
1

j�j

Z
�

�.j´ � �l j/ log
j�l.´/ � al j

4

.ı2
l
C j�l.´/ � al j

2/2

and fal ;�l is a smooth function in ´ (with a uniform control in al and �l of it and
its derivatives in ´).
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Choosing �l D �a;l and summing up over l D 1; : : : ; m, by (6.6) for our
approximating function there hold

(6.13)

W D Uıl ;al ;�l � log.8ı2l /C log j� 0l j
2
� u0 C

2�

j�j

mX
l 0D1

nl0X
iD0

ˇ̌
al
0

i

ˇ̌2
C‚l.a; ı/

C 2Re
h
cla;�l .´ � �l/

nlC1
Y
l 0 6Dl

.´ � �l 0/
nl0C2

i

CO
�
j´ � �l j

nlC2
X
l 0¤l

ˇ̌
cl
0

a;�l0

ˇ̌�
C

mX
l 0D1

O
�
ı2l 0 j´ � �l j C ı

4
l 0

�
and

W D 8�

mX
lD1

nlX
iD0

G
�
´; �l C a

l
i

�
CO

� mX
l 0D1

ı2l 0 log jıl 0 j
�

uniformly in B�.�l/ and in � n
Sm
lD1B�.�l/, respectively, where

‚l.a; ı/ WD

mX
l 0D1

�
‚ıl0 ;al0 ;�l0 C ı

2
l 0fal0 ;�l0 .�l/

�
:

As a consequence, we have thatZ
�

eu0CW D

mX
l 0D1

� Z
B�.0/

nl 0 C 1

.ı2
l 0
C jy � al 0 j

2/2
C o

�
1

ı2
l 0

��
D �

mX
l 0D1

nl 0 C 1

ı2
l 0

Œ1C o.1/�;

and then near �l there holds

4�N
eu0CWR
� e

u0CW
D 4�N

j� 0
l
j2eUıl ;al ;�lCO.j´��l j

nlC1/Co.1/

8�
Pm
l 0D1.nl 0 C 1/ı

2
l
ı�2
l 0
.1C o.1//

:

In order to construct a N -condensate .A�; ��/ that satisfies (1.11) as � ! 0, we
look for a solution w� of (2.2) in the form w� D

Pm
lD1 PUıl ;al ;�l C �, where � is

a small remainder term and ıl D ıl.�/, al D al.�/ are suitable small parameters,
so that

4�N
eu0Cw�R
� e

u0Cw�
C
64�2N 2�2

�
eu0Cw�

R
� e

2u0C2w� .
R
� e

u0Cw� /�1 � e2u0C2w�
�

�R
� e

u0Cw� C

q
.
R
� e

u0Cw� /2 � 16�N�2
R
� e

2u0C2w�
�2

* 8�

mX
lD1

.nl C 1/ı�l

in the sense of measures as � ! 0. Since j� 0
l
j2eUıl ;al ;�l * 8�.nl C 1/ı�l as

ıl ; al ! 0, to have the correct concentration property we need that

8�

mX
l 0D1

.nl 0 C 1/ı
2
l ı
�2
l 0 ! 4�N
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for all l D 1; : : : ; m, and then ıl
ıl0
! 1 for all l; l 0 D 1; : : : ; m in view of (1.9). It

is then natural to introduce just one parameter ı and to choose the ıl ’s as

(6.14) ıl D ı; l D 1; : : : ; m:

We restrict our attention to the case cl0 D 0 for all l D 1; : : : ; m, which is nec-
essary in our context and is simply a reformulation of the assumption that H0 has
zero residues at p1; : : : ; pm. As in Theorem 4.6, we will work in the parameter’s
range:

al D o.ı/; ı � �
nC1
nC2 ;

as � ! 0C. Since then

K�1 �
ı2 C j´ � �l j

2nlC2

ı2 C
ˇ̌
�l.´/ � al j

2
� K; K�1j´��l j

2nl � j� 0l.´/j
2
� Kj´��l j

2nl ;

in B2�.�l/ for all �l 2 Blr and l D 1; : : : ; m, where K > 1, the norm (2.53) can
now be simply defined as

khk� D sup
´2�

� mX
lD1

ı

�
j´ � �l j

2nl C ı
2nl
nlC1

�
.ı2 C j´ � �l j

2nlC2/1C


2

��1
jh.´/j

for any h 2 L1.�/, where 0 < 
 < 1 is a small fixed constant. In order to
simplify notation, we set Ul D Uıl ;al ;�l , c

l
a D cla;�l , ‚l D ‚ıl ;al ;�l and fl D

fal ;�l . We have the following:

LEMMA 6.2. There exists a constant C > 0 independent of ı such that

(6.15) kRk� � Cı
2�
 :

PROOF. We shall sketch the proof of (6.15) by following ideas used in the proof
of Theorem 2.3. Through the change of variable y D �l.´/ in ��1

l
.B�.0//, by

Lemma 6.1, (6.13), (6.14), and cl0 D 0 for all l D 1; : : : ; m we find that

8ı2

e
2�
j�j

Pm
l0D1

Pnl0
iD0
jal
0

i
j2C‚l .a;ı/

Z
��1
l
.B�.0//

eu0CW

D

Z
��1
l
.B�.0//

j� 0l j
2eUlCO.j´��l j

nlC1
Pm
l0D1 jc

l0

a jCı
2j´��l jCı

4/

D 8�.nl C 1/ �

Z
R2nB�.0/

8.nl C 1/ı
2

jyj4
CO

�
kak2 C ıkak C ı

2nlC3

nlC1
�
;
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where kak2 D
Pm
lD1 jal j

2. Setting �� D
Sm
lD1 �

�1
l
.B�.0//, we get that

8ı2

e
2�
j�j

Pm
l0D1

Pnl0
iD0
jal
0

i
j2C

Pm
l0D1‚l0

Z
�

eu0CW

D

mX
lD1

eı
2
Pm
l0D1 fl0 .�l /

�
8�.nl C 1/ �

Z
R2nB�.0/

8.nl C 1/ı
2

jyj4

CO
�
kak2 C ıkak C ı

2nlC3

nlC1
��

C 8ı2
Z

�n��

eu0C8�
Pm
lD1

Pnl
iD0

G.´;�lCa
l
i
/
CO

�
ı4jlog ıj C ı2kak

2
maxl nlC1

�

D

mX
lD1

�
8�.nl C 1/C 8�.nl C 1/ı

2
mX
l 0D1

fl 0.�l/ � 8.nl C 1/ı
2

Z
R2nB�.0/

1

jyj4

�

C 8ı2
Z

�n��

eu0C8�
Pm
lD1

Pnl
iD0

G.´;�lCa
l
i
/
C o.ı2/

D 4�N

�
1C

2

N
ı2Da C

2

N
ı2

mX
l;l 0D1

.nl C 1/fl 0.�l/C o.ı
2/

�

in view of (1.9), where Da is given by

�Da D

Z
�n��

eu0C8�
Pm
lD1

Pnl
iD1

G.´;�lCa
l
i
/
�

mX
lD1

.nl C 1/

Z
R2nB�.0/

1

jyj4
:

Hence, for j´ � �l j � � we have that

�W C 4�N

 
eu0CWR
� e

u0CW
�

1

j�j

!

D j� 0l j
2eUl

�
2Re

h
cla.´ � �l/

nlC1
Y
l 0¤l

.´ � �l 0/
nl0C2

i

C ı2
mX
l 0D1

fl 0.�l/ �
2Da

N
ı2 �

2ı2

N

mX
j;l 0D1

.nj C 1/fl 0.�j /

CO.kakj´ � �l j
nlC2 C ı2j´ � �l j/C o.ı

2/

�
CO.ı2/

(6.16)
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as ı ! 0, in view of (1.9) and
R
� �l j�

0
l
j2eUl D 8�.nl C 1/ C O.ı2/ for all

l D 1; : : : ; m. For ´ 2 � n
Sm
lD1B�.�l/, we have that

�W C 4�N

 
eu0CWR
� e

u0CW
�

1

j�j

!
D O.ı2/:(6.17)

On the other hand, arguing as in (2.45), we have that

64ı4

e
4�
j�j

Pm
l0D1

Pnl0
iD1
jal
0

i
j2C2

Pm
l0D1‚l0

Z
�

e2u0C2W D

64

m0X
lD1

.nC 1/3

j˛a;l j
2
nC1 ı

2
nC1

Z
R2

jy C alı
�1j

2n
nC1

.1C jyj2/4
CO.ı�

1
nC1 /;

where ˛a;l D lim´!�l .´ � �l/
nlC1=�l.´/. Recall that n D minfnl W l D

1; : : : ; mg D n1 D � � � D nm0 < nl for all l D m0 C 1; : : : ; m. Setting

zDa;ı D

m0X
lD1

.nC 1/3

j˛a;l j
2
nC1 ı

2
nC1

Z
R2

jy C alı
�1j

2n
nC1

.1C jyj2/4
dy;

we have that
4�N�2B.W /

.1C
p
1 � �2B.W //2

D 64�2 zDa;ı C o.�
2ı�

2
nC1 /;

and it holds that

(6.18)
4�N�2B.W /

.1C
p
1 � �2B.W //2

 
eu0CWR
� e

u0CW
�

e2u0C2WR
� e

2u0C2W

!
D

j� 0l j
2eUl

�
16�2

�N
zDa;ı � �

2
j� 0l j

2eUl C o.�2ı
�2
nC1 /

�
in B�.�l/, l D 1; : : : ; m, and

(6.19)
4�N�2B.W /

.1C
p
1 � �2B.W //2

 
eu0CWR
� e

u0CW
�

e2u0C2WR
� e

2u0C2W

!
D O.�2ı

2n
nC1 /

in � n
Sm
lD1B�.�l/. Therefore, we conclude that kRk� D O.ı2�
 C kak2 C

�2ı�
2
nC1 / and (6.15) follows. �

As mentioned in Section 4, when we look for a solution of (2.2) in the form
w D W C �, we are led to study (4.1). In order to state the invertibility of the
linear operator L in a suitable functional setting, for l D 1; : : : ; m let us introduce
the functions

Z0l.´/ D
ı2 � j�l.´/ � al j

2

ı2 C j�l.´/ � al j
2
; Zl.´/ D

ı.�l.´/ � al/

ı2 C j�l.´/ � al j
2
; ´ 2 B2�.�l/:
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Also, let PZ0l and PZl be the unique solutions with zero average of

�PZ0l D �l�Z0l �
1

j�j

Z
�

�l�Z0l ; �PZl D �l�Zl �
1

j�j

Z
�

�l�Zl ;

where �l.´/ WD �.j´ � �l j/, and set PZ0 D
Pm
lD1 PZ0l . As in Propositions 4.1

and 4.2, it is possible to prove the following:

PROPOSITION 6.3. Let M0 > 0. There exists �0 > 0 small such that for any
0 < ı � �0, jlog ıj2�2 � �0ı2=.nC1/ and kak � M0ı there is a unique solution
� D �.ı; a/, d0 D d0.ı; a/ 2 R, and dl D dl.ı; a/ 2 C, l D 1; : : : ; m, to(

L.�/ D �ŒRCN.�/�C d0�PZ0 C
Pm
lD1 ReŒdl�PZl � in �;R

� � D
R
� ��PZl D 0; l D 0; : : : ; m:

Moreover, the map .ı; a/ 7! �.ı; a/ is C 1 with

(6.20) k�k1 � Cı
2��
jlog ıj:

The function W C � is a solution of (2.2) if we adjust ı and a so to have
dl.ı; a/ D 0 for all l D 0; : : : ; m. Similarly to Lemma 4.3, we have the follo-
wing:

LEMMA 6.4. There exists �0 > 0 such that if 0 < ı � �0, kak � �0ı, and

(6.21)
Z
�

.L.�/CN.�/CR/PZl D 0

hold for all l D 0; : : : ; m, then W C � is a solution of (2.2); i.e., dl.ı; a/ D 0 for
all l D 0; : : : ; m.

Since there hold the expansions

PZ0 D

mX
lD1

�
�l.Z0l C 1/ �

1

j�j

Z
�

�l.Z0l C 1/

�
CO.ı2/;

PZl D �lZl �
1

j�j

Z
�

�lZl CO.ı/; l D 1; : : : ; m;

in C.x�/, arguing as in Proposition 4.5, by (1.9) and (6.16)–(6.20) we can deduce
the following expansion for (6.21):
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LEMMA 6.5. Assume cl0 D 0 for all l D 1; : : : ; m and kak � �0ı. The following
expansions hold as � ! 0:Z
�

.L.�/CN.�/CR/PZ0

D �8�D0ı
2

C 64.nC 1/
3nC5
nC1 �2ı�

2
nC1

m0X
lD1

jHl.�l/j
� 2
nC1

Z
R2

.jyj2 � 1/jy C al
ı
j
2n
nC1

.1C jyj2/5
dy

C o.ı2 C �2ı�
1
nC1 /CO.�4ı�

2
nC1 jlog ıj2 C �8ı�

4
nC1 jlog ıj2/

and Z
�

.RC L.�/CN.�//PZl

D 4�ı

mX
l 0D1

.‡ l l
0
al 0 C �

l l 0xal 0/

� 64.nC 1/
3nC5
nC1 �2ı�

2
nC1 jHl.�l/j

� 2
nC1�M .l/

Z
R2

jy C al
ı
j
2n
nC1y

.1C jyj2/5
dy

C o.ı2 C �2ı�
2
nC1 /CO.�4ı�

2
nC1 jlog ıj2 C �8ı�

4
nC1 jlog ıj2/;

where D0 is defined in (1.10) and �M is the characteristic function of the set
M D f1; : : : ; m0g.

Finally, arguing as in the proof of Theorem 4.6, we can establish Theorem 1.1
thanks to D0 < 0 and the invertibility of the matrix A.

Let us now discuss some examples with m � 2. As already explained at the
beginning of Section 5, we can consider the case �1; : : : ; �m 2 � and pj 2 x� for
all j . In general, it is very difficult to establish the sign ofD0 as required in (1.10).
The key idea is to start from a configuration of the vortex points fp1; : : : ; pN g that
is obtained in a periodic way by a simpler configuration having just one concentra-
tion point. In this case, (1.10) easily follows but Theorem 1.1 is not really needed.
One can use Theorem 4.6 to obtain a solution with such a simpler configuration
and then repeat it periodically. We then move some of the vortex points slightly in
order to:

� keep zero residue of the corresponding H0 at each concentration point and
� break down the periodicity of the configuration.

In this way, assumption (1.10) is still valid but Theorem 4.6 is no longer applicable
in the trivial way we explained above.
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We now really need to resort to Theorem 1.1. To exhibit some concrete exam-
ples, let us focus for simplicity on the case m D 2, but the general situation can
be dealt with in the same way. Let � be a rectangle generated by !1 D a and
!2 D ib, a; b > 0, and let p1; p2; p3 be the three half-periods. Assume that the
vortex set is f�p1

2
; p1
2
; 0; p1; p2; p3g and the concentration points are �1 D �

p1
2

,
�2 D

p1
2

with multiplicity n. Supposing that 0 and p1 have even multiplicity n1,
and p2 and p3 have even multiplicity n2 with n1 C n2 D n C 2, we have that
such a configuration is not only !1 D 2p1-periodic but also p1-periodic: it can be
thought of as a double repetition (in a p1-periodic way) of the vortex configuration
f�

p1
2
; 0; p2g in �� WD Œ�a2 ; 0� � Œ�

b
2
; b
2
� with corresponding multiplicities n, n1,

and n2. If n is even, it is easy to see that d
nC1Hi
d´nC1

.�i / D 0 for i D 1; 2 since the
given vortex configuration is even with respect to �1 and �2. Notice that this is still
true if we replace 0 and p1 by �i t and p1 C i t , respectively, for t 2 R, provided
they keep the same multiplicity n1. Arguing as in (5.7), notice that D0 can be
written as

�D0 D Area
�
1

�0

�
�� n �

�1
0 .B�.0//

��
C Area

�
1

�0

�
�C n �

�1
0 .B�.0//

��
� 2.nC 1/Area.B1=�.0//;

where �C WD Œ0; a2 � � Œ�
b
2
; b
2
�. Since

u0 C 8�.nC 1/G.´; �1/C 8�.nC 1/G.´; �2/ D

� 4�n1 zG.´; 0/ � 4�n2 zG.´; p2/C 4�.nC 2/ zG.´; �1/

in ��, where zG.´; p/ is the Green function in the torus �� with pole at p, the
function H0 can be expressed as in (5.1) in terms of the Weierstrass function of
�C and the points �p1

2
, 0, and p2. Arguing exactly as in Section 5, we have that

Area
�
1

�0

�
�� n �

�1
0 .B�.0//

��
� .nC 1/Area.B1=�.0// < 0

provided the multiplicity n2 for the corner of �� is so that n2
2

is odd. Arguing
similarly in�C, we get thatD0 < 0 as soon as n2

2
is an odd number. The example

then follows by replacing 0, p1 with�i t , p1Ci t with t small for the corresponding
D0;t ! D0 as t ! 0.

Appendix A The Construction of �a

Letting �0 be the solution of (2.11) of the form (2.8), where c0 is given by
(2.9), we have that Q0.´/ D

�0.´/

´nC1
is an holomorphic function near ´ D 0 so that

Q0.0/ D
nC1
H.0/ (see (2.10)). Since Q0.0/ 6D 0, the .n C 1/th root Q1=.nC1/0 of

Q0 is a well-defined holomorphic function locally at ´ D 0, and it makes sense to
define q0.´/ D ´Q

1=.nC1/
0 .´/ near ´ D 0.
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For � 2 Br , where Br is given in (2.14), in a similar way we have that Q.´/ D
�.´/

´nC1
is an holomorphic function near ´ D 0 with j Q.´/

Q0.´/
� 1j � r for all ´. Since

in particular ˇ̌̌̌
Q.´/ �

nC 1

H.0/

ˇ̌̌̌
� r jQ0.´/j C

ˇ̌̌̌
Q0.´/ �

nC 1

H.0/

ˇ̌̌̌
;

we can find r and � > 0 small so that q.´/ D ´Q1=.nC1/.´/ is a well-defined
holomorphic function in B3�.0/ for all � 2 Br , with �.´/ D qnC1.´/ for all
´ 2 B3�.0/. Since q0.0/ D Q1=.nC1/.0/ satisfies

jq0.0/j �

�
.1 � r/.nC 1/

jH.0/j

� 1
nC1

> 0;

thus q is locally biholomorphic at 0.
In order to have uniform invertibility of q for all � 2 Br , let us evaluate the

following quantity:ˇ̌̌̌
1 �

q0.´/

q0.0/

ˇ̌̌̌
�

supB�.0/ jq
00j

jq0.0/j
j´j �

2

�2

�
.1 � r/.nC 1/

jH.0/j

�� 1
nC1 �

sup
B2�.0/

jqj
�
j´j

�
2

�2

�
jH.0/j
nC 1

� 1
nC1

�
1C r

1 � r

� 1
nC1 �

sup
B2�.0/

jq0j
�
j´j

for all ´ 2 B�.0/ in view of the Cauchy’s inequality andˇ̌̌̌
�.´/

�0.´/
� 1

ˇ̌̌̌
D

ˇ̌̌̌
qnC1.´/

qnC10 .´/
� 1

ˇ̌̌̌
� r for all ´ 2 B3�.0/:

Therefore, we can find �1 small so that j1 � q0.´/
q0.0/
j �

1
2

for all ´ 2 B
�
1=.nC1/
1

.0/

and

2�
1
nC1

1 jQ.0/j�
1
nC1 � 2�

1
nC1

1

�
jH.0/j
nC 1

� 1
nC1

.1 � r/�
1
nC1 � 2�;

uniformly for � 2 Br . Thus, the inverse map q�1 of q is defined from B
�
1=.nC1/
1

.0/

into B
2�
1=.nC1/
1 jQ.0/j�1=.nC1/

.0/: for all y 2 B
�
1=.nC1/
1

.0/ there exists a unique

´ 2 B
2�
1=.nC1/
1 jQ.0/j�1=.nC1/

.0/ so that q.´/ D y, given by ´ D q�1.y/. Since

� D qnC1 in B3�.0/, we have that

Card
˚
´ 2 B

2�
1=.nC1/
1 jQ.0/j�1=.nC1/

.0/ W �.´/ D y
	
D nC 1 8y 2 B�1.0/ n f0g

for all � 2 Br . Since

j�.´/j � .1 � r/ inf
z�nB

2�
1=.nC1/
1

jQ.0/j�1=.nC1/
.0/

j�0.´/j

� .1 � r/ inf
z�nB

2�
1=.nC1/
1

h
jH.0/j
nC1

i1=.nC1/
.1Cr/�1=.nC1/

.0/

j�0.´/j > 0
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for all
´ 2 z� n B

2�
1=.nC1/
1 jQ.0/j�1=.nC1/

.0/

we can find � (� �1) small so that

Cardf´ 2 z� W �.´/ D yg D

Card
˚
´ 2 B

2�
1=.nC1/
1 jQ.0/j�1=.nC1/

.0/ W �.´/ D y
	
D nC 1

for all y 2 B�.0/ n f0g and � 2 Br . Since

��1.B�.0// � B2�1=.nC1/1 jQ.0/j�1=.nC1/
.0/

� B
2�
1=.nC1/
1

h
jH.0/j
nC1

i1=.nC1/
.1�r/�1=.nC1/

.0/ � B2�.0/

for all ´ 2 @��1.B�.0// D ��1.@B�.0// and � 2 Br , we have that

j´jnC1

�
D
j´jnC1

j�.´/j
D

1

jQ.´/j
�

1

.1C r/
inf

B2�.0/
jQ0.´/j

�1 > 0

for q0 is well-defined in B3�.0/. We can summarize the above discussion as fol-
lows:

LEMMA A.1. There exist r; � > 0 such that q.´/ D ´Q.´/1=.nC1/ is a locally bi-
holomorphic map with � D qnC1 and inverse q�1 defined on B�1=.nC1/.0/ for all
� 2 Br . In particular, there exists a neighborhhod V of 0 so that, for all � 2 Br ,
there holds V � ��1.B�.0//, and � W ��1.B�.0//! B�.0/ is a .nC 1/� 1 map
in the following sense:

Cardf´ 2 z� W �.´/ D yg D nC 1 8y 2 B�.0/ n f0g:

For jaj < � and � 2 Br , by Lemma A.1 we have that

��1.a/ D f´ 2 z� W �.´/ D ag D fa0; : : : ; ang;

where ak D q�1.yak/ and yak , k D 0; : : : ; n, are the .nC 1/th roots of a, and then

ga;� .´/ WD
�.´/ � aQn
kD0.´ � ak/

2M.�/

is a nonvanishing function. We are now in position to prove the following:

LEMMA A.2. For � small enough, there exists a C 1-map a 2 B�.0/ ! �a 2 Br
so that �a solves (2.15)–(2.16). Moreover, the map a 2 B�.0/! ca D ca;�a is C 1

with

� WD H.0/@aca
ˇ̌
aD0
D
1

nŠ

dnC1

d´nC1
ŒH.´/fnC1.´/�.0/;

‡ WD H.0/@xaca
ˇ̌
aD0
D �

2�.nC 1/

j�jnŠ
bnC1

dnH
d´n

.0/;
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where

fnC1.´/ D
1

.nC 1/Š

dnC1

dwnC1

"
2 log

w � q0.´/

q�10 .w/ � ´
C 4�H�.´ � q�10 .w//

#
.0/;

bnC1 D
1

.nC 1/Š

dnC1q�10
dwnC1

.0/:

PROOF. Given ca;� as in (2.16), equation (2.15) is equivalent to finding zeroes
of the map ƒ W .a; �/ 2 B�.0/ � Br !M.�/ given as

ƒ.a; �/ D �.´/C

�Z ´ g2a;� .w/

g20;� .w/

Ha;� .w/
wnC2

e�ca;�w
nC1

dw

��1
:

Observe that the zeroes ak D ak.a; �/ D q�1.yak/ are continuously differentiable
in � . Differentiating the relation �.ak/ D a at �0 along a direction R 2M0.�/,
we have that � 00.ak.a; �0//@�ak.a; �0/ŒR�C R.ak.a; �0// D 0. Since � 00.ak/ �
an
k

and R.ak/ � a
nC1
k

in view of kRk < 1, we get that @�ak.0; �0/ŒR� D 0 for

all R 2M0.�/. For ´ 6D 0 the function ga;� .´/
g0;� .´/

is continuously differentiable in �
with

@�

�
ga;� .´/

g0;� .´/

�
ŒR� D

a
´nC1Qn

kD0.´ � ak/

R.´/

�2.´/
C

�.´/ � aQn
kD0.´ � ak/

´nC1

�.´/

nX
jD0

1

´ � aj
@�aj .a; �/ŒR�

for every R 2M0.�/. In particular, we get that

@�

�
ga;� .´/

g0;� .´/

�ˇ̌̌̌
aD0

ŒR� D 0 for every ´ 6D 0 and R 2M0.�/.

Since we can write ga;� .´/
g0;� .´/

as

ga;� .´/

g0;� .´/
D
´nC1

�.´/

nY
kD0

q.´/ � q.ak/

´ � ak

D
´nC1

�.´/

nY
kD0

Z 1

0

q0.ak C t .´ � ak//dt

(A.1)

for ´ small in view of � D qnC1, we get that ga;� .´/
g0;� .´/

is continuously differentiable

in � and the linear operator @�
�
ga;� .´/
g0;� .´/

�
is continuous at ´ D 0. In particular,

we get that @�
�
ga;�0 .´/

g0;�0 .´/

�ˇ̌̌
aD0

ŒR� D 0 for every ´ and R 2 M0.�/. By (2.12)

we have that Ha;� is continuously differentiable in � with @�H0;� ŒR� D 0 for
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every R 2M0.�/. We have that ca;� is also continuously differentiable in � with

@�c0;�0 ŒR� D 0 for every R 2M0.�/, and so ƒ.a; �/ is with @�ƒ.0; �0/ D Id.

Since ak � jaj1=.nC1/, the smooth dependence in a is much more delicate and
will be true just for symmetric expressions of the ak’s thanks to the symmetries of
yak D q.ak/. To fully exploit the symmetries, it is crucial that the expression (2.12)
of Ha;� is in terms of an holomorphic function H�. Indeed, we have that

2

nX
kD0

H�.´ � ak/ �
´

j�j

nX
kD0

ak

D 2

1X
lD0

gl.´/

nX
kD0

yalk �
´

j�j

1X
lD1

bl

nX
kD0

yal
k

D 2.nC 1/

1X
lD0

g.nC1/l.´/a
l
�
nC 1

j�j
´

1X
lD1

b.nC1/la
l

in view of
Pn
kD0 ya

l
k
D 0 for all l … .nC 1/N, where

gl.´/ D
1

lŠ

d l

dwl
ŒH�.´ � q�1.w//�.0/ and bl D

1

lŠ

d lq�1

dwl
.0/

(recall that b0 D q�1.0/ D 0). Since for ´ small there holds

nX
kD0

log
q.´/ � q.ak/

´ � ak
D

1X
lD0

hl.´/

nX
kD0

yalk D .nC 1/

1X
lD0

h.nC1/l.´/a
l

in view of ak D q�1.yak/, where

hl.´/ D
1

lŠ

d l

dwl

�
log

w � q.´/

q�1.w/ � ´

�
.0/;

we have that ga;� .´/
g0;� .´/

is continuously differentiable in a; xa for all ´ in view of (A.1)

(for ´ far from 0 it is obvious). Hence, by (2.12) g
2
a;�

g20;�
Ha;� , ca;� , and ƒ.a; �/ are

also continuously differentiable in a; xa, and thenƒ is aC 1-map withƒ.0; �0/ D 0,

@�ƒ.0; �0/ D Id. For � small enough, by the implicit function theorem we find a

C 1-map a 2 B�.0/! �a so that ƒ.a; �a/ D 0, and the function a! ca D ca;�a
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is C 1. By

@a

�
g2a;� .´/g

2
0;� .0/

g2a;� .0/g
2
0;� .´/

Ha;� .´/
Ha;� .0/

�
.0/

D
g20;� .0/

g20;� .´/
@a

�
e2 logga;� .´/�2 logga;� .0/Ha;� .´/

Ha;� .0/

�
.0/

D .nC 1/
H.´/
H.0/

ŒfnC1.´/ � fnC1.0/�

and

@xa

�
g2a;� .´/g

2
0;� .0/

g2a;� .0/g
2
0;� .´/

Ha;� .´/
Ha;� .0/

�
.0/ D �

2�.nC 1/

j�j

H.´/
H.0/

bnC1´;

we deduce the desired expression for � and ‡ in view of @�c0;�0 D 0 and (4.13).
�

Appendix B The Linear Theory
In this section, we will prove the invertibility of the linear operator L given by

(4.3) under suitable orthogonality conditions. The operator L can be described
asymptotically by the following linear operator in R2:

L0.�/ D �� C
8.nC 1/2jyj2n

.1C jynC1 � �0j2/2
�;

where �0 D lim a
ı

. When �0 D 0, as in the case n D 0 [4], by using a Fourier de-
composition of � it can be shown in a rather direct way that the bounded solutions
of L0.�/ D 0 in R2 are precisely linear combinations of

Y0.y/ D
1 � jyj2nC2

1C jyj2nC2
and Yl.y/ D

.ynC1/l

1C jyj2nC2
; l D 1; 2:

Note that L0 is the linearized operator at the radial solution U D U1;0 of ��U D
j´j2neU .

For the linearized operator at U1;�0 with �0 6D 0, the Fourier decomposition is
useless since U1;�0 is not radial with respect to any point if n � 1. However, the
same property is still true as recently proved in [15], and the argument below can
be carried out in full generality in the range a D O.ı/. Since in Theorem 4.6 we
are concerned with the case a D o.ı/, for simplicity we will discuss the linear
theory just in this case.

Recall that

Z0.´/ D
ı2 � j�.´/ � aj2

ı2 C j�.´/ � aj2
; Zl.´/ D

ıŒ�.´/ � a�l

ı2 C j� � aj2
; l D 1; 2;
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and PZl , l D 0; 1; 2, denotes the projection of Zl onto the doubly periodic func-
tions with zero average:(

�PZl D �Zl �
1
j�j

R
��Zl in �;R

� PZl D 0:

Given h 2 L1.�/ with
R
� h D 0, consider the problem of finding a function �

in � with zero average and numbers dl , l D 0; 1; 2, such that

(B.1)

(
L.�/ D hC

P2
lD0 dl�PZl in �;R

��PZl� D 0 8l D 0; 1; 2:

Since Z D Z1 C iZ2, observe that (B.1) is equivalent to solving (4.4) with d D
d1 � id2. Let us stress that the orthogonality conditions in (B.1) are taken with
respect to the elements of the approximate kernel due to translations and to an
extra element that involves dilations. A similar situation already appears in [13].

First, we will prove an a priori estimate for problem (B.1) when dl D 0 for all
l D 0; 1; 2 with respect to the k � k�-norm defined as

khk� D sup
´2�

.ı2 C j�.´/ � aj2/1C
=2

ı
 .j� 0.´/j2 C ı2n=.nC1/
jh.´/j;

where 0 < 
 < 1 is a small fixed constant.

PROPOSITION B.1. There exist �0 > 0 small and C > 0 such that for any 0 <
ı � �0, �2 � �0ı

2
nC1 , jaj � �0ı, and any solution � to

(B.2)

8̂<̂
:
L.�/ D h in �;R
��PZl� D 0 8l D 0; 1; 2;R
� � D 0;

one has

(B.3) k�k1 � C log
1

ı
khk�:

PROOF. The proof of estimate (B.3) consists of several steps. Assume by con-
tradiction the existence of sequences ık ! 0, �k with �2

k
D o.ı

2=.nC1/

k
/, ak

with ak D o.ık/, functions hk with jlog ıkjkhkk� D o.1/ as k ! C1, and
solutions �k of (B.2) with k�kk1 D 1. Since by (4.3) the operator L acts as
L.�/ D �� C KŒ� C 
.�/� where 
.�/ 2 R, the function  k D �k C 
.�k/

solves (
� k CKk k D hk in �;R
��PZk;l k D 0 8l D 0; 1; 2;

where Wk;Kk; Zk;l denote the functions W;K; Zl , respectively, along the given
sequence.
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CLAIM B.2. lim infk!C1 k kk1 > 0 and, up to a subsequence,  k ! zc 2 R
as k !C1 in C 1;˛loc .

x� n f0g/ for all ˛ 2 .0; 1/.

Indeed, assume by contradiction that lim infk!C1 k kk1 D 0. Up to a sub-
sequence, assume that k kk1 D k�k C 
.�k/k1 ! 0 as k ! C1. Since
�2
k
D o.ı

2=.nC1/

k
/, by (2.49) it follows that


.�k/ D �

R
� e

u0CWk�kR
� e

u0CWk
C o.1/ D O.1/:

Up to a subsequence we have that
R
� e

u0CWk�kR
� e

u0CWk
! c, and then �k ! c uni-

formly in � as k ! C1. Since
R
� �k D 0, we get c D 0 and �k ! 0 in

L1.�/, in contradiction with k�kk1 D 1. Moreover, since k kk1 D O.1/, by
(2.51)–(2.52) we have that � k D o.1/ in Cloc.x� n f0g/. Up to a subsequence,
we have that  k !  as k ! C1 in C 1;˛loc .

x� n f0g/. Since k kk1 D O.1/,  
is a bounded function that can be extended to a harmonic doubly periodic function
in �. Therefore,  D zc in � with zc D limk!C1 
.�k/, since 1

j�j

R
�  k D


.�k/.
Now, consider the function ‰k.y/ D  k.ı

1=.nC1/

k
y/. Then ‰k satisfies

�‰k CKk.y/‰k D yhk.y/ in ı�1=.nC1/
k

�;

where

Kk.y/ D ı
2
nC1

k
Kk
�
ı

1
nC1

k
y
�

and yhk.y/ D ı
2
nC1

k
hk
�
ı

1
nC1

k
y
�
:

Also, we set �k.y/ D ı�1k �ak .ı
1=.nC1/

k
y/ for y in compact subsets of R2.

CLAIM B.3. ‰k ! ‰ D 0 in Cloc.R2/ as k !C1.

Indeed, observe that by (2.49) and (2.51)–(2.52) we have the following expan-
sions:

(B.4)
K.´/ D j� 0.´/j2eUı;a

�
1CO.jcajj´j

nC1/CO.jcajjaj C ı
2
jlog ıj/

�
CO.�2j� 0.´/j4e2Uı;a/:

Since �2
k
D o.ı

2=.nC1/

k
/, the first estimate above can be rewritten along our se-

quence as

Kk.y/ D .1C o.1/CO.ıkjyj
nC1//

8j� 0
k
.y/j2�

1C
ˇ̌
�k.y/ � akı

�1
k

ˇ̌2�2
C o.1/

64j� 0
k
.y/j4�

1C
ˇ̌
�k.y/ � akı

�1
k

ˇ̌2�4
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uniformly in ı�1=.nC1/
k

� as k !C1. Since � D ´nC1Q, we have that �k.y/ D

ynC1Qak .ı
1=.nC1/

k
y/ and

� 0k.y/ D .nC 1/y
nQak

�
ı
1=.nC1/

k
y
�
C ı

1=.nC1/

k
ynC1Q0ak

�
ı
1=.nC1/

k
y
�
:

Since Qak .0/!
nC1
H.0/ DW 
 6D 0 and kQ0akk1;� � CkQakk1;z� � C

0, we have
that

�k.y/ D y
nC1

�

 C o.1/CO

�
ı

1
nC1

k
jyj
��
;

� 0k.y/ D .nC 1/y
n
�

 C o.1/CO

�
ı

1
nC1

k
jyj
��
;

as k !C1. Then we get that

Kk.y/ D

"
8.nC 1/2
 j2jyj2n�

1C
ˇ̌
�k.y/ � akı

�1
k

ˇ̌2�2 C 64.nC 1/4j
 j4jyj4no.1/�
1C

ˇ̌
�k.y/ � akı

�1
k

ˇ̌2�4
#

�
�
1C o.1/CO

�
ı

1
nC1

k
jyj
��(B.5)

uniformly in ı�1=.nC1/
k

�.
Choose � small so that j�k.y/j �

j
 j
2
jyjnC1 in B

ı
�1=.nC1/

k
�
.0/ for k large. Since

k‰kk1 D O.1/ and jyhk.y/j � Ckhkk� ! 0 on compact sets, by elliptic esti-
mates and (B.5) we get that ‰k.
�1=.nC1/y/ ! y‰ in Cloc.R2/ as k ! C1,
where y‰ is a bounded solution of L0.y‰/ D 0 (with �0 D 0). Then y‰.y/ DP2
jD0 bjYj .y/ for some bj 2 R, j D 0; 1; 2.
Since �Zk;l C j� 0kj

2eUık;akZk;l D 0 for l D 0; 1; 2 (where Uık ;ak stands for
Uık ;ak ;�ak

), for l D 1; 2 we have thatZ
�

 k�Zk;l D �

Z
�

j� 0k.´/j
2 ke

Uık;akZk;l

D �

Z
B
ı
�1=.nC1/
k

�
.0/

8j� 0
k
.´/j2.�k � akı

�1
k
/‰k�

1C
ˇ̌
�k � akı

�1
k

ˇ̌2�3 dy CO.ı3k/:

Since for all l D 0; 1; 2

0 D

Z
�

 k�PZk;l D

Z
�

 k

�
�Zk;l �

1

j�j

Z
�

�Zk;l

�
D

Z
�

 k�Zk;l C o.1/

as k !1 in view of (3.1)–(3.2), by dominated convergence we get thatZ
R2

y‰.y/
jyj2n.ynC1/l

.1C jyj2nC2/3
dy D 0 for l D 1; 2;
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and we conclude that b1 D b2 D 0. Similarly, for l D 0 we deduce thatZ
R2

y‰.y/
jyj2n.1 � jyj2nC2/

.1C jyj2nC2/3
dy D 0;

which implies that b0 D 0. Thus, the claim follows.
On the other hand, from the equation of  k we have the following integral rep-

resentation:

(B.6)  k.´/ D
1

j�j

Z
�

 k C

Z
�

G.y; ´/ŒKk.y/ k.y/ � hk.y/�dy:

CLAIM B.4. zc D 0.

Indeed, Claims B.2 and B.3 imply that  k.0/ D ‰k.0/ ! 0 and 1
j�j

R
�  k D


.�k/! zc as k !C1 by definition. So, by (B.6) we deduce thatZ
�

G.y; 0/ŒKk.y/ k.y/ � hk.y/�dy ! �zc

as k !C1. We first estimate the integral involving hk . SinceZ
Bık .0/

jlog jyjjdy D O.ı2k log ık/;

we get thatˇ̌̌̌ Z
Bık .0/

G.y; 0/hk.y/dy

ˇ̌̌̌
�
C

ı2
k

khkk�

Z
Bık .0/

G.y; 0/dy � C jlog ıkjkhkk�:

By (3.6) we have thatˇ̌̌̌ Z
�nBık .0/

G.y; 0/hk.y/dy

ˇ̌̌̌
� C jlog ıkj

Z
�

jhkj � C jlog ıkjkhkk�;

and we conclude thatˇ̌̌̌Z
�

G.y; 0/hk.y/dy

ˇ̌̌̌
� C jlog ıkjkhkk� ! 0

in view of jlog ıkjkhkk� D o.1/ as k !C1.
By (B.4) we have thatZ

�

G.y; 0/Kk.y/ k.y/dy

D

Z
B�.0/

G.y; 0/Kk.y/ k.y/dy CO.ı2k/ D
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D

Z
B
ı
�1=.nC1/
k

�
.0/

�
�
1

2�
log jyj �

1

2�.nC 1/
log ık

CH
�
ı

1
nC1

k
y; 0

��
Kk.y/‰k.y/dy CO.ı

2
k/:

Because Kk D O. jyj2n

.1Cjyj2nC2/2
/ holds uniformly in B

ı
�1=.nC1/

k
�
.0/ n B1.0/ by

(B.5) and Kk.y/!
8.nC1/2jyj2n

.1Cjyj2nC2/2
as k ! C1, by dominated convergence we get

that Z
B
ı
�1=.nC1/
k

�
.0/

�
�
1

2�
log jyj CH.ı

1
nC1

k
y; 0/

�
Kk.y/‰k.y/dy !

Z
R2

�
�
1

2�
log jyj CH.0; 0/

�
8.nC 1/2jyj2n

.1C jyj2nC2/2
‰.y/dy D 0

as k ! C1. Since
R
� hk D 0, the integration of the equation satisfied by  k

gives that
R
�Kk k D 0. Then, by (B.4) we get thatZ

B
ı
�1=.nC1/
k

�
.0/

Kk‰k dy D

Z
B�.0/

Kk k dy D �
Z

�nB�.0/

Kk k D O.ı2k/;

which implies that

log ık

Z
B
ı
�1=.nC1/
k

�
.0/

Kk‰k dy D O.ı
2
k log ık/:

In conclusion, we have shown that
R
�G.y; 0/Kk.y/ k.y/dy ! 0 as k ! C1,

yielding to zc D 0.
In the following claims, we will omit the subscript k. Let us denote zL. / D

� CK .

CLAIM B.5. For R large enough the operator zL satisfies the maximum principle
in B�.0/ n BRı1=.nC1/.0/.

Indeed, as already noticed in the proof of the previous claim in terms of Kk ,
there is C1 > 0 such that

(B.7) K.´/ � C1
.nC 1/2ı2j´j2n

.ı2 C j´j2nC2/2
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in B�.0/ n Bı1=.nC1/.0/. The function

zZ.´/ D �Y0

�
�´

ı
1
nC1

�
D
�2nC2j´j2nC2 � ı2

�2nC2j´j2nC2 C ı2

satisfies

�� zZ.´/ D 16.nC 1/2
ı2�2nC2j´j2n.�2nC2j´j2nC2 � ı2/

.�2nC2j´j2nC2 C ı2/3
:

For R large so that �2nC2R2nC2 > 5
3

we have that

�� zZ.´/ � 16.nC 1/2
ı2�2nC2j´j2n

.�2nC2j´j2nC2 C ı2/2
�2nC2R2nC2 � 1

�2nC2R2nC2 C 1

� 4.nC 1/2
ı2�2nC2R4nC4

.�2nC2R2nC2 C 1/2
1

j´j2nC4
�
.nC 1/2

�2nC2
ı2

j´j2nC4

in B�.0/ n BRı1=.nC1/.0/. On the other hand, since zZ � 1 we have that

K.´/ zZ.´/ � C1
.nC 1/2ı2j´j2n

.ı2 C j´j2nC2/2
� C1

.nC 1/2ı2

j´j2nC4

in B�.0/ n Bı1=.nC1/.0/, and for 0 < � < 1p
C1

we then get that

zL. zZ/ �

�
�

1

�2nC2
C C1

�
.nC 1/2ı2

j´j2nC4
< 0

in B�.0/ n BRı1=.nC1/.0/. Since

zZ.x/ �
�2nC2R2nC2 � 1

�2nC2R2nC2 C 1
>
1

4

for j´j � Rı1=.nC1/, we have provided the existence of a positive supersolution
for zL, a sufficient condition to have that zL satisfies the maximum principle.

CLAIM B.6. There exists a constant C > 0 such that

k k1;B�.0/nBRı1=.nC1/ .0/
� C Œk ki C khk��;

where
k ki D k k1;@B

Rı1=.nC1/
.0/ C k k1;@B�.0/:

Indeed, letting ˆ be the solution of(
��ˆ D 2

P2
iD1

ı�i =.nC1/

j´j2C�i
for Rı1=.nC1/ � j´j � r;

ˆ D 0 for j´j D r; Rı1=.nC1/;

with r 2 .�; 2�/, �1 D �.nC 1/, and �2 D 2nC �.nC 1/, we construct a barrier
function of the form ẑ D 4k ki zZ C khk�ˆ. A direct computation shows that

ˆ.´/ D 2

2X
iD1

ı
�i
nC1

�
�

1

�2i j´j
�i
C ˛i log j´j C ˇi

�
;
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where

˛i D
1

�2i log Rı
1=.nC1/

r

�
1

R�i ı
�i
nC1

�
1

r�i

�
< 0;

ˇi D
1

�2i r
�i
�

log r

�2i log Rı
1=.nC1/

r

�
1

R�i ı
�i
nC1

�
1

r�i

�
;

for i D 1; 2. Since

0 � ˆ.´/ � 2

2X
iD1

ı
�i
nC1

"
�

1

�2i r
�i
C ˛i logRı

1
nC1 C ˇi

#

D 2

2X
iD1

ı
�i
nC1˛i log

Rı
1
nC1

r
�

2X
iD1

2

�2i R
�i
;

we get that

zL. ẑ / � khk�

�
�2

ı�

j´j2C�.nC1/
� 2

ı�C
2n
nC1

j´j2C2nC�.nC1/
C
C1.nC 1/

2ı2j´j2n

.ı2 C j´j2nC2/2

2X
iD1

2

�2i R
�i

�

� khk�

"
�2

ı�

j´j2C�.nC1/
�

ı�C
2n
nC1

.ı2 C j´j2nC2/1C�=2
C

ı� j´j2n

.ı2 C j´j2nC2/1C�=2

#

� �khk�
ı� .j´j2n C ı

2n
nC1 /

.ı2 C j´j2nC2/1C�=2

in view of (B.7) for R large so that C1.nC 1/2
P2
iD1

2

�2
i
R�i
� 1. Since j j � ẑ

on @BRı1=.nC1/.0/ [ @Br.0/ in view of 4 zZ � 1, by the maximum principle we
conclude that j j � ẑ in B�.0/ n BRı1=.nC1/.0/ and the claim follows.

Since Claims B.3 and B.4 provide that k kki ! 0 as k !1, by Claim B.6 we
conclude that k kk1 D o.1/ as k ! C1; this conclusion is in contradiction to
lim infk!C1 k kk1 > 0 according to Claim B.2. This completes the proof. �

We are now in position to solve problem (B.1).

PROPOSITION B.7. There exists �0 > 0 small such that for any 0 < ı � �0,
jlog ıj�2 � �0ı

2=.nC1/, jaj � �0ı, and h 2 L1.�/ with
R
� h D 0 there is a

unique solution � WD T .h/, with
R
� � D 0 and d0; d1; d2 2 R of problem (B.1).

Moreover, there is a constant C > 0 so that

(B.8) k�k1 � C

�
log

1

ı

�
khk�;

2X
lD0

jdl j � Ckhk�:

PROOF. Since ��Zl D j� 0.´/j2eUı;aZl in � (where Uı;a stands for Uı;a;�a )
and

R
��Zl D O.ı

2/ in view of (3.1)–(3.2), we have that

�PZl D O.j�
0.´/j2eUı;a/CO.ı2/
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in view of Zl D O.1/, which yield k�PZlk� � C for all l D 0; 1; 2. By
Proposition B.1 every solution of (B.1) satisfies

k�k1 � C

�
log

1

ı

��
khk� C

2X
lD0

jdl j

�
:

Set hf; gi D
R
� fg and notice that

(B.9) hL.�/; PZj i D hL.�/; PZj C ti D h� C 
.�/; zL.PZj C t /i

for any t 2 R, in view of
R
�L.�/ D 0.

To estimate the jdl j’s, let us test equation (B.1) against PZj , j D 0; 1; 2, to get

h� C 
.�/; zL.PZj C tj /i D hh; PZj i C

2X
lD0

dlh�PZl ; PZj i

where tj D 1
j�j

R
�Zj , j D 0; 1; 2. From the proof of Lemma 4.3 we know that

for Z0 and Z D Z1 C iZ2 there hold the following:Z
�

�PZ0PZ0 D �16.nC 1/

Z
R2

1 � jyj2

.1C jyj2/4
CO.ı2/;

Z
�

�PZPZ0 D O.ı
2/;

Z
�

�PZPZ D �8.nC 1/

Z
R2

jyj2

.1C jyj2/4
CO.ı/ ;

Z
�

�PZPZ D O.ı/;

where
R

R2
dy

.1Cjyj2/4
D 2

R
R2

1�jyj2

.1Cjyj2/4
D

�
3

.
In terms of the Zl ’s we then have that

h�PZl ; PZj i D �.nC 1/Cij ılj CO.ı
2/;

where ılj denotes the Kronecker’s symbol and c00 D 8�
3

, c11 D c22 D
4�
3

. For
j D 0; 1; 2 let us now estimate kzL.PZj C tj /k�:

(B.10)
kzL.PZj C tj /k� D



�j� 0.´/j2eUı;aZj CK.PZj C tj /CO.ı2/



�

D O.ı C �2ı�
2
nC1 C ıjcaj/

in view of (3.1)–(3.3) and (B.4). Since j
.�/j D O.k�k1/ in view of (2.49) and
�2ı�2=.nC1/ D o.1/, by (3.6) we get that

h� C 
.�/; zL.PZj C tj /i D O.ı C �
2ı�

2
nC1 /k�k1;

which along with the previous estimates leads to

jdj j � C

�
.ı C �2ı�

2
nC1 /k�k1 C khk� C ı

2X
lD0

jdl j

�
(B.11)
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in view of PZj D O.1/. Since (B.11) gives that
2X
lD0

jdl j D O.ı C �
2ı�

2
nC1 /k�k1 CO.khk�/;

we have that every solution of (B.1) satisfies

k�k1 � C

�
log

1

ı

�"
khk� C

2X
lD0

jdl j

#

� C log
1

ı
.ı C �2ı�

2
nC1 /k�k1 C C log

1

ı
khk�:

In view of log 1
ı
.ı C �2ı�2=.nC1// D o.1/ as �0 ! 0, the a priori estimates (B.8)

immediately follow.
To solve (B.1), consider now the space

H D

�
� 2 H 1.�/ doubly periodic W

Z
�

� D 0;

Z
�

�PZl � D 0 for l D 0; 1; 2
�

endowed with the usual inner product Œ�;  � D
R
� r�r : Problem (B.1) is equi-

valent to finding � 2 H such that

Œ�;  � D

Z
�

ŒK.� C 
.�// � h� for all  2 H:

With the aid of Riesz’s representation theorem, the equation has the form .Id �
compact operator/� D zh. Fredholm’s alternative guarantees unique solvability of
this problem for any h provided that the homogeneous equation has only the trivial
solution. This is equivalent to (B.1) with h � 0, which has only the trivial solution
by the a priori estimates (B.8). The proof is now complete. �

Appendix C The Nonlinear Problem
We consider the following nonlinear problem:

(C.1)

8̂<̂
:
L.�/ D �ŒRCN.�/�C

P2
lD0 dl�PZl in �;R

��PZl� D 0 for all l D 0; 1; 2;R
� � D 0;

where R, N.�/, and L are given by (2.24), (4.2), and (4.3), respectively. Notice
that (4.5) and (C.1) are equivalent by setting d D d1 � id2.

LEMMA C.1. There exists ı0 > 0 small such that for any 0 < ı < �0, jlog ıj2�2 �
�0ı

2=.nC1/, jaj � �0ı, problem (C.1) admits a unique solution � and dl , l D
0; 1; 2. Moreover, there exists C > 0 so that

(C.2) k�k1 � C jlog ıjkRk�:
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PROOF. In terms of the operator T defined in Proposition B.7, problem (C.1)
reads as

� D �T .RCN.�// WD A.�/:
For a given number M > 0, let us consider the space

FM D f� 2 L1.�/ doubly periodic W k�k1 �M jlog ıjkRk�g:

It is a straightforward but tedious computation to show that

(C.3) kN.�1/ �N.�2/k� � C1.k�1k1 C k�2k1/k�1 � �2k1:

Just to give an idea on how (C.3) can be proved, observe that

0 �
eu0CWC�R
� e

u0CWC�
� e2k�k1

eu0CWR
� e

u0CW
and

ˇ̌̌̌Z
�

eu0CWC��

ˇ̌̌̌
� k�k1

Z
�

eu0CWC�:

For k�k1 � 1 we can then get that

k�k1





D� eu0CWC�R
� e

u0CWC�

�
Œ��






�

C





D2� eu0CWC�R
� e

u0CWC�

�
Œ�; ��






�

D

O

�



 eu0CWR
� e

u0CW






�

k�k21

�
D O.k�k21/

in view of k eu0CWR
� e

u0CW
k� D O.1/ by (2.51).

This is exactly what we need to estimate in the k�k�-norm the difference between
the first terms of N.�1/ and N.�2/. For the other terms we can argue in a similar
way to get

k�k1





D� e2.u0CWC�/R
� e

2.u0CWC�/

�
Œ��






�

C





D2� e2.u0CWC�/R
� e

2.u0CWC�/

�
Œ�; ��






�

D

O

�



 e2.u0CW /R
� e

2.u0CW /






�

k�k21

�
D O.k�k21/

in view of k e2.u0CW/R
� e

2.u0CW/
k� D O.1/ by (2.52), and

k�k1kDŒB.W C �/�Œ��k� C kD
2ŒB.W C �/�Œ�; ��k� D

O
�
B.W /k�k21

�
D O

�
ı�

2
nC1 k�k21

�
in view of (2.49). Since �2ı�2=.nC1/ D o.1/, we can deduce the validity of (C.3).

Denote by C 0 the constant present in (B.8). By Proposition B.7 and (C.3) we
get that

kA.�1/ �A.�2/k1 � C 0jlog ıjkN.�1/ �N.�2/k�

� 2C 0C1MkRk� log2 ık�1 � �2k1
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for all �1; �2 2 FM . By Proposition B.7 we also have that

kA.�/k1 � C 0jlog ıjŒkRk� C kN.�/k�� � C 0jlog ıjkRk� C C 0C1jlog ıjk�k21

for all � 2 FM . Fix now M as M D 2C 0, and by (2.54) take �0 small so that
4.C 0/2C1 log2 ıkRk� < 1

2
in order to have A be a contraction mapping of FM

into itself. Therefore A has a unique fixed point � in FM , which satisfies (C.2)
with C DM . �

Appendix D The Integral Coefficients in (3.4)–(3.5)
Letting � D a

ı
, we aim to investigate the integral coefficients

I WD

Z
R2

.jyj2 � 1/jy C �j
2n
nC1

.1C jyj2/5
dy; K WD

Z
R2

jy C �j
2n
nC1y

.1C jyj2/5
dy;

which appear in (3.4)–(3.5) and (4.8)–(4.9). We will show below that I D f .j�j/

and K D g.j�j/� with f < 0 < g, and the asymptotic behavior of f and g as
j�j ! C1 will be identified.

By the change of variable y ! y C � and the Taylor expansion

.1 � x/�5 D

C1X
kD0

ckx
k for jxj < 1

with ck D
.4Ck/Š
24kŠ

, we can rewrite I as

I D

Z
R2

jyj
2n
nC1 .jy � �j2 � 1/

.1C jy � �j2/5
dy

D

C1X
kD0

ck

Z
R2

jyj
2n
nC1 .jyj2 C j�j2 � 1 � yx� � xy�/.yx� C xy�/k

.1C jyj2 C j�j2/5Ck
dy

in view of

.1C jy � �j2/�5 D .1C jyj2 C j�j2/�5
�
1 �

yx� C xy�

1C jyj2 C j�j2

��5
with

jyx� C xy�j

1C jyj2 C j�j2
�
jyj2 C j�j2

1C jyj2 C j�j2
< 1:
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Since

.yx� C xy�/k D

kX
jD0

�
k

j

�
yj x�j xyk�j �k�j

D

X
1�j<k

2

�
k

j

�
�k�2j xyk�2j j�j2j jyj2j

C

X
k
2
<j�k

�
k

j

�
x�2j�ky2j�kj�j2k�2j jyj2k�2j

for k odd and

.yx� C xy�/k D
X

1�j<k
2

�
k

j

�
�k�2j xyk�2j j�j2j jyj2j

C

X
k
2
<j�k

�
k

j

�
x�2j�ky2j�kj�j2k�2j jyj2k�2j C

�
k
k
2

�
j�jkjyjk

for k even, by symmetry we can simplify the expression of I as follows:

I D

C1X
kD0

ck

Z
R2

jyj
2n
nC1 .jyj2 C j�j2 � 1/.yx� C xy�/k

.1C jyj2 C j�j2/5Ck
dy

�

C1X
kD0

ck

Z
R2

jyj
2n
nC1 .yx� C xy�/kC1

.1C jyj2 C j�j2/5Ck
dy

D

C1X
kD0

c2k

�
2k

k

�
j�j2k

Z
R2

jyj
2n
nC1
C2k.jyj2 C j�j2 � 1/

.1C jyj2 C j�j2/5C2k
dy

�

C1X
kD1

c2k�1

�
2k

k

�
j�j2k

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/4C2k
dy:

Since Ipq D
R1
0

�p

.1C�/q
d�, q > p C 1, satisfies the relations

(D.1) I
p
qC1 D

q � p � 1

q
Ipq ; IpC1q D

p C 1

q � p � 2
Ipq ;
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through the change of variable �2 D �t , � D 1 C j�j2, in polar coordinates we
have that

(D.2)

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/5C2k
dy

D ��
n
nC1
�4�kI

n
nC1
Ck

5C2k

D �
3C k � n

nC1

4C 2k
�

n
nC1
�4�kI

n
nC1
Ck

4C2k

D
3C k � n

nC1

2.2C k/.1C j�j2/

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/4C2k
dy

and Z
R2

jyj
2n
nC1
�2C2k

.1C jyj2 C j�j2/2C2k
dy

D ��
n
nC1
�2�kI

n
nC1
�1Ck

2C2k

D �
.2C 2k/.3C 2k/

.k C n
nC1

/.2C k � n
nC1

/
�

n
nC1
�2�kI

n
nC1
Ck

4C2k

D
.2C 2k/.3C 2k/

.k C n
nC1

/.2C k � n
nC1

/
.1C j�j2/

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/4C2k
dy:

(D.3)

Inserting (D.2) and (D.3) into I , we get that

I D

C1X
kD0

c2k

 
1 �

3C k � n
nC1

.2C k/.1C j�j2/

!�
2k

k

�
j�j2k

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/4C2k
dy

�

C1X
kD1

c2k�1

�
2k

k

�
j�j2k

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/4C2k
dy

D

C1X
kD1

"
2.3C 2k/c2k�2

k C n
nC1

 
1C k

2C k � n
nC1

�
1

1C j�j2

!�
2k � 2

k � 1

�
.1C j�j2/

� c2k�1

�
2k

k

�
j�j2

�
j�j2k�2

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/4C2k
dy:

Since

2.3C 2k/c2k�2

�
2k � 2

k � 1

�
D kc2k�1

�
2k

k

�
for all k � 1;
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setting ˇk D c2k�1

�
2k

k

�
j�j2k�2

R
R2

jyj
2n
nC1
C2k

.1Cjyj2Cj� j2/4C2k
dy we deduce that

I D

C1X
kD1

"
k

k C n
nC1

 
1C k

2C k � n
nC1

�
1

1C j�j2

!
.1C j�j2/ � j�j2

#
ˇk

D

C1X
kD1

"
k

k C n
nC1

�
j�j2

1C j�j2
�

1

.2C k/.nC 1/ � n

�
.1C j�j2/ � j�j2

#
ˇk

<

C1X
kD1

"
k

k C n
nC1

� 1

#
j�j2ˇk < 0:

In conclusion, we have shown that I D f .j�j/ with f < 0.
By the change of variable y ! y C � and the Taylor expansion of .1 � x/�5,

arguing as before we can rewrite K as

K D

Z
R2

jyj
2n
nC1 .y � �/

.1C jy � �j2/5
dy D

C1X
kD0

ck

Z
R2

jyj
2n
nC1 .y � �/.yx� C xy�/k

.1C jyj2 C j�j2/5Ck
dy:

By the previous expansions of .yx� C xy�/k andZ
R2

jyj
2n
nC1
C2C2k

.1C jyj2 C j�j2/6C2k
dy D ��

n
nC1
�4�kI

n
nC1
C1Ck

6C2k

D �

n
nC1
C 1C k

5C 2k
�

n
nC1
�4�kI

n
nC1
Ck

5C2k

D

n
nC1
C 1C k

5C 2k

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/5C2k
dy;

for symmetry K reduces to

K D �

C1X
kD0

"
c2kC1

n
nC1
C 1C k

5C 2k

�
2k C 1

k

�
� c2k

�
2k

k

�#
j�j2k

�

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/5C2k
dy:

Since .1C k/c2kC1. 2kC1k / D .5C 2k/c2k.
2k
k
/ for all k � 0, we get that

K D �

C1X
kD0

n

.nC 1/.1C k/
c2k

�
2k

k

�
j�j2k

Z
R2

jyj
2n
nC1
C2k

.1C jyj2 C j�j2/5C2k
dy:
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In conclusion, we have shown that K D g.j�j/� with g > 0.
In order to determine the asymptotic behavior of f and g as j�j ! C1, we

will use complex analysis to get some integral representation of f and g; see (D.6)
and (D.9). We split I as I D J1 � 2J2, and we compute separately the constants

J1 D

Z
R2

jy C �j
2n
nC1

.1C jyj2/4
dy; J2 D

Z
R2

jy C �j
2n
nC1

.1C jyj2/5
dy:

We rewrite J1 in polar coordinates as

J1 D

Z
R2

jyj
2n
nC1

.1C jy � �j2/4
dy

D

Z C1
0

�
2n
nC1
C1d�

Z 2�

0

d�

.1C �2 C j�j2 � ��e�i� � ��ei� /4

D �i

Z C1
0

�
2n
nC1
C1d�

Z
@CB1.0/

w3

.��/4.w2 � 1C�2Cj� j2

��
w C �2

j� j2
/4
dw:

Since w2 � 1C�2Cj� j2

��
w C �2

j� j2
vanishes only at

w˙ D
1C �2 C j�j2 ˙

p
.1C �2 C j�j2/2 � 4�2j�j2

2��

with jw�j < 1 < jwCj, by the Residue Theorem we have that

J1 D �i

Z C1
0

�
2n
nC1
C1 d�

Z
@CB1.0/

w3

.��/4.w � w�/4.w � wC/4
dw

D 2�

Z 1
0

�
2n
nC1
C1

6.��/4

d3

dw3

�
w3

.w � wC/4

�
.w�/d�:

A straightforward computation shows that

d3

dw3

�
w3

.w � wC/4

�
D �6

w3 C w3
C
C 9wwC.w C wC/

.w � wC/7
;

and then
d3

dw3

�
w3

.w � wC/4

�
.w�/ D 6.��/

4 .1C �
2 C j�j2/Œ.1C �2 C j�j2/2 C 6�2j�j2�

Œ.1C �2 C j�j2/2 � 4�2j�j2�
7
2

:

Recalling that � D 1C j�j2, through the change of variable �! �2 we finally get
for J1 the expression

J1 D �

Z 1
0

�
n
nC1

.�C �/Œ.�C �/2 C 6.� � 1/��

Œ.�C �/2 � 4.� � 1/��
7
2

d�:(D.4)
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In a similar way, we first rewrite J2 as

J2 D i

Z C1
0

�
2n
nC1
C1d�

Z
@CB1.0/

w4

.��/5.w � w�/5.w � wC/5
dw

D �2�

Z C1
0

�
2n
nC1
C1

24.��/5

d4

dw4

�
w4

.w � wC/5

�
.w�/d�

in view of the residue theorem. Since

d4

dw4

�
w4

.w � wC/5

�
D 24

w4 C w4
C
C 16wwC.w

2 C w2
C
/C 36w2w2

C

.w � wC/9
;

we get that

d4

dw4

�
w4

.w � wC/5

�
.w�/ D

� 24.��/5
.1C �2 C j�j2/4 C 12�2j�j2.1C �2 C j�j2/2 C 42�4j�j4

Œ.1C �2 C j�j2/2 � 4�2j�j2�
9
2

;

and then

J2 D �

Z 1
0

�
n
nC1

.�C �/4 C 12.� � 1/�.�C �/2 C 42.� � 1/2�2

Œ.�C �/2 � 4.� � 1/��
9
2

d�:(D.5)

By (D.4)–(D.5) we finally get that f .j�j/ takes the form

f D �

Z 1
0

�
n
nC1 Œ.�C �/2 � 4.� � 1/���

9
2

�
�
.�C �/5 � 2.�C �/4 C 2.� � 1/�.�C �/3

� 24�.� � 1/�.�C 1/.�C �/ � 84.� � 1/2�2
�
d�

(D.6)

where � D 1C j�j2.
Observe that for � D 0 (i.e., � D 1) we simply have that

(D.7) f .0/ D J1 � 2J2 D �
�
I

n
nC1

4 � 2I
n
nC1

5

�
D �

2�

2nC 3
I

n
nC1

5

in view of (D.1). By the change of variable � D � C
p
�t and the Lebesgue

theorem, we get that

��
n
nC1J1 D �

Z 1
�
p
�

�
1C

t
p
�

� n
nC1

�
2C tp

�

�3
C 6��1

�

�
1C tp

�

��
2C tp

�

�
�
t2 C 4C 4tp

�

�7=2 dt

! 20�

Z
R

dt

.t2 C 4/7=2
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and

��
n
nC1J2 D �

Z 1
�
p
�

�
1C

t
p
�

� n
nC1

�
t2 C 4C

4t
p
�

�� 9
2

�

��
2C

t
p
�

�4
C 12

� � 1

�

�
1C

t
p
�

��
2C

t
p
�

�2
C 42

�
� � 1

�

�2�
1C

t
p
�

�2�
dt

! 106�

Z
R

dt

.t2 C 4/9=2

as j�j ! C1 (i.e., �!C1). Since
R

R
dt

.t2C4/7=2
D

14
3

R
R

dt
.t2C4/9=2

; we get that

(D.8)
f .j�j/

j�j
2n
nC1

! �
356

3
�

Z
R

dt

.t2 C 4/9=2

as j�j ! 1.
In a similar way, for K we have that

K D i

Z C1
0

�
2n
nC1
C1 d�

Z
@CB1.0/

w4.�w � �/

.��/5.w � w�/5.w � wC/5
dw

D �2�

Z C1
0

�
2n
nC1
C1

24.��/5

d4

dw4

�
w4.�w � �/

.w � wC/5

�
.w�/d�

in view of the residue theorem. Since

d4

dw4

�
w4.�w � �/

.w � wC/5

�
D 24.w � wC/

�9
˚
5�wwCŒw

3
C w3C C 6wwC.w C wC/�

� �Œw4 C w4C C 16wwC.w
2
C w2C/C 36w

2w2C�
	
;

we get that

d4

dw4

�
w4.�w � �/

.w � wC/5

�
.w�/

D 12.��/5�
�
.�C �2/2 � 4.� � 1/�2

�� 9
2

�
�
.�C �2/4 C 2�2.� � 6 � 5�2/.�C �2/2 C 6.� � 1/�4.2� � 7 � 5�2/

�
;
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and then

g.j�j/ D �
�

2

Z 1
0

�
n
nC1

�
.�C �/2 � 4.� � 1/�

�� 9
2

�
�
.�C �/4 C 2�.� � 6 � 5�/.�C �/2

C 6.� � 1/�2.2� � 7 � 5�/
�
d�:

(D.9)

So, we have that

(D.10) g.0/ D
�

2
.9I

n
nC1

5 � 10I
n
nC1

6 / D
3nC 1

2.nC 1/
�I

n
nC1

5

in view of (D.1), and, by the change of variable � D � C
p
�t and the Lebesgue

theorem,
g.j�j/

j�j
2n
nC1

! 17�

Z
R

dt

.t2 C 4/9=2
(D.11)

as j�j ! C1, in view ofZ 1
�
p
�

�
1C

t
p
�

� n
nC1

�
t2 C 4C

4t
p
�

�� 9
2

�

��
2C

t
p
�

�4
� 2

�
1C

t
p
�

��
4C

6C 5
p
�t

�

��
2C

t
p
�

�2
� 6

� � 1

�

�
1C

t
p
�

�2�
3C

7C 5
p
�t

�

��
dt

! �

Z
R

34 dt

.t2 C 4/9=2

as �!C1.
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