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Abstract Biological traits explain extinction at the species level, but what factors explain collapse at the
ecosystem level? Using ecosystem Red List criteria from the International Union for Conservation of Nature, we
calculated risk of collapse in El Salvador’s ecosystems and determined that it is nonrandom, indicating the existence
of explaining factors. We present the first model to predict risk of ecosystem collapse, showing that human density
and soil capability are significantly associated with risk of collapse and explain 68% of the total variation. To attain
an effective management strategy for global ecosystems, we suggest not only determining risk of collapse, but also
the building of simple prediction models to establish priorities, and the founding of a worldwide database at the
ecosystem level once a single classification system is agreed upon.

Key words: ecosystem collapse, ecosystem vulnerability, endangered ecosystem, IUCN categories and criteria,

Red List of ecosystems.

INTRODUCTION

The risk of extinction is nonrandom across species
(Purvis er al. 2000a), but ecosystems are also threat-
ened and we are yet unaware of the pattern at the
ecosystem level. Since 1700, more than half of the
terrestrial biosphere has been transformed, leaving less
than a quarter in their natural state by the year 2000
(Ellis er al. 2010). The operational definition of eco-
system collapse is an analogue to species extinction,
considered to occur when an ecosystem ceases to exist
and includes the transformation of characteristic fea-
tures or replacement by a novel ecosystem (Keith ez al.
2013).

Risk of ecosystem collapse has not only biological
but also societal consequences. When the services sup-
plied by ecosystems decrease below a certain thresh-
old, the life support system that sustains human
society ceases to function (Diaz et al. 2006), making
the conservation of whole ecosystems a priority.
Attending the need for present human well-being and
the future permanence of the human species, we have
employed Red Listing to ascertain the conservation
status of ecosystems. In the same way that Red Listing
classifies species according to their extinction risk
in order to guide policy and interventions at local and
regional scales (see International Union for Conser-
vation of Nature (IUCN) 2013a), an assessment of
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the status of biodiversity at the ecosystem level is
already being performed in an independent fashion
(Rodriguez et al. 2011), and its criteria applied, such
as in Venezuela and New Zealand (Rodriguez et al.
2010; Holdaway ez al. 2012).

At the species level, loss of biodiversity is affected by
many factors, including the uncontested ‘evil quartet’,
processes of habitat loss, overexploitation, introduced
species and secondary extinctions (Diamond 1984),
with species extinctions being nonrandom. Intrinsic
and extrinsic species attributes increase vulnerability,
and allow predictions about extinctions, with such cor-
relates having been assessed in mammals (Collen ez al.
2011), birds (Pocock 2011) and frogs (Bielby ez al.
2008). At the ecosystem level, land use change is
identified as the major driver for change in terrestrial
ecosystems (Sala ez al. 2000). Therefore the transfor-
mation of ecosystems ultimately involves varying loss
of surface area (Hannah er al. 1995), which could
cause some ecosystems to be closer to collapse. Risks
posed by such processes might be assessed using the
IUCN Red List criteria for ecosystems (Keith ez al.
2013), specifically criteria A and B, which define
ordinal categories of risk based on rates of decline in
distribution and the degree to which the distribution is
restricted, respectively. Following the logic behind cor-
relates of extinction risks at the species level, factors
that place ecosystems at risk of collapse due to land
use change can also be identified. In this sense, loca-
tion, the place where humans have settled, could
present a threat to ecosystems considering that loss of
habitat is positively correlated to population growth in
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urban areas (DeFries ez al. 2010). This in turn, is
associated with an increased demand of resources that
translates into increased land use change towards
farmland and infrastructure (Geist & Lambin 2002).
Soil type also affects habitat loss (Echeverria er al.
2008); fertile soils are sought after for their greater
capability in agricultural use, likely to be subject to
utilization for crop production. Therefore, the most
threatened ecosystems should be those situated on
soils with greater production capability. Furthermore,
as the majority of the global population is distributed
at low altitudes (Cohen & Small 1998), ecosystems at
lower elevations are likely to be at higher risk. In addi-
tion, anthropogenic activities such as wood extraction
and fruit gathering could increase vulnerability of
forest ecosystems (Geist & Lambin 2002), whereby
ecosystems with more exploitable species may be more
vulnerable. Finally, an originally reduced spatial extent
should enable intervention to take place across an
entire surface in a shorter amount of time: small eco-
systems should be more vulnerable than larger ones.
Therefore, ecosystems should approach the point of
collapse in nonrandom patterns depending on the
various factors that define loss of habitat and underlie
ecosystem vulnerability in the same manner as non-
random patterns describe species vulnerability to
extinction.

We chose to assess the Republic of El Salvador
because it has a history of ecological nondeference
(Dull 2008; Kernan & Serrano 2010). The precarious-
ness of El Salvador’s ecological state is expressed in
that less than 2% of total land area remains as primary
forests (Hampshire 1989), which has led to assertions
such as ‘Nature has already been extinguished in El
Salvador’ (Terborgh 1999). Since the establishment of
the Environmental Law in 1998 (Diario Oficial 1998),
the protected area system in El Salvador has managed
to include a 0.9% of terrestrial biomes, far from
achieving the Convention on Biological Diversity’s
target of 17% of each terrestrial biome (IUCN &
UNEP-WCMC 2013).While it is true that El Salvador
maintains the highest population density in Central
America (294 p km™; UNSD 2013) and is the small-
est country in continental America (21 000 km?), El
Salvador still hosts numerous ecosystems, ranging
from tropical and mangrove forests to grasslands
(Vreugdenhil ez al. 2012), making it an imperative to
objectively define their conservation status, and allow-
ing for feasible testing of hypotheses on nonrandom
risk of ecosystem collapse. Our aim was to identify
factors that explain risk of ecosystem collapse, assess-
ing (i) the relative importance of intrinsic (original
surface area, exploitable species and soil capability)
and extrinsic factors (human density and elevation) in
predicting risk through a multiple regression model,
and (ii) the status of ecosystems as classified by the
TUCN Red List of Ecosystems criteria.
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METHODS

Ecosystem data collection

We collated spatially explicit data on the surface area of
ecosystems in El Salvador from the Ministry of Environment
and Natural Resources. Specifically, we relied on three
polygonal maps of El Salvador’s ecosystems: historic distri-
bution and current distributions circa 1998 and 2011
(Vreugdenbhil ez al. 2012). Ecosystems were defined after the
United Nations Educational, Scientific and Cultural Organi-
zation classification system (UNESCO 1973) which relies on
vegetation structure and physiognomy, elevation and hydric
regime (see Appendix S1). Ecosystem distribution data for
1998 were generated by bands 4, 5 and 3 from Landsat 7
scenes at a 30 X 30 m resolution by a combination of paths
18 and 19 with rows 50 and 51. Data for 2011 were gener-
ated at a 15 X 15 m resolution from multiple ASTER tiles.
Ground verification during 2011 allowed for independent
corroboration of distinct vegetation groups. Historic distri-
bution for ecosystems refers to their potential distributions,
based on a combination of criteria for current physiognomy
at different elevations obtained from a digital elevation model
(DEM) generated from a mosaic of the 2011 ASTER tiles.

Predictors of ecosystem collapse

We define ecosystem vulnerability as the risk of collapse
throughout assessed distribution, and use the percentage of
surface area change in a given ecosystem as a response
variable. To analyse whether some ecosystems are more
prone to collapse, we determined if the trend in surface area
change is nonrandom. We tested for departures from ran-
domness through a G-test by comparing observed current
surface area proportions with the expected proportions
according to their potential distribution. Had proportions
remained the same, then the rate of decline among ecosys-
tems is considered to be random. If changes in surface area
are nonrandom, then factors could be causing some ecosys-
tems to change more than expected by chance, and thus drive
loss of surface area. We excluded all ecosystems with
anthropogenic origin (Vreugdenhil ez al. 2012), and grouped
some ecosystems in order to meet the requirements of having
expected frequencies higher than 1 for the G-test. Tropical
evergreen seasonal needle-leaved lowland and broad-leaved
altimontane forests along with the tropical altimontane
paramo did not present expected frequencies of at least
1 km? We therefore grouped tropical evergreen seasonal
broad-leaved upper montane and altimontane forests with
the paramo based on elevation, and both tropical evergreen
seasonal needle-leaved forests based on leaf physiognomy
likeness.

The selected variables act as predictors for surface area
loss (Appendix S2).We collated data on original surface area,
soil suited for cultivation, human population density, eleva-
tion and tree species with anthropogenic use. We used eco-
system potential distributions as proxy of the original
ecosystem surface area (km?) (Vreugdenhil et al. 2012). Soil
crop production values have been expressed in eight soil
types (Natural Resources Conservation Service (NRCS)
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2012), describing decreasing soil capability at each type
increment, with the first four types being the most suitable
for establishing cropland. We defined soil suited for cultiva-
tion for each ecosystem as the percentage of total area
covered by soil types 1-4 (Natural Resources Conservation
Service (NRCS) 2012) and estimated it using the official
shapefiles of the agrological map of El Salvador (Ministerio
de Medio Ambiente y Recursos Naturales (MARN) 2010).
We obtained human population density (1 km grid cells,
circa 2000) and elevation data (1 km grid cells, 90 m DEM)
from the Center for International Earth Science Information
Network (CIESIN) & Centro Internacional de Agricultura
Tropical (CIAT) (2005) and Jarvis ez al. (2008), respectively,
and transformed them to vectors. To determine the value of
predictor variables for each ecosystem, we used an intersec-
tion of the shapefiles of each variable with the historic dis-
tribution shapefile. Since each polygon differentially
contributed to an ecosystem’s total area, we used the
weighted mean from all polygons in the resulting intersect for
a given ecosystem as the predictor value for that ecosystem.
The extraction of highly valuable tree species might lead to
land clearance (e.g. the impacts of selective logging, Asner
et al. 2005). Therefore, a higher number of useful tree species
may increase the likelihood of forest loss. We estimated rich-
ness of useful tree species for each ecosystem from a list of
species in each ecosystem (J. Linares (2011), unpubl. data)
and cross-referenced with the list of Mesoamerican tree
species sourcebook for farm planting and ecological restora-
tion (Cordero & Boshier 2003), and standardized per
10* km?.

Analyses and model structure

The change in surface area as response variable was logarithmi-
cally transformed prior to analysis to normalize distribution. In
order to identify correlates with surface area loss and possible
multicollinearity, as well as to discern directionality of the rela-
tionships in the collated data, we began with a preliminary analysis
using a Spearman rank order correlation matrix. No significant
multicollinearity was detected and no variables were removed
from the following tests (see Appendix S2 for multicollinearity
tolerance levels).To account for the increase in type I error due to
multiple comparisons, we adjusted P-values with the Holm-
Bonferroni method.

We then tested the significance of each predictor through
simple least square regression analysis. Finally, to build a
multivariate model explaining change in surface area using
these predictors, we used multiple regression analysis follow-
ing the model simplification procedure described by Purvis
er al. (2000b) and generated a minimum adequate model
(MAM). We iterated the analysis beginning with all factors
included as predictors, and subsequently eliminated the pre-
dictor with the lowest marginal reduction in variance at each
step, until only significant predictors remained. Following
Pocock (2011), since each regression tested an a prior:
hypothesis, corrections for multiple tests were not needed.
All tests were one tailed.

Conservation status assessment

To determine conservation status of the 19 terrestrial eco-
systems of El Salvador (see Appendix S3), we used the
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TUCN Red List criteria for ecosystems version 2.0 (Keith
et al. 2013). The current model for Red List criteria recog-
nizes four symptoms of ecosystem risk based on distribution
and function, assessing each one as separate criteria: (A)
reduction in geographic distribution; (B) restricted geo-
graphic distribution; (C) environmental (abiotic) degrada-
tion; and (D) disruption of biotic processes. Criterion (E),
quantitative analysis that estimates the probability of ecosys-
tem collapse, allows modelling of ecosystem dynamics and
integrates the four symptoms in simulations of ecosystem
collapse.

Following our approach on land use change, we focused
on rates of decline in distribution and the degree of geo-
graphic restriction (criteria A and B). We based our assess-
ment on reduction in geographic distribution (criteria A) by
using the difference between current distributions (2011)
and a preterit state (1998) to estimate rate of change and
project its decline over the last 50 years (1961-2011; criteria
A1), within the next 50 years (2011-2061; criteria A2a) and
over a period of 50 years including both past and present
(1998-2048; criteria A2b) assuming a constant rate of
decline in the observed time lapse for a linear loss of surface
area. We used the difference between historic and current
distributions to estimate historical decline since 1750 (crite-
ria A3). Given a dearth of maps ranging from 1750s, the
potential distribution of vegetation is the best approximation
we have. We also assessed ecosystems threatened by restricted
geographic distribution (criteria B) by using current distri-
bution to calculate the extent of occurrence (extent of
minimum convex polygon enclosing all occurrences, criteria
B1) and area of occupancy (number of 10 x 10 km grid cells
occupied by at least 1 km?, criteria B2) for each ecosystem
(Fig. 1), specifically by observed or inferred continuing
decline (criteria Bla + 2a), threatening processes likely to
produce continuing decline (criteria Blb + 2b) and low
number of locations (criteria Blc + 2¢) (see Keith et al.
2013). For qualitative criteria such as ongoing threatening
processes, we consulted each ecosystem definition in
Vreugdenhil ez al. (2012), which provided a description of
anthropogenic activities likely to cause surface area change.

We estimated percentage of surface area change for each
ecosystem by comparing current distribution and historical
distribution, with data from the ‘ecosystem maps from El
Salvador, 2012 update’ (Vreugdenhil ez al. 2012) which uses
the UNESCO (1973) classification system. Data consist of
three polygonal maps of El Salvador’s ecosystems corre-
sponding to each time frame needed to meet the criteria
requirements: potential (as proxy of historical distributions)
and current distributions ca. 1998 and 2011.

Caveats and limitations

It is important to note that the variables that serve as pre-
dictors are from the current era, yet the assessment pertains
to changes in ecosystems over hundreds of years. Evidently,
data for these ecosystems exist only as they are now, which
includes original surface area for each ecosystem: no data
exist for ecosystems which may no longer exist. There may
also be many more explanatory variables other than the ones
assessed here that function as possible drivers of ecosystem
risk of collapse. Some ecosystems may be more prone to
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Fig. 1. Distribution of the tropical evergreen seasonal broad-leaved upper montane forests with all occurrences enclosed
in a minimum convex polygon (extent of occurrence) and occupied 10 x 10 km grid cells (area of occupancy) by more than
1 km?.

Table 1. Current ecosystem surface area in El Salvador and deviation from expectation given a random spatial pattern of
habitat loss

Ecosystem Observed (deviation) km?
Tropical evergreen seasonal needle-leaved forests’ 33 (+21)
Tropical evergreen seasonal broad-leaved montane forests, altimontane meadow or paramot 36 (+29)
Tropical evergreen seasonal broad-leaved alluvial forest, occasionally inundated 94 (+9)
Tropical semi-deciduous broad-leaved well-drained lowland forest 367 (-233)
Tropical semi-deciduous broad-leaved submontane forest 90 (-198)
Tropical semi-deciduous mixed submontane forest 281 (+144)
Tropical semi-deciduous broad-leaved lower montane forest 19 (-21)
Tropical semi-deciduous mixed lower montane forest 134 (+90)
Pacific mangrove forest on clay 384 (+314)
Tropical deciduous broad-leaved lowland forest, well-drained 1229 (-155)

fContains grouped ecosystems in order to attain the requirements of the G-test proof that does not permit expected numbers
smaller than 1 (P << 0.0001). See text for ecosystems. Figures are the observed squared kilometers and deviation difference
expected per ecosystem.

climate change, and others to anthropogenic variables linked deciduous broad-leaved forests, which tend to show
to resource consumption (economic, demographic and high soil capability, large original surface area, high
agroforestry production variables). Our model is not human density, low elevation and fewer useful tree
intended as a be-all and end-all for predicting risk of ecosys- species (Table 2)

tem collapse, and our choice reflects the most general and

Although no predictor pair presented multicollin-
likeliest predictors available to the region. 5 p P P

earity (Appendix S2), preliminary results from the
correlation matrix indicate that strong correlates for
surface area change exist with soil capability and

RESULTS original surface (Table 3). Among predictors, we

found strong correlations between soil capability and
Predictors of risk of collapse original surface area, as well as original surface area

and elevation. However this pattern changes with
Risk of collapse is nonrandom (G-test; P << 0.0001; single predictor regressions, which show that only soil
Table 1). Current observed proportions of ecosystem capability (z=-1.95) and now human density
surface area differ from what would be expected by (t=-3.55) constitute significant correlates (Fig. 2),
chance alone. Ecosystems with smaller remnant area while original surface area loses significance
than expected are the tropical deciduous and semi- (Table 4). Soil capability explains 26% of the
© 2015 The Authors doi:10.1111/aec.12209
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Table 2. Data used for hypothesis tests of predictors for risk of ecosystem collapse
Surface Human Useful
area Soil Original density tree species
change  capability surface (people Elevation (spp per

Ecosystem (%) (%) area (km?)  per km?) (meters) 10? km?)

Tropical semi-deciduous broad-leaved -95.97 28.50 2 230.48 631.64 874.56 1.84
submontane forest

Tropical semi-deciduous broad-leaved lower -93.85 15.22 306.09 353.40 1421.58 2.61
montane forest

Tropical semi-deciduous broad-leaved -92.11 48.40 4 646.48 241.53 240.95 1.46
well-drained lowland forest

Tropical deciduous broad-leaved lowland forest, = —88.54 29.95 10 725.34 277.36 379.30 0.62
well-drained

Tropical evergreen seasonal broad-leaved —-85.80 83.95 660.51 166.47 12.08 3.18
alluvial forest, occasionally inundated

Tropical semi-deciduous mixed submontane -73.53 8.47 1 062.01 112.50 899.51 2.82
forest

Tropical evergreen seasonal needle-leaved -64.48 23.22 84.00 39.81 1996.15 7.14
upper-montane forest

Tropical semi-deciduous mixed lower montane -60.29 5.34 338.53 51.63 1420.76 2.66
forest

Tropical evergreen seasonal needle-leaved -59.38 0 7.02 55.57 708.41 113.89
lowland forest

Tropical evergreen seasonal broad-leaved -51.78 1.52 48.34 194.77 1972.56 10.34
upper-montane forest

Pacific mangrove forest on clay -29.22 17.32 543.14 161.21 9.18 1.66

Tropical altimontane meadow or paramo -20.07 0 3.20 351.81 2185.04 0.00

Tropical evergreen seasonal broad-leaved 65.45 0 6.10 36.38 2441.59 0.00

altimontane forest

Labels for factors include units of measure in parenthesis. Values for human density and elevation are weighted averages.

Table 3.

Detailed rank order correlation matrix of single predictors and percent of ecosystem surface change, with significance

values adjusted on each bivariate comparison by the Holm-Bonferroni method

Surface Original Useful
area Soil surface Human tree
change capability area density Elevation species
Surface area change 1.00 -0.73% -0.75* -0.57 0.41 -0.10
Soil capability 1.00 0.83** 0.34 —-0.66 -0.02
Original surface area 1.00 0.36 -0.71% -0.11
Human density 1.00 -0.21 -0.29
Elevation 1.00 —-0.10
Useful tree species 1.00

Probabilities: *P < 0.05, **P < 0.01 (all tests one-tailed).

observed variation, but it is human density that
emerges as the most important predictor (53%)
(Table 4).

The correlation pattern holds when we simplified
factors with the MAM, accounting for 68.1% of the
variance (P < 0.002, one tailed) when predicting risk
of collapse for declining ecosystems (Fig. 3). Higher
risk of collapse correlates with higher human densities
(t=-3.65; f=-0.662; P<0.01) and soil capabilities
(t=-2.15; B=-0389; P< 0.05). Factors eliminated
from the model include elevation, useful tree species
and original surface area, even when it had previously

doi:10.1111/aec.12209

emerged as significant and presented strong multicol-
linearity with soil capability in the previous correlation
matrix. The most important predictor is again human
density, whose effect (beta coefficient) over risk of
collapse is almost double as that exerted by soil
capability.

Conservation status

Two ecosystems met both criteria for rate of decline
in distribution (A) and restricted distribution (B) for

© 2015 The Authors
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Fig. 2. Bivariate plots of human density (a) and soil capability (b) as predictors of ecosystem surface area change (logarith-

mically transformed %).
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Fig. 3. Prediction of surface area change (logarithmically
transformed %) from the minimum adequate multiple regression
model for declining ecosystems plotted against the observed
values. Fit of predicted to observed values contemplates 68% of
the variance explained by human density and soil capability.

classification, 5 only for rate of decline and 11 only
for restricted distribution (for data see Appendix S1).
Currently, natural terrestrial ecosystems cover 13%
(2846 km?) of El Salvador’s land area. All but one of

Table 4. Single predictor least squares regressions for pre-
dicting risk of collapse in declining ecosystems (all tests
one-tailed)

Predictor 7” t P

Human density 0.53 -3.55 <0.01
Soil capability 0.26 -1.95 <0.05
Elevation 0.20 1.66 0.06
Original surface area 0.17 -1.51 0.08
Useful tree species 0.02 0.48 0.32

© 2015 The Authors
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the 19 terrestrial ecosystems qualify as threatened: 1
(5%) has collapsed, 11 (58%) are critically endan-
gered and 6 (32%) are endangered (Table 5). Tropi-
cal forests, ranging from 3 to 1229 km?, comprise up
to eight critically endangered and three endangered
ecosystems, yet constitute most (80%) of the remain-
ing natural surface area in El Salvador. The man-
grove forest of 384 km? is endangered. Among
grasslands, the smaller (6 km?) short-grass savanna
with evergreen shrubs, the larger savannah with semi-
deciduous shrubs (30 km?) and the paramo (3 km?)
are all critically endangered. Desert type systems
such as tropical dunes (23 km?) classify as endan-
gered, while transitional coastal vegetation (2 km?)
is considered to have collapsed, failing to meet the
minimum threshold for extent of occurrence and
area of occupancy because this ecosystem stretches
along the coast and fails to cover the recom-
mended minimum of at least 1 km? of any cell area.
Reed swamp formations (55 km?) are classified as
endangered. Scarcely vegetated lava flow (63 km?)
is the only ecosystem to be considered of least
concern. More ecosystems meet criteria thresholds
for small distributions rather than for rate of decline,
indicating that stochastic events should now be con-
sidered comparable threats next to anthropogenic
impacts.

DISCUSSION

Ecosystem risk of collapse

Determining ecosystem risk of collapse is a prereq-
uisite for engaging in priority setting and allows
strategic resource allocation. Moreover, effectively
predicting which ecosystems are more prone to

doi:10.1111/aec.12209
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Table 5.

Conservation status of the 19 terrestrial ecosystems in El Salvador with accompanying criteria justifying threats

Ecosystem

Conservation status (criteria)

Tropical evergreen seasonal broad-leaved upper-montane forest
Tropical evergreen seasonal needle-leaved upper-montane forest

Tropical evergreen seasonal needle-leaved lowland forest
Tropical evergreen seasonal broad-leaved altimontane forest

Tropical evergreen seasonal broad-leaved alluvial forest, occasionally inundated
Tropical semi-deciduous broad-leaved well-drained lowland forest

Tropical semi-deciduous broad-leaved submontane forest
Tropical semi-deciduous mixed submontane forest

Tropical semi-deciduous broad-leaved lower montane forest
Tropical semi-deciduous mixed lower montane forest

Pacific mangrove forest on clay

Tropical deciduous broad-leaved lowland forest, well-drained

Short-grass savanna lowland with evergreen broad-leaved shrubs, well-drained,

Curatella americana variant

Short-grass savanna with semi-deciduous broad-leaved shrubs, well-drained,

Crescentia alata variant
Tropical altimontane meadow or paramo
Scarcely vegetated lava flow
Scarcely vegetated tropical dune and beaches

Tropical coastal vegetation in successional transition on very recent sediments,

moderately drained
Tropical freshwater reed-swamp formation

EN (B1b + 2b)

CR (Bla(i)bc + 2b)
CR (Blbc + 2bc)

CR (Bla(i)bc + 2a(i)bc)
CR (A2ab)

CR (A3)

CR (A3)

EN (A3;Bla(i)b)

CR (A3)

EN (Bla(i)b + 2a(i)b)
EN (Bla(i)b)

CR (A2ab)

CR (Blc + 2¢)

CR (Al + 2ab;Bla(i) + 1c)
CR (Blc + 2¢)

LC

EN (B1b + 2b)

CO (B2)

EN (B1b + 2b)

Red List categories include least concern (LC), near threatened (NT), vulnerable (VU), endangered (EN), critically endan-

gered (CR) and collapsed (CO).

having a higher risk of collapse allows for preven-
tive actions to take place in order to avoid an
anthropogenically driven collapse. Our results indi-
cate that ecosystems tend to have higher risk of
collapse if they are in the presence of human settle-
ments and hold soils with high production value,
driving land use change through agricultural trans-
formation and re-stressing the fact that land use is
the most important driver of biodiversity loss (Sala
et al. 2000). True enough, the system with less soil
input and of little production value, vegetated lava
flow, is the only nonendangered ecosystem. Coastal
vegetation, which we considered collapsed by not
meeting a minimum of one occupied cell (criteria
B2), is prone to conversion as development for
tourism and port infrastructure along the shores
increase pressure (Vreugdenhil et al. 2012).

Original surface area does not affect risk of ecosys-
tem collapse. This is interesting as it was highly corre-
lated with soil capability, which does ultimately explain
25% of the observed variation and is included in the
MAM. Although small ecosystems may have a higher
probability of succumbing to stochastic events, within
the 13-year study period, we did not detect any differ-
ence in the rate of decline due to surface area. Number
of exploited tree species also does not affect risk of
collapse, perhaps due to the massive international
migration resulting from the civil war that engulfed El
Salvador from 1980 to 1992, mostly from rural

doi:10.1111/aec.12209

families. Remittances from family members working in
the United States became an important source of
income, granting higher quality of life by enabling
people to cover living expenses and reducing the need
for rural households and farmers to obtain fruit, fire-
wood and other raw materials from the remaining
natural woodland, resulting in a concomitant retrac-
tion of the agricultural frontier (Hecht & Saatchi
2007). This suggests that an alternative explanatory
factor to ecosystem risk of collapse may lie in human
well-being. Such a hypothesis could predict increased
extraction of fruit, firewood or other raw materials in
areas with low quality of life where salaries cannot
cover living expenses. That elevation does not have a
significant effect on risk of collapse was unexpected
according to theory, as globally most people reside at
low altitudes (Cohen & Small 1998). However, this
lack of relation was succinctly corroborated as we did
not find any correlation between human density and
elevation.

Although we did not assess ecosystem fragmenta-
tion, a process different from habitat loss, we did reg-
ister a very strong positive correlation between
ecosystem surface area and the number of fragments
(r=0.92, P<<0.01), again supporting the fact that
smaller ecosystems are at a higher risk of collapse
due to stochastic events. Indeed, available empirical
evidence shows a significant loss of component
species past a loss of 60% of native forest cover in

© 2015 The Authors
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fragmented landscapes (Hanski ez al. 2013). This
suggests that explicitly taking into account threats
such as fragmentation through thresholds of
spatial metrics (number, size, shape of patches and
connectivity) as separate criteria in future revisions
of the TUCN Red List for ecosystems may be
warranted.

Regional context

El Salvador is part of the Mesoamerican Biological
Corridor (MBC) and could considerably stand to
gain from international cooperation when developing
conservation strategies for ecosystems at a regional
scale. At the species level, due to its small extent, El
Salvador requires integrating neighbouring nations to
effectively provide enough habitat for far-roaming
species, and the MBC could be part of the solution
(Crespin & Garcia-Villalta 2014). A similar desired
outcome can be envisioned at the ecosystem level,
where contiguous vegetation cover is shared among
nations and regional networking could allow assess-
ments to identify critical ecosystems in a regional
setting.

Future endeavours

Purvis et al. (2000b) demonstrated how traits alone
can explain vulnerability to extinction on a species
level, while our analysis has shown how basic factors
can explain risk of collapse at the ecosystem level.
Our model explains up to 68% of the total variance
observed on a country level, but predictor variables
could be different from the limited amount of factors
that we could incorporate into the model. Latitudinal
shifts between tropical and temperate systems and
the nature of distinct types of ecosystems could
change the importance of predictor variables, sug-
gesting that further endeavours need not only
increase sample size, but also accrue a more balanced
sampling across geographic regions and ecosystem
types. Specific variables that could act as factors and
should be included in future model predictions
include extrinsic factors such as climate change,
anthropogenic N deposition, CO? emissions and bio-
logical invasions, as well as intrinsic factors to eco-
systems themselves, such as species identity,
community complexity and ecological functioning.
The risk these factors pose can be directly assessed
under the current Red List criteria C, D and E,
although the next step required to model risk of col-
lapse could lay in ecosystem co-collapse. Much like
co-extinctions, ecosystem co-collapse can be thought
of occurring when loss of species with complemen-
tary habitat in each or material flow shared between

© 2015 The Authors
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ecosystems causes a collapse in one system followed
by a collapse in a second one. Risk analysis inclu-
ding the threat of co-collapses might give us a
clearer picture of the problem and how to deal with
it.

Our assessment of ecosystem risk of collapse
assumes an annual rate as a basis for cautious
extrapolation of a linear loss of surface area, yet one
would be hard-pressed to find linear dynamics in
ecological systems, especially considering ecological
thresholds that could convey a change in state
(Hugget 2005). Moreover, the IUCN criteria define
ordinal thresholds that identify increasing levels of
threat, and do not specify the shape of the trajectory.
Although the IUCN definition of collapse describes
the event in which an ecosystem ceases to exist, it is
not necessary for an ecosystem to reach zero surface
area in order to collapse, since after crossing a given
threshold, systems might shift states (Scheffer er al.
2001). For simplicity’s sake, we assumed a linear loss
to assess risk of collapse, but precise long-term pre-
dictions may require several data points to identify
the existence of critical thresholds that could inform
managerial decisions. Future research should
endeavor to answer the question: do decline of biotic
and abiotic processes share the same shape as the
trajectory of decline in distribution?

CONCLUDING REMARKS

Despite the precarious state of El Salvador’s natural
systems, we should be able to recuperate and lower
the risk of most ecosystems. That all ecosystems
but one in a country as small as El Salvador are
threatened should not be disheartening, but instead
inspire swift action to take place by conjuring
responses from policy and management and wide-
spread global efforts to assess the conservation status
of all systems in the biosphere. Moreover, to effec-
tively manage ecosystems, we need not only know
which ones are threatened, but also what factors act
as drivers of ecosystem collapse, along with simple
models to predict which ecosystems are most vulner-
able. A world ecosystem database would enable
researchers to test the previous hypotheses, but first
and foremost a single classification system would
need to be agreed upon, yet so far existing schemes
range from coarse-grained (e.g. IUCN habitats clas-
sification  scheme; International  Union  for
Conservation of Nature (IUCN) 2013b) to fine-
grained (e.g. European Nature Information System
EUNIS; European Environment Agency (EEA)
2013) descriptions, making scale the most pressing
matter (Keith er al. 2013). Despite the fact that no
universal classification for ecosystems exists, our
analysis suggests that it is possible to analyse drivers
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of risk for ecosystem collapse at the country level. By
approaching the identity of threats, policy is better
informed to respond, prescribe ways of preventing
collapse and achieve long-term viability of natural
systems in order to salvage a nation’s natural capital.
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