Entrainment threshold of sand- to granule-sized sediments under waves

J.P. Le Roux

Departamento de Geología/Andean Geothermal Centre of Excellence, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile

ARTICLE INFO
Article history:
Received 6 March 2015
Received in revised form 6 April 2015
Accepted 8 April 2015
Available online 17 April 2015

Keywords:
Entrainment threshold
Waves
Boundary velocity
Sediment transport

ABSTRACT
An improved method is presented to determine the threshold boundary velocity required to entrain sediments under waves, using the non-dimensional group settling velocity of sediments ranging from very fine sand to granules (0.1 – 3.3 mm), together with a dimensionless boundary velocity. In combination with a more accurate method to calculate the actual boundary velocity under linear as well as non-linear waves, this allows sediment entrainment to be predicted from deep water up to the breaker zone.

1. Introduction
Numerous studies have been undertaken on the threshold of sediment entrainment under ocean waves (e.g., Bagnold, 1946; Manohar, 1955; Eagleson et al., 1958; Horikawa and Watanabe, 1967; Rance and Warren, 1968; Komar and Miller, 1973, 1975; Madsen and Grant, 1975; Sleath, 1978; Hammond and Collins, 1979; Hallermeier, 1980; Rigler and Collins, 1983; Soulsby and Whitehouse, 1997; Green, 1999; You, 2000; Le Roux, 2001; Paphitis et al., 2001; You and Yin, 2006). Most of these have focused on the near-bed water particle velocity, ideally measured at the top of the boundary layer where the vertical component of orbital water particle motion reduces to zero. However, because the thickness of the boundary layer cannot be predicted with accuracy, most measurements were probably taken either above the boundary layer, where water particle motion was still ellipsoidal, or below its top, where the measured velocity would have been less than the actual boundary velocity. As a consequence, plots of predicted against measured velocities inevitably display a large scatter of data points for all empirical equations. The method presented in this paper, being based on published data, is no exception, but shows an improved correlation between predicted and measured critical boundary velocities and also provides a way to determine the actual boundary velocity under both linear and non-linear waves.

2. Methodology
2.1. Critical boundary velocity

Many of the existing threshold equations incorporate either the orbital diameter \(d_o \) (Bagnold, 1946; Komar and Miller, 1973, 1975) or the water particle semi-excursion at the top of the boundary layer (Wang, 2007), but others employed a Shields-type parameter (Rance and Warren, 1968; Soulsby and Whitehouse, 1997). Le Roux (2001) used a dimensionless boundary velocity \((U_b / \delta) \) in combination with the dimensionless settling velocity \((U_d / \delta) \) of spheres having the same diameter as the median sediment size. The results were compared with the equations of Bagnold (1946), Manohar (1955), Komar and Miller (1973, 1975), Hammond and Collins (1979), Hallermeier (1980), Rigler and Collins (1983), Soulsby and Whitehouse (1997) using the data sets of Bagnold (1946), Manohar (1955), and Hammond and Collins (1979). Although it showed a significant improvement, this equation was not dimensionally correct, as it employed a second order polynomial trend-line to further improve the original, dimensionally correct equation. The use of a dimensionless sphere settling velocity is also not ideal, because the group settling velocity of differently shaped grains (which would directly control their entrainment behaviour) is significantly different from the settling velocity of individual spheres (Le Roux, 2014).

You and Yin (2006) subsequently published a unified equation to determine the threshold of sediment entrainment and sheet flow under waves, which gives better results than that of Le Roux (2001) for the same data sets. However, their equation is also not dimensionally correct, in that they use the “dimensionless” term \((s - 1) \), where \(s \) is in fact the sediment density and 1 the water density. This makes the use of
their equations questionable in the case of entrainment by waves in sea water instead of fresh water.

Recently, Le Roux (2014) published equations to determine the settling velocity of individual, differently shaped clasts with known axial dimensions, as well as the group settling velocity of sieve-sized sediments (subscript v) with unknown axial dimensions. The latter is given by

\[
\log_{10} U_{d,\text{av}} = 0.0195 \left(\log_{10} D_{d,\text{av}} \right)^3 - 0.0075 \left(\log_{10} D_{d,\text{av}} \right)^2 + 0.1679 \left(\log_{10} D_{d,\text{av}} \right) - 0.1936 \left(\log_{10} D_{d,\text{av}} \right)^3 + 1.9606 \left(\log_{10} D_{d,\text{av}} \right) - 1.2582.
\]

(1)

where \(U_{d,\text{av}} \) is the dimensionless group settling velocity, \(D_{d} \) and \(D_{d,\text{av}} \) are the grain size and dimensionless (subscript d) grain size as determined by sieve analysis, respectively, given by \(D_{d} = D_{\text{av}} \sqrt{\frac{\gamma}{\rho_T}} \), \(\rho \) is the fluid density, \(g \) is the acceleration due to gravity, \(\rho_T \) is the submerged density (grain density minus fluid density), and \(\mu \) is the dynamic fluid viscosity. The settling velocity is non-dimensionalized by

\[
U_{d,\text{av}} = U_{d,\text{av}} \sqrt{\frac{\rho_T}{\rho}}
\]

(2)

The dimensionless settling velocity can be plotted against a dimensionless boundary velocity, established by Le Roux (2001) as

\[
U_{d} = \frac{U_d}{D_{d,\text{av}}} \sqrt{\frac{\rho_T}{\rho}}
\]

(3)

where \(U_d \) is the actual boundary velocity and \(T \) is the wave period.

Due to the difficulty in measuring sediment entrainment thresholds under field conditions, especially in the presence of marine currents and other complicating elements, the vast majority of studies have been carried out in the laboratory. Bagnold (1946), for example, studied a bed of particles resting on an oscillating plate that was submerged in a tank of water, observing the frequency and amplitude of the oscillation required to entrain the grains. Unfortunately, most of these studies did not present the actual data, except on graphs that are difficult to read accurately. Therefore, three widely cited case studies with usable data were examined here, namely those of Bagnold (1946), Manohar (1955), and Hammond and Collins (1979).

Plotting \(U_{d,\text{av}} \) against the measured critical boundary velocities (\(U_{\text{d, crit}} \)) for these data sets (Fig. 1), shows that the dimensionless critical boundary velocity can be found by

\[
U_{\text{d, crit}} = -0.0083 \ln U_{d,\text{av}} + 0.0247.
\]

(4)

Finally, the critical boundary velocity is given by

\[
U_{\text{crit}} = \frac{0.848U_{\text{d, crit}}^2 D_{d,\text{av}} \rho_T}{\sqrt{\mu}}
\]

(5)

The above-mentioned data sets include 209 measurements with grain sizes varying from 0.1 to 8 mm, densities between 1.05 and 7.9 g cm\(^{-3}\), boundary velocities between 4.45 and 47.26 cm s\(^{-1}\), and wave periods between 0.76 and 26.1 s. Fig. 2 compares the boundary velocities predicted by Eq. (5) with the measured velocities. The correlation coefficient \(R^2 \) is 0.8044, with a 1:1 relationship between the trend-line of the observed and predicted velocities.

The mean percentage error (MPE), given by

\[
MPE = \frac{100 \left(U_{\text{crit}} - U_{\text{crit,p}} \right)}{U_{\text{crit}}},
\]

where \(U_{\text{d, crit}} \) and \(U_{\text{crit,p}} \) are the measured and predicted critical boundary velocities, respectively, is 2.95%, with a maximum positive error of 39.48% and maximum negative error of −123.83%. The latter value is that of an obviously anomalous measurement, for which the You and Yin (2006) unified equation also yields a very large error of −222.83%. Without this data point the maximum negative error would be −38.9% for Eq. (5) and −70.12% for You and Yin (2006). The MPE for the latter authors is 6.76% and their ratio between the measured and predicted critical boundary velocities is 0.8736, meaning that their equation generally underestimates the critical boundary velocity. For the original equation of Le Roux (2001), the MPE is 5.67%, with a maximum positive error of 27.99% and a maximum negative error of −159.77% (−123.21% if the anomalous value is excluded). Eq. (5) thus yields the lowest MPE and lowest maximum absolute error of 39.48%, compared to maximum absolute errors of 70.12% and 123.21% for You and Yin (2006); and Le Roux (2001), respectively, again excluding the anomalous value.

2.2. Actual boundary velocity

Although Eq. (5) provides a way to obtain the critical wave boundary velocity, the actual boundary velocity under different wave climates is an entirely different matter, especially under field conditions. To know whether sediments will be entrained in any particular water depth for a specific set of wave conditions, it is necessary to be able to predict the real boundary velocity at that specific depth. Only if the latter exceeds the critical boundary velocity for the specific sediment size and density, will entrainment take place.

Fig. 1. Plot of dimensionless settling velocity (Eqs. (1) and (2)) against dimensionless critical boundary velocity (Eq. (3)). Data from Bagnold (1946), Manohar (1955), and Hammond and Collins (1979).

Fig. 2. Plot of predicted (Eq. (5)) against measured critical boundary velocity. Data from Bagnold (1946), Manohar (1955), and Hammond and Collins (1979).
The maximum horizontal water particle velocity at the top of the boundary layer \(U_0 \) is normally obtained in deep water as follows (e.g. Komar and Miller, 1973; You and Yin, 2006):

\[
U_0 = \frac{nH_o}{\sqrt{\sinh(k_o d)}}
\]

where \(k \) is the wave number given by \(\frac{n}{\lambda} \) and the subscript \(o \) indicates deepwater conditions, which is traditionally defined as a water depth \(d \) greater than half the deepwater wavelength \((L_o) \).

For linear waves propagating into transitional and intermediate water depths, Komar and Miller (1973); You and Yin (2006) derived the boundary velocity in the following manner:

\[
U_{ow} = \frac{nH_w}{\sqrt{\sinh(k_w d)}}
\]

the subscript \(w \) indicating any water depth, and where \(k_w \) is determined by iteration from the dispersion equation:

\[
k_w = k_o \tanh(k_w d).
\]

Although Eq. (8) works well in deep and intermediate water depths, it does not take changes in the shoaling wave shape into account, so that it becomes increasingly inaccurate. Therefore, the boundary velocity is here calculated using the equation of Le Roux (2010a, b), which is valid for any water depth:

\[
U_{ow} = \frac{gT H_w}{8MCD_w^2 \cosh(\frac{\pi d}{MCD_w})}.
\]

where \(MCD_w \) is the median crest diameter (Le Roux, 2008).

In Eq. (10), the required deepwater height of fully developed waves \((H_o) \) is calculated by (Le Roux, 2007a):

\[
H_o = \frac{gT^2}{18\pi^2}.
\]

To obtain the wavelength \(L_w \) in any water depth, it is first necessary to find the breaking depth \(d_b \), breaker height \(H_b \), and breaker length \(L_b \). Le Roux (2007a), based on the 110th order wave theory of Cokelet (1977), defined the following equations to calculate the change in height of shoaling waves, \(H_w \):

\[
H_w = H_o \left[M \exp \left(\frac{H_o}{L_o} E \right) \right].
\]

where \(M = 0.5875 \left(\frac{d}{\lambda} \right)^{-0.18} \) when \(\frac{d}{\lambda} \leq 0.0844; \ M = 0.9672 \left(\frac{d}{\lambda} \right)^2 - 0.5013 \left(\frac{d}{\lambda} \right) + 0.9521 \) when \(0.0844 \leq \frac{d}{\lambda} \leq 0.6; \ M = 1 \) when \(\frac{d}{\lambda} \leq 0.6; \) and \(E = 0.0042 \left(\frac{d}{\lambda} \right)^{-2.3211} \).

This has to be iterated with the following equation (Le Roux, 2007a) by changing \(d \) until the wave heights \(H_w \) and \(H_b \) coincide:

\[
H_b = d_b \left(-0.0036\alpha^2 + 0.0844\alpha + 0.835 \right).
\]

where \(\alpha \) is the bottom slope in degrees.

The breaker length is found by Le Roux (2007b) as follows:

\[
L_b = T \sqrt{g(0.5H_b + d_b)}.
\]

Having obtained \(d_b \) and \(H_b \) and \(L_b, L_w \) can be calculated by (Le Roux, 2007b):

\[
L_w = \sqrt{\frac{L_b T}{2} \sqrt{g(0.5H_b + d)}}.
\]

The maximum wavelength that should be used is that given by \(L_w \) in Eq. (10).

Finally, \(MCD_w \) is obtained by (Le Roux, 2008):

\[
MCD_w = L_w - \frac{L_o}{2}.
\]

where \(L_o = \frac{gT^2}{2\pi} \) (Airy, 1845).

Table 1 compares the boundary velocity \((U_0) \) given by Eq. (10) with that of Komar and Miller (1973) based on the dispersion equation, for a fully developed 10 s wave propagating over a nearly horizontal bottom.

The boundary velocity given by Eq. (10) coincides exactly with that derived from the dispersion equation in a water depth of more than 0.37\(\lambda_o \) and within 5% to a depth of about 0.31\(\lambda_o \). Eq. (8) is accurate to a depth of about 0.22\(\lambda_o \), but from this point on the difference becomes increasingly large. For example, at the breaking depth \(d_b \) of 7.78 m \((H_o = 6.5 \text{ m}; L_b = 103.98 \text{ m}) \), Eq. (10) yields a boundary velocity of 7.05 m s\(^{-1} \), compared to the horizontal water particle velocity of 10.4 m s\(^{-1} \) at the surface, which equals the wave celerity at this point as it should be (Stokes, 1880). Eq. (8) calculates \(k_w \) at 0.076 and \(U_0 \) at 2.77 m s\(^{-1} \). The latter value seems far too low, given the fact that the horizontal semi-excision on top of the boundary layer (1.89 m) at this water depth only decreases to about 68.6% of its surface value, and that the water particle velocity is directly proportional to it. Although many textbooks (e.g. McLellan, 1965; Leeder, 1999) show the semi-excision to be almost constant with depth in shallow water, flow visualization of suspended particles photographed orbiting under a wave at a transitional water depth of \(d = 0.22\lambda_o \) (Van Dyke, 1982) shows a decrease of about 50% in the horizontal semi-excision. At the breaking depth of 7.78 m \(= 0.05L_o \), the semi-excision therefore cannot be less than 50%, because the reduction rate in the semi-excision with respect to its surface value decreases into shallower water. The boundary velocity given by Eq. (8) implies a semi-excision of about 27% of the surface value, which is clearly erroneous.

3. Conclusions

Using Eqs. (5) and (10), the maximum water depth in which sand- and granule-sized sediments will be entrained under fully developed wave conditions can be predicted. However, because Eq. (10) is valid for linear as well as non-linear waves, this method can also be used for developing waves if the deepwater, developing median crest diameter \(MCD_d \) can be measured or estimated from direct observation. In this case, \(H_o \) and \(L_o \) must be replaced by the deepwater developing wave height \(H_{oD} \) and length \(L_{oD} \) which can be calculated for specific atmospheric conditions using the equations of Le Roux (2009). Eqs. (12)–(16) are also valid for developing waves, so that \(H_{oD}, L_{oD} \) and \(L_w \) can be determined as the wave shoals. \(MCD_{oD} \) is still given by Eq. (16) but has a minimum value of \(\frac{\pi d}{2\pi} \), which may already be reached in deep water as developing waves have shorter, more pointed crests.

<table>
<thead>
<tr>
<th>Water depth (m)</th>
<th>100</th>
<th>80</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>7.78</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_0) (Eq. (10))</td>
<td>0.06</td>
<td>0.14</td>
<td>0.31</td>
<td>0.45</td>
<td>0.66</td>
<td>7.05</td>
</tr>
<tr>
<td>(U_0) (Eq. (8))</td>
<td>0.06</td>
<td>0.14</td>
<td>0.31</td>
<td>0.47</td>
<td>0.72</td>
<td>2.77</td>
</tr>
</tbody>
</table>
(when they are known as Stokes waves). In this case only the wave trough will shorten as it propagates into shallow water, maintaining the $M_{CD\text{WD}}$ at its minimum value. Unfortunately, at present it is not yet possible to predict the wave shape at various stages of development.

Eq. (5), having been developed from laboratory data for very fine sand to granules, can be used with confidence in most natural situations, but should be applied with care outside of this grain-size range. For grains finer than 0.1 mm, factors such as grain cohesion come into play, whereas coarser sediments are generally poorly sorted. Because of bed roughness effects, this can cause large differences in entrainment behaviour.

Acknowledgements

This paper was written under the auspices of CONICYT-FONDAP Project 15090013, “Andean Geothermal Center of Excellence” (CEGA). I appreciate the valuable comments of the Editor, Jasper Knight, and an anonymous reviewer.

References

Van Dyke, M., 1982. An Album of Fluid Motion. Parabolic Press, Kirkland, WA.

