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Disruption of endoplasmic reticulum (ER) proteostasis is a salient feature of amyotrophic lateral sclerosis (ALS).
Upregulation of ER foldases of the protein disulfide isomerase (PDI) family has been reported in ALS mouse
models and spinal cord tissue and body fluids derived from sporadic ALS cases. Although in vitro studies suggest
a neuroprotective role of PDIs in ALS, the possible contribution of genetic mutations of these ER foldases in the
disease process remains unknown. Interestingly, intronic variants of the PDIA1 gene were recently reported as
a risk factor for ALS. Here, we initially screened for mutations in two major PDI genes (PDIA1/P4HB and PDIA3/
ERp57) in a US cohort of 96 familial and 96 sporadic ALS patients using direct DNA sequencing. Then, 463 familial
and 445 sporadic ALS patients from two independent cohorts were also screened for mutations in these two
genes usingwhole exome sequencing. A total of nine PDIA1missense variants and sevenPDIA3missense variants
were identified in 16 ALS patients. We have identified several novel and rare single nucleotide polymorphisms
(SNPs) in both genes that are enriched in ALS cases compared with a large group of control subjects showing a
frequency of around 1% in ALS cases. The possible biological and structural impact of these ALS-linked PDI vari-
ants is also discussed.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset
neurodegenerative disease affecting motoneurons in the brain and spi-
nal cord leading to paralysis and death (Pasinelli and Brown, 2006).
While most ALS cases are sporadic (sALS), approximately 10% are
familial (fALS), caused by rare variants in multiple genes (Leblond
et al., 2014). To date, ALS has been associated with 17 genes of high
risk and 22 genes of low risk of developing the disease (Leblond et al.,
2014). Themost common genetic causes of fALS are the recently defined
DIA1/P4HB, protein disulfide
p57,proteindisulfideisomerase
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hexanucleotide repeat expansion in the intronic region of C9orf72 and
mutations in the gene encoding cytosolic superoxide dismutase 1
(SOD1), which together account for around 50% of fALS cases (Leblond
et al., 2014). Mutations in TAR DNA binding protein (TARDBP, also
known as TDP43) and fused-in-sarcoma/translated-in-liposarcoma
(FUS/TLS) genes each represent about 5% of fALS cases (Ferraiuolo
et al., 2011). Although the mechanisms underlying ALS pathogenesis
remain speculative, accumulating evidence indicates that disturbance
of proteostasis (Balch et al., 2008) is a common feature of sALS and
fALS (Saxena andCaroni, 2011). The accumulation ofmisfolded proteins
is a shared characteristic of many neurodegenerative diseases (Soto,
2012), and is extensively reported in sALS cases and most animal
models of the disease (Soto, 2012; Turner et al., 2013). These protein
species may result from oxidative damage, endoplasmic reticulum
(ER) stress, disturbed calcium homeostasis and/or a global failure due
to overload in protein quality control and clearance mechanisms (Hetz
and Mollereau, 2014).

The ER is a major compartment involved in protein folding and
quality control in the secretory pathway (Walter and Ron, 2011). ER
stress has been extensively reported in ALS patients and transgenic
animal models of the disease (Matus et al., 2013; Atkin et al., 2014)
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Table 1
ALS-associated PDImutations. Fourmissense genetic variants in PDIA1 and PDIA3 (2 each)werefirst identified by direct sequencing in the USALS cohort. Two of these variants were found
in patients with familial ALS (fALS) and two in patients with sporadic ALS (sALS). SNPGenotyping Analysis of these variants using TaqMan in N1000USA controls, as well as, their frequen-
cy in 1 K Genome Project and NHLBI Exome variant Server (NHLBI EVS) pointed to a significant association of these variants with ALS.

Genomic aa TaqMan 1K 

Gene Country Exon bp cDNA change FALS SALS Controls dbSNP Genome EA AA Total Freq

Freq (8595) (4404) (12999)

P4HB/PDIA1a

Chr 17 USA 7 79,804,487 c.874G>A D292N 1/96 0/96 0/1068 rs145209834 0 5 2 7 0.000539

USA 7 79,804,462 c.899G>A R300H 0/96 1/96 1/1070 0 0 0 0 0 0

ERp57/PDIA3b

Chr 15 USA 6 44,057,694 c.649G>A D217N 0/96 1/96 0/1061 0 0 0 0 0 0

USA 13 44,063,369 c.1441C>A Q481K 1/96 0/96 0/1074 0 0 0 0 0 0

Seq (UMMS) NHLBI EVS

achr 17: 79,801,034–79,818,544.
bchr 15: 44,038,590–44,064,804.
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and is one of the earliest events detected in the asymptomatic phase of
the disease (Saxena et al., 2009). Genetic and pharmacological manipu-
lation of the unfolded protein response (UPR), an adaptive reaction to
cope with ER stress, has been shown to have functional consequences
on the progression of experimental ALS reviewed in Hetz et al. (2013).
The upregulation of ER chaperones and protein disulfide isomerases
(PDIs) has beenwidely reported in ALS (Andreu et al., 2012). Proteomic
analysis of spinal cord tissue of mutant SOD1 transgenic mice revealed
as major changes the induction of two PDI family members known as
PDIA1 (also referred to as PDI or P4HB) (Atkin et al., 2006) and ERp57
(also referred to as PDIA3 or Grp58) (Atkin et al., 2008), a finding that
was confirmed in spinal cord tissue (Ilieva et al., 2007; Hetz et al.,
2009) and cerebrospinal fluid (Atkin et al., 2008) of sALS patients.
Remarkably, proteomic screening for biomarkers in blood from patients
also identified the upregulation of PDIA1 and ERp57 protein levels as
one of the best indicators for diagnosis and to monitor disease progres-
sion (Nardo et al., 2011). PDIA1 was found to co-localize with protein
inclusions containing SOD1, TDP-43, and FUS in tissue from ALS
patients, in addition to cellular and mouse models of the disease,
possibly indicating a physical association between them (Atkin et al.,
2006, 2008; Farg et al., 2012; Honjo et al., 2011). Furthermore,
S-nitrosylation of PDIA1 has been observed in sALS, which has a nega-
tive effect on neuronal viability (Walker et al., 2010). Finally, intronic
variants of PDIA1 were recently proposed as genetic risk factors for
ALS (Kwok et al., 2013). However, the possible contribution of these
mutations to ALS pathogenesis has not been directly addressed.

Based on the importance of ER proteostasis disturbances in ALS, we
used a candidate gene approach and exome sequencing to screen for
possible mutations in the coding region of PDIA1 and ERp57. With this
strategy we identified 16 novel missense variants in these two genes.
The possible consequences of these substitutions to PDI function and
the development of ALS are discussed.

2. Methods

2.1. Direct DNA sequencing

DNA was isolated from venous blood of ALS patients according to
standard protocols. The USA cohort included DNA samples from 96
fALS and 96 sALS patients. An additional set of DNA samples in this
cohort included N1000 controls subjects that were used for high-
throughput SNP genotyping (TaqMan assay). Patients were diagnosed
with possible, probable, or definite ALS as per El Escorial criteria
(Brooks et al., 2000). No DNA from other family members was available
for this study. Whole genome amplification was performed using the
Illustra Genomiphi V2 DNA Amplification kit (GE HealthCare cat. No.
25-6600-31). All exons and exon–intron junctions of PDIA1 and PDIA3
genes were amplified by PCR with primers designed using Primer 3.0.
AmpliTaq Gold PCR Master Mix 2500U (Applied Biosystems cat. No.
4327059) was used to carry out a touchdown PCR in a 30 μl reaction
volume. The reaction mixture was incubated at 95 °C for 5 min initially,
followed by 30 cycles at 95 °C for 30 s, 65 °C for 30 s; with a −0.5 °C
decrement of temperature per cycle, and 72 °C for 1 min. 15 cycles at
95 °C for 30 s, 65 °C for 30 s and 72 °C for 1 min, and a final extension
time of 7 min at 72 °C were added. The PCR products were cleaned-up
using Exonuclease I 20,000 U (NEB M0293L), S.A. Phosphatase 5000 U
(Fisher E70092X) and sequenced bidirectionally by a fluorescently-
labeled dideoxy-nucleotide chain termination method. SNPs were
confirmed using purified DNA from the patients. High-throughput SNP
genotyping was performed using TaqMan assay for each confirmed
novel variant in a larger set of unrelated ALS patients and control
subjects. The online tools Polyphen-2 and SIFT were used to predict
the impact of the amino acid substitutions on the structure and function
of PDIA1 and ERp57.

2.2. Exome sequencing

Canadian ALS and control caseswere recruited at the following insti-
tutes, the “Centre de Recherche du Centre Hospitalier de l'Université de
Montréal” (Montreal Qc, Canada) and the “Montreal Neurological
Institute and Hospital” (Montreal Qc, Canada). Patients were diagnosed
with possible, probable, or definite ALS as per El Escorial criteria (Brooks
et al., 2000). Canadian ALS and control cases were studied by whole
Exome sequencing using Agilent SureSelectXT Human All Exon V4 for
the exome capture, and the Illumina HiSeq 2000 platform from the
“McGill University and Génome Québec Innovation Centre” for the
high-throughput sequencing. A total of 168 sALS and 100 fALS cases
were analyzed. Variants identified in PDI genes were validated by
Sanger sequencing using BatchPrimer3 v1.0 for the primer design,
AmpliTaq Gold DNA Polymerase (Invitrogen) for the PCR amplification,
and Sanger sequencing platform from the “McGill University and
Génome Québec Innovation Centre”. Additionally, six known SNPs
(seen in dbSNP hg19) were identified in our ALS set but their genotype
and major allele frequencies were not significantly different from the
reported frequency in the general population according to dbSNP
(hg19) (data not shown).

Exome sequencing for non-Canadian ALS patients (USA, UK, Italy,
Ireland, Spain, Netherlands), here designated as INT for international,
was performed as previously described (Smith et al., 2014) at the Keck
DNA Sequencing Facility (New Haven, CT). Reads were subsequently
aligned to human reference (GRCh37) using BWA (BurrowsWheeler
Aligner). PICARD was used to remove duplicate reads and the Genome



Fig. 1. Location and sequence conservation ofmissense variants of PDIA1 and ERp57 identified in US ALS cases by direct sequencing. (A) PDI primary structure: catalytic a and a′ domains
containing the active site motif CXXC sequence (black), non-catalytic domains b and b′ containing ligand binding sites (gray), and x-linker region (white). Alignment of PDIA1 (B) and
ERp57 (C) sequences from indicated species. Amino acid conservation across species of the missense mutations of PDIA1 and ERp57 identified in ALS patients.
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Analysis ToolKit (GATK) was used to conduct indel realignment and base
quality score recalibration. Variant detection and genotyping were per-
formed using the GATK UnifiedGenotyper. Variants not passing quality
control criteria were eliminated (QD b 5.0, HRun N 3, MQ b 40.0,
FS N 60.0, HaplotypeScore N 13.0, MQRankSum b −12.5,
ReadPosRankSum b −8.0) and genotypes with low quality (GQ b 50)
were set to missing. Samples were also excluded if they demonstrated
low call rate (b0.75), relatedness to another sample (portion of the
genome IBD N 0.2 or clinically reported), excess homozygosity/hetero-
zygosity or if the gender determined by genotypes did not match the
clinically reported gender. To eliminate population outliers, stratifica-
tion analysis was applied to all remaining samples based on the distri-
bution of pairwise genome-wide identity-by-state distances followed
by complete linkage hierarchical cluster analysis and classical multidi-
mensional scaling.

Genotype data of 13,000 US American controls was downloaded
from the NHLBI exome variant server (Exome Variant Server, NHLBI
GO Exome Sequencing Project (ESP), Seattle, WA; http://evs.gs.
washington.edu/EVS, accessed June, 2014).
2.3. Protein sequence and structural analysis

Sequence alignment and conservation analysis was performed using
the PRALINE online tool (http://www.ibi.vu.nl/programs/pralinewww/
) (Simossis and Heringa, 2005). Structural analysis was performed
using the SWISSMODEL server (http://swissmodel.expasy.org/) and
Chimera1.6.1 imaging software. The PDB structure 3uem (Wang et al.,
2012a) was used as a template to model PDIA1 mutants, whereas for
ERp57 mutants the PDB structure 3f8u (Dong et al., 2009) was used.
3. Results

3.1. Identification of four PDI variants in ALS cases by targeted sequencing

In order to screen for possible genetic alterations in ALS cases, we
initially used a direct sequencing focusing on the two main PDI genes
expressed in the central nervous system, PDIA1 and ERp57. We analyzed
a total of 96 sALS and fALS cases and identified four novel rare missense
single nucleotide polymorphisms (SNPs) in ALS cases including
p.D292N and p.R300H in PDIA1; and p.D217N and p.Q481K in PDIA3
(Table 1 Mutations in common ALS genes (C9orf72, SOD1, TARDBP,
FUS/TLS and VCP) were excluded in all fALS and sALS cases in this
study. The p.D217N mutation in PDIA3 was observed in a sALS patient
who also had a rare TARDBP variant (c.1017 GNC, p.G295R) previously
described only in a single sALS case (Corrado et al., 2009; Lattante
et al., 2013). These rare gene variants were not present or very rare in
control cases (Table 1). In addition, these PDI variants were not present
or have a very low frequency in the dbSNP (hg19) database, or a large
compilation of 13,000 exonic variants (NHLBI) (Table 1). The clinical
and demographic characteristics of the patients carrying mutations in
PDI genes identified here are summarized in Supplementary Table 1.
Fig. 2. Structural analysis of amino acid substitutions caused by ALS-linkedmutations in PDIA1 a
The close association between Arg300 located to the b′ domain of PDIA1with Trp396 located to th
comparison to themutated version of PDIA1R300H highlighting the same residues. A potential sta
the interaction of the aromatic rings ofmutated His300 with Trp396. (B) Structural overlay of abb
(residue in gray on orange backbone). A shift in the backbone structure was predicted using th
cating the loss of a negative charge. (C) Structural overlay of the ERp57 abb′a′ domains highlig
gray on orange backbone) at the hinge between b and b′ domains of ERp57. A shift in the backb
themutated residue is shown indicating the loss of a negative charge, whichmay impact the bin
ERp57with CNX are in the vicinity of themutated site (Pollock et al., 2004; Kozlov et al., 2006). (
Themutation to Lys481 leads to an additional positive charge in the a′ domain of ERp57. This site
the amino acid sequence KPKKKKK forwhich the structure is not available. The removal ormut
P-domain of CNX (Pollock et al., 2004).Wehypothesize that the additional positive charge acqui
CNX and ERp57 with potential functional consequences for the folding of client proteins of the
3.2. Structural analysis of four PDI variants

p.D292N and p.R300H are located in the b′ domain of PDIA1.
p.D217N and map to the b′ domain whereas p.Q481K is located to the
catalytic a′ domain (Fig. 1A). The SNPs identified in PDIA1 (p.D292N
and p.R300H), as well as p.D217N in ERp57 are highly conserved across
species (Fig. 1B and C).

To assess the impact of the ALS-linked amino acid substitution in
PDIA1 and ERp57 we used two computational prediction algorithms:
SIFT (Ng and Henikoff, 2001) and PolyPhen-2 (Adzhubei et al., 2010).
The algorithm's default parameters and prediction thresholds were
applied for the analysis. The mutants p.D292N and p.R300H in PDIA1
are predicted as possibly damaging and probably damaging, respectively,
using the Polyphen-2 algorithm, whereas they are predicted as tolerated
using SIFT (Supplementary Table 2). p.D217N in ERp57 is predicted as
damaging using both algorithms,whereas p.Q481K is predicted as benign
or tolerated (Supplementary Table 2).

We then analyzed the available tridimensional structures of PDIA1
and ERp57 to define the possible consequences of the ALS-linked
mutants identified here to the structure and function of these foldases.
Using the PDIA1bb′a′ structure (Wang et al., 2012b)we predict that sub-
stitution of Arg300 in PDIA1 to histidinemay result in an b′a′ interdomain
rearrangement, which could interfere with the redox-dependent sub-
strate binding of PDIA1. Of note, thismutationmay generate an abnormal
interaction between Trp396 (located adjacent to the CGHC active site
motif) and the aromatic ring of His300, impacting the accessibility to the
substrate-binding site as well as the active site (Fig. 2A). PDIA1D292N

mutation is located in the substrate binding b′ domain of PDIA1 and,
importantly, this amino acid has previously reported to be essential for
the accessibility to the substrate binding site and also determines
the flexibility between the a′ and b′ domains (Nguyen et al., 2008)
(Fig. 2B). This observation suggests that the PDIA1D292N mutant affects
enzymatic function.

ERp57 is a component of the calnexin (CNX) and calreticulin (CRT)
cycle, operating as a central catalyst for disulfide bond formation in
glycosylated proteins through the formation of a protein complex
with these lectins (Maattanen et al., 2010). Analysis of the available
ERp57 structure (Dong et al., 2009) and previous findings (Pollock
et al., 2004; Kozlov et al., 2006; Silvennoinen et al., 2004), indicate
that mutation D217N results in a loss of a negative charge within a pos-
itively charged domain containing K214, R274, R282 residues previous-
ly found to be essential for the binding of the negatively charged P
domain of CNXor CRT (Fig. 2C). ThemutationQ481Kmay also influence
the binding to CNX based of functional data identifying a relevant role of
this region to the protein–protein interaction between these foldases
(Pollock et al., 2004) (Fig. 2D).

3.3. Identification of additional PDI variants in ALS cases by exome
sequencing

To globally assess the contribution of PDI alteration in ALS in larger
populations of patients we then analyzed exome sequencing data
from available databases from the USA and Canada. Using this approach
nd ERp57. (A) Analysis of the PDIA1 structure tomodel the effects of the R300Hmutation.
e a′ domain adjacent to the active sitemotif CGHC (designated as AS in yellow) is shown in
bilization of the interaction between theb′ and a′ domains is shown thatmaybe causedby
′ domains of wild-type Asp292 (residue in red onwhite backbone) tomutant Asn292 PDIA1
e SWISSMODEL server. The local surface surrounding the mutated residue is shown indi-
hting wild-type Asp217 (residue in red on white backbone) and mutant Asn217 (residue in
one structure was predicted using the SWISSMODEL server. The local surface surrounding
ding to CNX, since positively charged residues (e.g. Lys214) important for the interaction of
D) The surface of the abb′a′ domains ofwild-type ERp57 andmutant ERp57Q481K is shown.
is predicted to be located in proximity to highly positively charged C-terminal regionwith
ation of this region completely abolishes the binding of ERp57with the negatively charged
red by themutation of Gln481 to Lys481may lead to an alteration in the interaction between
CNX/CRT cycle.
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Table 2
ALS-associated PDI variants in US and Canadian ALS cohorts. Nine additional missense variants were identified usingWhole Exome Sequencing in another international ALS cohort (INT).
Further three missense variants were identified using Whole Exome Sequencing in the Canadian ALS cohort and subsequently validated by direct sequencing (CAN). Seven of these var-
iants were found in patients with familial ALS (fALS) and six in patients with sporadic ALS (sALS). SNP Genotyping Analysis of these variants usingWES in N300 Canadian controls, as well
as, their frequency in 1 K Genome Project and N.

Genomic aa 1K 

Gene Country Exon bp cDNA change FALS SALS dbSNP Genome EA AA Total Freq

Freq (8595) (4404) (12999)

P4HB/PDIA1a

Chr 17 INT 1 79,818,256 c.94A>G K31R 1/363 0/277 0 0 0 0 0 0

INT 3 79,813,385 c.430G>A A144T 1/363 0/277 rs138621837 0 1 1 2 0.000154

CAN 7 79,804,357 c.1004C>T T335MC 1/100 0/168 rs200458051 0 0 0 0 0

INT 9 79,803,582 c.1214C>T P405L 1/363 0/277 0 0 1 0 1 0.000077

INT 9 79,803,535 c.1261G>A V421I 1/363 0/277 0 0 0 0 0 0

INT 9 79,803,502 c.1426G>A V432M 1/363 0/277 rs200655529 0 0 0 0 0

INT 11 79,801,932 c.1483A>G M495V 0/363 1/277 rs143647285 0 3 0 3 0.000231

ERp57/PDIA3b

Chr 15 CAN 7 44 058 152 c.787G>T A263S 1/100 0/168 0 0 0 0 0 0

INT 9 44,060,779 c.1121A>G N374S 0/363 1/277 0 0 0 1 1 7.70E–05

INT 10 44,061,750 c.1171A>G N391S 0/363 1/277 rs200746018 0 0 0 0 0

INT 10 44,061,839 c.1261G>A E421K 0/363 1/277 0 0 0 0 0 0

CAN 13 44,063,336 c.1438 C>G L480V 0/100 1/168 0 0 1 0 1 7.70E–05

Seq NHLBI EVS

achr 17: 79,801,034–79,818,544.
bchr 15: 44,038,590–44,064,804.
cSeen in only one of two affected siblings.
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we identified 12 additional variants in PDIA1 and ERp57 that were
enriched to different extends in ALS cases (Table 2). Cross-comparison
of these rare PDI variants with the analysis performed here with
targeted gene sequencing indicated that one of the SNPs identified by
exome sequencing in ERp57, p.L480V, is exactly adjacent to the variant
p.Q481K identified by targeted sequencing.

4. Discussion

Members of the PDI family of proteins are emerging as relevant
stress response genes in diverse degenerative conditions affecting the
nervous system. The upregulation of PDIs is a major feature of ALS as
demonstrated in various unbiased screenings, and remarkably similar
findings are also reported in humans affectedwith other neurodegener-
ative conditions including Alzheimer's (Honjo et al., 2011; Uehara et al.,
2006), Parkinson's (Uehara et al., 2006), and Creutzfeldt–Jacob disease
(Hetz et al., 2003; Yoo et al., 2002) (reviewed in (Andreu et al.,
2012)). Despite the biomedical relevance of PDIs to humandisease, little
is known about themechanistic contribution of these foldases to neuro-
degeneration/neuroprotection in vivo. Themajor impact of PDIs to brain
diseases may involve the attenuation of ER stress levels due to their
function in protein folding, in addition to reducing the aggregation of
disease-relatedmisfolded proteins. PDIs catalyze the formation of disul-
fide bonds for thousands of substrates with specificities that may
diverge for different family members. Furthermore, PDIs participate in
many processes beyond assisting protein folding, including ER-
associated degradation (ERAD), protein quality control, redox homeo-
stasis, cell signaling, and apoptosis (Rutkevich and Williams; Feige and
Hendershot, 2011; Freedman, 2009; Hoffstrom et al., 2010; Hetz et al.,
2005). Here we identified rare and potentially significant PDI variants
in ALS patients, supporting the occurrence of genetic alterations in PDI
biology to neurodegenerative diseases. We propose that perturbation
in the PDI folding networkmay be a risk factor for developing ALS, con-
sistentwith the view that disturbances of ER proteostasis can drive neu-
ronal dysfunction and degeneration in various neurodegenerative
diseases including ALS (Hetz andMollereau, 2014; Roussel et al., 2013).

Recently, intronic variants of PDIA1 were proposed as genetic risk
factors for ALS. Here, we identified missense PDI variants overrepre-
sented in ALS cases compared to controls. Initially we found four PDI
variants by direct sequencing of the PDIA1 and ERp57 genes, p.D292N
and p.R300H in PDIA1 and p.D217N and p.Q481K in PDIA3. To globally
assess the contribution of PDI alteration in ALS in larger populations of
patients we also analyzed exome sequencing data from an international
and Canadian cohort and identified 12 additional variants in PDIA1 and
ERp57 that were enriched in ALS cases to different extends (Table 2),
where p.L480V in ERp57 is exactly adjacent to p.Q481K. Overall, these
SNPs were present in 1–2% of all fALS and 1% of sALS cases analyzed,
similar to the frequency of other ALS-linked gene variants (Turner
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et al., 2013). The carrier of D292N (PDIA1) was also a carrier of a rare
TDP-43 mutation described in only one ALS case. This is why, based
on genetic analyses to date, we consider these PDI mutants as risk fac-
tors or modifiers of phenotype rather than causal variants; they may
contribute to disease by both gain- and loss-of-function mechanisms.
We were not able to perform conventional statistical analysis because
each individual variant was observed only once in ALS cases, however
they were clearly enriched in patients when compared with a large
group of control subjects. The concept that PDI variants can predispose
to motoneuron disease is further suggested by another recent genetic
study. PDIA1 intronic gene variants were associated with fALS and
sALS in a genome-wide association study (Kwok et al., 2013). The pre-
cise mechanism whereby these PDI mutations may affect motoneuron
function needs to be elucidated. In addition, gene segregation studies
are also needed in the future to strengthen this concept.

To define the possible impact of the rare PDI variants identified
here to ALS pathogenesis, we are currently developing functional
studies to monitor the effects of these mutations on the enzymatic
activity of ERp57 and PDIA1, in addition to protein–protein interac-
tions. We are also developing transgenic animals to define if the ex-
pression of these ALS-linked PDI variants can trigger ALS-like
symptoms or modify disease progression in known ALS mouse
models. Importantly, in agreement with the current study, recent
findings suggest that motoneurons are selectively vulnerable to per-
turbations in ER function. For example, deletion of one calreticulin
allele exacerbated muscle weakness and denervation, accelerating
the progression of the disease in mutant SOD1 transgenic mice
(Bernard-Marissal et al., 2015). CNX deficiency leads to impairment
of motor function due to alterations in the structure of myelin sheets
in the spinal cord (Kraus et al., 2010). Deletion of the calnexin gene
in mice demonstrated that this chaperone is essential to preserve
myelin structure and function in vivo in the spinal cord (Kraus
et al., 2010). Finally a recent report indicated that changes in the
function of the ER chaperone BiP triggers the selective degeneration
of motoneurons associated with the spontaneous accumulation of
SOD1 aggregates in the spinal cord, resembling ALS (Filezac de
L'Etang et al., 2015). Together with our findings, these data suggest
that perturbations of the ER proteostasis network may operate as a
risk factor to develop ALS.
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