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REPRESENTATIONS OF GENERALIZED

ALMOST-JORDAN ALGEBRAS

MARCELO FLORES AND ALICIA LABRA⋆

Abstract. This paper deals with the variety of commutative algebras
satisfying the identity β{(yx2)x − ((yx)x)x}+ γ{yx3 − ((yx)x)x} = 0
where α, β are scalars. These algebras appeared as one of the four fam-
ilies of degree four identities in Carini, Hentzel and Piacentini-Cattaneo
[6]. We give a characterization of representations and irreducible mod-
ules on these algebras. Our results require that the characteristic of the
ground field was different from 2, 3.

1. Introduction

Let A be a commutative not necessarily associative algebra over an infinite
field F. Let x be an element in A. We define the principal powers of x by
x1 = x, xn+1 = xnx for all n ≥ 1.

A Jordan algebra is a commutative algebra satisfying the identity x2(yx)−
(x2y)x = 0. It is a well known variety of algebra, that is power-associative,
i.e., the subalgebra generated by any element of the algebra, is associative.
See [13], [24] for properties of these varieties of algebras. It is known (see
[18]) that a Jordan algebra satisfies the identity 3((yx2)x) = 2((yx)x)x+yx3.
These algebras, called almost-Jordan algebras have been studied by Osborn
[18], [19], Petersson [22], Sidorov [26], and Hentzel and Peresi [11]. In this
last paper, the authors proved that every semi-prime almost-Jordan algebra
is a Jordan algebra and this fact justified the name of these algebras.

A generalized almost-Jordan algebra is a commutative algebra satisfying
the identity

(1) β{(yx2)x− ((yx)x)x} + γ{yx3 − ((yx)x)x} = 0

for every x,y ∈ A where α, β are scalars, and (β, γ) 6= (0, 0). For β = 3 and
γ = −1, we have an almost-Jordan algebra.

In the study of degree four identities not implied by conmutativity, Osborn
[19] classified those that were implied by the fact of possessing a unit element.
Carini, Hentzel and Piacentini-Cattaneo [6] extended this work by dropping
the restriction on the existence of the unit element. This result require that
characteristic F 6= 2, 3. The identity defining a generalized almost-Jordan
algebra with β, γ ∈ F appears as one of these identities.
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We observe that there are generalized almost-Jordan algebras that are
not Jordan algebras.

Example 1.1. Let A be a commutative algebra over F with base {e, a}, and
multiplication table given by

e2 = e, a2 = e, all other products being zero

Then A satisfies identity (1) for β = 1 y γ = −1. Moreover A is not a
Jordan algebra, since it is not power-associative since a2(aa) 6= (a2a)a.

Example 1.2. Let A be a commutative algebra over F with base {e, a} and
multiplication table given by

e2 = e, ea = ae = −e− a, a2 = e+ a.

Then A satisfies identity (1) with β = 0 and γ 6= 0. That is A satisfies
x3y = ((xy)x)x for every x, y ∈ A. Moreover A is not a Jordan algebra,
since a2(aa) = 2a 6= (a2a)a = 0.

Example 1.3. Let A be a commutative F -algebra with base {e, a, b} and
multiplication table given by

e2 = e, ab = ba = b, all other products being zero

Then A satisfies identity (1) with β = 1 and γ = 1, for every α ∈ F .
Moreover A is not power-associative since (a+b)4 = 2b and (a+b)2(a+b)2 =
0 and A is not a Jordan algebra

Generalized almost-Jordan algebras A have been studied in [1], where the
authors proved that these algebras always have a trace form in terms of the
trace of right multiplication operators. They also prove that if A is finite-
dimensional and solvable, then it is nilpotent and found three conditions,
any of which implies that a finite-dimensional right-nilalgebra A is nilpotent.
In [2] the author found the Wedderburn decomposition of A assuming that
for every ideal I of A either I has a non zero idempotent or I ⊂ R,R the
solvable radical of A and the quotient A/R is separable and in [10] where,
assuming that A also satisfies ((xx)x)x = 0 the authors proved the existence
of an ideal I of A such that AI = IA = 0 and the quotient algebra A/I is
power-associative.

In this paper we deal with representations of algebras. Let A be an algebra
which belongs to a class C of commutative algebras over a field K and let
M be a vector space over F. As in Eilenberg [9], we say that a linear map
ρ : A → End(M) is a a representation of A in the class C if the split null
extension S = A⊕M of M, with multiplication given by

(a+m)(b+ n) = ab+ ρ(a)(n) + ρ(b)(m) ∀ a, b ∈ A,m, n ∈ M

belongs to the class C.
Representations have been studied for different algebras, for example,

in [15], and [21] for Jordan algebras, in[14], [23] and [25] for alternative
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algebras, in [17] for composition algebras, in [12] for Lie algebras, in [26] for
Lie triple algebras, in [20] for Novikov algebras, in [5] for Bernstein algebras,
in [16] for train algebras of rank 3, in [3] for power-associative train algebras
of rank 4, in [4] for algebras of rank 3, in [7] for Malcev algebras and in [8]
for Malcev super algebras.

A representation ρ : A → End(M) is said to be irreducible if M 6=
0 and there is no proper subspace of M which is invariant under all the
transformations ρ(a), a ∈ A, and is said to be r-dimensional if dimM = r.

In this paper we study representations and irreducible modules over gen-
eralized almost-Jordan algebras A. The paper is organized as follows. In
Section 2 we find necessary and sufficient conditions for a linear map ρ to be
a representation. We find the action of A over M when 0 6∈ {γ, β+γ, β+2γ}
(see Theorem 2.3). In Section 3 we look at the three cases that arose as ex-
ception in the above Theorem. In Section 4 we study irreducible modules
over generalized almost-Jordan algebras and we prove two theorems when
0 6∈ {β, γ, β + γ, β + 2γ, β + 2γ} (see Theorem 4.4 and Theorem 4.5). The
last Theorem need also the condition β− γ 6= 0. In Section 5 we look at five
cases that arose as exception in Theorem 4.4 and Theorem 4.5. Moreover,
in the case β + γ = 0 we give an example of a 2-dimensional irreducible
module M. Finally we present some open problems.

2. Representations

In this section we study representations of generalized almost-Jordan al-
gebras.

Lemma 2.1. Let A be a generalized almost-Jordan algebra and ρ : A →
End(M) a linear map. Then ρ is a representation of A, if and only if for
every a, b ∈ A the following identities hold

(2) (β + γ)ρ3a − βρaρa2 − γρa3 = 0

(3) (β+γ)(ρaρab+ρ2aρb+ρ(ab)a)−β(2ρaρbρa+ρa2b)−γ(2ρbρ
2
a+ρbρa2) = 0

where ρa := ρ(a) ∈ End(M), and for every a, b ∈ A, ρa ◦ ρb will be denoted
by ρaρb.

Proof. ρ is a representation of A if and only if every a+m, b+ n ∈ A⊕M
satisfy the identity (1). Straightforward calculations give

[(a+m)2(b+ n)](a+m) = (a2b)a+ 2ρa(ρb(ρa(m))) + ρa(ρa2(n)) + ρa2b(m)

[(a+m)3](b+ n) = a3b+ 2ρb(ρa(ρa(m))) + ρb(ρa2(m)) + ρa3(n)

[[(a+m)(b+ n)](a+m)](a+m) = ((ab)a)a+ ρa(ρa(ρb(m))) + ρa(ρab(m))+

ρ3a(n) + ρ(ab)a(m)

Replacing x = a+m, y = b+ n in identity (1) we get

β{2ρa(ρb(ρa(m)))+ρa(ρa2(n))+ρa2b(m)−ρ2a((ρb(m))−ρa(ρab(m))−ρ3a(n)−
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ρ(ab)a(m)}+γ{2ρb(ρ
2
a(m))+ρb(ρa2(m))+ρa3(n)−ρ2a((ρb(m))−ρa(ρab(m))−

ρ3a(n)− ρ(ab)a(m)} = 0

Now it is easy to see that this relation holds if and only if identities (2)
and (3) hold in A. �

In the following suppose that A has an idempotent element e 6= 0. Taking
a = e in identity (2), we obtain

(4) (β + γ)ρ3e − βρ2e − γρe = 0

Proposition 2.2. Let A be a generalized almost-Jordan algebra and β, γ
satisfying 0 6∈ {γ, β+ γ, β+2γ}. Suppose that A has an idempotent element
e 6= 0. Let ρ : A → End(M) be a representation of A. Then

M = M0 ⊕M1 ⊕Mλ

where Mi = {m ∈ M |ρe(m) = im}, and i ∈ {0, 1, λ}.

Proof. Using identity (4) we see that ρe satisfies the polynomial p(x) =
(β + γ)x3 − βx2 − γx = 0. Since β + γ 6= 0 we define λ = −γ

β+γ
∈ F and

p(x) = (β + γ)x(x− 1)(x− λ). Moreover, since γ 6= 0, β + 2γ 6= 0, we have
that λ 6= 0 and λ 6= 1, therefore p(x) has only simple roots. On the other
hand, since the minimal polynomial of the operator ρe, is a divisor of p(x)
then ρe, also has simple roots. Then ρe is diagonalizable and

M = M0 ⊕M1 ⊕Mλ

�

In [2, Theorem 1] M. Arenas proves that the Peirce decomposition of a
generalized almost-Jordan algebra A is given by A = A0 ⊕ A1 ⊕ Aλ, Ai =
{a ∈ A|ea = ia}, where λ = −γ

β+γ
. Moreover, when 0 6∈ {γ, β + γ, β +2γ} we

have the following relations among these subspaces

(A0)
2 ⊆ A0, (A1)

2 ⊆ A1, A0A1 = {0}

AλA0 ⊆ Aλ, AλA1 ⊆ Aλ, (Aλ)
2 ⊆ A0 ⊕A1

Next we obtain relations among Ai and Mi, where i ∈ {0, 1, λ}. Linearis-
ing identity (2) we have

(5) (β+γ)(ρaρbρa+ρbρ
2
a+ρ2aρb)−2βρaρab−βρbρa2 −2γρ(ab)a −γρa2b = 0

Moreover sustracting identities (3) and (5), we obtain

(6) (γ−β){ρaρbρa+ρaρab−ρbρ
2
a−ρ(ab)a}+(β+γ){2ρ2aρb−ρbρa2−ρa2b} = 0

Theorem 2.3. Let A be a generalized almost-Jordan algebra and β, γ sat-
isfying 0 6∈ {γ, β + γ, β + 2γ}. Suposse that A has an idempotent element
e 6= 0. Let ρ : A → End(M) be a representation of A. Then the action of A
on M satisfies the following relations

A0 ·M0 ⊆ M0, A0 ·M1 = {0}, A0 ·Mλ ⊆ Mλ,
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A1 ·M0 = {0}, A1 ·M1 ⊆ M1, A1 ·Mλ ⊆ Mλ,

Aλ ·M0 ⊆ Mλ, Aλ ·M1 ⊆ Mλ, Aλ ·Mλ = M0 ⊕M1.

Moreover, if we assume that β 6= 0 and β+3γ 6= 0, then A0 ·Mλ = Aλ ·M0 =
{0} and Aλ ·Mλ = {0}, where λ = −γ

β+γ
.

Proof. Since ρ is a representation of A, we have that A and S = A⊕M , are
generalized almost-Jordan algebra for the same scalars (β, γ) ∈ F × F. If e
is an idempotent element in S, since 0 6∈ {γ, β + γ, β + 2γ} then the Peirce
decomposition of S relative to e is S = S0 ⊕ S1 ⊕ Sλ, where Si = {a+m ∈
S | e(a + m) = i(a + m)} for i = 0, 1, λ. Moreover, we have the following
relations

(S0)
2 ⊆ S0, (S1)

2 ⊆ S1, (Sλ)
2 ⊆ S0 ⊕ S1,

SλS0 ⊆ Sλ, SλS1 ⊆ S1, S0S1 = {0}.

On the other hand we have that Ai = Si ∩ A and Mi = Si ∩M , in fact
Si ∩A = {a+m ∈ S | e(a+m) = i(a+m)} ∩A = {a ∈ A | ea = ia} = Ai,
similarly we have that Mi = Si ∩M .

A0 ·M0 = (S0 ∩A)(S0 ∩M) ⊆ (S0 ∩M) = M0,
A1 ·M1 = (S1 ∩A)(S1 ∩M) ⊆ (S1 ∩M) = M1,
Aλ ·Mλ = (Sλ ∩A)(Sλ ∩M) ⊆ (S0 ∩M)⊕ (S1 ∩M) = M0 ⊕M1,
(S0 ∩ A)(S1 ∩ M) = (S0 ∩ M)(S1 ∩ A) = {0}, that is A0 · M1 =
A1 ·M0 = {0}.
Aλ · M1 = (Sλ ∩ A)(S1 ∩M) ⊆ (Sλ ∩M) = Mλ, similarly we have
that A1 ·Mλ ⊆ Mλ.
Aλ ·M0 = (Sλ ∩A)(S1 ∩M) ⊆ (Sλ ∩M) = Mλ. In a similar way we
prove that A0 ·Mλ ⊆ Mλ.

If we add the conditions β 6= 0 and β + 3γ 6= 0, we have that (Sλ)
2 =

S0Sλ = {0}, and the relations A0 ·Mλ = Aλ ·M0 = {0} and Aλ ·Mλ = {0}
follow. �

3. Exceptional cases

We now look at the three cases which arose as exception in Theorem 2.3.

3.1. Case γ = 0. Let A be a generalized almost-Jordan algebra and γ =
0. Then β 6= 0, and A satisfies the identity (yx2)x − ((yx)x)x = 0, for
every x, y ∈ A. Let ρ : A → End(M) be a representation of A. For these
algebras the minimal polynomial of the operator Re : A → A, is the same
of the operator ρe and it is given by p(t) = t2(t − 1), (see identity (4)).
Then the Peirce decomposition of the algebra A is A = A0 ⊕ A1, where
A0 = {x ∈ A | (ex)e = 0} and A1 = {x ∈ A | (ex) = x}. Similarly
we have that M = M0 ⊕ M1, where M0 = {m ∈ M | ρ2e(m) = 0} and
M1 = {m ∈ M | ρe(m) = m}.

Moreover, we have the relations (see [6]).

A0A1 ⊆ A0, (A0)
2 ⊆ A0.
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Lemma 3.2. Let A be a generalized almost-Jordan algebra and γ = 0.
Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M) be
a representation of A. Then

A1 ·M0 ⊆ M0, A0 ·M1 ⊆ M0, A0 ·M0 ⊆ M0.

Proof. As in the proof of Theorem 2.3, if we consider the algebra S = A⊕M ,
then S satisfies identity (1) for β 6= 0 and γ = 0. Moreover e is an idempotent
element in S, so in this case the Peirce decomposition of S relative to e is
S = S0 ⊕S1, where S0 = {a+m ∈ S | e(e(a+m)) = 0} and S1 = {a+m ∈
S | e(a+m) = a+m}.

On the other hand we have that Ai = Si ∩ A and Mi = Si ∩M. In fact
S1∩A = {a+m ∈ S | e(a+m) = (a+m)}∩A = {a ∈ A | ea = a} = A1 and
S0 ∩ A = {a ∈ a | e(ea) = 0} = A0. Similarly we have that Mi = Si ∩M .
Moreover, the subspaces Si satisfy the following relations

S0S1 ⊆ S0, (S0)
2 ⊆ S0,

and we obtain that

A0 ·M0 = (S0 ∩A)(S0 ∩M) ⊆ (S0 ∩M) = M0.
A1 ·M0 = (S1 ∩A)(S0 ∩M) ⊆ (S0 ∩M) = M0.

Similarly we obtain that A0 ·M1 ⊆ M0 and Lemma 3.2 follows.
�

3.3. Case β + γ = 0. Let M be a vector space and ρ : A → End(M) a
representation of A. We know by identity (4) that the minimal polynomial
of ρe and Re is p(x) = x2−x. Then the Peirce decomposition of the algebra
A is A = A0 ⊕A1, where Ai = {a ∈ A | ea = ia} for i = 0, 1 . Similarly we
have that M = M0 ⊕M1, where Mi = {m ∈ M | ρe(m) = im} for i = 0, 1.

We know that A0A1 = {0} and (A1)
2 ⊆ A1, (see [6]).

Lemma 3.4. Let A be a generalized almost-Jordan algebra and β + γ = 0.
Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M) be
a representation of A. Then

A0 ·M1 = A1 ·M0 = {0}, A1 ·M1 ⊆ M1.

Proof. The algebra S = A ⊕M , is a generalized almost-Jordan algebra so
S satisfies identity (1) for β and γ satisfying β + γ = 0. Moreover the
Peirce decomposition of S relative to the idempotent is S = S0 ⊕ S1, where
Si = {a+m ∈ S | e(a+m) = i(a+m)} for i = 0, 1.

As the above case we have that Ai = Si ∩ A and Mi = Si ∩ M , and in
this case we have the following relations

S0S1 = {0}, (S1)
2 ⊆ S1.

Therefore, we have that

A1 ·M1 = (S1 ∩A)(S1 ∩M) ⊆ (S1 ∩M) = M1,
A1 ·M0 = (S1 ∩A)(S0 ∩M) = {0},

Similarly we have that A0 ·M1 = {0}. �
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3.5. Case β + 2γ = 0. Let ρ : A → End(M) be a representation of a
generalized almost-Jordan algebra and β + 2γ = 0. For these algebras the
minimal polynomial of the operator Re : A → A, is the same of the operator
ρe and it is given by p(t) = t(t − 1)2, (see identity (4)). Then the Peirce
decomposition of the algebra A is A = A0⊕A1, where A0 = {x ∈ A | (ex) =
0} and A1 = {x ∈ A | (ex)e − 2(ex) + x = 0}. Similarly we have that
M = M0 ⊕ M1, where M0 = {m ∈ M | ρe(m) = 0} and M1 = {m ∈
M | (ρe − id)2(m) = 0}.

Moreover we have the following relations (see [6]).

A0A1 = {0}, (A0)
2 ⊆ A0.

Lemma 3.6. Let A be a generalized almost-Jordan algebra and β+2γ = 0.
Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M) be
a representation of A. Then

A0 ·M1 = A1 ·M0 = {0}, A0 ·M0 ⊆ M0.

Proof. The algebra S = A ⊕M , is a generalized almost-Jordan algebra so
S satisfies identity (1) for β and γ satisfying β + 2γ = 0. Moreover the
Peirce decomposition of S relative to the idempotent is S = S0 ⊕ S1, where
S0 = {a + m ∈ S | e(a + m) = 0} and S1 = {a + m ∈ S | e(e(a + m)) −
2e(a+m) + (a+m) = 0}.

As in the above Lemmas we have that Ai = Si ∩ A and Mi = Si ∩ M .
Moreover we have the following relations

S0S1 = {0}, (S0)
2 ⊆ S0.

Therefore we have

A0 ·M0 = (S0 ∩A)(S0 ∩M) ⊆ (S0 ∩M) = M0,
A1 ·M0 = (S1 ∩A)(S0 ∩M) = {0}.

Similarly we obtain that A0 ·M1 = {0} and Lemma 3.6 follows.
�

4. Irreducible Modules

Let A be an algebra over K and ρ : A → End(M) a representation of A.

Definition 4.1. Let N be a subspace of M , we will say that N is a submodule
of M if and only if A ·N ⊆ N .

Definition 4.2. We will say that M is an irreducible module or that ρ is
an irreducible representation, if M 6= 0, and M has no proper submodules
or equivalently there is no proper subspace of M which are invariant under
all the transformations ρ(a), a ∈ A.

Proposition 4.3. Let A be a generalized almost-Jordan algebra and β, γ
satisfying 0 6∈ {γ, β+ γ, β+2γ}. Suppose that A has an idempotent element
e 6= 0. Let ρ : A → End(M) be an irreducible representation of A. Then
one of the following conditions hold.

(i) M = Mλ or (ii) M = M0 or (iii) M = M1
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Proof. Using Theorem 2.3, we obtain that M0 and Mλ are submodules of
M. Since M is irreducible, then M = M0 or M0 = {0}. On the other hand,
M = Mλ or Mλ = {0} and the Proposition follows. �

Linearizing identity (3) we obtain

(7) (β + γ)(ρcρab + ρaρcb + ρaρcρb + ρcρaρb + ρ(ab)c + ρ(cb)a)−

2β(ρaρbρc + ρcρbρa + ρ(ac)b)− 2γ(ρbρaρc + ρbρcρa + ρbρac) = 0

Theorem 4.4. Let A be a generalized almost-Jordan algebra with β and γ
satisfying 0 6∈ {β, γ, β+γ, β+2γ, β+3γ}. Suppose that A has an idempotent
element e 6= 0, and M be an irreducible module. If M = M1, then M is an
associative module.

Proof. M is associative if and only if

(a, b,m) = 0 ∀a, b ∈ A, m ∈ M(8)

(a,m, b) = 0 ∀a, b ∈ A, m ∈ M(9)

Since M = M1 we have ρe = idM . We must prove relations (8) and (9).
Let a, b ∈ A and m ∈ M , then a = a0 + a1 + aλ and b = b0 + b1 + bλ with
ai, bi ∈ Ai i = 0, 1, λ. We have that

(a, b,m) = (a0 + a1 + aλ, b0 + b1 + bλ,m) = (a1, b1,m)

Similarly we have that (a,m, b) = (a1,m, b1). Therefore for proving that
M is associative, we must verify relations (8) and (9) for all a, b ∈ A1 and
m ∈ M = M1.

(a, b,m) = ab ·m− a · (b ·m) = ρab(m)− ρa(ρb(m)) = (ρab − ρaρb)(m)

and

(a,m, b) = (a ·m) · b− a · (m · b) = b · (a ·m)− a · (b ·m) = (ρbρa− ρaρb)(m).

Therefore we need to prove that ρbρa = ρaρb = ρab.
Replacing a, b ∈ A1 and c = e in identity (7) we have

(β + γ)(3ρab + 3ρaρb)− 2β(ρaρb + ρbρa + ρab)− 6γ(ρbρa) = 0.

Reordering the terms we have

(β + 3γ)ρab + (β + 3γ)ρaρb − 2(β + 3γ)ρbρa = 0.

Since β + 3γ 6= 0 we obtain

(10) ρab + ρaρb − 2ρbρa = 0

Interchanging a and b in identity (10) we obtain

(11) ρab + ρbρa − 2ρaρb = 0

Finally subtracting identity (10) and identity (11) and using that char(F ) 6=
3, we obtain ρaρb = ρbρa. Then we have that ρab = ρaρb. That is (8) and
(9) are valid for all a, b ∈ A1, and M is an associative module. �

In the case M = Mλ we have the following result
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Theorem 4.5. Let A be a generalized almost-Jordan algebra with β and γ
satisfaying 0 6∈ {β, γ, β + γ, β + 2γ, β + 3γ, β − γ}. Suppose that A has an
idempotent element e 6= 0, and M be an irreducible module. If M = Mλ,
then the following relations hold

(i) (a,m, b) = 0 ∀ a, b ∈ A, m ∈ M
(ii) (ab)m = λ−1a(bm) ∀ a, b ∈ A, m ∈ M .

Proof. Since M = Mλ we have that ρe = λid. We must prove (i) and (ii)
for all a, b ∈ A1 an m ∈ M . Replacing a, b ∈ A1 and c = e in identity (7) we
have that

(β + γ)(λρab + ρaρb + 2λρaρb + 2ρab)− 2β(λρaρb + λρbρa + ρab)

−2γ(2λρbρa + ρbρa) = 0

Reordering in term of ρab, ρaρb and ρbρa we have

((β + γ)(λ+ 2)− 2β)ρab + ((β + γ)(2λ+ 1)− 2βλ)ρaρb

−2(2γλ+ γ + βλ)ρbρa = 0

Developing each coefficient and in the case of the coefficient of ρab we use
the value of λ, to get the identity

(12) γρab + (β + γ + 2γλ)ρaρb − 2γλρbρa = 0

Interchanging a and b in identity (12) we have

(13) γρab + (β + γ + 2γλ)ρbρa − 2γλρaρb = 0

Subtracting identity (12) and identity (13) we obtain

(β + γ + 4γλ)(ρaρb − ρbρa) = 0

Replacing the value of λ we obtain

(14)
(β + 3γ)(β − γ)

β + γ
(ρaρb − ρbρa) = 0

Since (β+3γ) 6= 0 and (β− γ) 6= 0, we have ρaρb = ρbρa. Therefore we have
(i). Using (12) we have

γρab + (β + γ)ρaρb = 0

Since β + γ 6= 0, and using the value of λ we obtain

(15) − λρab + ρaρb = 0

Therefore ρab = λ−1ρaρb, we prove (ii), and the Theorem follows. �

5. Exceptional cases

We now look at five cases that arose as exception in Theorem 4.4 and in
Theorem 4.5



10 MARCELO FLORES AND ALICIA LABRA

5.1. Case β = 0. In this case, since β = 0 using Theorem 2.3 we have that
M0 is submodule and we have the following result

Lemma 5.2. Let A be a generalized almost-Jordan algebra with β = 0.
Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M)
be an irreducible representation of A. Then M = M0 or M = M1 ⊕M

−1,
where Mi = {m ∈ M | ρe(m) = im} para i = 0, 1,−1.

5.3. Case γ = 0. In this case, using Lemma 3.2 we have that M0 is sub-
module and we have:

Lemma 5.4. Let A be a generalized almost-Jordan algebra with γ = 0.
Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M)
be an irreducible representation of A. Then M = M0 or M = M1, where
M0 = {m ∈ M | ρ2e(m) = 0} y M1 = {m ∈ M | ρe(m) = m}.

Proposition 5.5. Let A be a generalized almost-Jordan algebra with γ = 0.
Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M) be
an irreducible representation of A. If (A1)

2 ⊆ A1 and M = M1, then M is
an associative module.

Proof. Suppose γ = 0, (A1)
2 ⊆ A1 and M = M1, that is ρe = idM . We need

to prove that (a, b,m) = (a,m, b) = 0 for all a, b ∈ A1, m ∈ M. But

(a, b,m) = ab ·m− a · (b ·m) = ρab(m)− ρa(ρb(m)) = (ρab − ρaρb)(m)

and

(a,m, b) = (a ·m) · b− a · (m · b) = b · (a ·m)− a · (b ·m) = (ρbρa − ρaρb)(m)

Replacing a, b ∈ A1 and c = e en relation (7) we obtain ρaρb+ρab−2ρbρa =
0. Interchanging a and b in the above identity we obtain ρbρa+ρab−2ρaρb =
0. Subtracting both identities we have that ρaρb = ρbρa. So ρab = ρaρb and
M is an associative module. �

5.6. Case β + γ = 0. In this case using Lema 3.4 we have that M1 is
submodule of M and we have the following result

Lemma 5.7. Let A be a generalized almost-Jordan algebra with β + γ = 0.
Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M) be
an irreducible representation of A. Then M = M0 ó M = M1.

Proposition 5.8. Let A be a generalized almost-Jordan algebra with β+γ =
0. Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M)
be an irreducible representation of A. If (A0)

2 ⊆ A0 and ρe 6= 0, then M is
an associative module.

Proof. As the above results we need to prove that (a, b,m) = (a,m, b) =
0 ∀ a, b ∈ A,m ∈ M . Since ρe 6= 0 Lema 5.7 implies that ρe = idM .
Moreover we have that (A0)

2 ⊆ A0, so if a = a0 + a1 and b = b0 + b1 with
ai, bi ∈ Ai, we have that (a, b,m) = (a1, b1,m) y (a,m, b) = (a1,m, b1) and
we only need to take a, b ∈ A1. With the same argument using in the proof
of Teorema 4.4 we prove that M is an associative module. �
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The next example shows an irreducible module of dimension 2, in the case
β + γ = 0

Example 5.9. Let us consider the algebra A of base {e, a} and multipli-
cation table e2 = e, ea = ae = 0, a2 = e, given in Example 1.1. Let M
be a 2-dimensional R - vector space M and {v,w} a base of M . We de-
fine a linear map ρ : A → End(M) by ρe = 0 and ρa(λ1v + λ2w) =
(2λ2 − λ1)v + (λ2 − λ1)w. Then ρ satisfies (2) and (3), so ρ is a repre-
sentation of A. Suppose that M is not irreducible, that is, there exists a
submodule N = Rm for some m ∈ M − {0}. Let m = λ1v + λ2w 6= 0, since
N is a submodule of M , we have that ρx(m) = bxm for some bx ∈ R, and
for all x ∈ A. Taking x = a we have that ρa(m) = bam, and we obtain that

(2λ2 − λ1) = baλ1, (λ2 − λ1) = baλ2

From the first identity we have λ2 = (ba+1)
2 λ1, and replacing this value in

the second identity we have

(ba + 1)

2
λ1 − λ1 = ba

(ba+1)
2 λ1

(ba + 1)λ1 − 2λ1 = ba(ba + 1)λ1

((ba)
2 + ba − ba − 1 + 2)λ1 = 0

((ba)
2 + 1)λ1 = 0

Since the polynomial x2 + 1 = 0 is irreducible in R[x], we obtain that λ1 =
0, and then λ2 = 0. A contradiction since m 6= 0. Therefore M is a 2-
dimensional irreducible module.

5.10. β +2γ = 0. Lema 3.6 implies that M0 is un submodule of M , and we
have

Lemma 5.11. Let A be a generalized almost-Jordan algebra with β+2γ = 0.
Suppose that A has an idempotent element e 6= 0. Let ρ : A → End(M) be
an irreducible representation of A. Then M = M0 or M = M1, where
M0 = {m ∈ M | ρe(m) = 0} and M1 = {m ∈ M | (ρe − id)2(m) = 0}.

5.12. β + 3γ = 0. These algebras are the almost-Jordan algebras and it is
known that for this kind of algebras every irreducible module is a Jordan
module (see [26]).

Open problems: We do not know which is the situation with an irre-
ducible module M ,

(1) In the case M = M0

(2) In the case β− γ = 0, that is A satisfies the identity, (yx2)x+ yx3−
2((yx)x)x = 0.

(3) In the case β = 0, that is A satisfies the identity, yx3−((yx)x)x = 0.
(4) In the case β+2γ = 0, that is A satisfies the identity, yx3−2(yx2)x+

((yx)x)x = 0.

In the last two cases we only know that M0 is a submodule of M.
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