REPRESENTATIONS OF GENERALIZED ALMOST-JORDAN ALGEBRAS

MARCELO FLORES AND ALICIA LABRA*

Abstract

This paper deals with the variety of commutative algebras satisfying the identity $\beta\left\{\left(y x^{2}\right) x-((y x) x) x\right\}+\gamma\left\{y x^{3}-((y x) x) x\right\}=0$ where α, β are scalars. These algebras appeared as one of the four families of degree four identities in Carini, Hentzel and Piacentini-Cattaneo [6. We give a characterization of representations and irreducible modules on these algebras. Our results require that the characteristic of the ground field was different from 2,3 .

1. Introduction

Let A be a commutative not necessarily associative algebra over an infinite field F. Let x be an element in A. We define the principal powers of x by $x^{1}=x, x^{n+1}=x^{n} x$ for all $n \geq 1$.

A Jordan algebra is a commutative algebra satisfying the identity $x^{2}(y x)-$ $\left(x^{2} y\right) x=0$. It is a well known variety of algebra, that is power-associative, i.e., the subalgebra generated by any element of the algebra, is associative. See [13], [24] for properties of these varieties of algebras. It is known (see [18]) that a Jordan algebra satisfies the identity $3\left(\left(y x^{2}\right) x\right)=2((y x) x) x+y x^{3}$. These algebras, called almost-Jordan algebras have been studied by Osborn [18], [19], Petersson [22], Sidorov [26], and Hentzel and Peresi [11]. In this last paper, the authors proved that every semi-prime almost-Jordan algebra is a Jordan algebra and this fact justified the name of these algebras.

A generalized almost-Jordan algebra is a commutative algebra satisfying the identity

$$
\begin{equation*}
\beta\left\{\left(y x^{2}\right) x-((y x) x) x\right\}+\gamma\left\{y x^{3}-((y x) x) x\right\}=0 \tag{1}
\end{equation*}
$$

for every $\mathrm{x}, \mathrm{y} \in A$ where α, β are scalars, and $(\beta, \gamma) \neq(0,0)$. For $\beta=3$ and $\gamma=-1$, we have an almost-Jordan algebra.

In the study of degree four identities not implied by conmutativity, Osborn [19] classified those that were implied by the fact of possessing a unit element. Carini, Hentzel and Piacentini-Cattaneo [6] extended this work by dropping the restriction on the existence of the unit element. This result require that characteristic $F \neq 2,3$. The identity defining a generalized almost-Jordan algebra with $\beta, \gamma \in F$ appears as one of these identities.

[^0]We observe that there are generalized almost-Jordan algebras that are not Jordan algebras.

Example 1.1. Let A be a commutative algebra over F with base $\{e, a\}$, and multiplication table given by

$$
e^{2}=e, a^{2}=e, \text { all other products being zero }
$$

Then A satisfies identity (1) for $\beta=1 y \gamma=-1$. Moreover A is not a Jordan algebra, since it is not power-associative since $a^{2}(a a) \neq\left(a^{2} a\right) a$.

Example 1.2. Let A be a commutative algebra over F with base $\{e, a\}$ and multiplication table given by

$$
e^{2}=e, e a=a e=-e-a, a^{2}=e+a .
$$

Then A satisfies identity (1) with $\beta=0$ and $\gamma \neq 0$. That is A satisfies $x^{3} y=((x y) x) x$ for every $x, y \in A$. Moreover A is not a Jordan algebra, since $a^{2}(a a)=2 a \neq\left(a^{2} a\right) a=0$.

Example 1.3. Let A be a commutative F-algebra with base $\{e, a, b\}$ and multiplication table given by

$$
e^{2}=e, a b=b a=b, \text { all other products being zero }
$$

Then A satisfies identity (1) with $\beta=1$ and $\gamma=1$, for every $\alpha \in F$. Moreover A is not power-associative since $(a+b)^{4}=2 b$ and $(a+b)^{2}(a+b)^{2}=$ 0 and A is not a Jordan algebra

Generalized almost-Jordan algebras A have been studied in [1] where the authors proved that these algebras always have a trace form in terms of the trace of right multiplication operators. They also prove that if A is finitedimensional and solvable, then it is nilpotent and found three conditions, any of which implies that a finite-dimensional right-nilalgebra A is nilpotent. In [2] the author found the Wedderburn decomposition of A assuming that for every ideal I of A either I has a non zero idempotent or $I \subset R, R$ the solvable radical of A and the quotient A / R is separable and in [10] where, assuming that A also satisfies $((x x) x) x=0$ the authors proved the existence of an ideal I of A such that $A I=I A=0$ and the quotient algebra A / I is power-associative.

In this paper we deal with representations of algebras. Let A be an algebra which belongs to a class \mathcal{C} of commutative algebras over a field K and let M be a vector space over F. As in Eilenberg 9, we say that a linear map $\rho: A \rightarrow \operatorname{End}(M)$ is a a representation of A in the class \mathcal{C} if the split null extension $S=A \oplus M$ of M, with multiplication given by

$$
(a+m)(b+n)=a b+\rho(a)(n)+\rho(b)(m) \forall a, b \in A, m, n \in M
$$

belongs to the class \mathcal{C}.
Representations have been studied for different algebras, for example, in [15], and [21] for Jordan algebras, in [14], [23] and [25] for alternative
algebras, in [17] for composition algebras, in [12] for Lie algebras, in [26] for Lie triple algebras, in [20] for Novikov algebras, in [5] for Bernstein algebras, in [16] for train algebras of rank 3, in [3] for power-associative train algebras of rank 4, in [4] for algebras of rank 3, in [7] for Malcev algebras and in [8] for Malcev super algebras.

A representation $\rho: A \rightarrow \operatorname{End}(M)$ is said to be irreducible if $M \neq$ 0 and there is no proper subspace of M which is invariant under all the transformations $\rho(a), a \in A$, and is said to be r-dimensional if $\operatorname{dim} M=r$.

In this paper we study representations and irreducible modules over generalized almost-Jordan algebras A. The paper is organized as follows. In Section 2 we find necessary and sufficient conditions for a linear map ρ to be a representation. We find the action of A over M when $0 \notin\{\gamma, \beta+\gamma, \beta+2 \gamma\}$ (see Theorem (2.3). In Section 3 we look at the three cases that arose as exception in the above Theorem. In Section 4 we study irreducible modules over generalized almost-Jordan algebras and we prove two theorems when $0 \notin\{\beta, \gamma, \beta+\gamma, \beta+2 \gamma, \beta+2 \gamma\}$ (see Theorem 4.4 and Theorem 4.5). The last Theorem need also the condition $\beta-\gamma \neq 0$. In Section 5 we look at five cases that arose as exception in Theorem 4.4 and Theorem 4.5, Moreover, in the case $\beta+\gamma=0$ we give an example of a 2 -dimensional irreducible module M. Finally we present some open problems.

2. Representations

In this section we study representations of generalized almost-Jordan algebras.

Lemma 2.1. Let A be a generalized almost-Jordan algebra and $\rho: A \rightarrow$ $\operatorname{End}(M)$ a linear map. Then ρ is a representation of A, if and only if for every $a, b \in A$ the following identities hold

$$
\begin{equation*}
(\beta+\gamma) \rho_{a}^{3}-\beta \rho_{a} \rho_{a^{2}}-\gamma \rho_{a^{3}}=0 \tag{2}
\end{equation*}
$$

(3) $(\beta+\gamma)\left(\rho_{a} \rho_{a b}+\rho_{a}^{2} \rho_{b}+\rho_{(a b) a}\right)-\beta\left(2 \rho_{a} \rho_{b} \rho_{a}+\rho_{a^{2} b}\right)-\gamma\left(2 \rho_{b} \rho_{a}^{2}+\rho_{b} \rho_{a^{2}}\right)=0$ where $\rho_{a}:=\rho(a) \in \operatorname{End}(M)$, and for every $a, b \in A, \rho_{a} \circ \rho_{b}$ will be denoted by $\rho_{a} \rho_{b}$.

Proof. ρ is a representation of A if and only if every $a+m, b+n \in A \oplus M$ satisfy the identity (1). Straightforward calculations give

$$
\left[(a+m)^{2}(b+n)\right](a+m)=\left(a^{2} b\right) a+2 \rho_{a}\left(\rho_{b}\left(\rho_{a}(m)\right)\right)+\rho_{a}\left(\rho_{a^{2}}(n)\right)+\rho_{a^{2} b}(m)
$$

$$
\left[(a+m)^{3}\right](b+n)=a^{3} b+2 \rho_{b}\left(\rho_{a}\left(\rho_{a}(m)\right)\right)+\rho_{b}\left(\rho_{a^{2}}(m)\right)+\rho_{a^{3}}(n)
$$

$$
\begin{gathered}
{[[(a+m)(b+n)](a+m)](a+m)=((a b) a) a+\rho_{a}\left(\rho_{a}\left(\rho_{b}(m)\right)\right)+\rho_{a}\left(\rho_{a b}(m)\right)+} \\
\rho_{a}^{3}(n)+\rho_{(a b) a}(m)
\end{gathered}
$$

Replacing $x=a+m, y=b+n$ in identity (1) we get

$$
\beta\left\{2 \rho_{a}\left(\rho_{b}\left(\rho_{a}(m)\right)\right)+\rho_{a}\left(\rho_{a^{2}}(n)\right)+\rho_{a^{2} b}(m)-\rho_{a}^{2}\left(\left(\rho_{b}(m)\right)-\rho_{a}\left(\rho_{a b}(m)\right)-\rho_{a}^{3}(n)-\right.\right.
$$

$$
\begin{gathered}
\left.\rho_{(a b) a}(m)\right\}+\gamma\left\{2 \rho_{b}\left(\rho_{a}^{2}(m)\right)+\rho_{b}\left(\rho_{a^{2}}(m)\right)+\rho_{a^{3}}(n)-\rho_{a}^{2}\left(\left(\rho_{b}(m)\right)-\rho_{a}\left(\rho_{a b}(m)\right)-\right.\right. \\
\left.\rho_{a}^{3}(n)-\rho_{(a b) a}(m)\right\}=0
\end{gathered}
$$

Now it is easy to see that this relation holds if and only if identities (2) and (3) hold in A.

In the following suppose that A has an idempotent element $e \neq 0$. Taking $a=e$ in identity (2), we obtain

$$
\begin{equation*}
(\beta+\gamma) \rho_{e}^{3}-\beta \rho_{e}^{2}-\gamma \rho_{e}=0 \tag{4}
\end{equation*}
$$

Proposition 2.2. Let A be a generalized almost-Jordan algebra and β, γ satisfying $0 \notin\{\gamma, \beta+\gamma, \beta+2 \gamma\}$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be a representation of A. Then

$$
M=M_{0} \oplus M_{1} \oplus M_{\lambda}
$$

where $M_{i}=\left\{m \in M \mid \rho_{e}(m)=i m\right\}$, and $i \in\{0,1, \lambda\}$.
Proof. Using identity (4) we see that ρ_{e} satisfies the polynomial $p(x)=$ $(\beta+\gamma) x^{3}-\beta x^{2}-\gamma x=0$. Since $\beta+\gamma \neq 0$ we define $\lambda=\frac{-\gamma}{\beta+\gamma} \in F$ and $p(x)=(\beta+\gamma) x(x-1)(x-\lambda)$. Moreover, since $\gamma \neq 0, \beta+2 \gamma \neq 0$, we have that $\lambda \neq 0$ and $\lambda \neq 1$, therefore $p(x)$ has only simple roots. On the other hand, since the minimal polynomial of the operator ρ_{e}, is a divisor of $p(x)$ then ρ_{e}, also has simple roots. Then ρ_{e} is diagonalizable and

$$
M=M_{0} \oplus M_{1} \oplus M_{\lambda}
$$

In [2, Theorem 1] M. Arenas proves that the Peirce decomposition of a generalized almost-Jordan algebra A is given by $A=A_{0} \oplus A_{1} \oplus A_{\lambda}, A_{i}=$ $\{a \in A \mid e a=i a\}$, where $\lambda=\frac{-\gamma}{\beta+\gamma}$. Moreover, when $0 \notin\{\gamma, \beta+\gamma, \beta+2 \gamma\}$ we have the following relations among these subspaces

$$
\begin{gathered}
\left(A_{0}\right)^{2} \subseteq A_{0}, \quad\left(A_{1}\right)^{2} \subseteq A_{1}, A_{0} A_{1}=\{0\} \\
A_{\lambda} A_{0} \subseteq A_{\lambda}, A_{\lambda} A_{1} \subseteq A_{\lambda},\left(A_{\lambda}\right)^{2} \subseteq A_{0} \oplus A_{1}
\end{gathered}
$$

Next we obtain relations among A_{i} and M_{i}, where $i \in\{0,1, \lambda\}$. Linearising identity (2) we have
(5) $(\beta+\gamma)\left(\rho_{a} \rho_{b} \rho_{a}+\rho_{b} \rho_{a}^{2}+\rho_{a}^{2} \rho_{b}\right)-2 \beta \rho_{a} \rho_{a b}-\beta \rho_{b} \rho_{a^{2}}-2 \gamma \rho_{(a b) a}-\gamma \rho_{a^{2} b}=0$

Moreover sustracting identities (3) and (5), we obtain
(6) $(\gamma-\beta)\left\{\rho_{a} \rho_{b} \rho_{a}+\rho_{a} \rho_{a b}-\rho_{b} \rho_{a}^{2}-\rho_{(a b) a}\right\}+(\beta+\gamma)\left\{2 \rho_{a}^{2} \rho_{b}-\rho_{b} \rho_{a^{2}}-\rho_{a^{2} b}\right\}=0$

Theorem 2.3. Let A be a generalized almost-Jordan algebra and β, γ satisfying $0 \notin\{\gamma, \beta+\gamma, \beta+2 \gamma\}$. Suposse that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be a representation of A. Then the action of A on M satisfies the following relations

$$
A_{0} \cdot M_{0} \subseteq M_{0}, A_{0} \cdot M_{1}=\{0\}, A_{0} \cdot M_{\lambda} \subseteq M_{\lambda}
$$

$$
\begin{gathered}
A_{1} \cdot M_{0}=\{0\}, A_{1} \cdot M_{1} \subseteq M_{1}, A_{1} \cdot M_{\lambda} \subseteq M_{\lambda} \\
A_{\lambda} \cdot M_{0} \subseteq M_{\lambda}, A_{\lambda} \cdot M_{1} \subseteq M_{\lambda}, A_{\lambda} \cdot M_{\lambda}=M_{0} \oplus M_{1} .
\end{gathered}
$$

Moreover, if we assume that $\beta \neq 0$ and $\beta+3 \gamma \neq 0$, then $A_{0} \cdot M_{\lambda}=A_{\lambda} \cdot M_{0}=$ $\{0\}$ and $A_{\lambda} \cdot M_{\lambda}=\{0\}$, where $\lambda=\frac{-\gamma}{\beta+\gamma}$.
Proof. Since ρ is a representation of A, we have that A and $S=A \oplus M$, are generalized almost-Jordan algebra for the same scalars $(\beta, \gamma) \in F \times F$. If e is an idempotent element in S, since $0 \notin\{\gamma, \beta+\gamma, \beta+2 \gamma\}$ then the Peirce decomposition of S relative to e is $S=S_{0} \oplus S_{1} \oplus S_{\lambda}$, where $S_{i}=\{a+m \in$ $S \mid e(a+m)=i(a+m)\}$ for $i=0,1, \lambda$. Moreover, we have the following relations

$$
\begin{gathered}
\left(S_{0}\right)^{2} \subseteq S_{0}, \quad\left(S_{1}\right)^{2} \subseteq S_{1}, \quad\left(S_{\lambda}\right)^{2} \subseteq S_{0} \oplus S_{1}, \\
\quad S_{\lambda} S_{0} \subseteq S_{\lambda}, \quad S_{\lambda} S_{1} \subseteq S_{1}, \quad S_{0} S_{1}=\{0\} .
\end{gathered}
$$

On the other hand we have that $A_{i}=S_{i} \cap A$ and $M_{i}=S_{i} \cap M$, in fact $S_{i} \cap A=\{a+m \in S \mid e(a+m)=i(a+m)\} \cap A=\{a \in A \mid e a=i a\}=A_{i}$, similarly we have that $M_{i}=S_{i} \cap M$.

$$
\begin{aligned}
& A_{0} \cdot M_{0}=\left(S_{0} \cap A\right)\left(S_{0} \cap M\right) \subseteq\left(S_{0} \cap M\right)=M_{0}, \\
& A_{1} \cdot M_{1}=\left(S_{1} \cap A\right)\left(S_{1} \cap M\right) \subseteq\left(S_{1} \cap M\right)=M_{1}, \\
& A_{\lambda} \cdot M_{\lambda}=\left(S_{\lambda} \cap A\right)\left(S_{\lambda} \cap M\right) \subseteq\left(S_{0} \cap M\right) \oplus\left(S_{1} \cap M\right)=M_{0} \oplus M_{1}, \\
& \left(S_{0} \cap A\right)\left(S_{1} \cap M\right)=\left(S_{0} \cap M\right)\left(S_{1} \cap A\right)=\{0\}, \text { that is } A_{0} \cdot M_{1}= \\
& A_{1} \cdot M_{0}=\{0\} . \\
& A_{\lambda} \cdot M_{1}=\left(S_{\lambda} \cap A\right)\left(S_{1} \cap M\right) \subseteq\left(S_{\lambda} \cap M\right)=M_{\lambda}, \text { similarly we have } \\
& \text { that } A_{1} \cdot M_{\lambda} \subseteq M_{\lambda} . \\
& A_{\lambda} \cdot M_{0}=\left(S_{\lambda} \cap A\right)\left(S_{1} \cap M\right) \subseteq\left(S_{\lambda} \cap M\right)=M_{\lambda} . \text { In a similar way we } \\
& \text { prove that } A_{0} \cdot M_{\lambda} \subseteq M_{\lambda} .
\end{aligned}
$$

If we add the conditions $\beta \neq 0$ and $\beta+3 \gamma \neq 0$, we have that $\left(S_{\lambda}\right)^{2}=$ $S_{0} S_{\lambda}=\{0\}$, and the relations $A_{0} \cdot M_{\lambda}=A_{\lambda} \cdot M_{0}=\{0\}$ and $A_{\lambda} \cdot M_{\lambda}=\{0\}$ follow.

3. Exceptional cases

We now look at the three cases which arose as exception in Theorem 2.3,
3.1. Case $\gamma=0$. Let A be a generalized almost-Jordan algebra and $\gamma=$ 0 . Then $\beta \neq 0$, and A satisfies the identity $\left(y x^{2}\right) x-((y x) x) x=0$, for every $x, y \in A$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be a representation of A. For these algebras the minimal polynomial of the operator $R_{e}: A \rightarrow A$, is the same of the operator ρ_{e} and it is given by $p(t)=t^{2}(t-1)$, (see identity (4)). Then the Peirce decomposition of the algebra A is $A=A_{0} \oplus A_{1}$, where $A_{0}=\{x \in A \mid(e x) e=0\}$ and $A_{1}=\{x \in A \mid(e x)=x\}$. Similarly we have that $M=M_{0} \oplus M_{1}$, where $M_{0}=\left\{m \in M \mid \rho_{e}^{2}(m)=0\right\}$ and $M_{1}=\left\{m \in M \mid \rho_{e}(m)=m\right\}$.

Moreover, we have the relations (see [6]).

$$
A_{0} A_{1} \subseteq A_{0},\left(A_{0}\right)^{2} \subseteq A_{0}
$$

Lemma 3.2. Let A be a generalized almost-Jordan algebra and $\gamma=0$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be a representation of A. Then

$$
A_{1} \cdot M_{0} \subseteq M_{0}, A_{0} \cdot M_{1} \subseteq M_{0}, A_{0} \cdot M_{0} \subseteq M_{0} .
$$

Proof. As in the proof of Theorem [2.3, if we consider the algebra $S=A \oplus M$, then S satisfies identity (1) for $\beta \neq 0$ and $\gamma=0$. Moreover e is an idempotent element in S, so in this case the Peirce decomposition of S relative to e is $S=S_{0} \oplus S_{1}$, where $S_{0}=\{a+m \in S \mid e(e(a+m))=0\}$ and $S_{1}=\{a+m \in$ $S \mid e(a+m)=a+m\}$.

On the other hand we have that $A_{i}=S_{i} \cap A$ and $M_{i}=S_{i} \cap M$. In fact $S_{1} \cap A=\{a+m \in S \mid e(a+m)=(a+m)\} \cap A=\{a \in A \mid e a=a\}=A_{1}$ and $S_{0} \cap A=\{a \in a \mid e(e a)=0\}=A_{0}$. Similarly we have that $M_{i}=S_{i} \cap M$. Moreover, the subspaces S_{i} satisfy the following relations

$$
S_{0} S_{1} \subseteq S_{0}, \quad\left(S_{0}\right)^{2} \subseteq S_{0}
$$

and we obtain that

$$
\begin{aligned}
& A_{0} \cdot M_{0}=\left(S_{0} \cap A\right)\left(S_{0} \cap M\right) \subseteq\left(S_{0} \cap M\right)=M_{0} . \\
& A_{1} \cdot M_{0}=\left(S_{1} \cap A\right)\left(S_{0} \cap M\right) \subseteq\left(S_{0} \cap M\right)=M_{0} .
\end{aligned}
$$

Similarly we obtain that $A_{0} \cdot M_{1} \subseteq M_{0}$ and Lemma 3.2 follows.
3.3. Case $\beta+\gamma=0$. Let M be a vector space and $\rho: A \rightarrow \operatorname{End}(M)$ a representation of A. We know by identity (4) that the minimal polynomial of ρ_{e} and R_{e} is $p(x)=x^{2}-x$. Then the Peirce decomposition of the algebra A is $A=A_{0} \oplus A_{1}$, where $A_{i}=\{a \in A \mid e a=i a\}$ for $i=0,1$. Similarly we have that $M=M_{0} \oplus M_{1}$, where $M_{i}=\left\{m \in M \mid \rho_{e}(m)=i m\right\}$ for $i=0,1$.

We know that $A_{0} A_{1}=\{0\}$ and $\left(A_{1}\right)^{2} \subseteq A_{1}$, (see [6]).
Lemma 3.4. Let A be a generalized almost-Jordan algebra and $\beta+\gamma=0$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be a representation of A. Then

$$
A_{0} \cdot M_{1}=A_{1} \cdot M_{0}=\{0\}, A_{1} \cdot M_{1} \subseteq M_{1}
$$

Proof. The algebra $S=A \oplus M$, is a generalized almost-Jordan algebra so S satisfies identity (1) for β and γ satisfying $\beta+\gamma=0$. Moreover the Peirce decomposition of S relative to the idempotent is $S=S_{0} \oplus S_{1}$, where $S_{i}=\{a+m \in S \mid e(a+m)=i(a+m)\}$ for $i=0,1$.

As the above case we have that $A_{i}=S_{i} \cap A$ and $M_{i}=S_{i} \cap M$, and in this case we have the following relations

$$
S_{0} S_{1}=\{0\}, \quad\left(S_{1}\right)^{2} \subseteq S_{1} .
$$

Therefore, we have that

$$
\begin{aligned}
& A_{1} \cdot M_{1}=\left(S_{1} \cap A\right)\left(S_{1} \cap M\right) \subseteq\left(S_{1} \cap M\right)=M_{1}, \\
& A_{1} \cdot M_{0}=\left(S_{1} \cap A\right)\left(S_{0} \cap M\right)=\{0\},
\end{aligned}
$$

Similarly we have that $A_{0} \cdot M_{1}=\{0\}$.
3.5. Case $\beta+2 \gamma=0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be a representation of a generalized almost-Jordan algebra and $\beta+2 \gamma=0$. For these algebras the minimal polynomial of the operator $R_{e}: A \rightarrow A$, is the same of the operator ρ_{e} and it is given by $p(t)=t(t-1)^{2}$, (see identity (4)). Then the Peirce decomposition of the algebra A is $A=A_{0} \oplus A_{1}$, where $A_{0}=\{x \in A \mid(e x)=$ $0\}$ and $A_{1}=\{x \in A \mid(e x) e-2(e x)+x=0\}$. Similarly we have that $M=M_{0} \oplus M_{1}$, where $M_{0}=\left\{m \in M \mid \rho_{e}(m)=0\right\}$ and $M_{1}=\{m \in$ $\left.M \mid\left(\rho_{e}-i d\right)^{2}(m)=0\right\}$.

Moreover we have the following relations (see [6]).

$$
A_{0} A_{1}=\{0\},\left(A_{0}\right)^{2} \subseteq A_{0} .
$$

Lemma 3.6. Let A be a generalized almost-Jordan algebra and $\beta+2 \gamma=0$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be a representation of A. Then

$$
A_{0} \cdot M_{1}=A_{1} \cdot M_{0}=\{0\}, A_{0} \cdot M_{0} \subseteq M_{0} .
$$

Proof. The algebra $S=A \oplus M$, is a generalized almost-Jordan algebra so S satisfies identity (1) for β and γ satisfying $\beta+2 \gamma=0$. Moreover the Peirce decomposition of S relative to the idempotent is $S=S_{0} \oplus S_{1}$, where $S_{0}=\{a+m \in S \mid e(a+m)=0\}$ and $S_{1}=\{a+m \in S \mid e(e(a+m))-$ $2 e(a+m)+(a+m)=0\}$.

As in the above Lemmas we have that $A_{i}=S_{i} \cap A$ and $M_{i}=S_{i} \cap M$. Moreover we have the following relations

$$
S_{0} S_{1}=\{0\}, \quad\left(S_{0}\right)^{2} \subseteq S_{0}
$$

Therefore we have

$$
\begin{aligned}
& A_{0} \cdot M_{0}=\left(S_{0} \cap A\right)\left(S_{0} \cap M\right) \subseteq\left(S_{0} \cap M\right)=M_{0}, \\
& A_{1} \cdot M_{0}=\left(S_{1} \cap A\right)\left(S_{0} \cap M\right)=\{0\} .
\end{aligned}
$$

Similarly we obtain that $A_{0} \cdot M_{1}=\{0\}$ and Lemma 3.6 follows.

4. Irreducible Modules

Let A be an algebra over K and $\rho: A \rightarrow \operatorname{End}(M)$ a representation of A.
Definition 4.1. Let N be a subspace of M, we will say that N is a submodule of M if and only if $A \cdot N \subseteq N$.
Definition 4.2. We will say that M is an irreducible module or that ρ is an irreducible representation, if $M \neq 0$, and M has no proper submodules or equivalently there is no proper subspace of M which are invariant under all the transformations $\rho(a), a \in A$.
Proposition 4.3. Let A be a generalized almost-Jordan algebra and β, γ satisfying $0 \notin\{\gamma, \beta+\gamma, \beta+2 \gamma\}$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be an irreducible representation of A. Then one of the following conditions hold.

$$
\text { (i) } M=M_{\lambda} \text { or (ii) } M=M_{0} \text { or (iii) } M=M_{1}
$$

Proof. Using Theorem [2.3, we obtain that M_{0} and M_{λ} are submodules of M. Since M is irreducible, then $M=M_{0}$ or $M_{0}=\{0\}$. On the other hand, $M=M_{\lambda}$ or $M_{\lambda}=\{0\}$ and the Proposition follows.

Linearizing identity (3) we obtain

$$
\begin{align*}
& (\beta+\gamma)\left(\rho_{c} \rho_{a b}+\rho_{a} \rho_{c b}+\rho_{a} \rho_{c} \rho_{b}+\rho_{c} \rho_{a} \rho_{b}+\rho_{(a b) c}+\rho_{(c b) a}\right)- \tag{7}\\
& \quad 2 \beta\left(\rho_{a} \rho_{b} \rho_{c}+\rho_{c} \rho_{b} \rho_{a}+\rho_{(a c) b}\right)-2 \gamma\left(\rho_{b} \rho_{a} \rho_{c}+\rho_{b} \rho_{c} \rho_{a}+\rho_{b} \rho_{a c}\right)=0
\end{align*}
$$

Theorem 4.4. Let A be a generalized almost-Jordan algebra with β and γ satisfying $0 \notin\{\beta, \gamma, \beta+\gamma, \beta+2 \gamma, \beta+3 \gamma\}$. Suppose that A has an idempotent element $e \neq 0$, and M be an irreducible module. If $M=M_{1}$, then M is an associative module.

Proof. M is associative if and only if

$$
\begin{array}{ll}
(a, b, m)=0 & \forall a, b \in A, m \in M \\
(a, m, b)=0 & \forall a, b \in A, m \in M \tag{9}
\end{array}
$$

Since $M=M_{1}$ we have $\rho_{e}=i d_{M}$. We must prove relations (8) and (9). Let $a, b \in A$ and $m \in M$, then $a=a_{0}+a_{1}+a_{\lambda}$ and $b=b_{0}+b_{1}+b_{\lambda}$ with $a_{i}, b_{i} \in A_{i} \quad i=0,1, \lambda$. We have that

$$
(a, b, m)=\left(a_{0}+a_{1}+a_{\lambda}, b_{0}+b_{1}+b_{\lambda}, m\right)=\left(a_{1}, b_{1}, m\right)
$$

Similarly we have that $(a, m, b)=\left(a_{1}, m, b_{1}\right)$. Therefore for proving that M is associative, we must verify relations (8) and (9) for all $a, b \in A_{1}$ and $m \in M=M_{1}$.

$$
(a, b, m)=a b \cdot m-a \cdot(b \cdot m)=\rho_{a b}(m)-\rho_{a}\left(\rho_{b}(m)\right)=\left(\rho_{a b}-\rho_{a} \rho_{b}\right)(m)
$$

and
$(a, m, b)=(a \cdot m) \cdot b-a \cdot(m \cdot b)=b \cdot(a \cdot m)-a \cdot(b \cdot m)=\left(\rho_{b} \rho_{a}-\rho_{a} \rho_{b}\right)(m)$.
Therefore we need to prove that $\rho_{b} \rho_{a}=\rho_{a} \rho_{b}=\rho_{a b}$.
Replacing $a, b \in A_{1}$ and $c=e$ in identity (7) we have

$$
(\beta+\gamma)\left(3 \rho_{a b}+3 \rho_{a} \rho_{b}\right)-2 \beta\left(\rho_{a} \rho_{b}+\rho_{b} \rho_{a}+\rho_{a b}\right)-6 \gamma\left(\rho_{b} \rho_{a}\right)=0 .
$$

Reordering the terms we have

$$
(\beta+3 \gamma) \rho_{a b}+(\beta+3 \gamma) \rho_{a} \rho_{b}-2(\beta+3 \gamma) \rho_{b} \rho_{a}=0 .
$$

Since $\beta+3 \gamma \neq 0$ we obtain

$$
\begin{equation*}
\rho_{a b}+\rho_{a} \rho_{b}-2 \rho_{b} \rho_{a}=0 \tag{10}
\end{equation*}
$$

Interchanging a and b in identity (10) we obtain

$$
\begin{equation*}
\rho_{a b}+\rho_{b} \rho_{a}-2 \rho_{a} \rho_{b}=0 \tag{11}
\end{equation*}
$$

Finally subtracting identity (10) and identity (11) and using that $\operatorname{char}(F) \neq$ 3 , we obtain $\rho_{a} \rho_{b}=\rho_{b} \rho_{a}$. Then we have that $\rho_{a b}=\rho_{a} \rho_{b}$. That is (8) and (9) are valid for all $a, b \in A_{1}$, and M is an associative module.

In the case $M=M_{\lambda}$ we have the following result

Theorem 4.5. Let A be a generalized almost-Jordan algebra with β and γ satisfaying $0 \notin\{\beta, \gamma, \beta+\gamma, \beta+2 \gamma, \beta+3 \gamma, \beta-\gamma\}$. Suppose that A has an idempotent element $e \neq 0$, and M be an irreducible module. If $M=M_{\lambda}$, then the following relations hold
(i) $(a, m, b)=0 \quad \forall a, b \in A, m \in M$
(ii) $(a b) m=\lambda^{-1} a(b m) \quad \forall a, b \in A, m \in M$.

Proof. Since $M=M_{\lambda}$ we have that $\rho_{e}=\lambda i d$. We must prove (i) and (ii) for all $a, b \in A_{1}$ an $m \in M$. Replacing $a, b \in A_{1}$ and $c=e$ in identity (7) we have that

$$
\begin{gathered}
(\beta+\gamma)\left(\lambda \rho_{a b}+\rho_{a} \rho_{b}+2 \lambda \rho_{a} \rho_{b}+2 \rho_{a b}\right)-2 \beta\left(\lambda \rho_{a} \rho_{b}+\lambda \rho_{b} \rho_{a}+\rho_{a b}\right) \\
-2 \gamma\left(2 \lambda \rho_{b} \rho_{a}+\rho_{b} \rho_{a}\right)=0
\end{gathered}
$$

Reordering in term of $\rho_{a b}, \rho_{a} \rho_{b}$ and $\rho_{b} \rho_{a}$ we have

$$
\begin{gathered}
((\beta+\gamma)(\lambda+2)-2 \beta) \rho_{a b}+((\beta+\gamma)(2 \lambda+1)-2 \beta \lambda) \rho_{a} \rho_{b} \\
-2(2 \gamma \lambda+\gamma+\beta \lambda) \rho_{b} \rho_{a}=0
\end{gathered}
$$

Developing each coefficient and in the case of the coefficient of $\rho_{a b}$ we use the value of λ, to get the identity

$$
\begin{equation*}
\gamma \rho_{a b}+(\beta+\gamma+2 \gamma \lambda) \rho_{a} \rho_{b}-2 \gamma \lambda \rho_{b} \rho_{a}=0 \tag{12}
\end{equation*}
$$

Interchanging a and b in identity (12) we have

$$
\begin{equation*}
\gamma \rho_{a b}+(\beta+\gamma+2 \gamma \lambda) \rho_{b} \rho_{a}-2 \gamma \lambda \rho_{a} \rho_{b}=0 \tag{13}
\end{equation*}
$$

Subtracting identity (12) and identity (13) we obtain

$$
(\beta+\gamma+4 \gamma \lambda)\left(\rho_{a} \rho_{b}-\rho_{b} \rho_{a}\right)=0
$$

Replacing the value of λ we obtain

$$
\begin{equation*}
\frac{(\beta+3 \gamma)(\beta-\gamma)}{\beta+\gamma}\left(\rho_{a} \rho_{b}-\rho_{b} \rho_{a}\right)=0 \tag{14}
\end{equation*}
$$

Since $(\beta+3 \gamma) \neq 0$ and $(\beta-\gamma) \neq 0$, we have $\rho_{a} \rho_{b}=\rho_{b} \rho_{a}$. Therefore we have (i). Using (12) we have

$$
\gamma \rho_{a b}+(\beta+\gamma) \rho_{a} \rho_{b}=0
$$

Since $\beta+\gamma \neq 0$, and using the value of λ we obtain

$$
\begin{equation*}
-\lambda \rho_{a b}+\rho_{a} \rho_{b}=0 \tag{15}
\end{equation*}
$$

Therefore $\rho_{a b}=\lambda^{-1} \rho_{a} \rho_{b}$, we prove (ii), and the Theorem follows.

5. ExCEptional cases

We now look at five cases that arose as exception in Theorem 4.4 and in Theorem 4.5
5.1. Case $\beta=0$. In this case, since $\beta=0$ using Theorem 2.3 we have that M_{0} is submodule and we have the following result
Lemma 5.2. Let A be a generalized almost-Jordan algebra with $\beta=0$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be an irreducible representation of A. Then $M=M_{0}$ or $M=M_{1} \oplus M_{-1}$, where $M_{i}=\left\{m \in M \mid \rho_{e}(m)=i m\right\}$ para $i=0,1,-1$.
5.3. Case $\gamma=0$. In this case, using Lemma 3.2 we have that M_{0} is submodule and we have:

Lemma 5.4. Let A be a generalized almost-Jordan algebra with $\gamma=0$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be an irreducible representation of A. Then $M=M_{0}$ or $M=M_{1}$, where $M_{0}=\left\{m \in M \mid \rho_{e}^{2}(m)=0\right\}$ y $M_{1}=\left\{m \in M \mid \rho_{e}(m)=m\right\}$.

Proposition 5.5. Let A be a generalized almost-Jordan algebra with $\gamma=0$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be an irreducible representation of A. If $\left(A_{1}\right)^{2} \subseteq A_{1}$ and $M=M_{1}$, then M is an associative module.
Proof. Suppose $\gamma=0,\left(A_{1}\right)^{2} \subseteq A_{1}$ and $M=M_{1}$, that is $\rho_{e}=i d_{M}$. We need to prove that $(a, b, m)=(a, m, b)=0$ for all $a, b \in A_{1}, m \in M$. But

$$
(a, b, m)=a b \cdot m-a \cdot(b \cdot m)=\rho_{a b}(m)-\rho_{a}\left(\rho_{b}(m)\right)=\left(\rho_{a b}-\rho_{a} \rho_{b}\right)(m)
$$

and
$(a, m, b)=(a \cdot m) \cdot b-a \cdot(m \cdot b)=b \cdot(a \cdot m)-a \cdot(b \cdot m)=\left(\rho_{b} \rho_{a}-\rho_{a} \rho_{b}\right)(m)$
Replacing $a, b \in A_{1}$ and $c=e$ en relation (17) we obtain $\rho_{a} \rho_{b}+\rho_{a b}-2 \rho_{b} \rho_{a}=$ 0 . Interchanging a and b in the above identity we obtain $\rho_{b} \rho_{a}+\rho_{a b}-2 \rho_{a} \rho_{b}=$ 0 . Subtracting both identities we have that $\rho_{a} \rho_{b}=\rho_{b} \rho_{a}$. So $\rho_{a b}=\rho_{a} \rho_{b}$ and M is an associative module.
5.6. Case $\beta+\gamma=0$. In this case using Lema 3.4 we have that M_{1} is submodule of M and we have the following result

Lemma 5.7. Let A be a generalized almost-Jordan algebra with $\beta+\gamma=0$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be an irreducible representation of A. Then $M=M_{0}$ ó $M=M_{1}$.
Proposition 5.8. Let A be a generalized almost-Jordan algebra with $\beta+\gamma=$ 0 . Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be an irreducible representation of A. If $\left(A_{0}\right)^{2} \subseteq A_{0}$ and $\rho_{e} \neq 0$, then M is an associative module.

Proof. As the above results we need to prove that $(a, b, m)=(a, m, b)=$ $0 \forall a, b \in A, m \in M$. Since $\rho_{e} \neq 0$ Lema 5.7 implies that $\rho_{e}=i d_{M}$. Moreover we have that $\left(A_{0}\right)^{2} \subseteq A_{0}$, so if $a=a_{0}+a_{1}$ and $b=b_{0}+b_{1}$ with $a_{i}, b_{i} \in A_{i}$, we have that $(a, b, m)=\left(a_{1}, b_{1}, m\right)$ y $(a, m, b)=\left(a_{1}, m, b_{1}\right)$ and we only need to take $a, b \in A_{1}$. With the same argument using in the proof of Teorema 4.4 we prove that M is an associative module.

The next example shows an irreducible module of dimension 2, in the case $\beta+\gamma=0$

Example 5.9. Let us consider the algebra A of base $\{e, a\}$ and multiplication table $e^{2}=e, e a=a e=0, a^{2}=e$, given in Example 1.1. Let M be a 2 -dimensional \mathbb{R} - vector space M and $\{v, w\}$ a base of M. We define a linear map $\rho: A \rightarrow \operatorname{End}(M)$ by $\rho_{e}=0$ and $\rho_{a}\left(\lambda_{1} v+\lambda_{2} w\right)=$ $\left(2 \lambda_{2}-\lambda_{1}\right) v+\left(\lambda_{2}-\lambda_{1}\right) w$. Then ρ satisfies (2) and (3), so ρ is a representation of A. Suppose that M is not irreducible, that is, there exists a submodule $N=\mathbb{R} m$ for some $m \in M-\{0\}$. Let $m=\lambda_{1} v+\lambda_{2} w \neq 0$, since N is a submodule of M, we have that $\rho_{x}(m)=b_{x} m$ for some $b_{x} \in \mathbb{R}$, and for all $x \in A$. Taking $x=a$ we have that $\rho_{a}(m)=b_{a} m$, and we obtain that

$$
\left(2 \lambda_{2}-\lambda_{1}\right)=b_{a} \lambda_{1}, \quad\left(\lambda_{2}-\lambda_{1}\right)=b_{a} \lambda_{2}
$$

From the first identity we have $\lambda_{2}=\frac{\left(b_{a}+1\right)}{2} \lambda_{1}$, and replacing this value in the second identity we have

$$
\begin{array}{rlrl}
\frac{\left(b_{a}+1\right)}{2} \lambda_{1}-\lambda_{1} & =b_{a} \frac{\left(b_{a}+1\right)}{2} \lambda_{1} & \\
\left(b_{a}+1\right) \lambda_{1}-2 \lambda_{1} & & = & b_{a}\left(b_{a}+1\right) \lambda_{1} \\
\left(\left(b_{a}\right)^{2}+b_{a}-b_{a}-1+2\right) \lambda_{1} & = & 0 \\
\left(\left(b_{a}\right)^{2}+1\right) \lambda_{1} & & = & 0
\end{array}
$$

Since the polynomial $x^{2}+1=0$ is irreducible in $\mathbb{R}[x]$, we obtain that $\lambda_{1}=$ 0 , and then $\lambda_{2}=0$. A contradiction since $m \neq 0$. Therefore M is a 2dimensional irreducible module.
5.10. $\beta+2 \gamma=0$. Lema 3.6 implies that M_{0} is un submodule of M, and we have

Lemma 5.11. Let A be a generalized almost-Jordan algebra with $\beta+2 \gamma=0$. Suppose that A has an idempotent element $e \neq 0$. Let $\rho: A \rightarrow \operatorname{End}(M)$ be an irreducible representation of A. Then $M=M_{0}$ or $M=M_{1}$, where $M_{0}=\left\{m \in M \mid \rho_{e}(m)=0\right\}$ and $M_{1}=\left\{m \in M \mid\left(\rho_{e}-i d\right)^{2}(m)=0\right\}$.
5.12. $\beta+3 \gamma=0$. These algebras are the almost-Jordan algebras and it is known that for this kind of algebras every irreducible module is a Jordan module (see [26]).

Open problems: We do not know which is the situation with an irreducible module M,
(1) In the case $M=M_{0}$
(2) In the case $\beta-\gamma=0$, that is A satisfies the identity, $\left(y x^{2}\right) x+y x^{3}-$ $2((y x) x) x=0$.
(3) In the case $\beta=0$, that is A satisfies the identity, $y x^{3}-((y x) x) x=0$.
(4) In the case $\beta+2 \gamma=0$, that is A satisfies the identity, $y x^{3}-2\left(y x^{2}\right) x+$ $((y x) x) x=0$.
In the last two cases we only know that M_{0} is a submodule of M.

References

[1] Arenas, M., Labra, A. (2008). On nilpotency of generalized Almost-Jordan rightnilalgebras. Algebra Colloquium 15 (1):69-82.
[2] Arenas, M. (2007). The Wedderburn principal theorem for generalized almost-Jordan algebras. Comm. Algebra 35 (2): 675-688.
[3] Behn, A., Labra, A., Reyes C. (2013). Representations of Power-Associative Train Algebras. Algebra Colloq. Accepted in September.
[4] Benkart, G., Labra, A. (2006). Representations of algebras of rank 3. Communications in Algebra, 34 (8): 2867-2877.
[5] Bernard, J., Iltyacov, A., Martnez, C. (1994). Bernstein representations, Proceedings of the 3rd. Int. Conference on non associative algebras. (S. Gonzlez, Ed.) Kluwer Academic Publisher, Dordrech. pp.39-45.
[6] Carini, L., Hentzel, I. R., Piacentini-Cattaneo, J. M. (1988). Degree four Identities not implies by commutativity. Comm. in Algebra 16 (2):339-357.
[7] Elduque, A., Shestakov, I. P. (1995). Irreducible Malcev modules. J. of Algebra 173:622-637.
[8] Elduque, A., Shestakov, I. P (2001). Irreducible non-Lie modules for Malcev superalgebras. J. of Algebra 246:897-914
[9] Eilenberg, S. (1948). Extensions of general algebras. Ann. Soc. Polon. Math. 21:125134.
[10] Hentzel, I. R., Labra, A. (2007). On left nilalgebras of left nilindex four satisfying an identity of degree four. Internat. J. Algebra Comput. 17 (1):27-35.
[11] Hentzel, I. R., Peresi, L. A. (1988). Almost Jordan Rings. Proc. of A. M. S. 104 (2):343-348.
[12] Humphreys, J. E. (1972). Introduction to Lie Algebras and Representation Theory, Springer-Verlag New York Inc.
[13] Jacobson, N. (1951). General representations theory of Jordan algebras. Trans. Amer. Math. Soc. 70:509-530.
[14] Jacobson, N. (1954). Structure of alternative and Jordan bimodules. Osaka Math. Journal 6:1-71
[15] Jacobson, N. (1968). Structure and representations of Jordan algebras. Amer. Math. Soc. Colloc. Publ. XXXIX: X +453 pp .
[16] Labra, A. Reyes, C. (2005). Representations on train algebras of rank 3. Linear Algebra and its Applic. 400:91-97.
[17] McCrimmon, K. (1966). Bimodules for composition algebras. Proc. Amer. Math. Soc. 17:480-486.
[18] Osborn, J. M. (1965). Commutative algebras satisfying an identity of degree four. Proc. Amer. Math. Soc. 16:1114-1120.
[19] Osborn, J. M. (1965). Identities of non-associative algebras. Canad. J. Math. 17:78-92.
[20] Osborn, J. M. (1995) Modules for Novikov algebras. Contemporary Mathematics 184:327-338.
[21] Osborn, J. M. (1971). Representations and radicals of Jordan algebras. Scripta Mathematica, Vol. 29, No. 3-4: (1971), 297-329.
[22] Petersson, H. (1997). Zur Theorie der Lie-Tripel-Algebren. Math. Z. 97:1-15.
[23] Schafer, R. (1952). Representations of alternatives algebras. Trans. Am. Math. Soc. 72 (1):1-17.
[24] Schafer, R. (1966). Introduction to nonassociative algebras. Academic Press N. York, London.
[25] Shestakov, I. P. (1979). Irreducible representations of Alternative algebras. Translated from Mathematicheskie Zametki 26(5): 673-686.
[26] Sidorov, A. V. (1981). Lie triple algebras. Translated from Algebra i Logika 20 (1):101108.

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Valparaíso. Errázuriz 1834, Valparaíso, Chile.

E-mail address: mfloreshenriquez@gmail.com
Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile. Casilla 653, Santiago, Chile

E-mail address: alimat@uchile.cl

[^0]: *Supported by Fondecyt 1120844.

