Correlating experimental electrochemistry and theoretical calculations in 2'-hydroxy chalcones: the role of the intramolecular hydrogen bond

Por: Martinez-Cifuentes, M (Martinez-Cifuentes, Maximiliano)[1]; Salazar, R (Salazar, Ricardo)[2]; Escobar, CA (Escobar, Carlos A.)[3]; Weiss-Lopez, BE (Weiss-Lopez, Boris E.)[4]; Santos, LS (Santos, Leonardo S.)[1]; Araya-Maturana, R (Araya-Maturana, Ramiro)[3,5,6]

RSC ADVANCES
Volumen: 5
Número: 63
Páginas: 50929-50937
DOI: 10.1039/c5ra10140a
Fecha de publicación: 2015
Ver información de revista

Resumen

In this work we present a study on the molecular structure and electrochemical behavior of a series of methoxylated 2'-hydroxychalcones, whose antitumor activity has been previously described. Cyclic voltammetry was used to quantitatively characterize the formation and stability of the anion radicals. The molecular structure of the neutral compounds and their anion radicals, particularly the intramolecular hydrogen bonds (IHB), were investigated through density functional theory (DFT) calculations. Geometrical and frontier orbital changes in the anion, relative to the neutral species, were examined and the adiabatic and vertical electron affinities (AEA, VEA) as well as vertical detachment energy (VDE) were calculated. Natural bond orbital (NBO) analysis was used to obtain insights into the electronic characteristics of the IHB and the results were correlated with H-1-NMR chemical shifts. A direct relation among the substitution pattern on rings A and B, the strength of the IHBs and the reduction potentials was found. NBO energies (Delta E-ij(2)) show that the main contributions to the stabilization of the IHBs arises from LP -> sigma* interactions. The strength of IHBs, given by Delta E-ij(2), exhibit a notable quantitative correlation with the experimental reduction potential, which, at least to the best of our knowledge, has not been described before for any type of molecule. The results show the importance of the methoxy substitution pattern on the IHB and redox properties of these compounds. Our findings have potential implications in the design of antitumor chalcones.

Palabras clave

KeyWords Plus: Natural Resonance Theory; Diels-Alder Cycloadditions; Dipole-Bound Anions; Nucleic-Acid Bases; Electron-Affinities; Strand Breaks; O-H; Dimethylsulfoxide; Nucleotides; Derivatives

Información del autor

Dirección para petición de copias: Martinez-Cifuentes, M (autor para petición de copias)

Univ Talca, Inst Quim Recursos Nat, Lab Sintesis Asimetr, Casilla 747, Talca, Chile.
Direcciones:

[1] Univ Talca, Inst Quim Recursos Nat, Lab Sintesis Asimetr, Talca, Chile
[2] Univ Santiago Chile, Fac Quim & Biol, Dept Quim Mat, Lab Electroquim MedioAmbiental, LEQMA, Santiago, Chile
[3] Univ Andres Bello, Dept Ciencias Quim, Santiago, Chile
[4] Univ Chile, Fac Ciencias, Dept Quim, Santiago, Chile
[5] Univ Chile, Fac Ciencias Quim & Farmaceut, Dept Quim Organ & Fisiquim, Santiago 1, Chile
[6] Univ Talca, Inst Quim Recursos Nat, Casilla 747, Talca, Chile

Direcciones de correo electrónico: mmartinez@ug.uchile.cl; raraya@ciq.uchile.cl

Identificadores de autores:

Financiación

<table>
<thead>
<tr>
<th>Entidad financiadora</th>
<th>Número de concesión</th>
</tr>
</thead>
<tbody>
<tr>
<td>FONDECYT</td>
<td>1140753</td>
</tr>
<tr>
<td>FONDECYT/POSTDOCTORADO</td>
<td>3140286</td>
</tr>
<tr>
<td>ACT</td>
<td>1107</td>
</tr>
</tbody>
</table>

Ver texto de financiación

Editorial
Royal Soc Chemistry

Categorías / Clasificación
Áreas de investigación: Chemistry
Categorías de Web of Science: Chemistry, Multidisciplinary

Información del documento
Tipo de documento: Article
Idioma: English
Número de acceso: WOS:000356303000034
ISSN: 2046-2069

Información de la revista
• Impact Factor: Journal Citation Reports®

Otra información
Número IDS: CK5YA
Referencias citadas en la Colección principal de Web of Science: 55
Veces citado en la Colección principal de Web of Science: 0