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ABSTRACT

We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an
idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate
the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and
the plasma beta is β ∼ 1–100. The background field amplification in our calculation is meant to mimic processes
such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure
anisotropy with p⊥ > p‖ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases,
the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure
anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially
undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale
as the background magnetic field (with δB ∼ 0.3 〈B〉 in the secular phase). At early times, the ion magnetic
moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 〈B〉, the magnetic moment is no
longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss
the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and
low-luminosity accretion disks around black holes.
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1. INTRODUCTION

Ion pressure anisotropies are ubiquitous in heliospheric and
astrophysical plasmas. In the absence of Coulomb collisions,
the magnetic moment of ions, μi (≡ v2

⊥,i/B, where v⊥,i

is the ion velocity perpendicular to the local magnetic field
B and B = |B|) is an adiabatic invariant. Thus, if ion
collisions are infrequent, the ion velocity distributions parallel
and perpendicular to the magnetic field decouple, making
Δpi ≡ p⊥,i − p||,i 	= 0 (where p⊥,i and p||,i are the pressure
components of ions perpendicular and parallel to B). Examples
of systems where ion pressure anisotropies are important are
low-luminosity accretion disks around compact objects (Sharma
et al. 2006), the intracluster medium (ICM; Schekochihin et al.
2005; Lyutikov 2007), and the heliosphere (see, e.g., Hellinger
et al. 2006; Matteini et al. 2007; Maruca et al. 2011). In these
systems the ion pressure anisotropy is expected to play a key
role in the large-scale dynamics of the plasma. For instance,
Sharma et al. (2006) pointed out that pressure anisotropies can
give rise to an anisotropic stress that can contribute to angular
momentum transport and plasma heating in low-luminosity
accretion disks. This physics is not included in standard MHD
models of accretion disks.

Velocity space instabilities limit the growth of the pressure
anisotropy and give rise to small scale fluctuations in the
magnetic field. These fluctuations can, in turn, affect the large-
scale transport properties of the plasma by modifying the mean
free path of particles.

Magnetic field amplification in a collisionless system gener-
ically drives p⊥,i > p||,i . There are two ion-scale instabili-
ties that can be excited in this regime: the mirror and the
ion-cyclotron (IC) instabilities (Hasegawa 1969; Gary 1992;
Southwood & Kivelson 1993). The mirror instability consists of
non-propagating, strongly compressional modes. Their fastest

growing wave vectors k are oblique to B, with the magnetic
variations parallel to B being much larger than the perpendicu-
lar fluctuations, δB|| 
 δB⊥. For a bi-Maxwellian distribution
of ions, and assuming cold electrons, the threshold condition for
mirror instability growth is given by T⊥,i/T||,i − 1 > 1/β⊥,i ,
where T⊥,i (T||,i) is the ion temperature perpendicular (parallel)
to B, and β⊥,i ≡ 8πp⊥,i/B

2 (Hasegawa 1969). The IC insta-
bility, on the other hand, consists of transverse electromagnetic
waves, with the fastest growing k being preferentially parallel
to B (e.g., Anderson et al. 1991). Whether the IC or mirror in-
stability sets in first depends on how fast these instabilities grow
for a given set of plasma conditions. Gary & Lee (1994) showed
that for T⊥,i/T||,i − 1 = 0.35/β0.42

||,i , the growth rate of the IC
instability is γIC = 10−4ωc,i , where ωc,i is the cyclotron fre-
quency of the ions. In addition, for γIC/ωc,i � 1, the threshold
anisotropy depends very weakly on γIC.

In the linear regime, the dominant instability will be deter-
mined by which threshold is reached first as B is amplified.
These estimates for the threshold conditions imply that, in the
linear regime, the IC instability should dominate for βi ∼ 1,
while the mirror instability should dominate for βi 
 1.

Although both the mirror and IC instabilities have been
extensively studied in the linear regime, a complete theory
of their nonlinear evolution and saturation is still lacking. In
this paper, we are particularly interested in the question of
how the mirror and IC modes behave after the initial phase
of exponential growth. Indeed, in most astrophysical scenarios
where the magnetic field is amplified, the growth of the field
occurs on time scales much longer than the growth time of the
relevant kinetic instabilities. Therefore, most of the evolution of
the velocity space instabilities happens in a nonlinear regime,
where the conditions typically assumed in linear studies, such
as a homogeneous plasma or a bi-Maxwellian distribution of
particle velocities, are not necessarily satisfied. Moreover, if
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the field is amplified by order unity or more, a quasi-linear
analysis is not applicable. One of the key questions we are
interested in addressing in this case is whether the mirror
instability saturates via pitch-angle scattering that violates
magnetic moment conservation (Sharma et al. 2006) or via a
nearly μi-conserving rearrangement of the magnetic field, with
fluctuations |δB| ∼ |B| (Schekochihin et al. 2008). We shall see
that both of these saturation processes can in fact be important.

The nonlinear regime of the IC and mirror instabilities has
been studied both theoretically (e.g., Schekochihin et al. 2008;
Hellinger et al. 2009) and numerically (Baumgartel et al. 2003;
Travnicek et al. 2007; Califano et al. 2008; Guo et al. 2009).
In most numerical studies, however, the pressure anisotropy is
treated as an initial condition, which decreases as the instabilities
grow and saturate. Thus, in these approaches the nonlinear
saturation cannot be followed for a time much longer than
that of the initial exponential growth. Moreover, many of the
previous numerical studies have focused on one-dimensional
(1D) simulations.

In this paper we study the long term, nonlinear evolution
of the mirror and IC instabilities using two-dimensional (2D)
particle-in-cell (PIC) simulations in driven systems. In order to
self-consistently explore a time much longer than the initial
exponential growth, we continuously induce the growth of
Δpi by amplifying the mean field 〈B〉 during the simulation.
We concentrate on amplification by incompressible plasma
motions. Thus, our simulations impose a shear velocity on the
plasma, which sustains the growth of the magnetic field and
maintains an overall positive pressure anisotropy. This growth
is intended to mimic magnetic field fluctuations in a turbulent
plasma and MHD-scale instabilities that amplify the magnetic
field, like the magnetorotational instability (MRI; Balbus &
Hawley 1991) or convective instabilities driven by anisotropic
thermal conduction in dilute plasmas (Balbus 2001; Quataert
2008). We suspect that our results are also relevant to cases
in which perpendicular heating or parallel cooling drives a
plasma mirror and/or IC unstable, as in, e.g., the solar wind.
Hellinger & Travnicek (2008) conducted an analogous study
to ours using hybrid simulations. In their study, expansion of
the simulation box decreased the mean magnetic field, so that
on average p⊥,i < p||,i . This in turn led to the growth and
nonlinear saturation of the firehose instability. Also, Travnicek
et al. (2007) conducted a similar hybrid simulation study where
the simulation box is expanded along the directions parallel and
perpendicular to B. With this setup, p⊥,i becomes larger than
p||,i on average, and both the mirror and IC instabilities can
grow and reach saturation. Our work is complementary to these
hybrid simulation studies and focuses on the process in which
the condition p⊥,i > p||,i is achieved by field amplification
due to shearing plasmas. We also consider higher values of
βi ≈ 1–80, relevant to accretion disks, the ICM, and the near-
Earth solar wind. Our calculations are less directly applicable to
heliospheric measurements of mirror modes driven unstable by
rapid heating through the Earth’s bow shock (e.g., Schwartz et al.
1996). This is because we assume that the pressure anisotropy
is generated on a timescale long compared to the IC timescale,
which is probably not true at collisionless shocks.

Our paper is organized as follows. In Section 2 we describe the
simulation set up, emphasizing the key physical and numerical
parameters. Section 3 shows our results and Section 4 presents
our conclusions. Throughout the paper we compare some of
our simulation results with linear theory predictions appropriate
to our PIC simulations. These have artificially low ion to

electron mass ratios (mi/me  1–10). The linear theory
results are based on the linear Vlasov solver developed in
Verscharen et al. (2013).

During the completion of this work, Kunz et al. (2014)
presented calculations of firehose and mirror saturation in
shearing plasmas with very similar results to those that we
present here.

2. SIMULATION SETUP

We use the electromagnetic, relativistic PIC code TRISTAN-
MP (Buneman 1993; Spitkovsky 2005) in two dimensions. The
simulation box consists of a square box in the x–y plane,
containing plasma with a homogeneous magnetic field B0
initially pointing along the x̂ axis. Since we want to simulate
a magnetic field that is being amplified in an incompressible
way, we impose a shear motion of the plasma so that the mean
particle velocity is v = −sxŷ, where s is a shear parameter
with units of frequency and x is the distance along x̂. From
flux conservation, the y-component of the mean field evolves as
∂〈B〉y/∂t = −sB0, implying a net growth of |〈B〉|. Although
we present simulations resolving the x–y plane only, we also
tried runs where the x–z plane was resolved. In those cases
the isotropization efficiency was substantially lower. This is
because, if the x–z plane is resolved, the growing component of
B is perpendicular to the plane of the simulation. This way the
angle between the relevant wave vectors, k, and B cannot be 0.
This over-constrains the wave vectors that are allowed to exist,
artificially reducing the isotropization efficiency.

An important physical parameter in our simulations will be
the ratio of the initial IC frequency to the shear frequency, ωc,i/s.
We refer to this as the magnetization. In typical astrophysical
environments ωc,i 
 s. Due to computational constraints,
however, we will use values of ωc,i/s much smaller than
expected in reality, although still satisfying ωc,i/s 
 1. The
dependence of our results on the ratio ωc,i/s will be carefully
assessed.

In standard MHD simulations where shear plasma motions
are imposed, shearing periodic boundary conditions would be
used along the x direction (see, e.g., Hawley et al. 1995). In
that case, the flow velocities at the x-boundaries of the box are
matched using Galilean transformations of the fluid velocity.
In the case of relativistic PIC simulations this cannot be done
in a self-consistent way. The reason is that, under a relativistic
change of reference frame, the current J transforms in a way that
is inconsistent with simply transforming the particle velocities.4

We instead implement shearing coordinates, in which the grid
moves with the shearing velocity v = −xsŷ. In this new frame
the average plasma velocity vanishes everywhere in the box and
simple periodic boundary conditions are allowed both in the x
and y axes. In these shearing coordinates, Maxwell’s equations
gain additional terms (see Appendix A of Riquelme et al. 2012),
becoming

∂ B(r, t)
∂t

= − c∇ × E(r, t) − sBx(r, t)ŷ

+ s

(
ct

∂ E(r, t)
∂y

+
y

c

∂ E(r, t)
∂t

)
× x̂ and (1)

4 Relativistic velocity transformations imply changes in the volume occupied
by the particles, leading to a non-conservation of charge density that can not be
trivially implemented in a PIC simulation (see Riquelme et al. 2012).
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Table 1
Physical and Numerical Parameters for the Runs

Runs mi/me βinit βinit,i (= βinit,e) ωc,i/s vA,0/c c/ωp,e/Δx Nppc L/RL,i

beta6mag93 1 6 . . . 93 0.05 14 30 12
beta6mag670a 1 6 . . . 670 0.15 14 10 18
beta6mag670b 1 6 . . . 670 0.15 14 10 24
beta20mag93a 1 20 . . . 93 0.05 10 60 35
beta20mag93b 1 20 . . . 93 0.05 10 30 35
beta20mag670a 1 20 . . . 670 0.05 7 30 36
beta20mag670b 1 20 . . . 670 0.05 7 30 48
beta20mag2000 1 20 . . . 2000 0.05 7 50 55
beta80mag670 1 80 . . . 670 0.05 5 30 24
beta80mag1340 1 80 . . . 1340 0.05 5 30 24
betai20magi240mass10 10 . . . 20 240 0.05 5 20 25

Notes. A summary of the physical and numerical parameters of the simulations discussed in the paper. These are the mass ratio mi/me ,
βinit (= βinit,i + βinit,e) if mi/me = 1, βinit,i (= βinit,e) if mi/me > 1, the magnetization ωc,i/s, the initial Alfvén velocity, vA,0, the
skin depth c/ωp,e/Δx (where Δx is the grid points separation), the number of particles per cell Nppc (including ions and electrons), and
the box size in units of the typical ion Larmor radius L/RL,i (RL,i = vth,i/ωc,i , where v2

th,i = 3pi/ρ is the rms ion velocity and ρ is
the mass density of the ions). We confirmed numerical convergence by exploring the resolution in c/ωc,e/Δx , Nppc, and L/RL,i for all
parameter combinations of βinit (or βinit,i), ωc,i/s, and mi/me .

∂ E(r, t)
∂t

= c∇ × B(r, t) − 4π J − sEx(r, t)ŷ

− s
(
ct

∂ B(r, t)
∂y

+
y

c

∂ B(r, t)
∂t

)
× x̂, (2)

where c is the speed of light, and E is the electric field. In
addition to the modifications to Maxwell’s equations, the forces
on the particles also acquire an extra term:

d p
dt

= spxŷ + q
(

E +
u
c

× B
)

, (3)

where p, u, and q are the particle’s momentum, velocity, and
charge, respectively. The third term on the right hand side of
Equation (1) and the fourth term on the right hand side of
Equation (2) are proportional to time and arise from the motion
of the shearing coordinate grid points with respect to those
of the non-shearing coordinates. Indeed, as time goes on, the
x axis of the shearing coordinates is gradually tilted (as seen
from the non-shearing frame); therefore the x-derivatives of the
fields (∂/∂x) in the shearing coordinates must include a time
dependent term that accounts for the evolution of the x axis.

The last terms in Equations (1) and (2), which are proportional
to the coordinate y, will be neglected for the following reasons.
In our simulations the box size will typically be a few times the
Larmor radius of the ions, RL,i . Thus, sy/c ∼ (s/ωc,i)(vth,i/c)
(where vth,i is the thermal velocity of the ions), which is
much smaller than unity since we are interested in the regime
s/ωc,i � 1 and vth,i/c � 1. As a result, the last term in
Equation (1) will be much smaller than the term on the left hand
side, especially since |B| 
 |E|.

The last term of Equation (2), on the other hand, is not
necessarily much smaller than the displacement current (left
hand side term), mainly because we expect |E| � |B|.
However, if the characteristic timescale for the mirror and IC
modes is close to s−1 (below we will check that this is indeed
the case), the last term in Equation (2) will be much smaller
than the first term on the right hand side (the ratio between
these terms scales as ∼(s/ωc,i)2(vth,i/c)2), so we choose to
neglect it in the limit s � ωc,i . The fact that the neglected
term can still be comparable to the displacement current implies
that we may be excluding a relevant contribution to the charge

density in Gauss’ law. However, the physics of interest in this
paper is non-relativistic and charge separation does not play a
role. As a result, c∇ × B + sct ∂ B/∂y × x̂ ≈ 4π J (equivalent
to c∇ × B ≈ 4π J in the non-shearing coordinate system).
Neglecting the terms proportional to y is also required by the
periodic boundary conditions in the y-direction. The existence
of these terms at all is a consequence of the incompatibility
of the Galilean invariance of the shearing box and the Lorentz
invariance of the PIC calculations. For consistency we will also
neglect the term sExŷ in Equation (2), which is also comparable
to the displacement current (in the case where E evolves on a
timescale close to s−1).5

Our set of simulations are summarized in Table 1. The
physical setup is defined by the magnetization parameter, ωc,i/s
(the ratio of the initial cyclotron frequency to the shear rate),
the ratio between the initial particle and magnetic pressures,
βinit = 8πpinit/B

2
0 , the mass ratio between ions and electrons,

mi/me, and the initial Alfvén velocity of the plasma vA,0,
relative to the speed of light c, where vA,0 ≡ B0/

√
4πρ and

ρ is the mass density. The numerical parameters of our runs are
defined by the spatial resolution (c/ωp,e/Δx), box size relative
to the ion Larmor radius (L/RL,i), and number of particles
per cell (Nppc), where ωp,e is the plasma frequency of the
electrons and Δx is the spacial separation of the grid points.
The simulations shown in this paper are described in Table 1.
These simulations are a subset of a higher number of runs,
where we used different combinations of numerical and physical
parameters, which confirmed numerical convergence.

3. RESULTS

We want to explore the regime β⊥, β|| ≈ 1–80. In order to
do so, most of our runs use the mass ratio mi/me = 1. Since
for mi/me = 1 both species will be essentially indistinguish-
able, we initially give ions and electrons Maxwellian energy
distributions with the same temperature, and use the parameters
β⊥ = βe,⊥ + βi,⊥ and β|| = βe,|| + βi,|| to quantify the pres-
sure of the plasma perpendicular and parallel to B. Simulations

5 The modification to Faraday’s equation that depends on Bx can be
integrated using simple time and space interpolations of Bx. This way, after
this modification is implemented, the numerical algorithm used by
TRISTAN-MP continues to be second order accurate in time and space.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Three components of δB and plasma density fluctuations δρ at two different times: t · s = 1 (upper row) and t · s = 2 (lower row), for run beta6mag670b
(βinit = 6, ωc,i/s = 670, mi/me = 1). Fields and density are normalized by B0 and the initial density ρ0, respectively. Arrows denote the mean magnetic field direction
on the simulation plane. IC and mirror instabilities contribute comparably to the fluctuations at t · s = 1, while mirror dominates at t · s = 2. Density fluctuations best
correlate with the mirror modes. The dominance of mirror fluctuations suggests that mirror modes are more robust than the IC modes in the saturated regime. This
may be due to the particle energy spectrum departing from bi-Maxwellian (see Figure 5), suppressing the growth of the IC modes.

with mi/me = 1 of course do not allow us to study the physics
of electron isotropization. However, in Section 3.4 we use an
example of our mi/me > 1 runs to show that mi/me = 1
calculations reproduce the ion-related phenomena fairly well,
with β⊥ and β|| playing the same role of βi,⊥ and βi,|| in the
mi/me > 1 runs. We defer a detailed study of electron scale
pressure isotropization to future work.

We divide our runs into cases with three different initial betas:
βinit = 6, 20, and 80. Our analysis focuses on the nonlinear
structure of the IC/mirror generated fluctuations, the evolution
of the pressure anisotropy p⊥/p|| − 1, and the conservation of
the ion magnetic moment.

3.1. Case βinit = 6

As discussed above, the expectation is that the IC instability
should play an important role in the βinit = 6 case, and it should
become significantly less important in the βinit = 20 and 80
cases. The contributions from the IC and mirror modes can
be seen from Figure 1. This figure shows 2D images of the
field fluctuations δBj/B0 (≡ (Bj − 〈Bj 〉)/B0; <> stands for
“volume average”) and the plasma density fluctuations δρ/ρ0
for run beta6mag670c (“j” stands for the component x, y, or z of
δB) at two different times: t · s = 1 (upper panels) and t · s = 2
(lower panels).

We can see that at the earlier time (t · s = 1) the three com-
ponents of δB have about the same amplitude (see Figures 1(a),
(b), and (c)), but appear to be dominated by different mode ori-
entations, indicating the simultaneous presence of IC and mirror
modes. The mirror modes are expected to have δB mainly in the
plane of the simulation (the plane of k and 〈B〉; Pokhotelov et al.
2004). On the other hand, the IC modes have the three compo-
nents of δB of comparable magnitude, so their presence can be
most clearly revealed by δBz (Figure 1(c)). Indeed, while δBx

and δBy are dominated by a combination of oblique (mirror) and
quasi-parallel (IC) modes, δBz appears to be dominated by only
quasi-parallel modes. Thus, initially the mirror and IC instabil-
ities contribute comparably to δB. At the later time (t · s = 2),
however, the fluctuations become dominated by an oblique wave
vector, with the IC instability playing a subdominant role. The
density fluctuations at all times are δρ/ρ0 � 1, and seem to
correlate primarily with the mirror modes.

The relative contribution of the mirror and IC instabilities can
also be seen from Figure 2, which shows the time evolution of
different volume-averaged quantities for runs with ωc,i/s = 93
(first column; run beta6mag93a) and ωc,i/s = 670 (second
column; run beta6mag670a). In Figures 2(a) and (b) we plot
δB2

j /B
2
0 for the two magnetizations. In both cases there is an

initially exponential growth of |δB| until < δB2
j > /B2

0 ∼ 0.03.
Both instabilities have about the same growth rates, which are
γIC ≈ γMI ∼ 10s. Note that the dominant growth rate of the
mirror/IC modes is nearly the same in the two simulations
with different values of ωc,i . The growth rate is thus set by the
background shear rate s instead of ωc,i . This can be understood
by noting that the smaller growth rate modes have a smaller
anisotropy threshold. Therefore, as B and Δp grow, modes with
smaller growth rate will begin to grow first. This implies that
the dominant modes will be those that can reach a significant
amplitude to stop the growth of Δp on the shear timescale s−1.

After the exponential phase, the growth becomes dominated
by the mirror modes and is secular (as predicted by Schekochihin
et al. 2008). This transition from exponential to secular is clearly
seen at t s ∼ 1 for ωc,i/s = 670 in Figure 2. Despite the similar
exponential growth rate for the mirror and IC instabilities in the
linear regime, the mirror modes are more robust and dominate
in the nonlinear regime. This dominance of the mirror modes is
remarkable because it occurs even for βi ∼ 1, where the linear
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Field fluctuations and pressure anisotropy for our βinit = 6 runs. Panels (a) and (b) show the evolution of δB2
j /B2

0 (≡ 〈(Bj − 〈Bj 〉)2〉/B2
0 ; solid) and B2

j /B2
0

(≡ 〈Bj 〉2/B2
0 ; dotted) for runs beta6mag93 and beta6mag670a, respectively (j = x, y, and z correspond to black, red, and green, respectively). For the same runs,

panels (c) and (d) show Δp/p|| (≡ 〈(p⊥ − p||)/p||〉; black-solid), compared with the linear mirror and IC thresholds (Δp/p||,MI and Δp/p||,IC , in red and green,
respectively) for pair plasma and growth rates γ = 0.05ωc,i and γ = 0.007ωc,i , respectively. Panels (e) and (f) show δB2

||/B
2 and δB2

⊥/B2, where the subscripts || and
⊥ denote the components parallel and perpendicular to 〈B〉, respectively. After the plasma pressure anisotropy exceeds the mirror and IC thresholds, there is an initial
phase of exponential growth followed by a secular phase. The pressure anisotropy initially grows but saturates at the linear threshold for the mirror/IC instabilities.

analysis predicts an important contribution of the IC instability
(in the nonlinear regime the mean magnetic energy has been
amplified by about one order of magnitude, so that βi ∼ 1). We
suggest below (Figure 5) that departure from the bi-Maxwellian
energy distribution assumed in the linear instability analysis is
likely playing an important role in this sub-dominance of the IC
instability.

One difference in the evolution of δB for the two different
magnetizations is that the end of the exponential phase occurs
at somewhat higher amplitude in the ωc,i/s = 93 case. This
difference implies that, for smaller values of ωc,i/s, the mirror
and IC fluctuations are less efficient in suppressing the pressure
anisotropy, requiring larger values of |δB|. At the end of this
section, we will explain in further detail this dependence of |δB|
on magnetization by focusing on the mechanism by which the
isotropization occurs.

One consequence of the difference in |δB| is that the lower
magnetization runs take longer to reach the point when Δp/p||
(≡ 〈(p⊥ − p||)/p||〉) saturates. Thus in the ωc,i/s = 93 run

the anisotropy Δp/p|| has more time to grow, reaching larger
values before saturating. This can be seen in the evolution
of Δp/p||, shown in black lines in Figures 2(c) and (d) for
runs beta6mag93a and beta6mag670a, respectively. For both
magnetizations, there is an initial overshoot in Δp/p||, whose
amplitude is larger for the ωc,i/s = 93 run. After the overshoot,
Δp/p|| evolves in a similar way for both magnetizations.

Since in the nonlinear regime δB is dominated by mirror
modes, after the saturation one would expect the pressure
anisotropies to behave according to the marginal stability
conditions of the mirror instability. Since in our simulations
both the IC and mirror modes grow at γ ∼ 10 s, we calculated
the IC and mirror thresholds for equivalent growth rates in
the pair plasma case with magnetizations ωc,i/s = 93 and
ωc,i/s = 670. Thus, Figures 2(c) and (d) show that the
threshold for mirror (red) and IC instability (green) in the cases
γ = 0.05 ωc,i and γ = 0.007 ωc,i , respectively. We see that
the mirror threshold coincides fairly well with the saturated
Δp/p|| for both magnetizations. These results imply that the
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(a) (b)

Figure 3. Evolution of the ion magnetic moment for the βinit = 6 runs with
ωc,i/s = 93 and 670 (beta6mag93 and beta6mag670a in Table 1). We show the
evolution of the true average magnetic moment μ ≡ 〈v2

⊥/B〉p (black line) and
an effective global magnetic moment, μeff ≡ 〈v2

⊥〉p/|〈B〉| (red line), where the
subscript p denotes an average over all particles. The ion magnetic moment μ

is conserved until ts ∼ 1, at which point it decreases on the same timescale as
the mean magnetic field (see Figure 4). The close similarity between μ and μeff
shows that there are not strong correlations between the particle velocity v⊥ and
magnetic field B; such correlations are more prominent at higher βinit where the
IC instability is subdominant (see Figure 9).

linear marginal stability condition for the mirror instability is
fairly accurate in determining Δp/p|| in the nonlinear regime.
In realistic astrophysical setups, where ωc,i can be many orders
of magnitude larger than s, the expectation is that Δp/p|| will
follow the γ → 0 mirror threshold, given by p⊥/p||−1 = 1/β⊥.
This differs from the results shown in Figure 2, which are only
appropriate for pair plasmas and modest magnetization.

As discussed in the introduction, it is not known whether
the mirror instability saturates via pitch-angle scattering (see,
for instance, Sharma et al. 2006) or whether it cancels the
appearance of a pressure anisotropy by substantially modifying
the structure of the magnetic field (Schekochihin et al. 2008). In
the latter case δB should grow secularly until |δB|  B, with
the breaking of μ-invariance not necessary for the regulation
of p⊥. Figures 2(e) and (f) show the evolution of δB2

⊥/B2 and
δB2

||/B
2 for ωc,i/s = 93 and 670, respectively, where B⊥ and

B|| refer to the magnetic field component perpendicular and
parallel to the mean field 〈B〉. We see that (1) δB2

|| dominates
in the nonlinear regime, as expected from the larger amplitude
of the oblique mirror modes, and (2) the saturation amplitude
is |δB|2/B2 ∼ 0.04, which favors the scenario where the non-
conservation of μ is the key mechanism for the isotropization
of the plasma pressure, at least if the background field has been
amplified significantly.

To quantify the time variation of the average ion magnetic
moment we define

μ =
〈
v2

⊥
B

〉
p

and μeff = 〈v2
⊥〉p

|〈B〉| , (4)

where <>p stands for average over all the particles. μ corre-
sponds to the actual average of the magnetic moment. Thus if
a nearly μ-conserving process dominates the mirror saturation,
μ should remain fairly constant. μeff , on the other hand, can be
thought as an effective global magnetic moment that ignores the
fluctuations in B or the correlation between v⊥ and B due to
particles collecting in mirrors. μeff necessarily decreases since
the mirror and IC instabilities suppress the growth that 〈v2

⊥〉p
would have if the particles were only affected by the mean field
〈B〉. Thus, if μ is nearly conserved, μ and μeff should evolve
quite differently, with μ > μeff . On the other hand, if there

Figure 4. Rate at which the ion magnetic moment changes in time, |d ln μ/dt |,
for different βinit, compared to the growth rate of the mean magnetic field
d ln 〈|B|〉/dt (black line; this quantity is the same for the different βinit
runs). |d ln μ/dt | is shown for our simulations with βinit = 6, 20, and
80 (beta6mag670a, beta20mag670a, and beta80mag1340, respectively). The
vertical-dotted lines mark the beginning of the saturated state for each run
based on when the growth of the fluctuations becomes roughly secular. In the
saturated state, the magnetic moment changes on a timescale comparable to that
of the mean magnetic field (to within ∼25–50%). At earlier times, however, the
magnetic moment is reasonably well conserved.

is significant pitch angle scattering μ ∼ μeff and both should
decrease on the same timescale that 〈B〉 increases.

Figures 3(a) and (b) show μ and μeff for our βinit = 6 runs with
magnetizations ωc,i/s = 93 and ωc,i/s = 670, respectively. We
see that for both magnetizations the difference between μ and
μeff is very small (only ∼ a few % difference). This implies that
there is little spatial correlation between v⊥ and B. We shall see
below that μ and μeff differ somewhat more at higher β where
the mirror instability dominates over the IC instability.

Figure 4 compares the rate of change of the ion magnetic
moment with that of the mean magnetic field for runs with
βinit = 6, 20, and 80. This comparison is important since it
is the evolution of the mean field that is driving the velocity
space instabilities in our calculations. If the total thermal energy
varies on a timescale long compared to the mean magnetic
field, maintaining marginal stability to the mirror instability
via pitch-angle scattering implies |d ln μ/dt |  |d ln B/dt |[1−
O(β−1)]. The term O(β−1) is exactly β−1 for the canonical
high magnetization mirror instability threshold but is somewhat
different in our pair plasma, modest magnetization simulations
(hence the use of O). This expression for d ln μ/dt implies
that pitch-angle scattering should lead to the magnetic moment
varying at a rate slightly less than that of the mean magnetic
field. This is consistent with our numerical results in Figure 4
in the saturated state where the magnetic field grows secularly
in time.

At earlier times, when the magnetic field fluctuations due to
the mirror and IC instability are smaller, μ is approximately
conserved even though the mirror and IC are present and grow
exponentially. In particular, there is a temporal lag of ∼0.3 s−1
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(a) (b)

(c) (d)

Figure 5. Energy spectra of particles for the high magnetization βinit = 6 run beta6mag670a at two different times. Top: energy spectra as a function of the energies
perpendicular and parallel to the magnetic field, p2

⊥/2m (black-dotted line) and p2
||/2m (black-solid line). Bottom: energy spectra as a function of v‖. Bi-Maxwellian

fits are shown in red. There is a clear deviation from the bi-Maxwellian at the highest energies, which grows in time. There is, however, little deviation from a
Maxwellian at v‖ ∼ 0, in contrast to some of the 1D runs discussed in the Appendix. Comparison with Figure 10 suggests that the high energy deviation from
Maxwellian is due to the IC instability, since it is less prominent at higher β when the IC instability is sub-dominant.

between the onset of the exponential growth of the mirror
and IC instabilities and the onset of pitch angle scattering that
decreases μ. Our interpretation of this result is that the mirror/
IC fluctuations must reach a sufficient amplitude, roughly δB ∼
0.1–0.3 〈B〉, in order for pitch angle scattering to be effective.
For the mirror instability, this violation of μ conservation by
finite amplitude fluctuations is likely due to the stochasticity
of particle orbits that sets in for large amplitude (albeit low
frequency) fluctuations (e.g., Chen et al. 2001; Johnson & Cheng
2001). For the IC instability, the need for finite amplitudes
before significant scattering sets in is a consequence of the well-
known result that the scattering rate for cyclotron-frequency
fluctuations is ∼ ωc,i(δB/B)2.

The breaking of local μ-invariance for this calculation (β⊥,
β|| < βinit = 6) might be affected by the subdominant (but
still significant) contribution of the IC modes to the magnetic
fluctuations. However, Figure 4 shows that the magnetic moment
varies at the same rate as the mean magnetic field for all of the
βinit we have simulated. We will discuss the higher βinit results
in more detail in the next two subsections.

An interesting question is whether the non-linear evolution of
the velocity space instabilities makes the energy distribution of
the particles substantially different from a bi-Maxwellian spec-
trum. This question is particularly relevant in terms of under-
standing the suppression of the IC modes in the nonlinear regime
as β⊥ goes from 6 to ∼1. Indeed, it has been shown(Isenberg
2012; Isenberg et al. 2013) that a significant departure from a bi-
Maxwellian distribution can increase the anisotropy threshold
for the growth of the IC modes and that a change of this kind
is expected given the resonant character of the IC instability.

Figure 6. Time derivative of the total particle thermal energy (black) along with
the volume averaged heating rate by the anisotropic stress −sΔpb̂x b̂y (red) for
βinit = 6 and ωc,i/s = 670 (run beta6mag670a). The good agreement between
the two results implies that the anisotropic stress coupling to the background
shear is the primary mechanism for particle heating.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Magnetic field fluctuations and pressure anisotropy for our βinit = 20 runs with ωc,i/s = 93, 670, and 2000 (runs beta20mag93a, beta20mag670a, and
beta20mag2000). The results for ωc,i/s = 670 and 2000 are quantitatively similar, indicating that our results accurately describe the high cyclotron frequency limit
relevant to astrophysical and heliospheric systems. Panels (a)–(c) show the evolution of δB2

j /B2
0 (≡< (Bj − 〈Bj 〉)2 > /B2

0 ; solid) and B2
j /B2

0 (≡ 〈Bj 〉2/B2
0 ; dotted),

respectively (j = x, y, and z correspond to black, red, and green, respectively). For the same runs, panels (d)–(f) show Δp/p|| (≡ 〈(p⊥ − p||)/p||〉; black-solid),
compared with the linear mirror threshold for a pair plasma and growth rates γ = 0.05 ωc,i (panel (d)) and γ = 0.007 ωc,i (panels (e) and (f)). Panels (g)–(i) show
δB2

||/B
2 and δB2

⊥/B2. In contrast with the βinit = 6 case (shown in Figure 2), here δB2
|| 
 δB2

⊥, which is consistent with the dominance of the mirror instability. Also
note that the nonlinear saturation of the mirror fluctuations occurs when |δB| ∼ 0.3 B.

Figure 5 shows that the particle spectrum does differ somewhat
from a bi-Maxwellian for our βinit = 6 run, mainly due to a
significant excess of particles at the highest energies. In future
work, we will study whether or not the spectral variation in
Figure 5 can completely account for the decrease in the ampli-
tude of the IC modes in the saturated state. Figure 5 also shows
that the ion velocity distribution does not deviate significantly
from a bi-Maxwellian at low v‖, as has been found in some 1D
studies of the saturation of the mirror instability (e.g., South-
wood & Kivelson 1993; Califano et al. 2008). We discuss this
in more detail in the Appendix.

Finally, Figure 6 shows the evolution of the total heating
rate of the particles as a function of time (black line). For
comparison, in the red line we plot the particle heating rate by
the anisotropic stress, −sΔpb̂xb̂y (Sharma et al. 2006). We see
a reasonable agreement between the two results, implying that
the anisotropic stress plays the dominant role in particle heating.
Other mechanisms, like wave–particle interaction, must play a

secondary role in the total particle energization. This is true for
all of the βinit we have simulated.

3.2. Case βinit = 20

We now consider a somewhat weaker magnetic field case
with βinit = 20. In this case, the field fluctuations are domi-
nated by the mirror instability at all times. This can be seen in
Figures 7(a)–(c) which show the evolution of the three com-
ponents of δB2 for βinit = 20 runs with magnetizations
ωc,i/s = 93, 670, and 2000, respectively (runs beta20mag93a,
beta20mag670a and beta20mag2000a in Table 1). In all three
cases δB2

z is small compared to δB2, showing the subdominant
role of the IC instability. Figures 7(a)–(c) also show the charac-
teristic transition between exponential growth (with γ ≈ 10s)
and secular growth (with δB2/B2 ∼ 0.1) for the mirror modes.

As in the βinit = 6 case, the transition between the expo-
nential and secular regimes occurs at smaller amplitudes and
in a smoother way in the more strongly magnetized runs.

8
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(a) (b)

(c) (d)

Figure 8. Spatial distribution of magnetic field fluctuations B2/〈B2〉 at t · s ≈ 1 for βinit = 20 and magnetization ωc,i/s = 93 (panel (a); run beta20mag93b) and
ωc,i/s = 670 (panel (b); run beta20mag670b). Panels (c) and (d) show the same quantities at t · s ≈ 2. The black arrows show the direction of 〈B〉. The higher
magnetization run produces mirror modes whose wavevectors are more perpendicular to 〈B〉 and with longer wavelengths. A migration to larger wavelengths in time
can also be seen.

(a) (b)

(c) (d)

Figure 9. Panels (a) and (b) show the evolution of the ion magnetic moment μ for βinit = 20 runs with ωc,i/s = 93 (beta20mag93a; panel (a)) and ωc,i/s = 670
and 2000 (beta20mag670a and beta20mag2000; panel (b)). Panels (c) and (d) compare the corresponding rate of change of μ with that of the mean magnetic field for
runs beta20mag93a and beta20mag670a, respectively. All plots show the evolution of the true average magnetic moment μ ≡ 〈v2

⊥/B〉p (black line) and an effective
global magnetic moment, μeff ≡ 〈v2

⊥〉p/|〈B〉| (red line), where the subscript p denotes an average over all particles. The magnetic moment begins to decrease when
the fluctuations reach δB ∼ 0.1 〈B〉 (see Figure 7). The difference between μ and μeff is more significant than for βinit = 6 (cf. Figure 3). This is a consequence of
particles bunching in mirrors, which leads to a correlation between v⊥ and B. Nonetheless, the ion magnetic moment changes at about the same rate as the background
magnetic field after saturation at ts  0.6, indicating that pitch angle scattering regulates the nonlinear saturation on sufficiently long timescales.
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(a) (b)

(c) (d)

Figure 10. Energy spectra of particles for our high magnetization βinit = 20 run beta20mag670a at two different times during the nonlinear regime. Top: energy
spectra as a function of the energies perpendicular and parallel to the magnetic field, p2

⊥/2m (black-dotted line) and p2
||/2m (black-solid line). Bottom: energy spectra

as a function of v‖. In all cases, a bi-Maxwellian energy spectrum (red) provides a good approximation to the numerical simulations.

Figures 7(d)–(f) also show that, as in the case of βinit = 6,
after the overshoot the pressure anisotropy follows the marginal
stability condition for the mirror modes reasonably well, partic-
ularly at higher magnetization.

Figures 7(g)–(i) show δB2
||/B

2 and δB2
⊥/B2 as a function of

time. While δB2
||/B

2 is about the same for the three magne-
tizations, δB2

⊥/B2 is significantly smaller in the higher mag-
netization runs. The relative magnitude of δB|| and δB⊥ is
a measure of the orientation of the mirror’s dominant wave
vector, k, with respect to 〈B〉: a large δB2

||/δB2
⊥ ratio im-

plies that k and 〈B〉 are nearly perpendicular. The results of
Figures 7(g)–(i) imply that for larger magnetization, k and 〈B〉
are more perpendicular, which is consistent with linear calcula-
tions (Pokhotelov et al. 2004).

The orientation of the modes in the nonlinear stage can also
be seen directly in Figure 8, which shows the spatial distribution
of B2/〈B2〉 at two different times for the runs with ωc,i/s = 93
and ωc,i/s = 670. Figures 8(a) and (b) correspond to the time
t · s = 1, while Figures 8(c) and (d) correspond to t · s = 2.
For each magnetization, the mirror fluctuations are dominated
by two modes that are symmetric with respect to the magnetic
field, and that are more oblique at higher magnetization. Note
also that the wavelength of the dominant modes (in units of
the Larmor radius of the particles, RL,i) is larger for larger
magnetization and that the modes tend to grow in wavelength
as time goes on.

Figure 9 shows the evolution of the ion magnetic moment μ
and the rate of change of μ relative to that of the mean magnetic
field for our βinit = 20 calculations. A comparison of Figures 9
and 7 shows that the magnetic moment is reasonably conserved

until the magnetic fluctuation amplitude is close to (though
somewhat less than) its saturated value. As in our βinit = 6
calculations, this implies that there is a time lag of ∼0.25–0.3 s−1

between the onset of the mirror instability and the onset of
significant pitch-angle scattering (and its associated decrease in
μ). Note, however, that for βinit = 20 the saturated amplitude
of the fluctuations in the secular regime, |δB| ∼ 0.3 B, is larger
than in the βinit = 6 case, for which |δB| ∼ 0.1 B. This implies
that when only the mirror instability plays a significant role, a
somewhat larger fluctuation amplitude is necessary for efficient
pitch-angle scattering. We will see below that |δB| ∼ 0.3 B
continues even for βinit = 80; the saturated amplitude of the
mirror modes is thus fairly independent of the beta of the plasma
as long as the IC instability is not significant (β � 6).

Figure 9 also shows that for βinit = 20, the true ion magnetic
moment μ decreases somewhat more slowly than the effective
global magnetic moment μeff (by ∼25%). This was not seen
in our βinit = 6 calculations (Figure 3). The modest difference
between μ and μeff indicates that the nonlinear saturation of
the mirror instability involves correlations between v⊥ and B,
i.e., particles bunching in mirrors. This effect is independent
of magnetization, as can be seen from the solid and dotted
lines in Figure 9(b) (corresponding to ωc,i/s = 670 and 2000,
respectively).

Figure 10 shows that the particle energy spectrum stays fairly
close to bi-Maxwellian in our βinit = 20 runs, regardless of
the magnetization. Since these simulations are almost purely
mirror dominated, this suggests that the mirror modes provide
rather momentum-independent pitch-angle scattering to the
particles. As a result, it is likely that IC modes produce the
deviations from a bi-Maxwellian distribution seen in Figure 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Magnetic field fluctuations and pressure anisotropy for βinit = 80 runs with ωc,i/s = 670 (beta80mag670; left column) and ωc,i/s = 1340 (beta80mag1340;
right column). Panels (a) and (b) show the evolution of δB2

j /B2
0 (≡< (Bj − 〈Bj 〉)2 > /B2

0 ; solid) and B2
j /B2

0 (≡ 〈Bj 〉2/B2
0 ; dotted), respectively (j = x, y, and z

correspond to black, red, and green, respectively). For the same runs, panels (c) and (d) show Δp/p|| (≡ 〈(p⊥ −p||)/p||〉; black-solid), compared with the linear mirror
threshold in red (Δp/p||,MI ) for a pair plasma and growth rates γ = 0.007ωc,i and γ = 0.0035 ωc,i , respectively. Panels (e) and (f) show δB2

||/B
2 and δB2

⊥/B2. The
results shown here are very similar to the analogous βinit = 20 results in Figure 7, consistent with the dominance of the mirror instability at high β.

Figure 10 also shows that the parallel velocity spectrum dN/dv‖
remains nearly Maxwellian during most of the saturated regime
(with only a transient ∼1% decrease for v|| → 0 especially
at the end of the exponential growth regime). The lack of
significant flattening of dN/dv‖ (which contrasts with the
prediction of Califano et al. 2008) is analyzed in further detail
in the Appendix.

3.3. Case βinit = 80

For βinit = 80 we focus on simulations with ωc,i/s = 670 and
1340, respectively (runs beta80mag670 and beta80mag1340 in
Table 1). The results are essentially the same as for the βinit = 20
case so we do not discuss them in detail. Figure 11 shows
that the mirror instability dominates the fluctuations in B. The
evolution of the pressure anisotropy Δp/p|| contains the initial
overshoot followed by a rather flat behavior. The amplitude
of the overshoot is controlled by the magnetization, while the

subsequent evolution is fairly well described by the threshold
condition for mirror modes.

As in the βinit = 20 case, the saturation δB/B is ∼0.3.
Figure 12 shows the evolution of the ion magnetic moment
for the βinit = 80 simulations. The evolutions of μ and μeff are
the same for the two magnetizations presented (ωc,i/s = 670
and ωc,i/s = 1340), and show the same behavior seen in the
βinit = 20 case, which is discussed in detail in the previous
subsection.

3.4. Comparison with mi/me > 1 Simulations

In this section we show that our use of mi/me = 1 in the
previous sections does not have a significant effect on the
evolution of the ion pressure anisotropy under the influence
of the IC and mirror instabilities. In Figure 13 we present
the results for a simulation with mi/me = 10, βi = βe = 20,
and ωc,i/s = 240 (run betai20magi240mass10c), which is
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(a) (b)

(c) (d)

Figure 12. Panels (a) and (b) show the evolution of the ion magnetic moment μ for our βinit = 80 runs with ωc,i/s = 670 and ωc,i/s = 1340 (runs beta80mag670
and beta80mag1340, respectively). Panels (c) and (d) compare the rate of change of μ with that of the mean magnetic field. In all panels, we show the evolution of
the true average magnetic moment μ ≡ 〈v2

⊥/B〉p (black line) and an effective global magnetic moment, μeff ≡ 〈v2
⊥〉p/|〈B〉| (red line), where the subscript p denotes

an average over all particles. The magnetic moment begins to decrease when the fluctuations reach δB ∼ 0.1 〈B〉 (see Figure 11). All of the key results here are very
similar to the βinit = 20 results shown in Figure 9.

(a) (b)

(c) (d)

Figure 13. Magnetic field fluctuations, ion pressure anisotropy, and ion magnetic moment for a simulation with mi/me = 10, βi = βe = 20, and ωc,i/s = 240 (run
betai20magi240mass10). The ion results here are similar to the corresponding mi = me results in Figures 7 and 9, indicating that the pair plasma results capture
most of the key ion physics. Panel (a) shows the evolution of δB2

i /B2
0 and B2

i /B2
0 , in solid and dotted lines, respectively. The small contribution of δB2

z implies the
dominance of mirror modes. Panel (b) shows the evolution of δB2

⊥/B2 (red) and δB2
||/B

2 (black) with δB2
|| 
 δB2

⊥, implying that the mirror modes have k⊥ 
 k||.
Panel (c) shows the evolution of the ion pressure anisotropy Δpi/p||,i (black-solid). The linear mirror threshold for mirror modes with γ /ωc,i = 0.05 in a βi = βe ,
mi/me = 10 plasma is also shown (red line) along with the analogous threshold for mi/me = 1836 for comparison (red dotted line). Panel (d) shows the evolution of
μ (≡< v2

⊥,i /B >, black-solid) and μeff (≡< v2
⊥,i > /〈B〉, red-solid); see Equation (4) and associated text for details.
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analogous to the previous mi/me = 1 simulations that use
βi = βe = 10. A comparison of Figure 13(a) with Figures 7(a),
(b), and (c) shows that for both mass ratios the evolution of δB is
dominated by the mirror instability, with the initial exponential
regime being followed by secular growth. Figure 13(b) shows
the evolution of δB2

⊥/B2 and δB2
||/B

2. As in the mi/me = 1 case
(see Figures 7(g), (h), and (i)), δB2

|| 
 δB2
⊥ in the secular stage,

implying that mirror modes with k⊥ 
 k|| are dominant. The
maximum amplitude of δB||/B ∼ 0.3 is also in good agreement
with the mi/me = 1 simulations.

The evolution of the ion pressure anisotropy Δpi/p||,i is
shown in Figure 13(c). As in the mi/me = 1 runs (see
Figures 7(d)–(f)), Δpi/p||,i follows the linear threshold of the
mirror instability fairly closely. This is seen in Figure 13(c),
which shows the linear mirror threshold expected for modes
with γ /ωc,i = 0.05, βi = βe = 20, and mi/me = 10
and 1836 (red and dotted-red lines, respectively). The small
difference between our results and the mi/me = 10 and 1836
thresholds strongly suggests that the use of mi/me = 1 for most
of our study captures reasonably well the key physics of the
mirror and IC instabilities in a real electron-ion plasma. Finally,
Figure 13(d) shows the evolution of μ (black solid line) and
μeff (red solid line). The results are quantitatively similar to the
mi = me results in Figures 9(a) and (b). This shows that the role
played by pitch-angle scattering in the saturation of the mirror
instability is well captured by our mi/me = 1 simulations.

4. CONCLUSIONS

We have used PIC simulations to study the nonlinear, long-
term evolution of ion velocity space instabilities in collisionless
plasmas. We have focused on instabilities driven by pressure
anisotropy with p⊥,i > p‖,i : the IC and mirror instabilities.
These instabilities are expected to arise when turbulence and/
or MHD instabilities amplify B, rendering p⊥,i > p‖,i due
to conservation of the ion magnetic moment μi . Alternatively,
in the solar wind p⊥,i/p‖,i can increase due to perpendicular
heating and/or parallel cooling of the plasma.

In contrast to previous studies, we do not consider the initial
value problem of the evolution of a given initial ion pressure
anisotropy. Instead, we self-consistently induce the growth of
an ion pressure anisotropy by continuously amplifying the
mean magnetic field in our computational domain. This setup
allows us to study the long-term, saturated state of the plasma,
rather than the (much shorter) initial, exponential stage. The
former is of most interest for the heliospheric and astrophysical
applications of our work. We have focused on the regime
βi ≈ 1–80 and plasma magnetizations ωc,i/s in the range
ωc,i/s ∼ 100–1000 (the magnetization is the ratio of the initial
IC frequency to the background shear frequency). Most of our
simulations used mi/me = 1, but we showed that our results
for the ion scale physics are fairly independent of the mass ratio
(see Section 3.4). So long as ωc,i/s 
 1, our results are also
relatively independent of the precise value of the magnetization
(see, in particular, Figures 7 and 9). Thus we believe that our
basic conclusions about the saturation of the mirror and IC
instabilities in continuously driven systems can be applied to
physical problems where ωc,i is many orders of magnitude larger
than s.

Our primary results are as follows.

1. For the βi ≈ 1–80 regime we have studied, the turbulent
fluctuations in the saturated state are dominated by mirror
modes. This is despite the fact that IC and mirror insta-

bilities are both present at early phases (and have similar
linear instability thresholds) when βi ≈ a few. A plausible
explanation for this dominance of the mirror instability in
the saturated state even at βi ∼ a few is that the ion veloc-
ity distribution departs from a bi-Maxwellian spectrum in
the presence of the IC instability. This can in turn increase
the threshold for the IC instability (Isenberg 2012; Isen-
berg et al. 2013) making it less important than the mirror
instability in the nonlinear regime.6 We indeed see more
significant departures from a bi-Maxwellian in the low βi

regime where the IC instability is present (Figures 5 and 10).
By contrast, the ion distribution function remains relatively
bi-Maxwellian in the high βi regime in which the mir-
ror instability dominates over the IC instability at all times
(Figure 10). The dominance of the mirror instability at βi ≈
a few is consistent with the nonlinear study of Travnicek
et al. (2007), which makes use of hybrid simulations of an
expanding box.

2. Small-scale fluctuations driven by the mirror instability
initially grow exponentially but saturate in a secular phase
in which |δB| ∼ 0.2–0.3|〈B〉| (Figures 2 and 7). The
fluctuations in the saturated state have k⊥ 
 k|| (see,
e.g., Figure 1) consistent with linear theory expectations
for mirror modes.

3. The ion pressure anisotropy Δpi/p||,i in the saturated
state is reasonably well described by the marginal stability
condition for the mirror instability (e.g., Figures 2 and 7).
Note, however, that the marginal stability state of the mirror
mode in our simulations is not the same as in real systems
because of the comparable ion and electron masses and the
smaller ωc,i/s used in our calculations. This is important
to bear in mind when comparing our results to heliospheric
measurements.

4. The total thermal energy of the plasma increases in time at
the theoretically predicted rate given the background shear
in the plasma and the anisotropic stress associated with
the pressure anisotropy (Figure 6). This is consistent with
the idea that the “viscous” heating rate in a collisionless
plasma is set by how velocity space instabilities regulate
the pressure anisotropy (Sharma et al. 2006).

5. When the growth time of the mirror instability is long com-
pared to the IC period—as is the case in our simulations
where the shear slowly amplifies the mean magnetic field-
—the ion magnetic moment is initially reasonably well
conserved. This is fundamentally because there is no mech-
anism to violate magnetic moment conservation during the
linear phase of mirror growth. So the modes continue to
grow to larger and larger amplitudes, given the sustained
free energy source created by the background velocity shear
amplifying the magnetic field and continuously generating
pressure anisotropy. This regime lasts until δB ∼ 0.1 〈B〉
and ts � 1, and is consistent with the “secular regime”
found by Kunz et al. (2014) where μ is nearly conserved.

6. Saturation of the mirror modes starts to happen once the
fluctuations attain δB ∼ 0.1 〈B〉. In this stage the variation
in magnetic field on the scale of the Larmor radius is
sufficiently large that the ion magnetic moment is no longer
conserved. This is consistent with theories of stochastic ion
motion in large amplitude turbulent fluctuations (e.g., Chen
et al. 2001; Johnson & Cheng 2001). In this phase the ion

6 The mirror instability can dominate the dynamics even more when the
anisotropic pressure of the electrons (Remya et al. 2013) and the full 3D
geometry of the problem (Shoji et al. 2009) are taken into consideration.

13



The Astrophysical Journal, 800:27 (17pp), 2015 February 10 Riquelme, Quataert, & Verscharen

magnetic moment changes on nearly the same timescale
as the mean magnetic field (Figure 4), which is consistent
with pitch angle scattering maintaining marginal stability.
In this stage the magnetic fluctuations only experience a
modest additional growth, reaching a maximum amplitude
of δB ∼ 0.3 〈B〉.

7. The need for finite amplitude fluctuations with δB ∼
0.1 〈B〉 in order to stop magnetic moment conservation
implies the existence of a the temporal delay of ∼0.3 s−1

between the onset of the IC and mirror instabilities and
the onset of efficient pitch angle scattering (s is the rate at
which the mean magnetic field is growing).

Our results have a number of consequences for modeling
the large-scale dynamics of nearly collisionless astrophysical
plasmas and for interpreting heliospheric measurements. We
briefly mention a few of these applications but defer a more
detailed analysis to future work.

Our results are consistent with a number of in situ helio-
spheric measurements. For instance, our maximum saturated
value of δB/B ∼ 0.3 is in reasonable agreement with mir-
ror modes observations in different environments like planetary
magnetosheaths (where large amplitude mirror modes are fre-
quently found. See, e.g., Tsurutani et al. 1982; Joy et al. 2006;
Soucek et al. 2008; Volwerk et al. 2008; Horbury & Lucek 2009;
Tsurutani et al. 2011b), the solar wind (e.g., Liu et al. 2006; Bale
et al. 2009; Russell et al. 2009; Enriquez-Rivera et al. 2010),
and the heliosheath (e.g., Tsurutani et al. 2011a, 2011b).7 Our
results also show that the dominant wavelength is initially close
to a few ion Larmor radii, with a subsequent migration to longer
wavelengths through a coalescence process. This wavelength
growth is consistent with observations (e.g., Tsurutani et al.
2011a; Schmid et al. 2014) and with theoretical models that
predict the growth of mirror mode wavelengths due to magnetic
diffusion (Hasegawa & Tsurutani 2011).

The fact that our βi ∼ 1–6 calculations find that the mirror
instability dominates the nonlinear state of the fluctuations (even
though the IC and mirror instabilities have comparable linear
thresholds and growth rates for a bi-Maxwellian distribution)
is also consistent with heliospheric observations. In particular,
solar wind measurements at βi ∼ 1–10 show that p⊥,i/p||,i
is limited by the linear threshold of the mirror instability
(instead of the IC instability. See Hellinger et al. 2006; Bale
et al. 2009). The observations of Bale et al. (2009) also show
enhanced magnetic fluctuations and magnetic compressibility
that follow the linear mirror threshold fairly well. It is important
to emphasize, however, that the observations presented by
Hellinger et al. (2006) and Bale et al. (2009) showing dominance
of the mirror instability also include the regime βi � 1, which
is not considered in our study. Also, the dominance of the mirror
instability could be affected by properties of the solar wind that
are usually not included in calculations of instability thresholds.
These include the presence of ∼5% of alpha particles (see, e.g.,
Figure 7 of Matteini et al. 2012), the drift of alpha particles

7 We note that our quoted maximum δB/B ∼ 0.3 corresponds to
〈(B − 〈B〉)2〉1/2/|〈B〉|, where <> stands for volume average. This means that
our results still allow for local magnetic fluctuations of even larger amplitude.
It is also important to stress that if a plasma is rapidly driven to have a
temperature anisotropy well in excess of the mirror threshold (e.g., at the
Earth’s bow shock; Tsurutani et al. 1982) then the resulting amplitude of the
mirror modes could significantly exceed what we find in our calculations. In
this case, a standard initial value calculation of the mirror evolution is likely to
better capture the resulting dynamics than our model in which the anisotropy
slowly increases in time.

with respect to protons (Marsch et al. 1982a), and the frequent
presence of a proton beam (Marsch et al. 1982b).

We interpret the dominance of the mirror modes in our
simulations as being due to the suppression of the IC waves,
which is caused by the ion velocity distribution function
departing from bi-Maxwellian (Isenberg 2012; Isenberg et al.
2013). This interpretation also requires the IC modes to have
finite amplitudes (although smaller than the one of the mirror
modes) so that they can maintain, via pitch-angle scattering, an
ion distribution function that is marginally stable to the growth
of IC waves. To the best of our knowledge, these IC modes
have not been found by in situ heliospheric measurements
during mirror dominated events. This is consistent with the
fact that in our simulations the mirror and IC modes only
have comparable amplitudes during the initial, exponential
regime (Figures 2(a) and (b)). In the saturated regime (which
is likely to be more representative of the observed state of
the plasma in the heliospheric and astrophysical systems), we
find that the mirror modes have significantly larger amplitudes.
Moreover, this dominance increases with the magnetization
ωc,i/s, as can be seen by comparing Figures 2(a) and (b).8

Thus, for realistic values of ωc,i/s, we do not anticipate easily
detectable IC waves by in situ measurements in cases where the
mirror modes dominate. The departure from the bi-Maxwellian
ion distribution function has not been confirmed by in situ
heliospheric measurements of mirror-dominated events either.
We believe that this is due to the high sensitivity of resonant
instabilities to gradients in the velocity distribution function.
Thus, in cases where IC and mirror modes can have similar
growth rates, only small deviations from the bi-Maxwellian
distribution can significantly reduce the importance of the IC
modes and give way to the dominance of the mirror modes. We,
therefore, do not anticipate easily detectable departures from
bi-Maxwellian associated to this effect.9 Nevertheless, future
careful observations comparing the nature of the fluctuations
and the ion distribution functions in the solar wind can help to
unveil these effects.

A second application of our results is to low-collisionality
accretion flows onto black holes. In these systems pressure
anisotropies can produce an anisotropic stress that can increase
the transport of angular momentum and the heating of the plasma
(Sharma et al. 2006). Our results are consistent with Sharma
et al. (2006)’s hypothesis that the mirror and/or IC instabilities
would provide enhanced pitch angle scattering and regulate the
evolution of the plasma pressure tensor. Axisymmetric kinetic
simulations have also demonstrated this directly (Riquelme
et al. 2012) though the restriction to axisymmetry limits the
quantitative applicability of these initial simulations to real
disks. One of the key conclusions of our study in this paper is that
even modest plasma magnetization is sufficient to quantitatively
capture the nonlinear saturation of the mirror instability. For
example, our βi = 20 results in Figures 7 and 9 show that the

8 This dependence on ωc,i/s can be accounted for by the fact that the
scattering rate of cyclotron-frequency fluctuations is expected to be
∼ωc,i (δB/B)2. If we equate this to the shear parameter s (which is, roughly,
the rate at which pitch-angle scattering takes place, as can be seen from the
changing rate of μ in Figure 4), one obtains that (δB/B)2 ∼ s/ωc,i .
9 We notice that Helios measurements show distribution functions with
significant deviations from the bi-Maxwellian shape in the fast solar wind,
consistent with predictions based on the presence of IC waves (Tu & Marsch
2002; Heuer & Marsch 2007). Although these measurements do not
correspond to the small deviations needed to suppress the IC modes that we
consider here, they do show the strong effect that high amplitude IC modes can
have on the ion distribution.
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evolution of the ion pressure anisotropy, ion magnetic moment,
and turbulent fluctuations are quite similar for ωc,i/s = 93
and ωc,i/s = 670. The primary difference is that in the
lower magnetization run the plasma has a larger “overshoot”
of the saturation pressure anisotropy set by the linear mirror
instability threshold. This weak dependence on magnetization
is encouraging because it is computationally infeasible to reach
ωc,i/s = 670 in three-dimensional (3D) kinetic simulations of
astrophysical plasmas (e.g., accretion disks).

One of the interesting questions not fully addressed by our
work is the saturation of velocity space instabilities in turbulent
low-collisionality plasmas where the shear rate of the mean
magnetic field itself fluctuates in time and the magnitude of
the large-scale turbulent fluctuations satisfies δB � 〈B〉. Our
calculations in this paper have focused on the case where an
imposed velocity shear amplifies a background magnetic field
by order unity or more. If, on the other hand, the shear acts
for less time such that the background field is amplified by
significantly less, the plasma may never become mirror/IC
unstable (depending on βi and δB/B) or the background shear
may reverse sign before the mirror/IC fluctuations have reached
sufficiently large amplitudes for pitch angle scattering to set in.
This regime will be explored in future work.

Another key question not addressed by our study is isotropiza-
tion of the electron pressure anisotropy. In future work we will
study how fast electrons interact with the large-scale mirrors
generated by the ion pressure anisotropy, and whether there
are separate electron-scale fluctuations that produce significant
electron pitch-angle scattering (e.g., the whistler instability).
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APPENDIX

MIRROR SATURATION IN 1D AND 2D

Previous 1D studies of the mirror instability suggest that
its growth and saturation are dominated by the “resonant”
scattering of v|| → 0 particles (where v|| is the particle
velocity component parallel to the magnetic field; Southwood
& Kivelson 1993; Califano et al. 2008), leading to a flattening of
the distribution function near v|| → 0. In contrast, our 2D runs
discussed in the main text show that scattering by mirror modes
is fairly momentum independent, with no significant flattening
of dN/dv||. To compare our results more directly to the previous
literature, in this Appendix we compare the mirror saturation in
1D and 2D for different values of β, paying especial attention to
the behavior of v|| → 0 particles. We show that, compared with
the 1D case, 2D runs significantly change the way pitch-angle
scattering occurs, modifying the saturation mechanism.

To best compare with the previous literature, we use initial-
value simulations in this Appendix, where a linearly unstable
pressure anisotropy is imposed as an initial condition. Figure 14
compares simulations with mi = me, β⊥,i = β⊥,e = 1.15,
Δpi/p||,i = Δpe/p||,e = 1.3 in 1D and 2D. In the 1D simulation,

(a) (b)

(c) (d)

(e) (f)

Figure 14. We compare 1D and 2D initial-value simulations with mi = me ,
β⊥,i = β⊥,e = 1.15, Δpi/p||,i = Δpe/p||,e = 1.3. Apart from the different
number of dimensions, the simulations have the same numerical parameters
(see below). Panels (a) and (b) show μ and μeff for the 1D and 2D simulations,
respectively. Panels (c) and (d) show the magnetic energy of the fluctuations
that are parallel (δB2

||) and perpendicular (δB2
⊥) to the mean magnetic field,

normalized in terms of B2. Finally, panels (e) and (f) show snapshots of the
parallel velocity distribution dN/dv|| (black) at tωc,i = 210 in both cases,
compared to a bi-Maxwellian (red). The numerical parameter of the simulations
are: [c/ωp,e]/Δx = 10, Nppc = 140, and L/RL,i = 70. In 1D, the angle
between B0 and the direction of the resolved dimension is 73o.

the initial magnetic field B0 forms an angle of 73o with the
resolved dimension of the simulation. Apart from the different
number of dimensions, these simulations also have the same
numerical parameters. Panels 14(a) and 14(b) show μ and μeff
as a function of time for the 1D and 2D cases, respectively. In
1D, μ decreases significantly slower than μeff , which means
that there is a significant correlation between p⊥ and B (as
expected for the mirror instability). In 2D, on the other hand,
the difference between μ and μeff is very small, implying that
pitch-angle scattering occurs more efficiently in 2D.

This difference in the scattering efficiency can be explained
considering the modes that grow in the 1D and 2D simulations.
Indeed, in the 1D case, mirror modes with wave vectors pointing
in only one direction can grow. In the 2D case, on the other
hand, both IC and mirror modes appear (with the mirror modes
forming both positive and negative angles with respect to B0).
This can be seen from panels 14(c) and (d), which show the
evolution of the magnetic energy contained in fluctuations
parallel (δB2

||) and perpendicular (δB2
⊥) to B0 for the 1D and 2D

cases. Whereas the 1D case is dominated by δB2
|| (characteristic

of mirror modes), the 2D case is dominated by δB2
⊥, showing the

dominant presence of the IC modes. Panels 14(e) and (f) show
snapshots of the parallel velocity distribution dN/dv|| for the 1D
and 2D runs at the saturated state tωc,i = 210 (black lines), and
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Same as Figure 14 but for simulations with: mi = me , β⊥,i =
β⊥,e = 10, Δpi/p||,i = Δpe/p||,e = 0.3, [c/ωp,e]/Δx = 5, Nppc = 100, and
L/RL,i = 70. In 1D, the angle between B0 and the direction of the resolved
dimension is 62o. The snapshot for dN/dv|| is taken at tωc,i = 500.

compare them with a bi-Maxwellian distribution (red line). In
the 1D case, we can see flattening of dN/dv|| for v|| → 0. This
flattening is consistent with the results of Califano et al. (2008),
who argue that it is due to the resonant interaction of v|| → 0
particles with the mirror modes. The 2D run, however, does not
have this flattening, implying that the saturation process in two
dimensions is quite different. This is indeed expected from the
dominant role of the IC instability.

Since at higher β � 20 the IC instability is expected to play
a subdominant role, we also explored the case where initially
β⊥ = 20. Figure 15 compares simulations with mi = me,
β⊥,i = β⊥,e = 10, and Δpi/p||,i = Δpe/p||,e = 0.3 in 1D
and 2D, with both cases having the same numerical parameters.
Panels 15(a) and (b) show the evolution of μ and μeff for both
cases. In the 1D case these two quantities differ significantly,
implying an important correlation between B and p⊥. This
correlation almost disappears in the 2D case, which shows the
presence of more efficient pitch-angle scattering in the 2D case.
Since for β⊥ = 20 the IC instability plays a subdominant role,
this is likely a property of the mirror instability itself rather
than the presence of the IC instability as was the case for the
lower β results shown in Figure 14. The higher rate of scattering
in 2D also affects the maximum amplitude of the fluctuations,
which are shown in panels 15(c) and (d) for the 1D and 2D
cases. Although in both cases δB2

|| > δB2
⊥ (implying that mirror

dominates), in 2D the amplitude of the modes is smaller, which
means that field rearrangement plays a less important role in the
approach to marginal stability.

Finally, Figure 15 also compares dN/dv|| at the saturated
state (tωc,i = 500) in the 1D and 2D cases. There is very little

flattening for v|| → 0 in both cases. This confirms our result
from the main text that the pitch-angle scattering in the mirror
dominated case is fairly independent of particle momentum.
It is interesting, however, that we do not see flattening even
in 1D. Since Califano et al. (2008) reported the appearance
of flattening only near the threshold of the mirror instability
(and only for certain box sizes), we tested simulations with
the same plasma parameters having anisotropies as low as
Δpi/p‖,i = Δpe/p‖,e = 0.15 and found similar results.
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