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Abstract

For the abelian self-dual Chern-Simons-Higgs model we address existence issues
of periodic vortex configurations—the so-called condensates—of nontopological
type as k — 0, where k& > 0 is the Chern-Simons parameter. We provide a
positive answer to the longstanding problem on the existence of nontopological
condensates with magnetic field concentrated at some of the vortex points (as a
sum of Dirac measures) as k — 0, a question that is of definite physical interest.
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1 Introduction and Statement of Main Results

The Chern-Simons vortex theory is a planar theory that is physically relevant
in connection with high critical temperature superconductivity, the quantum Hall
effect, and anyonic particle physics, as widely discussed by Dunne [19]. Hong-
Kim-Pac [24] and Jackiw-Weinberg [25] have proposed an abelian self-dual model
where the electrodynamics is governed only by the Chern-Simons term. Over the
Minkowski space (R1 72, g), with metric tensor g = diag(1, —1, —1), the model is
described by the following Lagrangian density:

LA $) = —e“ﬂVA Fgy + Dap D% — 2|¢|2(|¢|2—1)2,

where the Chern-Simons coupling parameter k£ > 0 measures the strength of the
Chern-Simons term and the antisymmetric Levi-Civita tensor €*BY s fixed with
€%12 = 1. The metric tensor g is used to lower and raise indices in the usual
way, and the standard summation convention over repeated indices is adopted. The

gauge potential 4 = —i Ay dx* is a 1-form (a connection over the principal bundle
RIT2xU(1)), A : R'*?2 - Rfora =0, 1,2, andthe Higgs field¢ : R1T2 — C
is the matter field. The gauge field Fq = —5Fop dx® A dx® is a 2-form (the

curvature of A), where Fog = 0qAg — dg Aa, and the Higgs field ¢ is weakly
coupled with the gauge potential A through the covariant derivative D4 as follows:
D¢ = Dyp dx®, Dop = 0qp —iAg¢ fora =0,1,2.

The self-dual regime has been identified by Hong-Kim-Pac [24] and Jackiw-
Weinberger [25] through the choice of the “triple well” potentlal L1o12 (1912 —1)2,
which yields to a Bogomol'nyi reduction [5]] for the Chern- Slmons -Higgs model,
as we discuss below. Vortices are time-independent (x9 is the time variable) confi-
gurations (A, ¢) that solve the Euler-Lagrange equations

D,D"¢ = =75 (161> = DGl — D)o,

(1.1) kenaB g = Ji := i (pDF — D).

and have finite energy. In the self-dual regime, for energy-minimizing vortices (at
given magnetic flux) the second-order Euler-Lagrange equations are equivalent to
the first-order self-dual equations

Di¢ =0,
(1.2) Fiz £ Z162(8> - 1) =0,
kFi3 +2A0|¢|* = 0,

where Dy = Dj % iD>, and the last equation is usually referred to as the Gauss
law. In what follows, we restrict our attention to energy-minimizing vortices (at
given magnetic flux), and we will simply refer to them as vortices.

In the physical interpretation, the electric field E = (01 Ag, 0249, 0) is pla-
nar, the magnetic field B = (0,0, F2) is in the orthogonal direction, and J 0
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J = (J1, J?) can be identified with the charge density and current density, respec-
tively, as in the classical Maxwell theory. Thanks to the Gauss law, vortices are both
electrically and magnetically charged, a physically relevant property that was ab-
sent in the abelian Maxwell-Higgs model [26,37]]. Notice that .A and ¢ are not ob-
servable quantities, as they are defined only up to a gauge transformation, whereas
the electric and magnetic fields as well as the magnitude |¢| of the Higgs field de-
fine gauge-independent quantities. The second and third equations in ((1.2)) only
involve observable quantities, whereas the first one D¢ = 0 (or D_¢ = 0)—a
gauge-invariant version of the Cauchy-Riemann equations—implies holomorphic-
type properties for the Higgs field ¢ (or ¢) in a suitable gauge. Following an
approach first developed by Taubes [37] for the abelian Maxwell-Higgs model,
vortices (¢, .A) can be found in the form

b = o3 E L)1 Argz=p)),
(1.3) 1 5 _ ' '
Ao = :E%(|¢| — l), A1 + lA2 = —1(81 + 132) 10g¢,

as soon as u = log |¢|? solves the elliptic problem

N
1 u u
(1.4) —du= e (1—e)—4n25pj,
J=1
where € = % and p1,..., pn are the zeroes of ¢ (repeated according to their

multiplicities)—usually referred to as the vortex points (with the convention N =
0if ¢ # 0). We refer the interested reader to [36,[39] and the references therein for
more details and for an extensive discussion of several gauge field theories.

For planar vortices, the finite energy condition fR2 e*(1 —e") < +o0o imposes
two possible asymptotic behaviors at infinity. The topological behavior |¢|?> =
e¥ — 1 as |z| — oo gives the vortex number N the topological meaning of
winding number for ¢ at infinity (up to a £ sign, depending on whether D¢ = 0
or D_¢ = 0), yielding to quantization effects for the energy E, the magnetic flux
®, and the electric charge Q in the class of topological N-vortices: £ = 2w N,
® = +27N, and Q = +27kN. The existence of planar topological vortices
has been addressed in [23,/33,38]. The nontopological behavior |¢|?> = e* — 0 as
|z] — oo has no counterpart in the abelian Maxwell-Higgs model, and the possible
coexistence of topological and nontopological N -vortices is the main new feature
in Chern-Simons theories.

After the seminal work [32] in a radial setting with a single vortex point (see
also [10] for related results), it has been a challenging problem to find planar non-
topological N -vortices [7,8]] for an arbitrary configuration of py, ..., py. Surpris-
ingly, two different classes have been found by using different limiting problems:
the singular Liouville equation in [[7] and the Chern-Simons equation —AU =
eU(l — eU) — 478 in [8]. Since the latter problem has no scale invariance, in [8]]
the points p1, ..., pn are taken along the vertices of a regular N -polygon in order
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to glue together U (x_ep 7y, j = 1,..., N, for there is no freedom to adjust the
height at each p; to account for the interaction, but the approximating function has
an invertible linearized operator.

Since the theoretical prediction by Abrikosov [2]], the appearance of a lattice
structure, in the form of spatially periodic vortices, has been experimentally ob-

served. To account for it, the model is formulated on

Q= {z=to+s50y: (t.s) € (—5.3) x (-3 D)}

where w1, wy € C \ {0} satisfy Im(i—f) > (. Condensates are time-independent
configurations (A, ¢) that solve the Euler-Lagrange equations (I.1)), have finite
energy, and satisfy the 't Hooft boundary conditions [34]:

eiék(z—i-wk)(p(z + i) = ei‘c”k(z)¢(z)’
Ao(z + ) = Ao(2), (A + ;&) (2 + op) = (4 + 0;6)(2),

forallz e T'UT2\ Tk andk = 1,2 where T'! = {z = rw; — %a)z Dt < %},
?={z= —%a)l +twy |t < %}, and &; and &; are real-valued smooth functions
defined in neighborhoods of I'? U {w; +I'?} and I'! U {w, + I'!'}, respectively. For
energy-minimizing vortices (at given magnetic flux) the Euler-Lagrange equations
(T.1) are still equivalent to the self-dual ones (1.2). Since just reduces to a
double periodicity for the observable quantities F15 and |¢| in €2, a configuration
(A, ¢) in the form does solve as soon as u = log|¢|? is a doubly
periodic solution of in ; see [6,35]] for an exact derivation.

Hereafter, up to a translation, let us assume that ¢ # Oon d<2 (i.e., p1,..., PN €
) in such a way the winding number deg(¢, 2, 0) is well-defined, and the vortex
number N is simply given by | deg(¢, 2, 0)|. By (I.5)) we still have quantization
effects as in the case of planar topological vortices: £ = 2aN, ® = £27 N, and
O = 27k N, where the & sign depends on whether D¢ = 0or D_¢ = 0. Let
us assume that D¢ = 0 (there is no loss of generality at the possible expense of
replacing ¢ by ¢) and restrict our attention to energy-minimizing condensates (at
given magnetic flux), simply referred to as condensates.

(1.5)

Letting G(z, p) be the Green function of —A in Q with pole at p,

—AG(z,p) =8 — gy In L,

Jq G(z, p)dz =0,

one is led to consider the following equivalent regular version of (I.4):

1 4n N
(1.6) — Av = —e"0TV(] — Moty _ ——  inQ

€ €2
in terms of v = u — up, where ug = —4n ij:l G(z, pj) and the potential e¥0 is
a smooth nonnegative function that vanishes exactly at p;, ..., py. By translation

invariance, notice that G(z, p) = G(z — p,0), and G(z, 0) can be decomposed as
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G(z,0) = —% log |z| + H(z), where H is a (not doubly periodic) function with
AH = ﬁ in Q. If v is a solution of (I.6), by integration over 2 notice that

(17) [ QHOFV(] — gUo+vy = / 21— []2) = 262 / Fip = dnNe
Q Q Q

in view of (1.2), yielding to the necessary condition
1\ 2
167Ne? = |Q| —4/(e“0+v — 5) < |
Q

for the solvability. According to [6], Caffarelli and Yang show the existence of
0 < e < +/|R]/167N so that (I.4) has a maximal doubly periodic solution u
for 0 < € < €., while no solution exists for € > €.. Notice that (I.6) admits a
variational structure with energy functional

1 1 2 4nN
JG(U): §/|Vv|2+?/(e“°+”—l) +W/U
Q Q Q

where v e HI(Q) = {v € Hlf)c(]Rz) : v doubly periodic in 2}. Later, Tarantello
[35] shows that the maximal solution u, is a local minimum for J, in H (), and
a second solution u€ is found as a mountain pass critical point for Je.

To each solution u of we can associate the N-condensate (A, ¢) in the
form (with the + sign as we agreed), and let (Ae, ¢¢), (A€, ¢€) be the ones
corresponding to ue, u€. Concerning the asymptotic behavior as € — 0, by
we can expect two classes of N -condensates:

o |¢p| — 1 as e — 0 (“topological” behavior),

e |¢p| — 0as e — 0 (“nontopological” behavior),
to be understood in suitable norms. For example, (Ae, ¢¢) exhibits “topological”
behavior:

el = 1 in Cloc(R\ {p1.-... PN},
with
N
(1.8) (Fi12)e — 21 Z 8p; in the sense of measures
j=1
as € — 0 according to (I.7); see [35]]. The concentration property (I.8]) for the ma-
gnetic field has a definite physical interest and supports the use of the terminology
“vortex points” for the zeroes p1, ..., py of the Higgs field ¢. The N -condensate
(A€, ¢€) has in general a different asymptotic behavior as € — 0:
(i) When N = 1, |¢€| — 0in C™(Q) for all m > 0, and (Fi2)¢ is a compact
sequence in L1 () (see [35]).
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(i) When N = 2, |¢€| — 0in C(2) and either (F},)€ is a compact sequence
in L1(Q) or (F12)¢ — 478, in the sense of measures, for some g #
P1, p2 with ug(q) = maxg ug, depending on whether

1 8
I(v) = E/|Vv|2 — 87 log(/ e“0+“) + é v
Q Q Q

attains its infimum or not in Hl(_Q) (see [31]] and also [[18]]).
(iii) When N > 3, |¢€| — 0in C(2) and (F12)¢ — 2mN§, in the sense of
measures for some ¢ # p1,..., py with ug(q) = maxg uo (see [12]).

In [17] it is shown that N-condensates (A, ¢) exist such that |¢| — 0 a.e. in
Q as € — 0. Concerning the case N = 2, it is a very difficult question, which
has been discussed in [9,27]] for p; = p3, to know whether [ attains the infimum
in H1(Q). An alternative approach of perturbative type has been shown to be
successful for N = 2 [29] (see also [20] among other things) by constructing a
sequence of 2-condensates for which the second alternative in (ii) does hold for a
critical point g of ug. The same approach works as well for N > 3 provided the
concentration points of the magnetic field are not vortex points.

The existence of nontopological N -condensates with magnetic field concen-
trated at vortex points as € — 0 (as in (I.8)) is the main issue from a physi-
cal viewpoint and has not been answered so far. A first partial answer has been
provided by Lin and Yan [28], who construct N-condensates (Ae, ¢¢) so that
(F12)e = 2mNdp, in the sense of measures as € — 0, as soon as N > 4 and p;
is a simple vortex point in {py,..., py}. As in [8]], they make use of the Chern-
Simons equation —AU = eV (1 — eY) — 478y as limiting problem, which is not
suitable for managing multiple concentration points. Moreover, such a condensate
does satisfy maxq |¢e| = ¢ > 0 for € small and |¢pe| — 01in Cioe (22 \ {pj}), which
fits the notion of “nontopological” behavior in a weak sense. Our aim is to extend
to N -condensates the perturbative approach developed by Chae and Imanuvilov [7]]
for planar N -vortices based on the use of the singular Liouville equation as a limi-
ting problem.

As far as nontopological behavior, let us stress that the problem on the torus
is much more rigid than the planar case, as is well illustrated by the quantization
property & = 27 N (valid just in the doubly periodic situation). For example,
when Fy5 is concentrated like a Dirac measure at a vortex point p;, by the use of
Liouville profiles it is natural, as we will see, to have 47 (n; 4 1) as a concentration
mass of Fip at p;, where n; is the multiplicity of p; in the set {p1,..., PN},
and then the relation 22N = 47 Y j_,(n; + 1) holds in the sense of measures
as soon as Fip — 47 Y/ (n; + 1)8,,. In particular, the concentration of the
magnetic field cannot take place at all the vortex points p1, ..., py asin the planar
case [[7]]. Let us stress that the N -condensates constructed in [30]] have exactly such
a concentration property and then violate the balancing condition (1.9).
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Our aim is to provide a general answer to the long-standing question on the ex-
istence of nontopological N -condensates with magnetic field concentrated at some
vortex points. Compared with [[7]], our main result is rather surprising and reads as
follows.

THEOREM 1.1. Let{p1, ..., pm} be a subset of the vortex set{p1, ..., pN} ¢ 0S2,
{pj}j be the remaining points, and n;,n; be the corresponding multiplicities so
that

m
(1.9) 27N =4 Y (ny + 1).
I=1
Letting Ho be a meromorphic function in Q2 so that
|7‘[0(Z)|2 — pHoT87 YL +1)G(z,pr)
(which exists and is unique up to rotations), assume that Hg has zero residue at

each pi, ..., pm. Letting oo(z) = —([* Ho(w)dw)™! (a well-defined meromor-
phic function), assume that

7Dg = / pHo+8m YL +1)G(z,pr)

Q\o; 1 (B,(0)

“ d
S+ 1) / D<o

P ]

= R2\B,,(0)

(1.10)

for small p > 0 and the “nondegeneracy condition” det A # 0, where A is given by
(6.11). Then, for € > 0 small there exists N -condensate (Ae, ¢¢) so that || — 0
in C(R2) and

m
(1.11) (Fi2)e = 4w Y (n; + 1)y,
=1
weakly in the sense of measures, as € — 0.

Notice that we can also allow some concentration point not to be a vortex point
by simply adding it to the vortex set with null multiplicity. In Section [5| we will
see that in the double-vortex case N = 2, Theorem [I.1] essentially recovers the
result in [20,29]] concerning single-point concentration, for the assumptions just
reduce to having the concentration point ¢ # pi, p»> as a nondegenerate critical
point of ug with Dg < 0 (for similar results concerning the Liouville equation,
see [4,/16,[21]] in the case of bounded domains with Dirichlet boundary conditions
and [22[] in the case of a flat 2-torus). Despite the complex statement, for a rec-
tangle Q with p; = 0, po = w1/2, p3 = w2/2, and ps = (w1 + w3)/2, and
ni,nz,n3, ng even multiplicities with n4/2 odd, we will check in Section [5| that
the assumptions of Theorem|[I.1]do hold for m = 1 and concentration point pj, up
to performing a small translation so to have p; € €2. For computational simplicity,
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the nondegeneracy condition will be checked just for a square with n = n3 = 2
and (n1,n,) = (2,0) or vice versa. Even more important, examples with m > 2
will be discussed in Section [0l

Following an approach developed by Tarantello [35] and exploited in [31], (I.6)
can be seen as a perturbed mean field equation (2.2) with potential *° and unper-
turbed part

eUotw 1

Since e¥° vanishes like |z — p;|*™ near each p;, [ = 1,...,m, the Liouville
equation —AU = |z|?"eY will play a central role in the construction of an appro-
ximating function in the perturbative approach. Since
842

(8% + loo|*)?
does solve —AU = |U(’)|26U in Q \ {poles of 69}, a natural choice is o9 = z"*+!
when m = 1 and p; = 0. Letting P be a projection operator on the space of dou-
bly periodic functions, the approximation rate of PUs ,»+1 is unfortunately not
sufficiently small to carry out the argument, a problem that often arises in pertur-
bation arguments and is usually overcome by refining the ansatz via linear theory
around the approximating function. However, such a procedure would require se-
veral subsequent refinements, resulting in a high level of complexity.

Inspired by [14]], in Section [2] we will take advantage of the Liouville formula

to use the inner parameter gg, present in the Liouville formula, to get improved
profiles. Since

PUs gy ~ Us 50 — log(88%) + log |oo|* + 87 (n + 1)G(2,0) as§ — 0,

PUs o, is a good approximate solution of (I.12)) if

2
— euo+8n(n+1)G(z,0)

Us 6, = log

o> _ (1Y

=5
By definition of Hy, it is enough to find a meromorphic og with (1/0¢)’ = Ho, a
solvable equation if and only if Ho has zero residue at its unique pole 0. As we
will discuss in detail in Remark [4.4] the assumption on the residues of H is then
necessary in our context. Moreover, since Hg has a pole at 0 of multiplicity n 4 2
and zeroes p;’s of multiplicities 7;, by the property Ho(z + w;) = €% Ho(2),
j = 1,2, near 2 for some 601, 6> € R, we deduce that

oo

L,
0=_— —Odz:n+2—Jan=2(n+1)—N,
2%

providing (1.9) as a necessary and sufficient condition for the existence of such g
(the sufficient part in shown in next section). D¢ < 0 and the nondegeneracy con-
dition will be necessary to determine § and a, a sort of small translation parameter
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accounting for the perturbation term in (2.2)), according to the asymptotic expan-
sion for the corresponding “reduced equations” as derived in Section [3] Theorem
[I.1)is proved in Section | for m = 1 and in Section [§) when m > 2.

2 Improved Liouville Profiles

Let us decompose any solution v of asv = w +c, where c = ﬁ Jqv-In
this way, w has zero average: fQ w dz = 0, and by (I.7) one has

820/62u0+2w _ec/euo+w +47TN€2 =0.
Q Q

This last identity then provides a relation between ¢ and w in the form ¢ = ¢4 (w),
where

87 Ne?
[ €0t F \/(fsz U0+ )2 _ 167 Ne? [, e2uo+2w '

Q1) e =

whenever ( g e”0+w)2 — 16w Ne? [ e?¥0T2% > (. The two possible choices
of plus and minus signs in is another indication of multiple solutions for
(T.6). In [35], topological solutions are characterized to satisfy with the plus
sign. Since we are interested to nontopological solutions, it is natural to restrict the
attention to the case ¢ = c—(w), reducing problem to the following equation
in Q:
—Aw = 471N(é2% -~ &)
(22) 647‘[2N2€2(e”0+w fQ 22u0+2w (fQ eu0+w)—1_82u0+2w)
(fq e¥otW 4. /(g e*oTW)2—16nNe2 [, e240T2w)2

’

Jow=0.

Here and in the next sections, we first discuss the case m = 1 in Theorem
Assume that p is present n-times in {pi,..., py}, and denote by p]’.s the
remaining points in the set {p1,..., py} with corresponding multiplicities n;s.
Up to a translation, we are assuming that p; € Q for j = 1,...,N, a crucial
property that will simplify the arguments below. Since the assumptions in Theorem
[I.1)for the concentration at p are just local properties, for simplicity in notation let
us simply consider the case p = 0.

Since e*° behaves like |z|?" as z — 0, the local profile of w near 0 will be
given in terms of solutions of the “singular” Liouville equation:

(2.3) — AU = |z]*"eY.
Recall that by the Liouville formula the function
8|F1|2

log ———
(14 |F|*)?
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does solve —AU = eV in the set { F/ # 0} for any holomorphic map F. For entire
solutions of (2:3) with finite energy: [ |z]2"eY < +o0, it is well-known that
necessarily F(z) = (z"*! —a)/§, and then all the entire finite-energy solutions
of (2.3) are classified as
8(n + 1)%82

(52 + |Z"+1 _a|2)2’
Moreover, we have that fRz |z|>*eUs.a = 8x(n + 1). Since by construction the
corresponding v = w + c—(w) will satisty

1
—eM0TV(] — M0ty L 8 (n + 1)8

§>0,aeC.

U8,a (z) = log

2
€
in the sense of measures, the condition
2.4) 2N =4n(n + 1)
is necessary in view of (1.7).
Assume for simplicity e¥0 = |z|*". Since [ |z|*"eYs.a — 8m(n + 1) as
§ — 0, by (2.4) we have the asymptotic matching of —AUs , = |z|*"eV4.« and
2n ,Us 4
47rN|Z|—e as § — 0.
fg |z|2”eU5»a

To correct U , into a doubly periodic function, we consider the projection P Us ,
of Us , as the solution of

~APUs 4, = —AUs 4, + ﬁ Jo AUs, inQ,
fQ PUs , = 0.

In this way, we gain the constant term

1 1 4N
@/AU(M = —@/|Z|2neU‘“’ — _W aséd — 0
Q Q

in view of (2.4), and we still need to check that the difference between —AUs , =
z|?"eYs.a and 4 N(|z|*"ePUsa)([o |z|* €T Us.a) is asymptotically small. By an
asymptotic expansion of PUs , in terms of Uy ,, we will see that the difference
is small (i.e., PUs , is an approximating function of (2.2)) but behaves at most
like |z|?"eYs.« O(|z| + 2), which is not sufficiently small. A first refinement of
the ansatz via the linear theory around P Us , could improve the pointwise error
estimate into |z|>"eYs.« O(|z|> + §2), which unfortunately is in general still not
enough.

Since there is a strong mismatch between the dependence of Us , on z
and that of the error on z (or even on z2), we should push such a procedure
through several subsequent refinements. Instead, we play directly with the in-
ner parameters present in the Liouville formula, for we have more flexibility in
the choice of F(z) on bounded domains. Hereafter, let us fix an open, simply

n+1
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connected domain €2 so that @ C € and © N (i1Z + waZ) = {0}, and set
M(Q) = {o|g : 0 meromorphic in Q). Let§ € (0, +00),a € C,and o € M(Q)
be a function that vanishes only at 0 with multiplicity n + 1. Since log |0”(z)|? is
harmonic in {0’ # 0}, the choice F(z) = (0(z) — a)/§ yields to solutions

842
(8% +lo(z) —al?)?

US,a,G (z) = log

of —AU = |0”(z)|%eV in Q \ {poles of o}, for Us , o is a smooth function up to
{0’ = 0}.

The aim is to find a better local approximating function P Us , , for a suitable
choice of o, where PUs , o solves

_APU8,a,(r = |‘7/(Z)|26U&a’(T - Wl| fQ |G/(Z)|23U8’a’a in 2,

2.5
() Jo PUsa0 =0.
Notice that PUs 4 , is well-defined and smooth as long as o € M(), no matter
if o has poles or not.

Recall that G(z,0) can be thought of as a doubly periodic function in C with
singularities on the lattice vertices w1Z + w»7Z, and H(z) = G(z,0) + % log |z
is then a smooth function in 22 with AH = ﬁ Since 2€2 is simply connected,
we can find an holomorphic function H* in 2Q having the harmonic function
H —(|z|?/4|92]) as real part. Since p; € 2, take € close to € so that ﬁ—pj C2Q
forall j = 1,..., N. The function

N
1) = [T = o) exp(dnn 4 V@) =20 Y 1Y = p))

(2.6) / /=1

N N
b4 T
2] Z lpjl”+ |Q|ZZ PJ)
j=1 j=1
is holomorphic in Q with

HE)P = — Mot ST+ DHE
Q2.7 2"
— AT +2)H(2) 4w Y ;n;G(z.p))  ih O

in view of (Z4). The meromorphic function Ho(z) = H(z)/z" 2 does satisfy
|7‘[0(Z)|2 — U0 t87(n+1)G(z,0) i ﬁ
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Remark 2.1. To simplify notation, we are considering the case p = 0. When
p # 0, by assuming Q — p C 22 the function

HP(2) =[] —pp)"
J

Xexp( 27-[ _1H (Z_pj)_m2|p] +|Q|Zzp])

J

is holomorphic in Q with

|HP(Z)|2 _ 1 . euo+8n(n+1)H(Z—P)
|z — p|?"
— oA +2)H(z—p)—4n 3 n;G(z.0j)) ih O

in view of (2.4). The meromorphic function ’Hop (z) = HP(2)/(z — p)* "2 does
satisfy |H5 (z)|> = o +8r(n+1G(@.p) iy G

Hereafter, for a meromorphic function g in €, the notation f “ g(w)dw stands
for the anti-derivative of g(z), which is a well-defined meromorphic function in

the simply connected domain €2 as soon as g has zero residues at each of its poles.
Since H(0) # 0 by [2.7), we define

z -1
o0(z) = —( / Ho(w)e_COw"+ldw)

(28) z H(w)e_c()wn+l —1
= —( / wa) :
where
1 d”'H’H
(2.9) co = 7 (0)

H(O0)(n + 1)! dz"*

guarantees that the residue of ’;’-lo(z)e_c()zn+l at 0 vanishes. By construction og €
M(£2) vanishes only at O with multiplicity n + 1, as needed, with

Zn—i—l 7'[(0)
im = —,
z—>000(z) n+1

(2.10)

and does solve

(2.11) |00(Z)|2 l60(2) |4eu0+87r(n+l)G(z,o)e_ZRe[COZn+l]

in view of (2.7).
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Let 0 € M(R) be a function that vanishes only at 0 with multiplicity n + 1. For
a € C small there exist agp,...,a, sothat {z € Q : 0(z) = a} = {ao,...,an}
(distinct points when a # 0). For a small the function

n n
. « 2
Hao(2) =@ —p))™ exp(4n Y H*(z—a) - _|9|ZZ a
J k=0 k=0
(2.12)

N N N
v b
—ZWZH*(Z—Pj)—mZU’HZ‘F @ZZPJ)

is holomorphic in Q with
(213) |Ha,o' (Z)|2 = _| |12n eu0+8n ZZ=0 H(z—ak)—% ZZ=0 Iak|2 in Q
Z

in view of (2.4)). The advantage in our construction of H, ¢, which might be carried
over in a simpler and more direct way, is the holomorphic/antiholomorphic depen-
dence in the ag’s as well as in z, a crucial property as we will see in Appendix [A]
Whena = 0,thenag =--- =a, =0and H = Ho .

Endowed with the norm |o| := ||Ui0|| 5, the set M/(Q) = {0 € M(Q) :

00,02’
llo|| < oo} is a Banach space. Let B, be the closed ball centered at o and radius
r>0,ie.,

o
e
00 00,

For a # 0 and r small, the aim is to find a solution 6, € B, of

B z o(w)—a w't! 2”,L[a,a(u)) —caow Tl -
"(Z)_‘U (Hz=0<w—ak) vay) e dw}

for a suitable coefficient ¢4 . To be more precise, letting

(2.14) B, = {0 e M(Q):

0(z)—a
Hi:o(z —ag)

by Lemmawe have that g, & € M () never vanishes, and the problem above
gets rewritten as

2 -1
(2.15) o(z) = _|:/\Z ga,a(w) Ha’a(w)e_ca,awn+l dwi| .

g% a(w) wh+2

8ao(2) = for |a| < pand o € B;,

The choice

(2.16)

oL 18028060 Hao(2) ©
O+ Dz g2 (0)82 ,(2) Hao (0)
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lets vanish the residue of the integrand function in (2.15)). making the right-hand
side well-defined. Since o, € B;, the function o, vanishes only at 0 with multipli-
city n + 1 and satisfies

n
0412 = I0a(2) —a|4exp(u0 Far Y Glear) - |Q| Z a2
2.17) k=0
—2Re[ca,gaz”+1])

in view of (2.13). The resolution of problem ([2.15)—(2.16) will be addressed in
Appendix[A]

We have the following expansion for PUs , , as § — O:
LEMMA 2.2. There holds

n
PUs g6 = Usao —10g(85%) + 4log |ga,0| + 87 Y H(z —a)

(2.18) k=0

+ @840 + 267 fuo + O(S*)

in C(Q), uniformly for |a| < p and o € By, where

o ___/10 o(z) —al*
b.a.0 @l ) 262+ jo(z) —a?)?

and fq.o is defined in (2.22). In particular, there holds

n
1
PUsao =87 Y G(z.ar) + Os4,6 + 282 (fa,g — m) + 0(8%
k=0

in Cioc(Q \ {0}), uniformly for |a| < p and o € By.
PROOF. Define
n
r$,a,0 = PUs,a0 —Usao + log(852) —4log|ga,0| — 87 Z H(z —ay).
k=0

The function Us , » satisfies —AUs 4 5 = lo’(z)|?eYs.a.0 justin Q \ {poles of o'}.
At the same time, the function —41og |g4,¢| is harmonic in € \ {poles of o'} and
has exactly the same singular behavior of Us , , near each pole of o. It means that

(2.19 ~ AlUs a0 + 410g|gaoll = 0’ (2)]?e 00
holds in the whole 2. Since AH = ﬁ, by (2.5) and 2.19) we get that

1
—Ars a6 = |Q| |:87r(n +1)— / |U (Z)|2 Us.a. a]



CONDENSATES FOR CHERN-SIMONS MODEL 1205

By Green’s representation formula we have that

rS,a,a(Z) = /[avrS,a,a(w)G(w’Z) - ré’,a,a(w)avG(w»Z)]ds(w)
o

1
+ T~ I, )
|Q| 3,a,0
Q

(2.20)

where v is the unit outward normal of 92 and ds(w) is the line integral element.
Since as § — 0 there holds

2

8
o) —ap T 0@

n
r$.a0(W) = PUs g.0(w) =87 Y G(w,ag) +2
k=0

in C1(dQ) uniformly in |a| < p and 0 € B;; by double periodicity of PUs 4, —
87 Y r—o G(-,ax) we get that

2.21) / 30750, (W)G (W, 2) — 5.0 (w)dy G(w, 2)]ds(w) =

" 262 £ 0(2) + OY)

in C(S_Z), where
= /|0 1 G 1 9,G d
222) Jao(d)= /|: Yo(w) —af? (w’z)_|a(w)——a|2 v (w,z)] s(w).
Q

Inserting (2.21) into (2.20), we get that
(2.23) r8.0,0(2) = Os a0 +26% fae (2) + O(8%)
in C(Q) uniformly in |a| < p and o € B,, where
lo(z) —al*

1 1
Osao = — =—— |1 .
b.a.0 |9|/ T.a0 |sz|/ 2+ 10() —al?)?
Q Q

The estimate (2.23)) yields to the desired expansion for PUs , , as § — 0. O

Letting 0, € B, be the solution of (2.13)—(2.16)), we build up the correct approx-
imating function as W = PUs , ,,. We need to control the approximation rate
of W for § and € small enough by estimating the error term

euo-i-W 1
R=AW +4aN| ——— — —
+an [ vt Q]

647T2N2€2(€u0+W fQ €2u0+2W(fQ €u0+W)_1 _ e2u0+2W)

5.
(fQ euotW 4 \/(fgz euotW)2 _ 167 Ne2 [, ezuo+2W)
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In order to simplify the notation, we set Us ;, = Us 4.6,> Ca = Ca,4> Os,0 =

0©5.4,0,> a0d fa = fa,5,. and omit the subscript a in 0,. We have the following
crucial result.

THEOREM 2.3. Let |a| < ‘5’ and set

n—+1
(2.24) ) max% L %} |

The following expansions hold:

etotW 1
AW +4aN| ———7 — —
+ a4 jQ eu0+W |Q|

= |0’ (z)[?eVse
(225) eZRe[caz"'H]
X —1
1+ 2Refeg Fa(@)] + |cal> Re Ga(a) + %|Ca|2A Re Ga(a)5210g% + %Da
4107 ()24 0(82|z] + 82|al T + 82|ca| + 8751 ) + O(5?)
and

647T2N262(€u0+W fQ €2u0+2W(fQ euo—i—W)—l _ e2uo+2W)

(fq e®otW + \/(fgz 0t W2 _ 167 Ne? [, 2o +2W)2

2.26 8(n + 1)%€?
( ) — |O'/(Z)|2€U3'u|: ( . ) LEa,S —€2|O'/(Z)|2€U8'a
nlaa|n+18n+l

x [1+ O(leallz|"™ + 1) + o(1)]

as €,8 — 0, where ag, Fy, Ga, Dg, and E, 5 are given in (2.30), (2.34), (2.33),
2-43), and @2.47), respectively.

PROOF. Recall that (2.15)) implies the validity of (2.17)), which, combined with
Lemma[2.2] yields to the following crucial estimate:

W = Us , —1og(88%) + log|o’(z)|* — uo

(2.27) 2

n
+ 2D axP o+ 2Releas™ ]+ O + 28 fy + OB")

k=0



CONDENSATES FOR CHERN-SIMONS MODEL 1207

in C(Q) as § — 0, uniformly for |a| < p. Since by Lemma o = g"t!
in 071(B,(0)), through the change of variables y = ¢(z) in 0~ 1(B,(0)) =
q_l(Bp1/<n+1)(0)), by (2.27) we have that

2
8 / euo-i-W
o 781 k=0 lak2+85.a+252 fu (0)
o~ 1(B,(0))
@28 = / |07 (2)[2eUsat2Releaz" F11+0(82 1248
' a1 (B 1/(+1)(0))
f 8(” + 1)252|y|2n eZRC[Cu(q_l(y))n+l]+0(82|y|+84).
52 + [y a2

B,1/(n+1)(0)

Since ¢~!(y) ~ y at y = 0, the following Taylor expansion holds:

400
(2.29) eca(q_l(y))'1+l =1+ cayn+l Z otlacyk
k=0

in B pl/ (41D (0), where the coefficients ozla‘ depend on a through o = 0,. In partic-
ular, we have that o, 1= ozg takes the form

n+1

Z
2.30 = I 0.
(2.30) og = lim o) #

By (2.29) we then deduce that

e2Relea(g™ ()" 1] e Ca2)ian ‘2

400
=1+2Re |:cay"Jrl Z afyk:|
2.31) k=0

+o0
205,12n+2 k—s k=
t+lealPly P2 Y0 og@y v
k,s=0

Since




1208 M. DEL PINO ET AL.

for all integers k ¢ (n + 1)N, by the change of variables y — ei%j y we have
that

/ |y | y*

B,1/(n+1)(0)

_ 2": [y [ y*
(2.32) - - (82 + [yt —a|?2)2
T=08 1 /11y ()NC;

_ / |y|myk Xn:[einz%j]k —0
(62 + [yl —af?)2 P

B 1/(n+1)(0)NCo

for all m > 0 and integers k ¢ (n + 1)N, where C; is the sector of the plane

. 27 . . 27 .
between the angles ¢/ 7+1/ and e/ it 1U+D

Formula (2.32)) tells us that many terms of the expansion (2.31)) will give no
contribution when inserted in an integral formula like (2.28)). Using the notation
.-+ to denote such terms, we can rewrite (2.31)) as

e2Relealg™ ()" 1]

+o0 Too
233) =1+2Re |:Ca Z a/;(n+1)y(k+1)(n+1)i| + |cal?ly|?* 12 Z |a§|2|y|2k

k=0 k=0
400 +o0
+ 2|Ca|2|y|2n+2 Re |: Z Z al;a§+m(n+l)|y|2kym(n+l)i| +oeen
k=0m=1
Setting
+o0
(2.34) F.(y) = Z k(D) k1
k=0
S 2k
235) Ga(y) = |y|2[2 D 2 Taog Dyl
k=0m=1

+o00 -
k2., 1=
A Iyl”“],
k=0
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through the change of variables y — y"*! we can rewrite (2.28)) as

2
88 / euO+W
27 n
& Y k=0 lax|>+0s,4+282 £,(0)
[€2]
(n+ e o=1(B,(0))

2

86
= / m(l + Re[2¢q Fa(y) + lcal?Ga(1)]
B,(0)

(2.36) + 0|y + %)

- | 852+[ S RePeaFa(y) + leal’Ga(y)]

= OTT — —_— — ¥ K€L C,

B @+ [y —apyz el el el
R2\B,(0) B, (0)

2n+3
+ O(82|a|T + 8751,

Since |a| < g and F is a holomorphic function in Bg (a) C Bp(0), we can
expand Fy in a power series around y = a:

00 Fa(k)
(2.37) Fa(y) = kz kf“) (v —a),
=0

and then get

/ O RelcaFa(y)
2+ [y —ap)2 catel)
B, (0)

852
(2.38) — 2 Fa 2lea
f G+ y —ap) Re[cq Fa(y)] + O(8%|cal)

Bp/Z(a)

= 87 Re[cq Fa(a)] + O(8%|cal)

in view of

/ v-a*
(6% + 1y —al?)?

Bp/2(a)

for all integers k > 1. The map Re G, is just C2+2/(”+1)(Bp(0)) and can be
expanded up to second order in y = a:

Re G4(y) = ReGu(a) + (VRe Gy(a), y —a)

(2.39) 1 2(n+2)
+ 5{D?ReGa@(y — ), y —a) + O(ly —al 1)
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for y € Bg (a), yielding to

lc |2 / LRCG »)
‘ @+ ly—apz Y
B, (0)
= |cq|? / 8% Re Gy (y) + 0(8%|cal?)
e G+ ly—ap Y “
By/2(a)
2.40
( ) = 87|cal?* Re Gq(a)
|Ca|2 852 2 2 2
+TAReGa(a) / m|y—a| +0(8 |Ca| )
Bp/z(a)
1
= 87|ca|? Re Gy(a) + 47|ca|®* ARe Gy (a)$? log 3 + 0(8%|cal?)
in view of
/ (y —a) _ / (y —a) _ / (y—a)l(y—az)zo
(82 + |y —al?)? (82 + |y —al?)? (82 + |y —al?)? ’
B,/2(a) B,/2(a) By/2(a)
/ G-af / -ao3 1 [ ly —al?
(62 + |y —al?)? (2 +y—al»? 2 (62 + |y —al»)?
Bp/z(a) Bp/2(a) Bp/2(a)
By inserting (2.38)) and (2.40)) into (2.36)), we get that
85> / oo+ W
2w n 2 2
Delel Y k=0 lax?+0Os 44282 f,(0)
(n + De o= 1(B,(0))
(2.41) 852 2
. = 87 — W + 167 Re[cq Fy(a)] + 8m|cq|“ Re G4(a)

R2\B,(0)

1 ;
+ dmleal?ARe Ga(@)$? log 5 + O(82|a|T+T + 82|cq| + 8 747).

By Lemma[2.2] (Z.41)), and Lemma[A-T| we get that

82 / uo+w
7 (n + 1)e (1 Li=olak*+65.q4287 a (0)
Q

1 1
@A)~ 1+ 2Releq Fal@) + [ea? Re Gal@) + 3 |cal A Re Ga(@)8? log 5

52
+
n—+

2n+3
D + O(82)a|™T + 6%|cq| + 8757,



CONDENSATES FOR CHERN-SIMONS MODEL 1211

where
2D, = / 087 Yo G(z.ax)— 5 il =g lax
Q\o—1(B,(0))
(2.43) el
ly|*

R2\B,(0)

In view of 24) and [, |0'(z)|?eY8a = 8z (n + 1) + O(8?), by 2:27) and (2.42)
we have that

qu+W 1
AW +4xN (W — |Q|)

= |o'(z)?eY5«| 4N

2 Relcaz" T+ 0(82 |2/ +6) }
-1

852~ 187 Lh=o lak[2—05.4—282 £a(0) g erotW

1 (/ ’ 2,U,
+ — lo’(z)|?e”8e —4n N
€2 J

B 02 Re[caz" 1] :|

| 1+ 2Re[ca Fa(@)] + lcal?Re Ga(a) + L|cal2ARe Ga(a)82log § + ;25 D,

= |o’(z) e

2n+3

+ 107 (2)2eY5a O(82|z] + 62|al T + 8|ca| + 6751 ) + O(8?)

as § — 0, yielding to the validity of (2.23).
Introducing the notation B(w) = 167w N([q e?¥0T2¥)( [ e¥0T¥)72, we can
write the following expansion:

167N e2u0 +2w
(2.44) TN Jo =

(fQ euot+wW + \/(fQ eu0+W)2 — 167 Ne2 fQ €2uo+2W)2

@ + O(e2B2(W)).

Arguing as for (2.42)), the change of variables y = o(z) yields

4437
(245) 648 ! / e2uo+2W

o181 Lhi=0lax ?+205.4
Q

— gt 0" (2)[*e2Us.at Olleallz" 1487 | o (s4+3FT)

6=1(B,(0))
— 64(n + 1)3|ag | 7T
84+ﬁ |y | nz%

(82 + |y —al?)*
B,(0)

_1
(1+ O(eallyl + 8 + |y[7+T1))

2
1

+ 0@ aFT) =
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3 —_2
= 64(n + 1)7|ag| 71

/ §4TAET|y 4 a|itT
(&2 +y[»*

2 1 _1
(L4 O(8% + |y|#*T + |a|m+1))
B, (0)
+ o8+
in view of

0" ()P = (n + 1)?laa| 2|2 (1 + O(z])

(2.46) , 2 ,
= (n + D7ea| o (2)|"+1(1 + O (o (2)[*+1)),

where o4 is given by (2.30). We have that

2 24 —24+0(54+n%)
CEETRE (T

/ T |y 4 al T |y + 1
B, (0)

if |a] = O(8), and

[ ) el o)
@2+y2* 8 J (I +y»)* |al

B,(0)

if |a| > §, where in the latter we have used the expansion

2n_ 2n_ n—1 2n_
ly +al*+1 = |a[*+T + O(la[*+1|y[ + [y["+T).

Setting

|y 1T

y+§In . _
247 E, .= | e iflal =00

. a,s -— Zn_
g('g—')”“ if |a| > 8,
by (2.43) we get that
43
(2.48) 644 ! /eZuo-i-ZW —
e%ﬂ ZZ=0|ak|2+2®8,a

2

64(n + 1)*|ata] "7 (1 + 0(1) Eq 5.

Since by a combination of (2.42)) and (2.48) for B(W) we have that

2 2
(2.49) B(W) = 32w|aa|_"+l (I+o(1)Es;s

Ton+1
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in view of (2.4); by (2.44) and (2.49) we get that

167N 62u0+2W
(2.50) Ja -

(fq e¥otW + \/(fg ot W)2 _ 16 Ne? [y 2o +2W )2

2 2
8w%r”*‘ (I+o(1) + Om)Eas.

o+l

where 7 is given by (2.24). As we have already seen in deriving 2.23)), by (2.27)
we have that

HrtW o/ el
[qewotW — 4xN

and in a similar way one can show that

(2.51) [1+ Odlcallz"™ + |callal + 8*|log 8])],

64(n+1)° o e2uot2W E
- n - J—
7 1% [ e2uot2w "ad =

§ET
o' (2)]*eY34[1 + O(lcallz"™) + 0(1)]
in view of (2.48). In conclusion, by ([2.50)—(2.52) we have for the €>-term in R that
647T2N2€2 fQ eZuo-l-ZW

(fq e®otW + \/(fg U0+t W)2 _ 16 Ne? [, e2uo+2W)2
eu0+W e2u()+2W
X J—
2uo+2
fQ euo-i—W fQ e2uo+ w

8(n + 1)%2€2
_ |0/ (2)Pelsa [|(|—)5E8 _ e2|o’<z>|2eU8>a}
T aa n+1yn+1

x [14 Oleall2]™™ +m) + 0(1)]
in view of (2.4), proving the validity of (2.26). This completes the proof. O

(2.52)

Let us introduce the following weighted norm:

82+ o(z _al? 1+%
2.53) Vil = sup O TlO@ a2, o)
20§ (o' (2)|? + 57T

for any h € L°°(R2), where 0 < y < 1 is a small fixed constant. We have the
following:

COROLLARY 2.4. There exist positive constants 8y, €g, and Cq such that

forany § € (0,80) and € € (0, €g), where 1 is given by (2.24).

2 __ n+2
(2.54) | R« < Co(Sleal + 87 + 87TV |a> Y + |eq|lalm*T + 1+ n?)
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PROOF. Since

e2Relcaz 1]
1

1+ 2Re[cg Fa(a)] + |cq|?Re Gg(a) + %|ca|2A Re G, (a)8? log§ + %Da

eZRe[caz"'H] -1

T+ 2Refca Fa(@)] + |cal? Re Ga(a) + Llcal2ARe Ga(a)8? log + + ;25 Dg
—2RelcaFa(@)] + O(lcal*|al® + 8?[log8])
= 2Re[ca (2" = aqa)] + O(lcal?|2*"*2 + |callal® + 8% |log §)
= 2Re[eaca(0(2) — )] + Ocallz"™? + |callal® + 82|logd]),
by Theorem 2.3] we deduce that

R = |0'(z)]?eV«
x O(lcallo(z) —al + leallz|"? + |eallal® + 8% [log 8| + 1 + 1%)
+ %o’ @) % (1 + 0(m) + 0(8?)
as § — 0, where 7 is given in (Z.24). Given the estimates |z| = O(|o(z)|/@**D)

and |0”(2)]? = O(lo(z)[* #+D) near 0, by setting y = o(z) in 0~ (B,(0)) we
get that

sup 7
y€B,(0) (624 1|y—a®»'~2

€284 |y (1 + O()]
+ O| sup >
veB,(0) (82 + |y —al?)? 2
§2-v (82 + —al? 14+y/2
+ 0( Sup ( 211|y |2n)
veB(0)  (|y|iFT 4 §atT)

_ n+2
IR[ = O( 827 llcally — al + leally| "+ +Ica||a|2+52|10g5|+rl+n2]>
.=

) + 0(8*77)

n+2 n+2 n+2
8lcally| + 87+ |ca|[y|"FT + |ealla]"+T + 82[log 8| + 1 + nz)

y€B2,,5(0) A+yP?»'-=

€252(84T |y |71 4 [a| 7)1 + O(y)]

+0 sup 37
y€B2,,5(0) A+1y»)°~2

2
SaFT Y (§2+Y al?2ty 4 g2ty |y 2ty
N 0( (87 + [a]?*Y + 821 |y 2+)

Sllp n
Y€B,/5(0) (ly|7+T + 1)

2 _ n+2
= O(Slcal + 8277 + 87517 a2+ + [cqllal 7 + 0+ )

) + 0(*77)

as claimed. O
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3 The Reduced Equations
As we will discuss precisely in the next section, it will be crucial to study the
system [ RPZo = 0 and [ R PZ = 0, where PZy and PZ are the unique
solutions with zero average of APZy = AZy — ﬁ fQ AZoand APZ = AZ —

ﬁ fQ AZ in . Here the functions Z¢ and Z are defined as follows:
82 —o(z) —al? §(o(z) —a

Zoy = Sl @ =al L M@ —a)

82 + |o(z) —a| 82 + |o(z) —a|

and are (not doubly periodic) solutions of — Ad) lo’(z)|?eYs.a.0 ¢ in Q. Through
the changes of variable y = o(z) and y — 254 5 , notice that

/AZO = / lo’(z)]2eY3a0 Zy + O(8?)
Q o= 1(B,(0))
= —8(n + 1)§2 / —ap + 0(8%)
(3.1 (82 + | —al?)3
p
— 8(n+1) / =P L o) = o)
a+1y?3
B,/5(0)
and
/AZ =— / lo’(2)|?eY5a0 Z + 0(5%)
Q o=1(B,(0))
_ 3 —da 3
(32) =—8(n+ 1)8 / & +| mpEE + 0(8%)
B,(0
=—8(n+1 [ Y L 06% =03
( ) TESTBE (87) (87)
B,/5(0)
in view of

/ i =0 / Yy  _ 0
(I+yP»* (1+1yP)?
R2 R2
By (B.1)—(3.2) the following expansions, useful in what follows, are easily de-
duced:

1
(3.3) PZO_ZO—|Q|/Z0+O(8) PZ = Z—|Q| Z + 0(3)

in C(2), uniformly in |a| < p and o € B;,.
Notice that up to now there is no relation between a and §. However, as we will
show in Remarks [3.2] and the range |a| > § is not compatible with solving
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simultaneously fQ RPZy = 0and fQ R PZ = 0. Hence, we shall restrict our
attention to the case a = O(4§) in the following sections, so that we can assume
that ) = €2672/®+1) in @.24) and

a_2in
|Y+5|"'H .
—/ in (2.47).

98 - 1 v\
¢ (1+[y]?)*
]RZ

We have the following:

PROPOSITION 3.1. Assume |a| < Co6 for some Cy > 0. The following expansions
hold as §,n — O:

1
/R PZy = —167(n + Dlog|?|cal?8? logg —878%D,

Q

(3.4) > (|y|2—1)|y+f;—’|"%

' + 64(n + 1)3|a |_n+1r]/

¢ (1+[y[?)°
RZ
1
+ 0(8% + 1) + O(8%|cal + la| 778 |log 8| + n?)
and

2n
2 ly + 5| +Ty
(3.5) [RPZ = 47 (n + 1)80gcq — 64(n + 1)3|ag| 7+ig | —2——
J ata a J (1 4 |y|2)5

+ 0(8|ca| + 8la| + n + 8%) + 0(n?),

where ) = €272/ and ¢y = ¢4, 0, and Dy are given by [2.16), [2.30),
and (2.43), respectively.

PROOF. Through the changes of variable y = g(z) ino ™! (Bp(0)), y — yntL,

and y — %, we get that

1 2 ,127"
so | 8 (o' @) +871)

) (B +lo)—a)'tE

+0(8)

B [ §7 (|6’ (2)[? + §7+T)
B 82 + |o(z) —al?)l 2
iy BT lO@ =)

2n
87 (1" +874T) )
=0( / +0(@) =
g g @ —ap)t
0 n
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2n _2n
=O(/ V(1 + 8747y ”+1))+0(57)
§2 + |y —al?)it?:
5.0 (&2 +ly—al?)

:0(/ 1Jr|y+g|_"+l)+0(5V)=0(1)
B

(1 + |y»)'+>

0/8(0)
in view of
2n_
ly + %|_n+1 - o 1
1+ y»)*: ~ ! i (1+ [y +3 )
By/s(0) B1(0) R2

Hence, by Corollary 2.4 we get that

(3.7) /|R| = O(8|cq| + 8> +5%—V|a|2+y + |ca||a|% + 17+ 7).
Q

By (3.3)) and (3.7) we deduce that

(3.8) [R PZy = / R(Zo+ 1) + 0(8%) + 0(né? + n°8%)
Q Q

in view of fQ R = 0. Since by the Holder inequality

/|z +1| = / 22 + 0(8%)
0 - 82+ |o(z) —al?
Q o

2n
=0 ETES P 0(82
(‘/'” 82+w—aP)+ @

- o(sn‘+1 / L ) +0(8?)

2n_ _1
Iyl —al

B,(0
5l 1 T 1 T o)
oo | [ || [ ] )
8.(0) |yl B,(0) [y —al
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by (2.25) we have that

erotW 1 2 2
Q/(ZO + 1)[AW + 4nN(W - @)] + 0(8%|cal) + 0(8%)

- / 16/ (@) el (Zo + 1)
o~ 1(B,(0)
e2 Re[caz"T1]

(3.9

X —1
[1 + 2Re[cg Fa(@)] + |ca|? Re Gg(a) + %|ca\2A Re G4(a)s? log% +-2p i|

n+17-4
_ / 16(n + 1)254|y|2" y
- (82 + |yn+1 _0‘2)3

B,1/(m+1)(0)

[ e2Re[Ca(q_l(y))n+l] }
X -1
1+ 2Refca Fa(@)] + cal?Re Ga(@) + Llca2ARe Ga(a)82log 1 + 22D,

We have that the expansion (2.33) still holds in this context, where the ellipses
(--+) stand for terms that give no contribution to the integral term of (3.9), as was
the case for formula (2.32):

|y|™yk
3.10 -
( ) / (82 + |yn—|—1 _ a|2)3

B,1/(n+1)(0)

for all m > 0 and integer k ¢ (n + 1)N. Hence, through the changes of variables

y = y"*tland y — 252, by the symmetries we have that
/ 126(11 + 1)2184|y|zn3 eZRe[Cu(q_l(y))lH_l]
(82 + |y"*t1 —al?)
B,1/m+1)(0)
16(n + 1)84
T oy —apys el +2¢aFa) + leal*Ga(y)]
B, (0)
16(n + 1)8*
@1y —apyp| T 2RelcaFa@]+ lcal®Re Ga(a)
3.11) B,(a)

1 2(+2)
+ {1l 8Re Guf@ly —af? + 0(ly —al 7 + 06"
= 87(n + 1)[1 + 2Re[cq Fa(a)] + |cal® Re Go(a)
1
+ Z|ca|2A Re Ga(a)Sz]

2(n+2)

+O@ )




CONDENSATES FOR CHERN-SIMONS MODEL 1219

in view of (2.37), (2.39), and

/ dy _/ ly|? PR
= y_—,
(14 1y?)3 1+ [y?)3 2

R2 R2

where F, and G, are given by (2.34) and (2.33)), respectively. By (3.11) we can
rewrite (3.9) as

etotW 1
Z D|AW +4aN| ——— — —
Q/( o+ )|: + 4 (fgeuo+W |Q|)}

=8x(n+1)

(3.12) y |: 1 + 2Re[cg Fa(@)] + |cal? Re Gq(a) + %|ca|2A Re G,(a)8? 3 1:|
Dq

1+ 2Re[cqg Fu(a)] + |ca|?Re Gy (a) + %|ca|2A Re G, (a)s8? log% + n’s_il

+ 0(8%)ca]) + 0(82)

1
= —167(n + Dlata|lcal’6” log 5 — 878> Dy + O(|cal + la|7T182|log §]) + 0(52)

in view of ARe G4 (a) = 4|ag|? + O(|al e ). By (2.26) we also deduce that

/ 647T2N262(Z() + 1)(eu0+W fQ 821,40+2W(‘/'S_z euo-l-W)—l _ €2u0+2W)

(fq e¥otW + \/(fQ 0t W)2 _ 167 Ne2 [ e2u0+2W)?

= ‘/ |d@nﬁékuzo+1){

o1 (B,(0))

< [14 O(leallzI™ + 1) + o(D] + 0(8*n)

Q

8(n + 1)%€?
————Eas — €0’ (x)]?eV4
7T|O[a|”+18”+1

_128(n + 1)%€2 4

)
e |
Tlog | ST (52+|y—a|2)3[
B,(0)

1+ O(callyl +m) + o(1)]

—128(n + 1)3€2|ag| T
2n_
[t
X
(82 + |y —al??
B,(0)

1L+ O(Iy|7™T + 1) + o(1)]

+ 0% =
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3, L2 5. 2
=64(n + 1)’ |ag| "FTe“6 HT E, 5
—128(n + 1)3€2|ag| T
2n_
8y + a7t

@2+ 1P
B,(0)

+o(n+68%) + 0(n*)
in view of (2:46). Since

[1 + O(y|7 + 1) +o(1)]

2n
2 86|y+a|"+1 1
Gt W[l + O(ly|™T +n) +o(1)] =
B,(0)

2n

|y + 17T
————=+o(l)+ 0(n)

1 2)5

A+

when |a| = O(§), we then have that

(3 13) /647T2N2 Z(ZO 4 1)( u0+Wj‘ eZu()-I—ZW(f euo-l—W) 1_82u()+2W)
etot+W \/(IQ enotW)2 _ 167 Ne2 fQ 62140+2W)

2n

_2 (Iy[> = Dly + §lm+1
64(n + 1)3|ay |77+ '7/ i |y|2)§ +o(n+8)+ 0
2

in view of (2.47). Inserting (3.12) and (3.13) into (3.8), we get the validity of (3.4).

Remark 3.2. Notice that in the range |a| > § we find that

2 86|y+a|% |a|
] @ e *0('””*‘*”(5) )“(” -
B,(0)

| () oo ofo(2))]

2n 2n_ n—1 2n_
|y +a|mT = |a|"+T + O(la|nF1|y| + [y|#+T),

Nk

in view of the expansion

so that the main order of [, R PZj in this range is essentially given by

2n

1 32
—16n(n+1)|05a|2|ca|28210g8 87T52Da__7[(n+1) |Ol | fl+1 (|§|)
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By (3.3) and (3.7) we deduce that

(3.14) /RPZ = / RZ + 0(8|ca| + 8la| + n + 8%) + O(%8)
Q Q

in view of [, R = 0. Since as before

5l0(2) —df
/WZ“: / 2+ jo@ —ap 00
Q

o= 1(B,(0))
_2n_ 8|y —al
-0 i T )y o
([ v e ta) + oo
B,(0)
1
= osm / — 1) +0(5) = 0(37H),
|y[+T]y —al=+1

B,(0)

by (2.23) we have that

eto+W 1 5 2
[Z[AW + 4nN(W - @)] + 0(8%|cal) +0(8%)
Q

= [ wepdez

o~ 1(B,(0))

eZRe[CaZ"Jr']
1+ 2Refca Fa(a)] + lcal?Re Ga(a) + Llca2ARe Ga(@)82 log + + ;221 Dy
_ / 8(n + 1?83y ("' —a)
(3.15) - @2+ [y" T —ap?)3

B,1/(n+1)(0)

e2Relcalg™ ()" 1]

X
1 + 2Re[cy Fa(a)] + |ca|?* Re Gy (a) + %|ca\2A Re G4 (a)s? log% + -2 D,

n+1
B / 8(n + &3 (y —a)
6%+ 1y —al?)?
B,(0)

/, 81+ 128y 2" (v —a) ,oRe[ca(g ™! (»))" ]
B+ (@) (82+|y"F1—al?)3

T + 2Refcg Fy(a)] + |cal? Re Gy (a) + %|ca|2A Re G4(a)s? logé + %

Dq

in view of

/ 8(n + 1)83(y —a) —o
@2 +1ly—a®?
By(a)

1221

|
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Since expansion (2.33)) is still valid in view of (3.10), through the changes of vari-
ables y — y"*tland y — ya;a, by the symmetries we have that

[ 8(n + 1?8y (" — @) srefea g )]
(82 + [y"*t1 —al?)3

B,1/(n+1)(0)
801+ D& —a) i
= Re[l + 2¢, F, G
[ (82 + |y —al?)3 e[l +2caFa(y) + [cal*Ga(y)]
B, (0)
8(n + 1)83 - )
(3.16) = @11y —al) caFj(a)ly —al
By(a)
|Ca|2

M

(01 +i92) Re Ga(a)ly —al? + O(leal*ly — a|3)] +0(8%)
=4dn(n + I)S[CaFé(a) + %|ca|2(81 +id2)Re Ga(a):|

+ 0(8%|cqa)* + 8%)

in view of 237), 239), and g (l-il-)lz% dy = %, where F, and G, are given

by (2.34) and (2:33)), respectively. By we can rewrite (3.13) as
euo-i—W 1
ZI|AW 4+ 4aN| ——— — —
[ 2o sm (e = )]
Q

1
(3.17) = d4n(n + 1) [CuFé(a) + 5 lcal*@1 +i92) Re Ga(a)i|

+ 0(8|ca| + 82)

= 4 (n + 1)§agca + 0(8|ca| + 82

in view of F/(a) = aq + O(lal) and %(81 +1id2)Re G4(a) = O(|al). Regarding
the second term of R, by (2.26) we have that

/ 647T2N2€22(€u0+W fQ 62u0+2W(fQ eu0+W)—1 _ €2u0+2W)

(fQ etot+WwW + \/(fQ eu0+W)2 — 167 Ne2 fQ e2uo+2W)2

8(n + 1)%€2
-/ |dun%%ﬂ2{—ﬁ—7l7—aw—f%d@n%wﬂ]
U—I(B)o(())) n'aa|n+l 8n+1

x [1+ OleallzI"™! + 1) + o()] + 08y =

Q
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64(n + 1)°€* 1)3¢2 83(y —
| @

e Sy Ty |2)3d Y1+ Oleally| + 1) + o(1)]
TT|0g | n

—64(n + 1)362|aa|—m

3 2n_

8 [y|"+1(y —a)

(6% + |y —al?)®
B, (0)

[1 4+ O(y[FT + 1) + o(1)] + 06>y

and then
(3 18) / 647T2N2€22(€MO+W fQ 62u0+2W(fQ eu()+W)—1 . €2u0+2W)
Q (fQ euot+w + \/(IQ eM0+W)2 — 167 Ne2 fQ e2uo+2W)2

2n
__2 ly + §In+ty
—64(n + 1)3|ag| "7 [ =——2—Z +0(n) + O(?),
) aE Ry
in view of (2.46) and
8 (y —a) / 8 (y —a)
dy + 0(8%) = 0(8).
| @t @1 ly—app? T OO =0
Inserting (3.17) and (3:18) into @, we get the validity of (3.3). O

Remark 3.3. Since for |a| > § andn > 1

2n_ 2n_
2 /55|y|"+1(y—a) 2 /85|y+a|"+1y

5}1-}—1 = 8n+1 1
&+ 1y —aP)ys @+pypys oW
B,(0) B,(0)
2
Th la|\ "1 a
S — i+ o
12(n+1)(8) sll+ol

in view of
|y .

1
A+ yP)s ‘R/z (L+ 1y _R/z (+yP3 12

and the expansion

2 _ __2 2n_
|7 ¥ (@Y + ay) + O(ja|” 7+ [y|* + |y|7+1),

D
ajn = |aln
Y n+1

notice that the main order of [ R PZ in this range is essentially given by

16 n+1
4 (n + 1)agcq — ?nn(n + 1)%e28~ AT lota|™ T ('Z') ;_’,
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Since «, is uniformly away from zero, the vanishing of fQ R PZ, which is equi-
valent to having

o (T
__2 a n
€28 n+ (?) ~ OgCqd

is generally not compatible in the range |a| >> § with the vanishing of [, R PZj
in view of Remark[3.2] which can take place only if co = 0 (in which case ¢, ~ a).
Indeed, the vanishing of [o R PZ and [, R PZy in the range |a| > § implies the
contradiction |a|? ~ §2. This explains why we don’t consider the case |a| > §.

4 Proof of the Main Results

In the previous section, we have built up an approximating function W =
PUs 4.6,- We will now look for solutions w of the form w = W + ¢, where
¢ is a small correcting term. In terms of ¢, problem (2.2) is equivalent to finding a
doubly periodic solution ¢ of

4.1 L(¢) =—[R+ N(¢)] inQ

with [o ¢ = 0. Recalling that B(w) = 167 N([q e2#0T2V) ([ e*0F )72, the
nonlinear term N (¢), which is quadratic in ¢, is given by

uo+W+¢ uo+Ww uo+w uo+wW
N(¢) :4JTN|: ‘e uo+W+¢o - ‘e uo+W ‘e u +W( 7'/;.26“ +W¢):|
Jaevo Jaevo Ja o Joe"o
[ 4 Ne?B(W + ¢) 47 Ne2B(W)
(14 1—=2B(W +¢))2 (1 + 1 —-€e2B(W))2
4nNe? DB(W)[¢] ( etotW+¢ £2Wo+W+¢) )
(1+ \/1 —€2B(W))2 \/1 _ EzB(W):| fQ euot+W+¢ fQ e2uo+W+¢)
+ 4 Ne?B(W)
(1+ y1=e2B(W))*
uo+W+¢ uo+wW uo+w uo+W
(4.2) x[ T T T uow( _fszeu0+W¢)]
Jae Jae Jae Jae
4 Ne>B(W) 2o+ W+¢) 2o+ W)
- (1 + /1 —GZB(W))z |:fg 2o+W+e) [Q e2wo+W)

, e2o+W) B fg 62(u0+W)¢
fg e2o+W) fQ e2(uo+W)
N 4w Ne?DB(W)[¢]
1+ /1-e2BW))2\/1—e2B(W)
( o+ W+¢ eHo+W e2(u0+W+¢) eZ(uo+W) )
X .

[q ot W+e - [q etV - [ 2@otW+9) + fq €20+ W)

The linear operator L is given by

L(¢) = Ap + K¢ +7(9).
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where
= 4N eto+W N 4JTN€2B(W) ( etot+W ., e2uo+2W )
Jq e otV (1+ \/TB(W))z Jo ewotW — [ g2uotaW
and
uo+W [ Juo+W
)7@):_4711\76 (/g efxiw)z ’
_ AnNEBW) etV [ e
(14 i—eBm) e ™7 | 7
. SaNeBW) e2ot2W /ezu0+2W 5
(1+W)2 (fgezqurzw)zQ
+ 47 Ne> DB(W)[4] ( R )
(14 V1=2BW))2/T—e2BW) \ [qero™ [ e2uot2W
with

/ e2u0+2W¢ f euo+W¢
DB(W)[¢]=2B(W)( j; o2uot2W }ZQ cuotW |

Notice that we can rewrite ¥ (¢) as

- Joeo ™o
V(¢) = _’CW
n 8t Ne2B(W) [ 2@t W ~ o e otWg
1+ \/1 — EZB(W))Z \/1 _ €ZB(W) fQ e2uo+Ww) fg eto+W

€u0+W 2 eZ(u0+W)
x {fg o + (Y1 —EBOV) - 1)7fQ ez(”0+W)]
B fQ euo+W¢
=<
N GZB(W) (fQ e2(uo+W)¢ B fQ euo+W¢):|
(1+ VT=EBW) VT =B\ [qe2tot®)  fgerorW ]|
and L as
4.3) L(¢) = A¢ + Ko + y(#)],
where

_ e evotWe > B(W)
y(¢) = o €m0t W + (1+ /1 —e2B(W))/1—€e2B(W)

y (/‘Q 62(u0+W)¢ B .fQ euo+W¢)‘

[ €200+ W) [ etotW
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[r=[rer= [ v =0
Q

Q Q

Let us observe that

Since the operator L is not invertible, equation L(¢) = —R — N(¢) is not
generally solvable. The linear theory we will develop in Appendix [B] states that L
has a kernel that is almost generated by PZy, PZ, and P Z, yielding the following:

PROPOSITION 4.1. Let My > 0. There exists ng > 0 small such that for any
0 <8 < no, [log8le? < nos?/ D, |a| < Mo8, and h € L®(Q) with [qh = 0
there is a unique solution ¢, dg € R, andd € C to

(4.4) {L(qﬁ) =h+dyoAPZo+ Re[dAPZ] inQ

Jo® = [q$APZo = [q$APZ = 0.

Moreover, there is a constant C > 0 such that

1
19l < € (1og 5 )bl 1dol + 1d] < C..

As a consequence, in Appendix [C|we will show the following:

PROPOSITION 4.2. Let My > 0. There exists no > 0 small such that for any
0 <8 < no, |log8|2€2 < 1o82/ @+ and |a| < My, there is a unique solution
¢ =¢(8,a),dy =do(8,a) e R,andd =d(5,a) € C to

L(¢) = —[R + N(¢)] + doAPZo + Re[dAPZ] in

4.5
“ Jo® = [qPAPZy = [qdAPZ = 0.

Moreover, the map (§,a) — ¢(8,a) is C! with
(4.6) [@lloo = Cllog 8[| R]|«.

The function W + ¢ will be a true solution of equation (2.2) once we adjust §
and a to have do(8,a) = d(8,a) = 0. The crucial point is the following:

LEMMA 4.3. Let ¢ = ¢(8,a), dy = do(6,a) € R, and d = d(5,a) € C be
the solution of @.5) given by Proposition A.2] There exists no > 0 such that if
0 <8 < no, la| < no, and

4.7) /(L((,b) + N(p)+ R)PZy =0, /(L((]b) +N(@)+R)PZ =0

Q Q
do hold, then W + ¢ is a solution of (2.2)), i.e., do(§,a) = d(8,a) = 0.
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PROOEF. Since by (3.3) and || Z¢|loo + || Z|lcc < 2 it holds that

/APZOPZO :/AZOPZO

Q Q
_ / 0/ (2)PeVsa Zo(Zo + 1) + O(82)
5=1(B,(0))
82—y —al?
=—16 1)84 / 0(8?
D | @y —apr T O
B, (0)
8
- —?”(n + 1)+ 0(8?)
and
/APZPZO - / AZPZy = — / 16"(2)[2eYs4 Z(Zo + 1) + O(5?)
Q Q U_I(Bp(o))
16(n + 1)8°(y —a) 5
- Y
| o y—apy T O¢)
B, (0)
16(n + 1)8°y

== | @rpeyr O =00
B, (0)

in view of (3.1)—(3.2)) and
1—yl? dy dy m
axemE P =2 axomr |l axhes " 6
I+ [y?) (I+1y?) (I+1[y*»° 6
R2 R2 R2
by (.5)) we rewrite the first condition of (4.7) as

O=d0[APZOPZO+/RC[dAPZPZO]
Q Q

8
= —37(n + Ddo + O(8%|do| + 82|d|).
Similarly, the second condition of (4.7)) gives

0= dO/APZOPZO —I—/Re[dAPZPZO]
Q Q

8
= —37(n + Ddo + O(8%|do| + 82|d|).
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Similarly, this same condition gives that

1 _
0=d0/APZOPZ+/E[dAPZerAPZ]PZ
Q Q

1 —_—
__ / Slo' @V [dZ +d Z)Z + O(E|do| + 8|d )

o1 (B,(0))

- |y|2 2
:—4(n+1)d/—+0(8 |do| + 8|d|)
PACTRS 0

inview of [ APZoPZ = [ APZPZy = O(8%), (3:2), and (3:3). Hence, {@.7)
can be simply rewritten as do + O (82|do| +82|d|) = 0, d + O(8%|do| +8]d|) = 0.
Summing up the two relations, we then obtain |do| + |d| = §O(|do| + |d|), which
implies dg = d = 0. O

Remark 4.4. Since ¢ is sufficiently small, the system (4.7) will be a perturbation
of the reduced equations fQ RPZy =0, fQ R PZ = 0. The integral coefficient
in is negative for all 4, as we will see in Appendix @ Since @y — ¢ =
H(O)/(n + 1) # 0and ¢ — co asa — 0, we can always exclude the case co # 0.
Indeed, in such a case the equation [, R PZy = 0 yields €2572/n+1) _ §2|10g §|
as § — 0 by means of (3.4) (we are implicitly assuming €2§72/(n+1) 5 0 which
is a natural range for solving the reduced equations through (3.4)—(3.5)). This is
not compatible with [, R PZ = 0, which allows at most § = 0(e2572/(n+ D)) py

means of (3.3).

The last ingredient is an expansion of the system with the aid of Proposition
B.1

PROPOSITION 4.5. Assume co = 0 and |a| < Myé for some Mo > 0. The
following expansions hold as § — 0 and € — O:

[w@ + v+ wrz,
Q
= —87‘[52D0
(4.8) 2 a2
3n+s _ 2 _2 [ (yIF=Dly + §[n+T
+ 64(n 4 1) nF1 |H(0)| " nFT 2§~ ntT /
o) Sy

F 0(82 + €287 4+ O(e* 57 [log 8|2 + €38~ 7+T|log §|2)
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and
[+ L@+ NoyP2
Q
= 478(Ya + Ta)
(4.9) o2
3n+s 2 2 [ly+ Ity
—64(n + 1) n+1 | H(0)| nFTe2§ T | ——° -
g, (1 +1[y?)?

+ 0(82 + 257 THT) + O(e*8 77T |log 8|2 + €387 [log §|2),
where Do and T', Y are defined in (1.10) and Lemma[A.2] respectively.

PROOF. First, note that from the assumptions and (2.54), we find that || R/« =
08277 + 1 + n?), where n = €2672/®+1_ Hence, since |y(¢)] = O((1 +

M #lloo) in view of (2.:49), by (4.6), (B.9), and (C.3) we have that

/ (R + L) + N@) PZo

Q
~ 1
= RPZ ol (1 Ll PZ — | Z
(4.10) S[ 0o+ (( +n)” ( o+|9|! o)

=/Ron + 0@+ )+ 002 + 1)
Q

16 llo0 + ||¢||§o)

and

/ (R + L(¢) + N@)PZ

Q
- 1
= | RPZ+0|( lpz+— |2z
4.11) Q/ + (( +n)” ( +|Q|§[ )

=/RPZ+0(82+n)+O(n2+n4)
Q

[ploo + ||¢||§o)

in view of PZy = O(1) and PZ = O(1), where Z(¢) = A¢ + K¢. Since by
Lemma[A.2]H(0)c, = T'a+ Ya +o(|a]) asa — 0in view of ¢g = 0, the desired
expansions (@.8)-(@.9) follow by a combination of (3.4)-(3.3)) and {.10)-@.TT).
We have used that o, — a9 = H(0)/(n + 1) as a — 0 in view of (2.10), where
g is given by (2.30), and D, — Dg as a — 0, where D, is given by 2.43). O
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Thanks to (4.8)—[.9), the aim is to find (§(€), a(€)) so that hold. To sim-
plify the notation, we denote

00(S.a.€) = / (L) + N@) + R)PZo.
Q

o(B.a.e) = / (L) + N@) + R PZ.

Q
and reduces to finding a solution of
(412) QD()((S(G),Q(G),G) = (/)(8(6),61(6),6) =0

for € small. We are now ready to prove our first main result, which clearly implies
the validity of Theorem [I.T|with m = 1.

THEOREM 4.6. Let Ho = H/z" 12, where H is given in [2.6), be a meromorphic
function in Q with |[Ho(z)|? = %087+ DG&0) (which exists in view of (2.4)

and is unique up to rotations), and oo (z) = —(fz Ho(w)dw) ™. Assume that
dn—l—lfH

and for some small p > 0

4.14) Dg := l[ / pUo+8T(n+1)G(2,0) _ / n| -741} “0.
g y

Q\ag ' (B (0)) R2\B,(0)
If the “nondegeneracy condition”
n(2n + 3)
n+1

does hold, where T and " are given in Lemma [A.2} for € > 0 small there exist
a(e),d(e) > 0 small so that we = PUs(e)a(e),00¢) T $(8(€),a(€)) solves 2.2)
with

(4.15) IT| # |7 +

Dy

euo—',-we 64_7[2N262(euo+w6 fQ 62u0+2w6 (fQ eu0+w5)_1 _ 62u0+2w€)

N
fﬂ €u0+w€ (fQ U0 TWe + \/(fQ eu0+we)2 — 167-[N€2 fQ ezu0+2we)2

4

— 8n(n + 1)dy
in the sense of measures as € — Q.
Remark 4.7. For simplicity, we consider here just the case p = 0 in Theorem 4.6]
However, Theorem [4.6] still holds true for p # 0 by simply replacing in the state-

ment # the corresponding quantities in ## and replacing in # the corresponding
quantities in HZ, where the latter have been defined in Remark



CONDENSATES FOR CHERN-SIMONS MODEL 1231

PROOF. Since the equation ¢g (8, a, €) = 0 naturally requires §2 ~ ¢2§=2/(*+1)
in view of (@.8), we make the following change of variables:

_ (n—i—l)e”“ n+2 _a
8‘[ )] ] poand £=7%

The system (4.12)) is equivalent to finding the zeroes of

. (n + e ! ~niz 1 1
e e B & )

(n + D1 [ (n + 1)ert1 i
(o] [Mor | )
|H(0)]| |H(0)]|
which has the expansion '¢(i,¢) = To(i.¢) + o(1) as € — 0T, uniformly

for p in compact subsets of (0, +00), in view of (#.8)—(@.9), where the map Ty :
R x C — R x C is defined as

8 13 2_1 % —
Fo(u,é)z(nDo 2 - (n+ ) /(|y| a +)||§|J2r)§| VR

B 16(n+1)3/|y+§|n+1 )

e A EAOE

We need to exhibit “stable” zeroes of I'g in (0, +00) x C, which will persist under

L°°-small perturbations yielding to zeroes of I'¢ as required. The easiest case is
3 n+1

given by the point (wg, 0) that solves I'g = 0 for ug = (%) 2t¥2) > 0in

view of the assumption (@.14) and (see (D.7))
2n_
(Iy[* = Dly|=T

I() = < 0.
(1+1yP)

Regarding I'g as a map from R3 into R3 and setting ' = ' +il%, T = Y1+i Y3,
we have that

2042 7 Do g 0 0
DTo(po,0) = 0 i+ + "(i'j:S)D T -1
0 ' + 1, rh—7"; - n(i’—l:l%) Dy
in view of (D.7)) and
2n n
MGl [ wh
———dy=mnm — —dp=nllt".
(1 + [y?)° o (1+p) >
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Since

2(n + 2 n(2n +3
¥7TD0/L0(|F|2 - ’T + (—)Do

2
0
n+1 n+1 )7é

in view of assumption (@.T3)), the point (110, 0) is an isolated zero of 'y with non-
trivial local index. Since DT'g(up,0) is an invertible matrix, there exists v > 0
small so that | DT (w0, 0) (it — o, §)| = v|( — o, ¢)|. By a Taylor expansion of
Ty, we can find r¢ > 0 small so that

ITe(it. O = [To(e, 1 + 0(1) = v|(i = po. O + O((1t — 10)* + 11%) + (1)

= 21— 0. 0)]

det DI'o(0,0) =

for all (i, ¢) € 0B, (1o, 0) and all r < rg for € sufficiently small depending on r.
Then the map I'¢ has in By, (0. 0) a well-defined degree for all € small, and it then
coincides with the local index of T'g at (¢, 0). In this way, the map I'¢ has a zero
of the form (pe, ) with e — o and |{| — 0 as € — 0. Therefore, we have

solved (4.12) for

8(6):[%]mue and a(e) = 8(e)le,

and the corresponding we solve (2.2)) and satisfy the required concentration prop-
erty as stated in Theorem 4.6 O

Remark 4.8. With some extra work, it is rather standard to see that does hold
in a C!-sense. For ¢ in a bounded set, by IFT we can find € > 0 small so that the
first equation in I'¢ (1, &) = 0 can be solved by (e, ¢), depending continuously
in ¢, so that

8 13 2_1 )127"1 %
e, §) = p(d) ::( 0;;0) /(Iyl )y + ¢l ) m
R2

(1+1y1?)?°

as € — 0. In Appendix [D]it is proved that
/ (Iy2 = Dly + ¢7#1
R2

<0 forall¢ eC,
(1+1yP)

yielding to 1 (¢) > 0 when Do < 0. Plugging i (e, ¢) into the second equation in
Te(, ) = 0 we are reduced to finding a “stable” zero of

2n_ 2n_
/(|y|2—1)|y+€|"+1 ly +¢ln+Ty
RZ

T+yP°
R2

TEaEE (Yt +T¢)—2Dy

Notice that Y¢ + fz acts in real notation as the multiplication for the matrix

4—( ReC+7Y) Im(Y-T)
“\-ImT+7T) Re(Y-T))
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Since by Appendix [D] we have that

2n_ 2n_
/(Iylz—l)lyﬂ“l"+1 ly +¢|a+Ty
RZ

1+ [y?)°
RZ

= fAZD. = g(IZDe.

(1 +1y?)°

we can rewrite the above equation as A = %ﬂf“( . Letting (A1,e;1) be an

eigenpair of A with |e;|] = 1, we can find a solution {y = |{g|e; as soon as
|Co| # O solve %ﬁl%’n = A1. Since by Appendix@we know that f < 0 < g,

we can find solutions (ue, ¢¢) of Te(u, &) = 0 with ¢, bifurcating from o # 0 as
soon as one of the eigenvalues of A is positive and belongs to 2DTOg(O, +00). In

particular, by (D.7)—(D.8) and (D.10)—(D.11) we have that

g0)  @n+3)GBn+1) g(¢]) o1
== ) ——— = —— as|{| = oo,
1(0) 4(n + 1) Gy) 356
and the condition above is fullfilled if one of the eigenvalues of A lies in
51 2n+3)Bn+1)
—<1Dol, | Dol ).
178 2(n+1)

S Examples and Comments

In this section, we will discuss the validity of {.13)-(@.15) by providing some
examples. Let us recall that in Theorem [.6] we were implicitly assuming that
{p1,..., pN} C 2 and denoting for simplicity the concentration point p as 0. The
assumption {p1,..., py} C Q simplifies the global construction in & of # but
#.13)—-(@.13) just require the local existence for such # at 0 as well as for o and
H*. In this respect, the only relevant assumption is that the concentration point lies
in 2, and so we will provide examples with 0 € {p1,..., px} C €. To be more
precise, let us explain the general strategy we will adopt below. Since we are in a
doubly periodic setting, the configuration of the vortex points has to be periodic in
Q: forall j =1,..., N the points (pj +w1Z+wrZ)NQ belong to {pi,.... PN}
and have all the same multiplicity. Then, we can find J C {I,..., N} so that the
points {p; : j € J} are all nonzero, distinct modulo w1Z + w,Z and ({p; : j €
Y+ 01Z 4w Z)NQ = {P1,..., pn}\{0}. Take now a translation vector 7 € Q
sothat {py + 7,..., pN + T} N IR = &, or equivalently

Ap1,.. PN+ TH+01Z + 02 Z) NI = O.

Then, it follows that (p; + t + w1Z 4+ w27Z) N Q is composed of a single point p;
forall j = 1,..., N. The idea is to apply Theorem[4.6] as formulated in Remark
to the translated vortex configuration {{t} U {p; + v : j € J}} ¢ dQ with
7 as a concentration point. The validity of (4.13)—(.13) in the translated situation
will follow by appropriate assumptions on {p1,..., Py }.

Before stating our first result, let us introduce the notion of even vortex configu-
ration: —p; € {p1,..., PN} + w1Z + w2 Z with the same multiplicity of p; for
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all j = 1,..., N. In the periodic case, notice that {p; : j € J} is still an even
configuration. The validity of (4.13)) is discussed in the following:

PROPOSITION 5.1. Assume n is even and the periodic vortex configuration is even
with 0 € {p1,..., PN} Let H be the function corresponding to p = t and the
remaining vortex points {p; 1 j € J} C K, as given in Remark Then, there
holds

d*kr
(r)=0
dzk
for all odd numbers k.
PROOF. Since —2 = Q and the periodic vortex configuration {p1,..., pn}

is even, we have that G(z), H(z), and e~*" Xjes "/ G(@:P}) are even functions in
view of G(z, p) = G(z — p,0). So, it follows that
e4n(n+2)H(z—t)—4n > iesnjG(z,pj+1) _ e4n’(n+2)H(z—r)—4n Y jesn;G(z,p;)

takes the same value at &z + 7 for all z € Q. For all z € 2, the function H*
satisfies |[H"|(z + 1) = |H"|(—z + 1), and then H*(z + 7) = H*(—z + 1) for
all z since H® is a holomorphic function. By differentiating k times at t, it yields

d;;}‘: () = 0 when k is odd. O

The discussion of (#.14) is more interesting and will make use of the Weier-
strass elliptic function g to represent Dy in the case of an even periodic vortex
configuration. Furthermore, when €2 is a rectangle, the points p; are half-periods
and all the multiplicities are even numbers; by some ideas in [9] we will show
that assumption (d.14) holds if and only if n3/2 is an odd number, where n3 is
the multiplicity of the half-period (w; + w2)/2. Due to the presence of high-order
derivatives (2(n + 1) order) in @.13)), we will verify the validity of the “nonde-
generacy” condition in the simplest case n = n3 = 2 and €2 a square torus. As we
will see, the validity of {@.13)) is just a computational matter that could be carried
out in great generality for each case of interest.

We have the following representation formula:

PROPOSITION 5.2. Assume that the periodic vortex configuration is even with 0 €
{P1,.... PN}, and n; is even when p; € {w1/2,w2/2, (w1 + w2)/2}. Let D§ be
the coefficient corresponding to p = T and remaining vortex points {p; : j €
J} C Q, as given in Theorem Then, for T small we have that D is given by
and does not depend on t.

PROOF. The Weierstrass elliptic function

1 1 |
pR) =5+ Y. ( . 2)
2 amzo.o @ Tnertme)S (o) +ma)

is a doubly periodic meromorphic function with a single pole in €2 at 0 of multi-
plicity 2. Moreover, the only branching points of g are simple and given by the
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three half-periods w1/2, w>/2, and w3/2 = (w1 + w2)/2, ie., '(w;/2) = 0
and p"(wj/2) # 0 for j = 1,2,3. For p € Q \ {0}, note that 27[2G(z, 0) —
G(z, p) — G(z,—p)] is a doubly periodic harmonic function in € with a singular
behavior —2log |z| at z = 0. Moreover, it behaves like log |z — p| at z = p and
log|z + plat z = —p when p # w1/2,w2/2,w3/2, and like 2log|z — p| if
p €{w1/2,w2/2,w3/2}. Thus, we have that

27[2G(z,0) — G(z, p) — G(z,—p)] = log|p(z) — (p)| + const

regardless of whether p is a half-period or not, in view of p(p) = p(—p), »'(p) =
—9'(=p) # 0if p # 01/2,02/2,w3/2 and ©'(p) = 0, p"(p) # 0if p €
{w1/2,w2/2,w3/2}. Since the periodic vortex configuration is even, take I as the
minimal subset of J so that ({px, —pr 1k € [} + 01 Z + w2 Z)N{p; 1 j € J} =
{pj:jeJ}and

. { M if fy is a half-period,

ng = .

ny  otherwise.
Letting N = n + ) ;e nj and ug(z) = —4nnG(z,0) —4n 3,y nG(2, pj),
assumption (2.4) implies that
uo + 87 (n + 1)G(2.0) = 47 Y Ak[2G(z.0) — G(z. pr) — G(z. — ).
kel

which yields

2
o t87(n+1)G(z.,0) const) 1_[(6’9(2) — o(Pr)" | .
kel

The additional assumption that n; is even when p; is a half-period is crucial to
having ((z) — ©(p;))™ as a single-valued function. The function

Ho(2) = Ao [ [ (9(2) — 9(Pk))™.
(5.1) kel
Ao = 27 (n+2)H(0)=27 3 jcy ”.iG(O,ﬁi)’

is an elliptic function with a single pole at O of zero residue, which satisfies
(5.2) |7_[0|2 — pt0+8r(n+1)G(z,0)

z -1
00(2) = —( f %o(w)dw)

z R -1
TS ( [ Tlww - @<ﬁk))”kdw)

kel
is a well-defined meromorphic function in 2€2 that satisfies

1 / 2
o e

Then

(5.3)

= |Ho|?(z) = eto+87(n+DG2.0)
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Switching now to the translated vortex configuration {t} U {p; : j € J}, let us
first notice that the total multiplicity is still N, and introduce uj = uo(z — 1) =
—47nG(z,t) —4m ) ;5 n;G(z, pj). We have that Hi(z) = Ho(z —7) isa
meromorphic function in € with

T
|H6 |2 — eu0+8n(n+1)G(z,r)

in view of (5.2). Since such a function H is unique up to rotations, we can assume
that H§ coincides with the function Hg corresponding to p = 7 and remaining
vortex points {p; : j € J} C £, as given in Theorem Setting H(z) =
2" T2%(z), we also have that

(5.5) H'(z) = H(z — 1)

for all z € 2. Letting
z -1
0p(2) = —(/ Hg(w)dw)

with the correct choice of the constant in the integration | %, we easily deduce that
(5.6) 06 (2) = 0o(z — 1)

for all z € Q in view of (%)/(z) = (Uio)/(z — 7). Since (68) 71 (B,(0)) — T =
(00) "1 (B, (0)) in view of (5-6)), according to (#.T4) let us rewrite D as

JID5 _ / €u6+8n(n+1)G(z,t) _ / n+1

ly|*
Q\(07)~ 1 (B,(0)) R2\ B,,(0)

_ / SHo+8T(+1G(2,0) _ / n+1
ly|*

(2—1)\(00) 1 (B, (0)) R2\B,(0)
PHM0F+8T(1+1)G(2,0) _ n+1

|y|#
Q\(00)~ (B, (0)) R2\ B, (0)

by the double periodicity of ¢*087(+1)G(2.0) once we assume for T small that
(00)"1(B,(0)) C £ N (2 — 7). By (5.4) and the change of variable z — %(Z)

we get that
1Y) n+1
wieme [ (L) [
0o Iy

5.7 Q2\(00)~ (B, (0)) R2\B,(0)

= Area[alo(ﬁ \oo_l(Bp(O)))] — (n + 1) Area(B1/,(0)).

By the Cauchy argument principle the number of preimages in Q2 \ o 1(Bp (0))
through the map % is constant for all values in each connected component of
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C\ (%(89) U 0B1/,(0)), and the area of each of these components has to be
counted in (5.7) according to the multiplicity of preimages. U

Thanks to (5.7), we can now discuss the validity of (4.14).

PROPOSITION 5.3. Let Q2 be a rectangle, and assume that the vortex configura-
tion is the periodic one generated by {0, 5+, %2, %} with even multiplicities
n,ni,na,n3 > 0. Suppose that

ni np ns

n
5.8 — — = 41.
(5.8) 2+2+2 2+

Given D§ as in Propostion then D§ < 0 (> 0) when ”73 is odd (even).

PROOF. The balance condition ([2:4) is satisfied in view of (3.8). Let p; = %,
P2 = %, and p3 = % be the three half-periods. When 2 is a rectangle, the
function g takes real values on 92 and p”(p;) > 0 for j = 1,2, " (p3) < 0. As
a consequence, we have that
©(P1) =) 20, p(+p1 +it) —p(p3) =0,

9(z) —p(p2) 2 0, 9(p3) —p(£p2 +1) 20,
forall z € 0Q2 and ¢ € R. Write 0¢(z) in (5.3) as

n—+n
o0(z) = (1) 2 Ap!

(5.9

Z nq no n3 -1
x ( [ @0 -9 w - o520% w7 - p(w»zdw)
in view of (5.8). Since

n+nop
d[ (D>
dt| oo(£pr +1)

} = ho(9(F1) — (P2 + ) (9(£F2 + 1) — 9(52) *

x (9(F3) — (P2 +1)7 >0

in view of (5.9), the function
n+nop
(=D
00
maps the horizontal sides of d€2 into horizontal segments with the same orientation.
In the same way, the vertical sides of €2 are mapped into vertical segments with
the same/opposite orientation depending on whether 22 is an even/odd number.

2
So,

( 1) n+np
— 2
T .= ——(0)
0o
is still a rectangle with the same/opposite orientation and
n+np
(=D

oo(p3)
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is the right upper/lower corner of 7" depending on whether "73 is an even/odd num-
ber. For p small, we then have that C \ (%(8 2) U 0B1/,(0)) has three connected
components: the interior Q' of (—1)*+72)/27 B, (0)\ €/, and C \ By,,(0). By
Lemmawe have that values in By,,(0) \ Q' and C\ B, /p(0) have exactly n + 1
and O preimages in Q2 \ 0y’ 1(B,(0)) through the map %, respectively. By we
have that 7 D§ = [k — (n + 1)] Area(2’), where k is the number of preimages
corresponding to values in ’.

Since p(z) — p(p3) = @(Z — p3)%2 + O(|z — p3|?) as z — p3, we obtain
that

n+np 4
—1)2 - ~
[%] (2) = e~ 3" + 0z — sl
and
n+np n+nop
O AU .
- — = + O(|z — p3|™?
0@ oo M (== pa™™)

as z — p3, where

wimio(=E2) o) - ot * () - o720 % > 0.

When "2—3 is an odd number,

(D"
00(p3)
is the right lower corner of 7' and the function (—1)®+72)/2 /5y maps {z = p3 +
peio |m <6< 37” 0 < p < po} onto a region whose parts inside and outside 7’
are covered "34_ 2 and ® V' 2 4+ 1 times, respectively, in view of
(13 + D < (n3 4 D6 < (n3 + Do = (3 + D 42022 p 4 2

Hence, near p3 the map % covers % and % + 1 times the interior and exte-

rior parts of Q' near @, respectively. Since % covers n + 1 times every value
in By/,(0) \ ©’, there should be n — ' 2 distinct points x € Q \og 1(B,(0)) away
from pi, P2, P3, so that og(x) = 0o(p3). Since oj(x) # 0if x # p1, P2, P3, it

follows that % is a local homeomorphism around any such x, and then % covers

exactly n and n + 1 times the interior and exterior parts of €’ near @, respec-
tively. Hence, it follows that k = n and 7D§ = — Area(Q’) < 0. When 3 is
even, in a similar way we getthatk = n + 2 and 7 Df = Area(Q2") > 0. O

Now, to discuss @.15]) we further restrict our attention to the case n = n3 = 2
to get the following:
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PROPOSITION 5.4. Let Q2 be a square of side a, a > 0, and assume that the vortex
configuration is the periodic one generated by {0, 5, ’;, a+’a} with multiplicities
2,n1,n2,2 and (n1,n3) = (2,0) (or vice versa). Then, for t € Q assumption

#.13) holds for the vortex configuration {t} U {p; : j € J} C Q.

PROOF. We are restricting our attention to the cases (n1,7n2) = (2,0) and (0, 2)
for they are the only poss1b111t1es to have even multiplicities satisfying (5.8) for
2,n1,n2,2. Letting py = 5, p» = %, and p3 = a+’“ be the three half-periods,
the “nondegeneracy condition” reads as

(5.100  [BH) ' (@) f3(0) + H () 3" ()] # -—-b3(7i )" (7) - '—‘1)0

in view of (H%)'(tr) = (H*)"'(r) = 0 by Proposition 5.1} where

dl R 1
fi() = 1—[2 log (wﬂ +amH(z (qsrl(w))]w),

I'dw! g8 M(w) —z
1d'(¢5)™!
b; = T (0).

Since 0§ (z) = o0o(z — 1) by (5.6), we deduce that ¢§(z) = go(z — 7) and
(9§ =174 ‘10 ,where go = 2 [UO(Z) ] 7+ is defined out of 09 asin Appendix
Since H*(z) = H(z — 1) in view of (.5), by the “nondegeneracy condition”
(5.10) gets rewritten in the original variables as

6 — 28
S1D BRI 0) + A fi O] # | Z3baH0) = Do

in view of H(0) = A¢ (see (5.1))), where

1 d! q0(2) _
J1(2) = ﬁm[ﬂogm—kaH (z - Clol(w))}(o),

_ld'qg!
U TR,

(0).
Since ‘fikT?f(O) = 0 for all odd k € N, we have that

z3 . /\_0 + H”(O)Zz _ %(4)(0)24 _ (6)(0) 6
oo(z) 3 2 24 2160

+ 0(z%),
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and then
3 3 91" (0) 25 7
00(z) = —z +0
() = 3,57 = + 06
1
33 33 H”() 23 5
90(2) = 32— 53¢ +0@),
Ao 2A0
1
’% H// 0
95" (w) = —? O s 0w,
33 6
as z,w — 0.
Direct computation shows that b3 = H (O) and

2 210 2b3 27‘[)&0
= — + R -
f3(2) 3000) T 923

HD©O)  HOO0) 5 2m\0
= z+ z
36 3240

= O @)+ 0(z5>

(H*)"(2) — 4mb3(H™) (z)

(H*)"(2)

as z — 0. Since then

HD©0) 2nxo

30 = = (H D 0) 1 O)(H*)'0).
(6)
0= - 2”"(H YO0 - 2 O)HN D),

condition (5.1T)) is equivalent to

H"(0)H™ (0) N AoH©®(0)
12 540
4nko

— 27 (H"(0))*(H*)" (0)

28
|HN(0)|2 3 —Do|.

H(0)(H*)®(0) — °<H )<6)<0)‘

By the explicit expression (5.1)) of Ho, we have that
H(z) = 2oz (p(2) — p(F1))(9(2) — 9(P3)).

Replacing H with )7&{_0 we can assume Ag = 1 and simply study the stronger con-
dition
H'(OHD©O)  HO©0

(5.12) 2 + 150 — 67 (H"(0))*(H™)"(0)

— 4 M (0)(H*)@ (0) - 2?”(;1*)(6)(0) B Z_f;mﬁ(oﬂz
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in view of Proposition[5.2]and (5.7). Letting

e Y e

l b
(nm2(0,0) 101 T m@2)

be the Fisenstein series, the Laurent expansion of g near 0 can simply be rewritten
as

1 o0
() = =5 + 2 QL+ DGarprz?,
=1
and then
H(z) = 1= (9(F1) + 9(73)2> + (9(P1)9(F3) + 6Ga)z*
+ (10Gs — 3G4p(P1) — 3Gap(p3)z® + 0(z®)
as z — 0. Letting e; = g(p;) for j = 1,2, 3, recall that

s 13 ey <e3=<0<ey, e1+ex+e3=0,
.13 15G4 = —(e1e2 + e1e3 + ezes3), 35G¢ = eq1eze3,

with e3 = 0 if and only if €2 is a square (see [1]]). By the expansion of H and
(5.13), we deduce that

H'(0) = 2e5, HP(0) = 24(e1e3 + 6G4), HO(0) = 720(10G6 + 3Gaer),

and condition (5.12)) gets rewritten as

(5.14) 460Gs + 84Gaer — 24meZ (H*)"(0) — 8mea(H*)™ (0)
12
(H *)©0)| < —e3
a?
in view of (5.13).

From an explicit formula for the Green’s function (see [[11]]) we have that

1z|? 2 iz 1
2 _Ref 2
H@ =g =R 4a2+2 +12
1

——1o
2 o

where e(z) = e27'%, which yields

2 .
Z iz 1
H*Z) = 4 = 4 =

=" T
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Direct but tedious computations show that

’ /4 4
(H*)"(0) = +6———22Ak(xk+n
73
(H*)®(0) = o Ak + D(6A2 + 645 + 1),
8>
H*)©(0) =
(HHO©0) = =
647‘[ 4 2
Z Ak (g + 1D(120A7 + 24043 + 15047 + 3074 + 1),
a® k=1
where Ay := 1/(e¥™ —1). On a square torus the Green function G(z,0) has

an additional symmetry, the invariance under % -rotations. Therefore, H*(iz) =
H*(z) forall z € Q, and then (H*)"(0) = (H*)©® (0) = 0. Since e3 = G¢ = 0,
condition ((5.14) becomes

127

28
(5.15) e —8x(H*)®(0)| < —-e;
5 a?

in view of (5.13) and e; = —e; > 0.
From the study of the Weierstrass function g it is known that (see [3]])

4

Z 1 T 1671
—_— =
(n.m)£(0.0) (n 4+ m7) 45

m,k=1

for t € C with Im 7t > 0. The choice t = i leads to

T4 oo
15a4G4=a4e%— 3 + 807* Z k3= 2mkm

m,k=1

in view of (5.13), which turns (5.15)) into

't 4 N° 3,2k

— 4+ 112 ke mrm

3 + ¥4 Z e

m,k=1
o0

(5.16) —327* Y " A (Mg + D(6AF + 644 + 1)‘

74 e
4 3 —2mxkm
T Y + 80x Z ke .

m,k=1
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Since numerically we can approximately compute

o0
327* Y " Ak (M + D(6AL + 64k + 1) ~ 5.9194,
k=1

(o,]
8074 Z k3e2mkm 147985,
m,k=1

we get the validity of (5.16), or equivalently (4.15)), for the vortex configuration
{tyUlpj:jedJyCQ. O

As a combination of Propositions and [5.4 we finally get the following:

THEOREM 5.5. Let 2 be a square of side a, a > 0, and assume that the vor-
tex configuration is the periodic one generated by {0, 5,5, “zia} with multipli-
cities 2,n1,n2,2 and (n1,n2) = (2,0) (or vice versa). Then, for T small the
assumptions of Theorem [4.6| hold for the slightly translated vortex configuration
{(—t(l+i),—t(1 +i) + 5, —t(1 +1i) + %", —t(1+1i)+ “Ei“}. In particular,
for € > 0 small we can find N -condensate (Ae, ¢¢) so that |pe| — 0in C(2) and

(5.17) (F12)e _— 127[50

weakly in the sense of measures, as € — 0, where {0, % ’7 ‘H; 21 are the zeroes

of e with multiplicities 2,n1,n»,2 and (n1,n2) = (2,0) (or vice versa).

As a final remark, observe that for n = 0 Theorem essentially recovers the
result in [29] concerning single-point concentration in any torus €2 (see also [20]).
Notice that » = 0 corresponds to the concentration point 0 not really being a
singular point and thus a simpler approach is possible as in the above-mentioned
papers. By (2.4) the total multiplicity N is 2 produced by two vortex points
p1,p2 € 2\ {0}. Assumption (@.13) is equivalent to having (log H)'(0) = 0.
By the Cauchy-Riemann equations, the last condition can just be rewritten as

V[2Relog #](0) = Vlog [H|*(0) = V[87xH + u](0) = 0.

Since VH(0) = 0in view of H(z) = H(—z), we have that (4.13) simply means
that O is a critical point of ug. Regarding (4.14)), notice that Dq does not depend
on p > 0 small for

/ euo+8nG(z,0) _ / d_y —
|y]*
o5 L(Bo(0)\og 1 (B, (0)) B, (0)\Br(0)

Area(Bl/r(O) \ Bl/p(O)) — ”(rlz — %) =0
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forall 0 < r < p, in view of (2.11) with ¢co = 0. Therefore, Dy can be rewritten

as
Do = l|: / eu0+8nG(z,0) _ / d_yj|
w |y|4
Q\oy 1 (B,(0)) R2\B,(0)
1 87 H(z,0)+uo 1
=—1im[ / eI / _],
T r—>0 2|4 |y|4
Q\og 1 (B, (0) R2\B,(0)
Since
z  H'0) 4 5
oo(z) = —+ 7224+ 0(lz
0(2) T T 22 (Iz1?)

ug0)
and 051 (2) = Aoz + O(|z|?) with A9 = *™HO="5" note that By ,_¢,3(0) C

(70_1 (Br(0)) C Bjyrycr3(0) forall r > 0 small for some constant C > 0. Thus,
there holds

' / L 5rlH G0 -HO01 0@ -0 0)
|z]
Q\og 1 (B-(0)
U 8nlH(2.0—H(0.0)]+[u0(z)~10(0)]

— —e
|z|*

Q\B) ) (0)

o [ )

BA0r+Cr3 (O)\onr—cﬁ(o)

as r — 0in view of V[87H + u(](0) = 0, which yields the same expression
for Dy as in [20,)29]:

Dy = 0 fim [ / L 8lH (.00~ HO.01+[u0(@)-u0(0)] _ / L}
|2/* yI*

Q\B,(0) R2\B, (0)

The “nondegeneracy condition” (4.15) reads as

Hl/(o)

#H(0)

in view of o9 = qo, b1 = A¢,

_ 4n<H*>”<0)‘ = | (log )" (0) — 4 (H*)"(0)| # %

F@) = —dmho(H*Y(2) + 20 - 2
z  00(2)

and H'(0) = 0. Setting H1(z) = e_4”H*(Z)’H(z), we have that |H;(z)|?> =

27,2
¥t 1a7lzl and
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(logH)"(0) — 4 (H™)"(0) = (logH1)"(0) = 2(Relog H1)"(0)

_ (log [H12)"(0) = (uo + %mz) 0)

= 100)x(0) — 10}y (0) ~ 2i o)y O)]

in view of (2.6)—(2.7), and the above condition turns into

. 2 4m?
0 # _}(uo)xx (0) — (u0)yy(0) — 2i(uo)xy (0)} - W
2 1 42
- 1—6((uo)xx(0)—(uo)yy(0)) +Z(u0) (0) — ar
1 1 472
= L (au0)?0) = L det D2uo(0) = - = L det D2uo(0).
1¢ (Au0)7(0) — o det Do (0) e 7 det D7uo(0)
In conclusion, when n = 0, the assumptions in Theorem are equivalent to

having 0 as a nondegenerate critical point of ug(z) = —4nwG(z, p1) — 47 G(zZ, p2)
with Do < 0.

6 A More General Result

In this section we deal with the case m > 2 in Theorem [I.1] For more clarity,
let us denote the concentration points as &,/ = 1,...,m, the remaining points in
the vortex set as p;, and the corresponding multiplicities by n;, n; .

From Section [2[recall that H(z) = G(z,0) + % log |z| is a smooth function in
252 with AH = 1/|2|, and H* is an holomorphic function in 22 with Re H* =

—1z|2/4/Q|. Up to a translation, we are assuming that p; € Q for all j =
1 , N and taking Q close to  so that Q — pj C2Qforall j =1,...,N.
Argumg as for (2.6), the function

m N
H(z) = H(Z_ —p) exp(4n Z(nl +1)H*(z—§) 27 Z H*(z — pj)
j — =

ey Z(Hl + D& —22)8 — 2|sz| Z ;1

g
+ —ZZ pj)
2]" &
is holomorphic in 2 and satisfies

G2 = (TT1e &l )expo-+ 87 Y00 + D~ 80)
=1

=1
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in view of (1.9). For/ = 1, ..., m the function

1) =He) [[@-&g)"t?
I'#1
is holomorphic near &; and satisfies

H @ = exp(4mn + 2 H(z — &) +4n Y (1 +2)G (2. 61)

6.1) Al

—4r anG(z, pj)).
J

To be more clear, let us say a few words comparing the cases m = 1 and m > 2.
When m = 1, notice that  satisfies |H|? = e*ot87(r+DH@)=2nloglz] i yiew
of (7). The function e¥o 87+ H(Z)=2nloglzl j5 4 sort of effective potential for
[2) at 0, where e*0—27loglzl is the nonvanishing part of ¢%0 and 87 +DH () jg
the self-interaction of the concentration point 0 driven by P Uy ¢ 4, through (2.18).
When m > 2, (6.1) can be rewritten as

! (2)[2 = exp(uo + 8w(n + DH(E &)

+87 Y (1 + DG (2. ) — 2y log |z — &)
U#l
for! = 1,...,m, yielding an effective potential for at &; exhibiting an addi-
tional interaction term e37 X/ (" +1)G(2:8) generated by the effect of the con-
centration points &, [’ # 1, through (6.12).
Setting Ho = H we now define oy as

-1
[Tew- sm"ﬂ“]dw) ,

I7#1

(z—E1)"1 T2 (z—Ep)1mT2°
z m

(6.2) o0(2) = —(/ Ho(w) exp[—zcé(w _ gg—l)n/-i-l
=1

where l
1 dm +1H
&), [ =1,....m,
Ho(§)(ny + D! dzm+!
guarantees that all the residues of the integrand function in the definition of o van-
ish. The presence of the term [ | I'#1 (w — &)’ *2 is crucial to compute explicitly

o =

the c(l)’s because

cow — )" [T w — &)+ = 0((w — &)™)
I'#l
has a high-order effect near any other &, [’ # [. By construction oy € M(Q)
vanishes only at the &;’s with multiplicity n; + 1 and
N CEt 1) AR (5)
z—&  00(2) np+1°
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and it also satisfies

o) = |oo(z)|“exp(uo £8r Y o + GG )
=1

~2) Re [cé(z —gy [ - sp)"ﬂ“]).

I=1 I'#1

Under the assumptions of Theorem notice that c(l) =O0foralll =1,...,m

and
(o))

Since each £; gives a contribution to the dimension of the kernel for the linea-
rized operator (4.3)), the parameters § and a are no longer enough to recover all
the degeneracies induced by the ansatz PUs , , for o € M(Q), a function that
vanishes only at the points &,/ = 1, ..., m, with multiplicity n; + 1. In our con-
struction, the correct number of parameters to use is 2m + 1, given by m small
complex numbers ay,...,d, and § > 0 small, where the latter gives rise to the
concentration parameter &; at &,/ = 1,...,m, by means of (6.14). The request
that all the §;’s tend to O at the same rate is necessary as we will discuss later.

We need to construct an ansatz that looks as P Uy, 4, o, , near each & for a sui-
table o, ; that makes the approximation near &; good enough. In order to localize
our previous construction, let us define P Uy, 4, » as the solution of

2
= [Ho(2)]* = e¥ot87 Zimi(u+ DG &),

~APUs a0 = 112 = &1D0"(2) Pesrare
— i a2z = EDlo’ @ PeVsrare inQ,
fQ PUs; 0,6 =0,
where y is a smooth radial cutoff function so that y = 1 in [-n,75], x = 0
in (—o0,—2n] U 21, 400), 0 < 7 < 3min{|§ — &| dist(§.0Q) : [.I' =
1,...,m, [ # I’}. The approximating function is then builtas W = Y jL, PUj,
where Uy, 4,.0,, and PUs, 4, 5, , Will be simply denoted by U; and PUj.

Let us now explain how to find the functions 0,7,/ = 1,...,m. Setting

r

BL = {a holomorphic in By, (&) :

2]
00 00, B2y (£1)

forl =1,...,m, Lemma still holds in this context for all o € B£ by simply
replacing 0, n with &, n; and Q with By (§7). Then, forallo = (01,...,0m) €
By := Bl x---xBM™anda = (ay,...,am) € C™ with |la|l < p there exist
points af,l =1,....mandi =0,...,n;,sothat {z € Byy(§) : 01(z) = a;} =

{Sl—i—aé,...,El—l—af”}foralll =1,...,m. Arguing as for 2.12),for/ = 1,...,m
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the function

Hoo@ =[]c—p)" [Tc—e" [][[c -t —a)>
J I'#l U#1i=0
xexp(4n Z ZH (Z—El/—a )—2;121-1 (z—pj)
I'=1i=0 j=

i S+ e — 2006 - 2|sz| Z s 1?

l/_

|Q| Z(z—sl >Za + |Q|zZp,)

I’'=1

is holomorphic near &; and satisfies

nj

63) |H,,@)> =z — &> exp[uo +8n ) H(z—§ —a))
i=0

nys m nyp
+87 )Y Gz.&p +a§)_ al Y ! IZ}
1'#1i=0 I'=1i=0
in view of (1.9). Setting

01(z) —ay

I
8a,.0,(2) = . Z € Bay(§)),
[Tz —& —ab) !
and
T | V¢ 7: — &)~ ¥ gnitl
‘a0 = (n + 1)! dzni+1
(6.4) 5
§ (gé,,m (2)80,6, (é») Hoo® )
gl 0, ENEh 6 (D)) HugE) |7
we aim to find a solution 0, = (04,1,...,04,m) € By of the system (/I =
,m)
@ =-([ (gém <w>)2 Ha o ()
) n;+2
gh (w) /) (w—§)
(6.5) Ot

m —1
x exp[— S e w— )t T w- a//)”l"“}dw) ,

I'=1 1741
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where the definition of c[ll’(T makes null the residue at §; of the integrand function
in (6.5). The function o, ; will vanish only at & with multiplicity #; + 1 and satisfy

2 4
0, 1 () = [041(2) — ay]

m ny m ny
xexp(u0+87tZZG &—i—a/ ZZ| l/

I’'=1i=0 l’—ll 0

-2 Z Re |:C6]1/,aa (Z _ i__l,)n[/-i-l 1_[ (Z _ gl,,)nl//+2i|)

I'=1 Iz

(6.6)

in view of (6.3).

Since ”Hf),a = H! and c(l),a = c(l) forall/ = 1,...,m, when a = 0 the system
(6.5) reduces to m copies of (6.2)) in each B2y (§;),/ = 1,...,m, and it is natural to
find o, branching off (ag, ...,0¢) for a small by IFT. Let us emphasize that each
Oa1, =1,...,m,is close to 09| p,, (¢,), @ crucial property to have Dg defined in
terms of a unique o (see (I.10)). Letting g ; be the function so that og = q"’ +1

near &, arguing as in Lemma[A.2| we have the following:

LEMMA 6.1. For p small, there exists a Cl—map a € By(0) — 04 € By so that 0,4
solves the system (©.4)—(6.3). Moreover, the map a € B,(0) — ¢, = cé,% is C'!
with

. I Lamntt e
O T = Mg = oy M) A0

271(111 + 1) dmi!

(6.8) Y= H(E)og, L), = QT Cmi+ g (1),
and for j #1
. P+ 1 dn1+1 .
6.9)  TH = 1(E)dg,cL|,_y = —2 [H @) 7] 41 @] ED.

(n; + !dzm+1
2m(nj + 1) dm !

lj._ —_
(610) T J H(Sl)aaj alg=0 ~— |Q|nl! nj—{-l an (Sl)
where
1 dntl w —qo.1(2)
I 0,/ * -1
) = — — +4nH (7 — 0),
fn—f—l(z) (l’l + 1)' dwn+1 |: q&ll (w) —z + 4 (Z qO,l (w)):|( )

. 1 dn—i—lqa}

1 = (n+1)! dwrtl ©).
and for j # 1
. 1 4artl
fi (@) = [—21og(z — qq.j(w)) + 47 H*(z — g4} ()) ] (0).

(n + 1) dwnt1
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Letting n = min{n; : [ = 1,...,m}, up to re-ordering, assume thatn = n; =
coo =Ny <npforalll =m' +1,...,m, where 1 < m’ < m. The matrix A in
Theorem [L.1lis the 2m x 2m matrix in the form

1,2 2m—1,2m
A1,2 A1,2
(6.11) A= : : ,
1,2 2m—1,2m
A2m—1,2m A2m—1,2m
’_ / .
where the 2 x 2 blocks A;g_ll”zzll are given by
Re| T + Y!U' 4 n(2n+3)D<35mW/($/)\:"2% Im[Tll’ _ F”']
(n+1) 72 IH/ ()17 7T
, , , , gl (8" ET
Im[r«ll + T”] Im| T — Yyl _ n(2"+3)D(:51[ Iﬁ (S/)\_ 2+1
(+1D) THL [HI €I T

when/ = 1,...,m’ and by

Re[[Y + Y] Im[Y!! — 1!V
Im[T! + ] Im[r! — ]

when! = m’ +1,...,m, with 'Y Y!!" given by (6.7), (6.9) and by (6.8), (6.10),
respectively, and §;;/, the Kronecker symbol.
Arguing as in Lemma[2.2] for / = 1,...,m we have that

PU51,01,0'1 = X(lz - gl|)[U81,a1,01 - 10g(8812) + 410g|g£11,01 H

ny

+ 8 Z[%(){(IZ —&D) - Dloglz —& —aj| + H(z — & _af)]
i=0

+ ®81 ,a1,0] + 2812fa190/ + 0(5?)

and
ny
PUs; )00 = 87 ZG(Z’SI + af) + 050,01
(6.12) i=0
x(z = &) ) 4
+ 282 — = > 1 0(8
’(f‘”’"’ @ —ap) O

hold in C(R) and Cio.(Q \ {£;}), respectively, uniformly for |a| < p and o; € B,
where

loy(z) —ag|*
+ o1 (z) — a;|?)?

1
Onap00 = g5 [ 102 =i lee 5
l
Q

and fg,,0, is a smooth function in z (with a uniform control in ¢; and o7 of it and
its derivatives in z).
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Choosing 0; = 0, and summing up over / = 1,...,m, by (6.6) for our
approximating function there hold

ny

W =Us, 4,0, — log(881) + log|al |Q| Z Z|a + @l(a,é’)
I’=1i=0
R TR
I'#1

m
O(Ic = &1"** Y [chg, |) + Y- 01 1l + 61)

I#1 I'=1

and
_ 8nZZG (z.& +al) + o(Z&l,mgw,,)
I=1i=0 I'=1
uniformly in By (&) and in Q \ j~; By (&), respectively, where

m

0 (a.8) ==Y [Os,.ap.01 + 87 farr.op ED]-

I’'=1
As a consequence, we have that

’ + 1 1 nl/ + 1
o [ ()] =n 3
Q/ L) G —aPrE s Z 52

I'=1

and then near &; there holds

oUotW o] |%e 12eUsr.a.op+ 02— &1"TH+o(1)
4N — = 4nN
Jq e“otW 8 Y Ty (ny + 1)828;,2(1 + o(1))

In order to construct a N -condensate (Ae, ¢¢) that satisfies (I.11)) as € — 0, we
look for a solution we of (2.2) in the form we = Y jL; PUs, 4,6, + ¢, Where ¢ is
a small remainder term and §; = §;(¢), a; = a;(¢) are suitable small parameters,
so that

eu0+w€ 64n2N262(eu0+w5 fQ 62u0+2w5 (fQ euo—f—we)—l _ €2uo+2w€)

4 N oW 5
fQ eko € (fQ eUot+we + \/(fQ eu0+w€)z — 167 Ne2 fﬂ 62u0+2w€)

m
— 87 ) (n; + )8,

=1

in the sense of measures as ¢ — 0. Since |al’|zeU5l’”l"’l — 8m(n; + 1)d, as
81, a; — 0, to have the correct concentration property we need that

m
87 Y (ny + 1)878;,> — 4xN
I'=1
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foralll = 1,...,m,andthen§—1’/ — lforalll,l” =1,...,m in view of (1.9). It

is then natural to introduce just one parameter § and to choose the §;’s as

(6.14) 6r=6, l=1,...,m.

We restrict our attention to the case c(l) =O0forall!/ =1,...,m, which is nec-
essary in our context and is simply a reformulation of the assumption that ¢ has
zero residues at pi, ..., pm. As in Theorem[.6] we will work in the parameter’s
range:

n+1
a; = o(6), 8 ~ en¥z,

as € — 0. Since then

82+ |Z—$l|2nl+2
1< <K, K~ 'z—=&1*" < |oj(2))* < Klz—&[*™,
T8+ o) —al? R

in Byy (&) for all 07 € B£ and/ = 1,...,m, where K > 1, the norm (2.53) can
now be simply defined as

172]l5 = sup

Z€EQ

2n
[i 8 (|2 — &P + 877)

(82 + [z — g [2m+2)1+3

-1
} Q)|

=1

for any h € L°°(2), where 0 < y < 1 is a small fixed constant. In order to
simplify notation, we set U; = Us, 4, 0, cfl = ccll’al, ®; = 0O§,4,6, and f; =
Ja;,0,- We have the following:

LEMMA 6.2. There exists a constant C > 0 independent of § such that
(6.15) R« < C8>77.

PROOF. We shall sketch the proof of (6.13) by following ideas used in the proof
of Theorem Through the change of variable y = 0;(2) in 0, L(B,(0)), by

Lemma (6.13), (6.14), and ¢} = O forall/ = 1,...,m we find that

852 / S0+ W

nyr

e\ngTﬂ Zﬁ:] Zl‘=0 |a,l‘/|2+®l (a,f)
0; 1 (By(0)

_ / o] [2eUrr+OUz=41" T S lel/ 1487128 1+5%

o7 1 (B,(0)

8(n; + 1)82 243
=8n(n; +1) - / %+0(||a||2+5||a||+5"1+1),

R2\B,(0)
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where [la|? = Y7L, |a;|?. Setting Q, = /L, al_l(Bp(O)), we get that

2
83 /eu()-l-W

2 m nyo v m
eﬁ Zl/=1 Zi=() ‘a,’ |2+21/=1 )%

/ 8(n; + 1)8?

m
_ 2682 Yy S &) |:87-[(nl +1) — 4
L |1

R2\B,(0)

2n;+43
+ O(lla))* + 8lal| + § "1 FT )}

+ 852 / pHot+87 YL XL, Gz di+al) + 0(84|log8| + 82||a||m)

Q\Q,
m m 1
=y [871(111 + 1) + 8y + 187 Y fir(&) — 80 + 182 / W]
P I'=1 R2\ B, (0)
1 882 / M08 YLy YL Gzgi+al) 0(8%)
Q\Q,
—4nN| 1+ 282D, + 282 i (ng + 1) fr(&1) + 0(8?)
58 Da + ! 1 (&1

L,I'=1
in view of (1.9), where Dy is given by
n " 1
7D, = [ eu()-‘rSﬂ Z;nzl Zilzl G(@El"’“f) _ Z(nl + 1) / —
=1 y|4
Q\Q, N R2\B,(0)

Hence, for |z — &| < n we have that

euo—i—W 1
AW 44N |-~
+4n fS'Z eHot+W |Q|

= Jof 2V [2 Re[chiz — &)+ [z - &) +?]
11
2

(6.16)

L Dy, 28 <
+ 82 ) frle) = =8 == Dy + D))

I'=1 =1

L O(lallz — &1 + 8z — &) + o(az)} L 06?)
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as § — 0, in view of (I.9) and [ )(l|ol’|2eU’ = 8n(n; + 1) + 0(8?) for all
I=1,...,m.Forz € Q\ UL, By(&), we have that

euo+W 1 )

On the other hand, arguing as in (2.43)), we have that

4

643 /62u0+2W —
n

e|Q| DD DU TUEES D 3 AN Y

S ) e
64 / 0@,
=1 |aal|n+18n+1 1+ 1»*
where a,; = limg_¢ (z —&)" "1 /0;(z). Recall that n = min{n; : [ =
l,....m}=ny=---=ny <n;foralll =m’ +1,...,m. Setting

- " (4 1)3 |y 4 a1
DaS:Z 2 2 1+ y[2)* Y
I=1 log g ["FTEmFT Y

we have that

4rNe?B(W ~
INEBWV) 642, 5 + o(e25 ),
(1++1—€2B(W))? ’
and it holds that
6.18) 4rNe2B(W) eUotW p2u0+2W B
' (14 /1= 2BW))2\ JgewotW [, e2uot2W

1662 ~ -
|o;|2eUl[ fv Das —€|o] 2V + 0(628n+21):|
v/
in By(§;),l =1,...,m,and
47TNEZB(W) eu()+W eZuo+2W 5o 2n
(1+ VT=@BW))? \ JgeotW [ e2uot2W = 058m)
in Q \ UjL; By(&). Therefore, we conclude that ||R|« = O8> + ||a|® +
628_%) and (6.13) follows. O

(6.19)

As mentioned in Section 4] when we look for a solution of (2.2)) in the form

= W + ¢, we are led to study (@.I). In order to state the invertibility of the
linear operator L in a suitable functional setting, for/ = 1, ..., m let us introduce
the functions

52
7 -
01(2) 2o —a

— oy (z) — a2 _ 8(oy(z) —ap)
A0 = @ —al

z € Byy(§)).
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Also, let PZy; and P Z; be the unique solutions with zero average of

1 1
APZos = iAZo / 0, APZI= 10z [ sz
Q Q

where y;(z) := y(|z — &), andset PZy = ) j—, PZg;. Asin Propositions
and[.2] it is possible to prove the following:

PROPOSITION 6.3. Let My > 0. There exists no > 0 small such that for any
0 <8 < no, [log8?e2 < o8 @V and |a|| < MoS there is a unique solution
¢ =¢(8,a),do =do(8,a) e R, andd; = dj(8,a) e C, 1 =1,...,m, to

L(¢) = —[R+ N(@)] + doAPZo + Y- Re[d]APZ]] inQ,
Jo® = [qdAPZ; =0, 1=0,...,m.

Moreover, the map (§,a) — ¢(8,a) is C! with
(6.20) I4lloc < €8>~ |log ).

The function W + ¢ is a solution of (2.2) if we adjust § and a so to have
d;(8,a) = O forall/ = 0,...,m. Similarly to Lemma we have the follo-
wing:

LEMMA 6.4. There exists no > 0 such that if 0 < § < no, |la|| < nod, and

(6.21) /(L(d)) +N(@)+R)PZ; =0
Q

hold for alll = 0,...,m, then W + ¢ is a solution of 2.2); i.e., d;(§,a) = 0 for
alll =0,...,m.

Since there hold the expansions

m

1
PZo=) |:Xl(Zol +1)- @/Xl(zoz + 1)} +0(8%),
I=1 Q

1
PZ) =xzzz—@/xlzl+o<8), I=1.....m.
Q

in C(Q), arguing as in Proposition by (1.9) and (6.16)—(6.20) we can deduce
the following expansion for (6.21):
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LEMMA 6.5. Assume cé =0foralll =1,...,mand ||a|| < nod. The following
expansions hold as € — 0:
[w@ + v+ wpz,
Q
= —871Do5>

/ 2n

m 2 aj
35 B 2 _ 1 _|_ =Ll n+1
+64(n + 1) 75T 257 Z 1! (&) 7 / (] a -i)'|T |2)§ |
=1 R2 Y

F 0(82 + 257 THT) + O(e*87 7T |log 8|2 + 38774 [log §|2)
and

/ (R + L($) + N@) PZ,

Q

m
= 47§ Z(T”’al/ +I'l'a;)

I'=1
3nt5 , 2 I 2 |y+t18_1|,12%y
—64(n + 1) T8 T H ED] T ym () | 554y
P2

+ 0(8% + 257 THT) + 0(e*8 7T |log 8|2 + €387 [log §|2),

where Dg is defined in (I.10) and ypr is the characteristic function of the set
M={1,...,m'}.

Finally, arguing as in the proof of Theorem 4.6] we can establish Theorem
thanks to D¢ < 0 and the invertibility of the matrix A.

Let us now discuss some examples with m > 2. As already explained at the
beginning of Section |5} we can consider the case £1,...,&, € Q and p; € Q for
all j. In general, it is very difficult to establish the sign of Dy as required in (I.10).
The key idea is to start from a configuration of the vortex points {p1, ..., py} that
is obtained in a periodic way by a simpler configuration having just one concentra-
tion point. In this case, (I.10) easily follows but Theorem I.1]is not really needed.
One can use Theorem [4.6] to obtain a solution with such a simpler configuration
and then repeat it periodically. We then move some of the vortex points slightly in
order to:

e keep zero residue of the corresponding Hg at each concentration point and
e break down the periodicity of the configuration.

In this way, assumption (I.10) is still valid but Theorem[4.6]is no longer applicable
in the trivial way we explained above.
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We now really need to resort to Theorem [I.1] To exhibit some concrete exam-
ples, let us focus for simplicity on the case m = 2, but the general situation can
be dealt with in the same way. Let 2 be a rectangle generated by w; = a and
wy = ib,a,b > 0, and let p1, p», p3 be the three half-periods. Assume that the
vortex set is {—%, 5.0, p1, p2. p3} and the concentration points are §; = 1’2‘ ,
& = p L with multiplicity n. Supposing that O and p; have even multiplicity n1,
and pp and p3 have even multiplicity n, with ny 4+ n, = n + 2, we have that
such a configuration is not only w; = 2 p;-periodic but also p;-periodic: it can be
thought of as a double repetition (ina p1 -periodic way) of the vortex configuration

{(—=2L0,prtinQ_:=[-2 0] X [—2, 2] with corresponding multiplicities n, n1,
and np. If n is even, it is easy to see that dd J;lff' (&) = O fori = 1,2 since the
given vortex configuration is even with respect to £, and &,. Notice that this is still
true if we replace 0 and p; by —it and p; + it, respectively, for ¢ € R, provided
they keep the same multiplicity n;. Arguing as in (5.7), notice that D¢ can be

written as
nDy = Area[ ! (- \00—1(3,,(0)))} +Area|: ! (24 \ oy (Bp(O))):|
—2(n + 1) Area(B /,(0)),
where Q4 := [0, %] x [-2, 2]. Since
uo + 87 (n + 1)G(z, &) + 8n(n + 1)G(z, &) =
—4mn1G(z,0) —4nnaG(z, p2) + 4m(n + 2)G(z, &)

in Q2_, where é(z, p) is the Green function in the torus Q2_ with pole at p, the
function Hg can be expressed as in (5.1 in terms of the Weierstrass function of
Q4 and the points —%, 0, and p,. Arguing exactly as in Section we have that

Area[i(sz_ \ao_l(Bp(O))):| — (n + 1) Area(By,(0)) < 0

provided the multiplicity n, for the corner of SZ_ is so that 22 is odd. Arguing
similarly in €1, we get that Do < 0 as soon as %2 is an odd number The example
then follows by replacing 0, p; with —i¢, py+it with ¢ small for the corresponding
DOJ — Dgast — 0.

Appendix A The Construction of o,

Letting o be the solution of (2.11)) of the form (2.8), where c¢ is given by
(2.9), we have that Q¢(z) = “‘,;‘fl) is an holomorphic function near z = 0 so that

00(0) = %J(rol) (see 2.10)). Since Qp(0) # 0, the (n + 1)™ root Q(l)/(”H) of
Qo is a well-defined holomorphic function locally at z = 0, and it makes sense to

define go(z) = le/(n+1)(z) near z = 0.
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For o € B,, where B, is given in (2.14), in a similar way we have that Q(z) =

Un(f)l is an holomorphic function near z = 0 with | QQ()((ZZ)) — 1| < r for all z. Since

in particular

n+1
H(O) |
we can find r and > 0 small so that g(z) = zQY @+ (z) is a well-defined

holomorphic function in B3y(0) for all 0 € By, with o(z) = ¢"*!(z) for all
Z € B3,(0). Since ¢'(0) = Q"+ (0) satisfies

/ (1—r)(n + )]
Iq(O)Iz[—l,H(O)| ] >0,

0(z

r[Qo(z)| + ‘QO(Z)_

thus ¢ is locally biholomorphic at 0.
In order to have uniform invertibility of ¢ for all ¢ € B,, let us evaluate the
following quantity:

q'(2)| _ sups, l9"] 2[(L=r)n+ 1]
‘1_ Q) Beod ], o 2 (sup [g])lz|
q'(0) lq’(0)] n |H(0)] B2, (0)
1 1
2 |H(O)|)n+l(1 +r)n+1
<= sup |qol)|z]
nz(n+1 I—r (an<0> )
for all z € B;(0) in view of the Cauchy’s inequality and
n+1
ole) —1‘ — T @l forallz € Byy(0).
00(2) g0 (2)

Therefore, we can find p; small so that |1 — q:g§;| < Jforallz € B 1/a+1(0)
1

Q

and

1
O n+1
P 0(0)] 7T < 207 [Wi )” (1— )~ <2y,
n

uniformly for o € B,. Thus, the inverse map ¢~ ! of ¢ is defined from Bpl /n+1)(0)
1

into sz}/("“)lQ(O)l—l/("JrU(0): for all y € Bp%/(n+1>(0) there exists a unique

z € sz{/(n+1)|Q(O)|,1/(,,+1)(O) so that ¢(z) = y, given by z = ¢~ !(y). Since
o = q"*!in B3,(0), we have that

for all ¢ € B,. Since

o) = (1 —r) inf |loo(2)]
Q\B, 1/014D) 00y ~1/ 141 (©)
>(1—r)_ inf loo(z)] > 0
Q\sz}/("H)[i‘?inl)']l/(n+])(1+r)—1/<"+1>(0)
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for all
z€Q\ sz%/(n+1)|Q(0)|—1/(n+l)(0)

we can find p (< pp) small so that

Card{z € Q:0(z) = y} =
Card{Z. € BZp%/(”'H)IQ(O)I_l/(”“)(O) co(z) = y} =n+1
forall y € B,(0) \ {0} and o € B,. Since

o 1(B,(0)) C sz{/(n+1)|Q(o)|—1/(n+1)(0)

= sz%/mﬂ)[|31iJ<r01>|]1/(”+”(1_,)71/(n+1>(0) < B2y(0)

forall z € 0~ 1(B,(0)) = 071(3B,(0)) and o € B,, we have that

|Z|n+1 _ |Z|n+1 1

1
= — - »
P lo(z)] 0] = (1+r) B;?(O) |Qo(z)|”" >0

for go is well-defined in B3,(0). We can summarize the above discussion as fol-
lows:

LEMMA A.1. There exist r, p > 0 such that ¢(z) = zQ ()" @*D is a locally bi-
holomorphic map with o = "1 and inverse g1 defined on B 1/w+1)(0) for all
o0 € B,. In particular, there exists a neighborhhod V of 0 so that, for all 6 € B,
there holds V C 0~ 1(B,(0)), and o : 6~ 1(B,(0)) — B,(0) isa (n + 1) — 1 map
in the following sense:
Card{z € Q:0(z)=y}=n+1 Vye B,(0) \ {0}.
For |a| < pand o € B, by LemmalA.1| we have that
o M a)=1{z€Q:0(z) =a}={ao,....an}

where ay = g~ (ax) and dy, k = 0,...,n, are the (n + 1)™ roots of a, and then

0(z)—a
[Tk=o(z —ax)

is a nonvanishing function. We are now in position to prove the following:

8a,0(2) = € M(Q)

LEMMA A.2. For p small enough, there exists a C'-map a € B,(0) — 04 € By
so that o4 solves 2I3)~(2.16). Moreover, themap a € B,(0) — ¢4 = Ca,5, is C!
with

1 dn—i—l
I = H(0)daca|,_y = ot gena1 L&) n41(2)10),
_Zn(n +1) d"H

T:= H(O)aﬁca‘a=0 = Q! n+1 dzn 0),
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where
1 4t w —qo(2) 1
Jat1(2) = 1+ )l dwr Tl [ m +4mH™* (2 — qo (w))i| (0).
1 dn-i-l
bpt1 = ( )

n+1! d w""‘1

PROOF. Given ¢4 ¢ as in (2.16), equation (2.15) is equivalent to finding zeroes
of themap A : (a,0) € B,(0) x B, — M(L2) given as

z gZ’U(U)) HQ,U(U)) —Ca gw"+‘ -1
2 nt2 ¢ dw .
g(),o'(w) w

A(a,0) =0(2) + [/

Observe that the zeroes ay = ay(a,o) = g~ (ay) are continuously differentiable
in 0. Differentiating the relation o (ax) = a at ¢ along a direction R € M’(Q),
we have that o) (ax (a, 00))dsax (a,00)[R] + R(ag(a,00)) = 0. Since oy (ax) ~

ay and R(ag) ~ ak+1 in view of || R|| < oo, we get that d5ay (0, 09)[R] = O for

all R € M'(Q). For z # 0 the function &% "Eg is continuously differentiable in o
with

ga,o(Z) .
aG(go,a(z))[R] o
" RE) o(z)—a
a“Z:o(Z —ag) 02(2) + [TF—o(z — ax) O’(z) Z doaj(a,o)[R]

for every R € M’(R). In particular, we get that

ag(g“"’(z)) [R] =0 foreveryz # 0and R € M/ ().
80,0(2) ) [g=0

8a.0(2)

Since we can write as
80.0(2)
8a0(2) _ 2" 7 q(2) —qlay)
§00(2) 0(2) o z—ak
(A.1)
Zn+1 li[ /1 ,( ( d
= q'(ag + t(z —ag))dt
0(2) /o
for z small in view of 0 = ¢" !, we get that £ "gg is continuously differentiable

in o and the linear operator 80(‘§g ”g;) is continuous at z = 0. In particular,
Nea

we get that 80(‘;‘;";’2&”(1:0@] = 0 for every z and R € M'(Q). By 2.12)

we have that H, ¢ is continuously differentiable in o with dsHo,s[R] = 0O for
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every R € M’(Q). We have that Ca,o 1s also continuously differentiable in o with
05C0.00[R] = 0 for every R € M’'(2), and so A(a, o) is with 35 A (0, 09) = Id.

Since ay ~ |a|'/®*+1D | the smooth dependence in a is much more delicate and
will be true just for symmetric expressions of the aj’s thanks to the symmetries of
dy = q(ay). To fully exploit the symmetries, it is crucial that the expression (2.12))
of Ha o is in terms of an holomorphic function H*. Indeed, we have that

n n
Z
ZE H*(Z_ak)_ﬁg ay
k=0 k=0

o0 n z o0 n
=23 a0 Y af - g 0 Y4
1=0 k=0 k=0

=1 =

o0 ’1+1> o0
=2+ 1)) gueny(@)a’ - a 2) bpriyal
=0 =1

in view of Yy _o @, = Oforalll ¢ (n + 1)N, where

1db _ 1dig™!
81(2) = - J[H (2 —q '(w))](0) and bi=57—70

(recall that by = ¢~ 1(0) = 0). Since for z small there holds

n

> tog XA 57 ,2) Yo = 0+ D) Y ()
=0 =0

k=0 k=0

in view of ax = ¢~ !(dy), where

1 d! w —q(z)
(@) = 27 |02 2] 0),

ga.0(2)
80.0(2)

2
(for z far from O it is obvious). Hence, by (2.12) i‘;"’ Ha,o» Ca,or and A(a, o) are
0.0

also continuously differentiable in @, @, and then A is a C -map with A(0, 09) = 0,

we have that is continuously differentiable in @, @ for all z in view of (A.I)

doA (0, 09) = Id. For p small enough, by the implicit function theorem we find a

Cl—map a € B,(0) — o4 so that A(a, 0,) = 0, and the function a — ¢4 = cq,0,
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is C1. By
gc% U(Z,)g(z)a(()) Ha U(Z)i|
0q| —= : : 0
[gg,gm)gg,a(z) Hao©) ]
85.5(0) [ 21 (2)-21 (O)Ha,a(z)]
— > 811 0g8a.oc(Z 0g&a.o 0
g(%,g‘(z) ¢ Ha,a(o) ©
H
= 0+ D2 o102 = frsaO)
and

) [gﬁ,a (2)85,6(0) Ha o (2)
¢ gg,o (O)g(z),g (z2) Hao 0)

we deduce the desired expression for I" and Y in view of d5co,0, = 0 and @.13).
O

2r(n 4+ ) )
@ HO) "

](0) _

Appendix B The Linear Theory

In this section, we will prove the invertibility of the linear operator L given by
(.3)) under suitable orthogonality conditions. The operator L can be described
asymptotically by the following linear operator in R?:

8(n + 1)%|y[*" p
(14 [yntt =5[22
where (o = lim %’. When ¢y = 0, as in the case n = 0 [4], by using a Fourier de-

composition of ¢ it can be shown in a rather direct way that the bounded solutions
of Lo(¢) = 0in R? are precisely linear combinations of

0"
1+ |y)2nt2

Lo(¢) = Ag +

1— |y|2n+2

_ I=1,2.
1+ |y[2n+2

Yo(y) and  Y;(y) =

Note that L is the linearized operator at the radial solution U = U; g of —AU =
|z|?"eY.

For the linearized operator at U; ¢, with {o # 0, the Fourier decomposition is
useless since Uy ¢, is not radial with respect to any point if n > 1. However, the
same property is still true as recently proved in [[15]], and the argument below can
be carried out in full generality in the range a = O(§). Since in Theorem [4.6] we
are concerned with the case a = 0(8), for simplicity we will discuss the linear
theory just in this case.

Recall that

82 —lo(z) —al?
82+ lo(z) —al*’

_ 8lo@) —al;

Zo(z) = _ oo —ali
0@) 52+ |o —al?

Z(z) =12,
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and PZ;, ] = 0, 1,2, denotes the projection of Z; onto the doubly periodic func-
tions with zero average:

APZ; = AZ; — ‘gz—| foAZ; inQ,
fq PZ; =0.

Given h € L*°(Q) with [ h = 0, consider the problem of finding a function ¢
in Q with zero average and numbers d;, [ = 0, 1, 2, such that

L(p) =h+ Y] od]APZ; inQ,

B.1
@1 JoAPZ1¢p =0 vi=0,1,2.

Since Z = Z; + iZ,, observe that (B.I) is equivalent to solving (4.4) with d =
dy — idy. Let us stress that the orthogonality conditions in are taken with
respect to the elements of the approximate kernel due to translations and to an
extra element that involves dilations. A similar situation already appears in [[13].

First, we will prove an a priori estimate for problem when d; = 0 for all
[ =0, 1,2 with respect to the || - || «-norm defined as

(8% + |o(z) —a|?)! 7/
[A]l« = sup |h
zeq 87 (l0"(2)|? + §2n/(n+1)

(@I,

where 0 < y < 1 is a small fixed constant.

PROPOSITION B.1. There exist ng > 0 small and C > 0 such that for any 0 <
2
§ < no, €2 < 087+, |a| < noé, and any solution ¢ to

L(p)=nh in Q,
(B.2) fQ APZ;jp =0 VI=0,1,2,
fsz¢ =0,
one has
1
(B.3) I¢lloo < C log <l

PROOF. The proof of estimate (B.3)) consists of several steps. Assume by con-
tradiction the existence of sequences &y — 0, € with ei = o(Sz/ ("+1)), ag
with ap = 0(8y), functions hy with [logdi|||Ak|l« = o(1) as k — +o0, and
solutions ¢ of with ||¢rllcc = 1. Since by (4.3) the operator L acts as

L(¢) = A¢ + K[¢ + y(¢)] where y(¢) € R, the function ¥ = ¢ + v(dx)
solves

AV + Ki¥e = hy  inQ,
[qAPZy ¥ =0 VI=0,1,2,

where Wy, K, Z ; denote the functions W, IC, Z;, respectively, along the given
sequence.
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CLAIM B.2. liminfg_, 4 o [|¥klloo > O and, up to a subsequence, ¥, — ¢ € R
ask — +ooin Cl""(s_z \ {0}) forall a € (0, 1).

loc
Indeed, assume by contradiction that liminfy s + o6 || ¥k [looc = 0. Up to a sub-
sequence, assume that |[Yxlleo = [Pk + V(@r)lloc — 0 as k — +o0. Since
2 = o(57/"*V), by @49) it follows that

fQ eM0+Wk ¢k

V) ==+ o) = 0.
Q

Jo "0t Wk ¢
fS'Z e“0+Wk

formly in  as k — +oo. Since [q dr = 0, we get ¢ = 0and ¢ — O in
L°°(£2), in contradiction with ||¢x ||co = 1. Moreover, since ||k |lco = O(1), by
[@351)-(232) we have that Ay, = o(1) in Cioe(R2 \ {0}). Up to a subsequence,
we have that ¢, — ¥ ask — +o00in Clz)’ca(ﬁ \ {0}). Since |V |loo = O(1), ¥
is a bounded function that can be extended to a harmonic doubly periodic function

Up to a subsequence we have that — ¢, and then ¢y — ¢ uni-

in Q. Therefore, ¥ = ¢ in Q with ¢ = limg_, 4 Y(¢x), since ﬁfﬂ Y =

¥ (Pr)-
Now, consider the function Wy (y) = ¥ (§ li/ (n+1) ¥). Then W}, satisfies

AV + Kp ()W = i (y) in 8/ Vq,

where
T i ~ a1 T
Ki(y) =6}/ le((S,’; y) and i (y) =87 hk(c?]: y).
Also, we set oy (y) = 5;10% (8;/("+1)y) for y in compact subsets of R2.

CLAIMB.3. ¥y — W = 0in Cioc(R?) as k — +oo.

Indeed, observe that by ([2.49) and (2.51)-(2.52) we have the following expan-
sions:

ey = 0" (2)PeY5a[1 + O(lcallz"™) + O(lcallal + 82[log8])]
' + O(e?|0” (2)|*e?V3a),

Since 6,% = 0(8]3/ ("+1)), the first estimate above can be rewritten along our se-

quence as
8loy ()7

Ki(y) = (1 +0(1) + OlyI"™h)
K ’ ! (1+ |ox () — ks [*)?

64|ay (»)I*

+0(1)
(1+ [ox () — axd ' [*)*
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uniformly in 8;1/("“)52 as k — +o00. Since 0 = z" 1 Q, we have that o (y) =

yn—H Quy (5;/(n+1)y) and

UIQ(Y) =+ 1)y"Qq, (81/(n+1)y) + 81/(n+1)yn+1 Q;k (81/(n+1)y).

Since Qa, (0) — Joy =1 v # 0and [ 0} lloo,2 = CllQay llp g < C', we have
that

_1
ok (») =y y +o(1) + 08" Iyl)].
1

o () =+ Dy " [y +o(1) + 08" Iy])],

as k — +o0. Then we get that
8(n + 1)2y|?|y|*" 64(n + D*|y[*ly|*"o(1
Kk(y):[ et DPyPOP 64+ Dl |y|_1§1}
(B.5) (14 |ox(y) — ardi|) (14 |ox(y) —ardi )
_1
x [14+o0(1) + 08" |y])]

@41

uniformly in §,

Choose 1 small so that |0 ()| > m|y|”Jrl in 38—1/(n+1) (0) for k large. Since
[Wklloo = O(1) and |hk(y)| < Cllhgl]l« = 0 on compact sets, by elliptic esti-
mates and (B.3) we get that Wy (y~ 1/(’”'l)y) — Uin Coe(R?) as k — o0,
where U is a bounded solution of Lo(\Il) = 0 (with {o = 0). Then \Il(y)
Z;:o b;iYi(y) forsomeb; € R, j =0,1,2.

Since Azk’l + |O']/<|26U3k.ak Zk’l = 0 forl = 0’ 1’ 2 (Where ng’ak Stands for
U8k,ak,aak ), for [ = 1, 2 we have that

/WkAZk,z = —/IOIQ(Z)IZWkeU”’Wk Zi.1
Q Q

_ /‘ 8|y (2)|* (o — axs; M)Wy

dy + 0(83).
(1 + [ox — axsg ! [?)’ ¢

38;1/(n+1)n(0)

Since forall/ =0,1,2

1
0= / YkAPZy,) = /Wk |:Azk,l @ / AZk,l] = / Yk AZp +o(1)
Q Q Q Q
as k — oo in view of (3.1)—(3.2), by dominated convergence we get that

PO
/ ()(1+| |2n+2)3d =0 forl =1,2,
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and we conclude that by = b, = 0. Similarly, for / = 0 we deduce that

R 2n 1— 2n+2
[E
R2

T+ P2y

which implies that by = 0. Thus, the claim follows.
On the other hand, from the equation of ¥; we have the following integral rep-
resentation:

1
R T Q/ Vi + S[ Gy, DKk V() — hie()]dy.

CLaiMBA4. ¢ =0.

Indeed, Claims andimply that ¥ (0) = ¥ (0) — 0 and ﬁ Jo Vi =
y(¢x) — € as k — 400 by definition. So, by (B.6) we deduce that

[ 660 ) - iy >~
Q
as k — +o0o. We first estimate the integral involving Aj. Since

| toglyliay = 0} 100
Bs, (0)
we get that
[ 600t < Gl [ 60.0dy < Cllogsclil.
Bs, (0) k Bs, (0)
By (3.6) we have that

G(y,o>hk<y>dy' < Cliogael [ 1hil = Cliogel el
Q

Q\Bs, (0)
and we conclude that

‘ [ 60.0me1a| < Clogelinel 0
Q

in view of [log §i |||k ||« = o(1) as k — +o0.
By (B.4)) we have that

/Q G (7. 0Kk () )y

_ f G(y. 0Kk (0¥ (y)dy + 0(52) =
B, (0)
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1
= ——1 - log$
f [ 7 og|y| 1) 8%

38;1/(n+l)n(0)

L HE y,o)]Kk(y)wk(wdy + o).

2n . .
Because K; = O(MTZ)Z) holds uniformly in Bak—]/(n—i-l)n(()) \ B1(0) by

(B.5) and K (y) — % as k — +o00, by dominated convergence we get
that

1 _1
/ [_Elog v+ H@S y,O)]Kk(Y)‘I’k()’)dy -
B8k_1/(n+1)n(0)

1 8(n + 1)%|y*"
——1 H(0,0) | ——2——=—W(y)dy =0
/[ 5 og|y| + H( )} a4+ P2 (»)dy
R2

as k — +oo. Since fQ hi = 0, the integration of the equation satisfied by ¥
gives that [, Ky = 0. Then, by (B4) we get that

/ KWy dy = f Kxvrdy = — / Kevk = 0(87).
B—1/n+1) 0) B, (0) Q\By(0)
k n

which implies that

log 8k / KWy dy = O(83 log 8.

38;1/(n+1)n(0)

In conclusion, we have shown that [, G(y, 0)Ky (y) Vi (y)dy — 0as k — +oo,
yielding to ¢ = 0.
In the following claims, we will omit the subscript k. Let us denote L(y) =

AY + K.

CLAIM B.5. For R large enough the operator L satisfies the maximum principle
in By(0) \ Brgi/m+1)(0).

Indeed, as already noticed in the proof of the previous claim in terms of Ky,
there is C1 > 0 such that
(n + 1)282|Z|2n

(B.7) K@) <G (62 1 |z2n+2)2
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in B;(0) \ Bsi1/m+1)(0). The function

v ( Uz )_ M2n+2|Z|2n+2—82
0
6

Z(2) =— T ent2|gEnt2 52

1
n+1
satisfies
2 2n+2|Z|2n(M2n+2|Z|2n+2 _ 52)

—AZ(z) = 16(n + 1)? o

( 2n+2|Z|2n+2 + 82)3

2n+2 R2n+2

For R large so that > 3 we have that

52 2n+2|Z|2n 2n+2R2n+2 -1

u

(u2n+2|z|2n+2 4 §2)2 p2n+2R2n+2 4 |
§2p2nt2 ganta 1 . (n+1)?% 82

(M2”+2R2”+2 + 1)2 |Z|2n+4 - M2n+2 |Z|2n+4

—AZ(z) > 16(n + 1)?

> 4(n + 1)?

in By(0) \ Bgrgi/x+1)(0). On the other hand, since Z < 1 we have that

(n_|_ 1)282|Z|2n - (I’l—l— 1)282

K(2)Z(2) = G 62 + |z |2n+2)2 =+l |z|2n+4

in B;(0) \ Bs1/x+1(0), and for 0 < p < we then get that

ﬁ
~ ~ 1 (n + 1)28?
in By(0) \ Brg1/m+1)(0). Since

M2n+2R2n+2 -1 1

> —
M2n+2R2n+2 +1 4

Z(x) =
for |z| > R§V#+D e have provided the existence of a positive supersolution
for L, a sufficient condltlon to have that L satisfies the maximum principle.
CLAIM B.6. There exists a constant C > 0 such that

19 lloo, By (0\B gg1 /i1y @ = CLIV i + 7],

where
1Vl = 1V lloo,0B ng1/n 1)@ + 1V lloo,0B,,(0)-
Indeed, letting ® be the solution of
—AD=2Y2 % for REV@+D < |z| < r,
d=0 for |z] = r, REV/ P+ D)

withr € (n,2n), 01 = o(n + 1), and 05 = 2n + o(n + 1), we construct a barrier
function of the form ® = 4|y |; Z + |||+« ®P. A direct computation shows that

2
i 1
D(z) =2 87+ [—0_2|Z|Gi + ajlog|z| + ﬂf],
1

i=1
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where

o 1 1 LY
“i = ZlogR5'/("+" RUz’SHL-ifl_E <5

g = 1 logr ( 1 1 )
! Uizr"f o logRsl/(n+1) Rmsnﬁl roi )’

fori = 1,2. Since

2 Oi 1 1
0<B(z) <2) 8T | —— — + ; log RETHT + B;

. o-r-t
i=1 i

_228n+10{110g <Z 2RU

i=1 i=1
we get that

_ 50 80-‘1-,,2% C 1)282|7|2n 2 2
L@) < ]| -2 = o+ o
|Z|2+a(n+l) |Z|2+2n+a(n+1) (52 + |Z|2n+2)2 P (TizRUf

o 80+ 80|Z|2n
< |lhll«| =2 - +
- |Z|2+a(n+1) (52 i |Z|2n+2)1+a/2 (32 + |Z|2”+2)1+°/2

59 (|2 |2 + §T)
(52 + |Z|2n+2)l+c/2

in view of (B.7) for R large so that C;(n + 1)2 21'2—1

< —lAll«

2R”1 < 1. Since |y| < ®

on dBgsi/m+1(0) U 0B (0) in view of 47 > 1, by the maximum principle we

conclude that || < ® in By (0) \ Brgi/(+1)(0) and the claim follows.

Since Claims[B.3]and[B.4]provide that ||y [|; — 0 as k — oo, by Claim[B.6]we
conclude that ||« ||lco = 0(1) as k — +o00; this conclusion is in contradiction to
liminfg_, 4 o | ¥k |loo > O according to Claim This completes the proof. [

We are now in position to solve problem (B.1)).

PROPOSITION B.7. There exists no > 0 small such that for any 0 < § < no,
llog§le? < o8/ @+, |a| < noS, and h € L>®(Q) with [qh = 0 there is a
unique solution ¢ = T (h), with [ ¢ = 0 and do,dy,d> € R of problem (B).
Moreover, there is a constant C > 0 so that

(B.8) Iplloo < c(log )nhn*, Ddu < Cllhlls.

PROOF. Since —AZ; = |0'(z)|2eY3.4Z; in Q (where Us , stands for Us 4 4,
and [o AZ; = O(8?) in view of (3-I)-(3-2), we have that

APZ; = O(|o' (2)[*eYa) + 0(8?)
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in view of Z; = O(1), which yield |APZ;||x < C forall [ = 0,1,2. By
Proposition [B.1|every solution of (B.) satisfies

9l = (108 )[uhn* " Z Idll}

Set (f,g) = [q fg and notice that

(B.9) (L(¢), PZj) = (L($), PZ; +1) = (¢ + y(¢), L(PZ; + 1))
for any 1 € R, in view of [, L(¢) = 0.
To estimate the |d;|’s, let us test equation (B.1) against PZ;, j =0, 1,2, to get

2
(¢ +7(@).L(PZ; + 1)) = (h.PZ;) + Y di{APZ;. PZ;)
=0

where 7; = ﬁ fQ Zj, j = 0,1,2. From the proof of Lemma we know that
for Zg and Z = Z; + i Z5 there hold the following:

1— 2
/APZOPZO = —16(1’1 + ])/ (]i + 0(52), /APZPZ() = 0(82),

+ [y[2)*
Q
2
/APZ — —8(n + 1)/ i |y|| 57+ 00). /APZPZ — 0(),
Q Q
d 2 _
where Jia o = 2fee i = 3

In terms of the Z;’s we then have that

(APZ;,PZj) = —(n + 1)C;;6;; + O(5%),

where §; ; denotes the Kronecker’s symbol and cgp = %’T, C11 = Cap = 47”. For
j = 0,1, 2 let us now estimate ”Z(PZ]‘ + 1)«
IL(PZ; + t)llx = |—lo"(2)PeY5Z; + K(PZ; +1;) + 0P|,

(B.10) 5
= 08 + €257+ 4+ §|cal)

in view of (3.I)-(3.3) and (B.4). Since |y(¢)| = O(||¢|lo) in view of (2.49) and
€262/ +1) = 5(1), by we get that

(6 +7($), L(PZj + 1)) = O + €25 77) bl o,

which along with the previous estimates leads to

R 2
B || < c[(s + 2577 ) | plloo + Il + 8y |d1|]
=0
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in view of PZ; = O(1). Since (B.T1) gives that
2
_ 2
D ldil = 06 + €877 )| lloo + O([Ih]|),
=0
we have that every solution of satisfies

1 2
6o < c(log 5) [nhn* s |d1|}
=0

1 2 1
< Clog £(6 + €2571) |glloo + C log [l

In view of log %(8 + €282/ +1D) = (1) as o — 0, the a priori estimates (B.9)
immediately follow.
To solve (B.T)), consider now the space

H=1¢ecH\(Q) doublyperiodic:/¢=0, /APZ,¢=0forz =0,1,2
Q

endowed with the usual inner product [¢, ] = [o V¢ V. Problem (B) is equi-
valent to finding ¢ € H such that

691 = [ + ()~ v foralt < A
Q
With the aid of Riesz’s representation theorem, the equation has the form (Id —
compact operator)¢ = h. Fredholm’s alternative guarantees unique solvability of
this problem for any % provided that the homogeneous equation has only the trivial
solution. This is equivalent to (B.I)) with 2 = 0, which has only the trivial solution
by the a priori estimates (B.8). The proof is now complete. U

Appendix C The Nonlinear Problem
We consider the following nonlinear problem:
L(§) = ~[R+ N@)] + XizgdAPZ; Q.
(C.1) JoAPZ1¢p =0 forall/ =0,1,2,
fsz ¢ =0,
where R, N(¢), and L are given by (2.24), (4¢.2), and (&.3)), respectively. Notice
that (4.5) and (C.I)) are equivalent by setting d = d; —id>.

LEMMA C.1. There exists 8o > 0 small such that for any 0 < § < 1o, |log §|?€>
1082/ D a| < no8, problem (CI) admits a unique solution ¢ and dj, |
0,1, 2. Moreover, there exists C > 0 so that

(C.2) [#lloo = Cllog ][I R«

1A
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PROOF. In terms of the operator 7' defined in Proposition problem (C.T))
reads as

¢ =-T(R+ N(9)) = A(9).
For a given number M > 0, let us consider the space
= {¢ € L*°(2) doubly periodic : ||¢|lco < M|log ||| R||«}.

It is a straightforward but tedious computation to show that

(C3) [N(¢1) — N(P2) |« < C1([[1lloo + [[P2]l00) [P1 — P21l 00-

Just to give an idea on how (C.3)) can be proved, observe that
uo+W+¢ uo+W

2|plloo uo+W-+¢ uo+W+¢
0= = [ erotW+é =e g evot W and ‘[e ¢" =< ||¢>||oo[e .
Q

For ||¢|loo < 1 we can then get that

eu0+W+¢ i|

) eu0+W+¢
||¢||OOHD[—IQ L HD [ }

,/Q uo+W-+¢

eUo+W
(H/ cu W H ||¢||§o) = 0(l¢113)
etotW

in view of ”WH* = O(1) by (2.51).

This is exactly what we need to estimate in the ||-|| x-norm the difference between
the first terms of N(¢1) and N(¢>). For the other terms we can argue in a similar

way to get

[ e2WotW+9)
) + HD [—fg 62(u0+W+¢):|[¢’¢]

e2wo+W) . ,
0( T 2ot H ||¢||oo) = 0(l¢l1Z)
Q *
2(u0+W)

in view of ”W”* - 0(1) by @D’ and

eZ(uo+W+¢)
||¢||OOHD[W][¢]

*

16 ool DIBOW + $)][6]ll« + [ DBV + $)[. $lll =
O(BW)|$I%) = 057 (14]%)

in view of (Z49). Since €2672/*+1) = (1), we can deduce the validity of (C23).
Denote by C’ the constant present in (B-8). By Proposition and (C.3) we
get that

I A(@1) — A(¢2)lloo < C'[log8|[[N(p1) — N(¢2) |l
< 2C'CiM||R||«log? 8[| ¢1 — ¢2lloc
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for all ¢1, ¢> € Fpr. By Proposition [B.7] we also have that
IA@) oo < C'llog 8[| R]l+ + IN(@)ll«] < C'llog§|[|R]lx + C'Ci[log 8[|,

for all ¢ € Fpr. Fix now M as M = 2C’, and by ([2.34) take 1o small so that
4(C2Crlog? §||R||% < % in order to have A be a contraction mapping of Fys
into itself. Therefore A has a unique fixed point ¢ in Fjps, which satisfies
withC = M. O

Appendix D The Integral Coefficients in (3.4)—(3.5)

Letting { = %, we aim to investigate the integral coefficients

2n_ 2n_
,.:/(|y|2—1)|y+z|n+1 " _ [hrasy
' (1+y?»)3 ’ ' (L+y?»5
R2 R2

which appear in (3.4)—(3.3) and @.8)-(#.9). We will show below that I = f(|{|)
and K = g(|¢|)¢ with f < 0 < g, and the asymptotic behavior of f and g as

|¢| = +oo will be identified.
By the change of variable y — y + ¢ and the Taylor expansion

+o00
(1-—x)"7°= chxk for |x| < 1

k=0
with ¢ = (;I—]];)!, we can rewrite [ as
2n_ 2
_ [ Iylr(ly =7 = 1)
I = I dy
1+ 1y —¢%)
RZ
+ 2n_ = — = —
_ fck/ Iy 82— 1=y 8 = FOOL+OF
P A+ [P+ L)
R2
in view of
>, = -5
_ _ y§+ ¢
Uty =875 = P+ 1627 (1= 2 )
L+ |y2 + 182

with

DE+FE PP
[+ P+ IR = T+ P+ [P
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Since

k
GT+ 0k = Z(’]‘.)yfff ki gk
j=0
= % (§)erriepiye
J

1<j<5%

k — i . iy 5
+ Z (J)é—Zj ky2j k|é—|2k 2j|y|2k 2j

§<j§k

for k odd and

J
1<j<%

GE+70k = 3 (’f)ck—zfy"—zf|z|2f|y|2f

k\ooj—k 2i— Y o k
e 3 (§)Rrre e (i

%<j§k

for k even, by symmetry we can simplify the expression of / as follows:

+o0 2n o 2 = | =k
_ Iy + 162 = DOT + 70)
- ;;)ckR/ DR+ ¢

(14 [y + [g]2)5+F

2n_
% e (e [ R 1R
2\ k (1 +|y2 + [2)5+2k
k=0 R2

= 2k 0 2k [y |2k
- Z C2k—1\ Iq a
k:1 Rz

+ 2n_ - _

j? /’WP”40@-FyOk+ld
- y
k=0 R2

dy.
v+ gy

Since If = fooo #dp, q > p + 1, satisfies the relations

p _49—pr—1 +1_ p+l
D-1) lop ="— 1 177 =,"=",3%
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through the change of variable p> = Af, A = 1 4 |¢|2, in polar coordinates we

have that
T
i epeeE Y

_ ITA,'H‘I —4— k1n+1+k

542k
D.2
( ) 3 +k n+1
N LS Y
412k 442k
34k - / |y +2k J
T2+ AP ) U P+ Ry
R
and

/ |y|"+1 242k J
AP
R

= AT Izjzlk
D.
(D.3) _ (2 4 2k)(3 + 2k) =2k K
(k + )2+ k = 29) 4+2k
Q+2)06 +2%) [y [T
- <+|¢|>/ e
-k + ) (I+[y> +121?)
Inserting (D.2)) and (D.3) into /, we get that
400 ot T2k
3+k— w1 T2
1= enf1- e [ cdy
= 2+ +1¢2 )\ k g, (1+y[? +[g[2)*+2

T2k

+o00
2k 2k |y|"+
— _ d
2 e 1(k )'C' A+ P+ epyar @
k:1 Rz

i 2(3+2k)c2k > 1+k 1 (Zk 2)
(1+1¢1%)
E[ (2+k = 1+|z|2) <

2% B |y|n+1+2k
e I
R

dy.
P Iy

Since
2(3 + 2k)cop— 2(215C 12) = kczk_l(zkk) forallk > 1,
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. 2k \ | 12k—2 Iyl’f%“k
setting Br = Cak—1 ( A )|§| Jr2 AT EHER dy we deduce that
+oo[
k 1+k
I = (1+ ¢ )—|§|2j|,3k
2 (z+k—nil 1+m2)
+oo[ 2
k Iy 1 ) 2 2
= - (L+ 1817 = 1217 | Bk
k;_ n11(1+|§|2 Q+k)n+1)—n
+oo [ k
< ———— —1||¢]*Bk <.
x|

In conclusion, we have shown that I = f(|¢]) with f < 0.
By the change of variable y — y + ¢ and the Taylor expansion of (1 — x)™>,
arguing as before we can rewrite K as

RGNS y;z‘”c IO = 00T+ TR
Ay =3 A DR I

By the previous expansions of (y¢ + y¢)¥ and

|| Cack IR
T b e & T
2
s Ttk .
5+ 2k Stk
_ Ak |y| T 2k

d ’
s+2k ) (T )+ g5k @
R2

for symmetry K reduces to

T4k 2k +1 2k
—;Z[czkﬂ”*ng () = () e

|Y|m+2k

dy.
AP+ eI

Since (1 + k)cokq1(PK1) = (5 + 2k)cor (3F) for all k > 0, we get that
1ok

N 2% .2k Ly
K‘C,g(n+1)(1+k>"2k(k)'§' R/2(1+|y|2+|z|2>5+2k o
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In conclusion, we have shown that K = g(|¢|)¢ with g > 0.

In order to determine the asymptotic behavior of f and g as |{| — 400, we
will use complex analysis to get some integral representation of f and g; see (D.6))
and (D.9). We split I as I = J; — 2J,, and we compute separately the constants

2n_ 2n_
P S (Gl
(1+[yP>)* (1+[yP?)°
R2 R2
We rewrite J in polar coordinates as
2n_
|y[T

1= T a4y
(1+|y—¢»*
R2

= /+°° pnz-i-nl—i_ldp/zﬂ de p
0 0 (1+p2+ [¢2 = Lpe=if —Lpeif)*
3

/+OO 2n 41 w
= —i ot dp / — CRRTTE —duw.
0 402 — L2 +(E] §2 V4
R

2 _ 14+p%+[g?

Since w 7 w + HE vanishes only at
e = L2 L2 VA +p? +[CP)? - 4p2(
+ = —

28p
with |{w—| < 1 < |w4/|, by the Residue Theorem we have that

too w3
J1 = —i/ prtitldp / —
0 Cp)*(w — wo)* (w — wi)?

9T B1(0)
2n
00 m+1 d3 3
= 27‘[/ i — 3|: v 4i|(w—)d)0
0o 6(Lp)* dw’(w—wy)
A straightforward computation shows that
d3 w3 o w w4 Ywwi (w4 wy)
dw3| (w—wy)*] (w—w4)? ’
and then
ar w 7 (U402 +[EPIA + 0 + 1) + 6p°[¢ ]
e 7 [w-) = 6(Zp) Wiy
wL(w—ws) [(1+ 2 + [¢12)? — 4p2|¢ ]2

Recalling that A = 1 + |¢|2, through the change of variable p — p? we finally get
for J; the expression

Ji = /°° o A+ )X + p)* + 6(2 —11),0] do.
0 [(A + p)? —4(A = D)p]2

(D.4)
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In a similar way, we first rewrite J, as

too 5, w4
Jo=1i / ot T ldp / — dw
0 (£p)>(w —w-)>(w —w4)?

91 B (0)
+oo 241 4 4
anrl d |: w :|
=27 — w_)d
/0 24(¢p)% dw* [ (w —w4)? (w-)dp

in view of the residue theorem. Since
d* w? _ 24w4 + wi 4+ 16wwy (w? + w?) + 36w?wi
dw* [ (w —w4)° (w—w4)?

we get that

d* w
dw* [(w - w+)5](w_) B
oapys It P2+ [EP)* + 1202(¢12(1 + p? + [E2)2 + 42p%|¢|*
[(1 4 p2 +[¢[2)2 — 42[¢[2]3

’

and then
© L, (A4 p)* + 1200 — Dp(d + p)? + 42(A — 1)2p2
(D.5) Jzzn/ pm( +0)" +12(A — Dp(A + p) +9( )2p
° (A + )2 —4(A — 1)p]3
By (D.4)-(D-3) we finally get that f(|¢|) takes the form
o0
f=”/ P [(A 4 p)2 —4(h — 1)p]~2
0

(D.6) <[+ p)° =200 + p)* + 200 = Dp(A + )

dp.

—24A(A = Dp(p + 1)(X + p) — 84(L — 1)*p*]dp
where A = 1 + [¢].
Observe that for { = 0 (i.e., A = 1) we simply have that
(D.7) f0)=J1 =20, = x[1;"" =212 i —— gt

in view of (D.I). By the change of variable p = A 4 +/At and the Lebesgue
theorem, we get that
n t \3 A—1 t
\ oo i 2+ =)+ 6 (1+ )2+ )
et [ (10 ) R,
-V (l2 + 4+ \/—X)

NG

— 20 / di
n —
(t2 + 4)7/2
R
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AT =n/C>o (1+L)"il(z2+4+ﬁ)_g
T sl T Jx
x[(HL)“mu(HL)(HL)Z
VA A VA VA
+42(—A_1)2(1+L)2}dt
A VA
s 10671/L
J (t2+4)9/2

as |¢| — +o0 (i.e., A = 400). Since [ (ﬂfﬁ = % Ir (ﬂﬁﬁ’ we get that

Sazh 356 dt
(D.8) |é-|n27_f1 —)—TWR/ (t2+4)9/2

as |¢| — oo.
In a similar way, for K we have that

“+o00 4
. 2n 41 w*(pw —{)
K=t fo Pt / Cp)5(w —w_)5(w — wy)’

% B1(0)

2n_
:_zﬂ/+°°pn+_l“ d* [w“(pw—;)
o 24(Cp)sdwt| (w—wy)?

](w—)dp
in view of the residue theorem. Since

d* [w“(pw—f)}

dw*| (w —wy)?
=24(w — w+)_9{5,ou)w+[w3 + w_3i_ + 6wwi(w + w4 )]

— C[w* + w4+ + lowwy (w? + wi) + 36w2wi]},

we get that
d* [Tw(pw —9)
a’w4[ (w—w4)? }(w_)

= 12@p)5¢[(A + p2)? — 40 — 1)p?] 2

x [+ pP)* +202(X — 6 = 5p%) (X + p*)? + 6(A — Dp* (24 — 7 = 5p%)],
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and then

N}

g(gh) = —%/0 Pt [(A + p)? —4(A — 1)p] 2
D9 x [+ p)* + 2000 — 6 — 5p) (X + p)?

+6(A — 1)p*(21 — 7 —5p)]dp

So, we have that
3n+1 e

L
2+ 1)

in view of (D.I), and, by the change of variable p = A 4+ /At and the Lebesgue
theorem,

(D.10) 2(0) = %(wsm —101]%7) =

£(¢) :
a7 WR/ e

(D.11)

as |¢| — 400, in view of

n

[ () (e )
[ 5) (1 ) (5 o )
e

/ 34.dt
(t2 + 4)9/2
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