MAGNETOHYDRODYNAMIC EQUILIBRIA IN BAROTROPIC STARS

C. Armaza,1 A. Reisenegger,1 J. A. Valdivia,2 and P. Marchant1,3

ABSTRACT

Although barotropic matter does not constitute a realistic model for magnetic stars, it would be interesting to confirm a recent conjecture that states that magnetized stars with a barotropic equation of state would be dynamically unstable (Reisenegger 2009). In this work we construct a set of barotropic equilibria, which can eventually be tested using a stability criterion. A general description of the ideal MHD equations governing these equilibria is summarized, allowing for both poloidal and toroidal magnetic field components. A new finite-difference numerical code is developed in order to solve the so-called Grad-Shafranov equation describing the equilibrium of these configurations, and some properties of the equilibria obtained are briefly discussed.

Key Words: Stars: MHD — Stars: barotropic

1. BARO... WHAT?

Barotropic equations of state, where pressure is a function solely of density, are often assumed to describe the matter within magnetic stars in ideal magnetohydrodynamic (MHD) equilibrium (Yoshida & Eriguchi 2006; Haskell et al. 2008; Lander & Jones 2009). Barotropy strongly restricts the range of possible equilibrium configurations, and does not strictly represent the realistic stably stratified matter within these objects, which is likely to be an essential ingredient in the stability of magnetic fields in stars (Reisenegger 2009). With this in mind, it is interesting to carry out the pedagogical exercise of checking whether the unrealistic barotropic equilibria are really stable or not. This work is focused on obtaining a wide range of these equilibria and study their main properties, as a starting point to study their stability.

2. MHD EQUILIBRIA: THE GRAD-SHAFRANOV EQUATION

In the ideal MHD approximation, a magnetic star may be considered as a perfectly conducting fluid in dynamical equilibrium described by the Euler equation,

$$\nabla P + \rho \nabla \Phi = \frac{1}{c} J \times B,$$

where the right-side is the Lorentz force per unit volume. Considered objects have a very large fluid pressure $P \sim GM^2/R^4$, M being the mass and R the radius, to magnetic pressure $B^2/8\pi$ ratio (B being a characteristic magnetic field strength), $8\pi P/B^2 \sim 10^6$ (Reisenegger 2009), which suggests that magnetic forces may be balanced by a slight perturbation of an unmagnetized spherical background equilibrium. This implies that, as an approximation, we can consider the star as spherical with negligible deformations due to the magnetic forces. In addition, if axial symmetry is assumed, and spherical coordinates (r, θ, ϕ) are used to describe the model, all scalar quantities are independent of the azimuthal coordinate, and the magnetic field may be expressed as the sum of a poloidal (meridional field lines) component, and a toroidal (azimuthal field lines) component.
component, each determined by a single scalar function,
\[\mathbf{B} = \mathbf{B}_{\text{pol}} + \mathbf{B}_{\text{tor}} = \nabla \alpha(r, \theta) \times \nabla \phi + \beta(r, \theta) \nabla \phi, \] (2)
which turn out to be constant along their respective field lines [Chandrasekhar & Prendergast 1956]. Under this symmetry, the azimuthal component of the magnetic force per unit volume must vanish, which implies a functional relation between these scalar functions, \(\beta(r, \theta) = \beta(\alpha(r, \theta)) \). In this way, both \(\alpha \) and \(\beta \) are constant along field lines and, if vacuum is assumed outside the star, the toroidal field may lie only in regions where the poloidal field lines close inside the star (Figure 1). On the other hand, if a barotropic equation of state, \(P = P(\rho) \), is assumed, the Lorentz force per unit mass must be the gradient of some arbitrary function \(\chi(r, \theta) \), which turns out to be a function of \(\alpha \) as well, \(\chi(r, \theta) = \chi(\alpha(r, \theta)) \). Using all this formalism, a non-linear elliptic partial differential equation is found to be the master equation governing the equilibrium of a barotropic MHD equilibrium, the so-called Grad-Shafranov (GS) equation,
\[\frac{\partial^2 \alpha}{\partial r^2} + \frac{\sin \theta}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial \alpha}{\partial \theta} \right) + \beta \beta' + r^2 \sin^2 \theta \rho \chi' = 0 \] (3)
[Grad & Rubin 1958] [Shafranov 1966] where primes stand for derivative with respect to the argument, and both \(\beta = \beta(\alpha) \) and \(\chi = \chi(\alpha) \) are two arbitrary functions, whose form may be chosen depending on the particular magnetic configuration of interest. Under the assumption of weak magnetic field discussed in [1] the density \(\rho \) appearing in the GS equation may be replaced by its non-magnetic background counterpart, \(\rho = \rho(r) \), such that we solve for the magnetic functions for a given density profile, instead of considering the more difficult problem of solving self-consistently for the magnetic functions and for the fluid quantities.

3. NUMERICAL SOLUTIONS

Outside the star, \(\alpha \) corresponds to an infinite superposition of multipoles, which is the general solution of the GS equation with both \(\beta = 0 \) and \(\rho = 0 \). We have implemented a finite-difference code to solve numerically the GS equation inside the star, for arbitrary choices of \(\beta(\alpha) \) and \(\chi(\alpha) \). Solutions are matched to the exterior expansion by demanding continuity of \(\alpha \) and its derivatives (related to the magnetic field components), in order to avoid surface currents. After testing our code, we obtained barotropic equilibria for the particular case \(\chi(\alpha) = \alpha, \rho(r) = \rho_c(1 - r^2/R^2) \) and
\[\beta(\alpha) = \begin{cases} s(\alpha - \alpha_s)^{1.1} & \alpha_s \leq \alpha \\ 0 & \alpha < \alpha_s, \end{cases} \] (4)
where \(s \) is a free parameter accounting for the relative strength between the poloidal and the toroidal component. In the definition below, an exponent larger than 1 was chosen in order to prevent a discontinuous \(\beta' \) at the layer between regions with and without toroidal field; it is found that larger exponents than 1.1 give a smaller toroidal field strength. Also, \(\alpha_s \equiv \alpha(R, \pi/2) \) stands for the value of \(\alpha \) along the largest poloidal field line closing within the star, being \(R \) the stellar radius, so the toroidal field lies in the region inside the curve \(\alpha_s = \alpha(r, \theta) \) only. Figure 2 shows some numerical results for the particular \(\beta(\alpha) \) in Eq. (4). Black lines correspond to poloidal field lines with 0.2\(\alpha_s \), 0.4\(\alpha_s \), 0.6\(\alpha_s \), 0.8\(\alpha_s \), 1.0\(\alpha_s \), 1.08\(\alpha_s \) and 1.13\(\alpha_s \), respectively, whereas the color map accounts for the strength of the toroidal field. In turn, Figures 3-4 show the strength of the magnetic field along the axis and the equatorial line for these equilibria.

4. DISCUSSION

All the equilibria found consist of a mixed poloidal-toroidal field with a dominant poloidal component in the magnetic energy \(E_{\text{mag}} \). For the cases studied so far, the energy stored in the toroidal component \(E_{\text{tor}} \) is only a few percent of the total magnetic energy, even in cases where the maximum strength of the toroidal field is comparable to that
Fig. 2. Numerical equilibria found with our code. Left: \(s = 10 \), with \(E_{\text{tor}}/E_{\text{mag}} \approx 0.5\% \). Right: \(s = 35 \), with \(E_{\text{tor}}/E_{\text{mag}} \approx 3.2\% \).

Fig. 3. Magnitude of the magnetic field for the equilibria shown in Figure 2 with \(s = 10 \). The maximum toroidal strength is about one order of magnitude smaller than the poloidal one.

Fig. 4. Magnitude of the magnetic field for the equilibria shown in Figure 2 with \(s = 35 \). Both the poloidal and the toroidal maximum strength are of the same order of magnitude.

5. ACKNOWLEDGMENTS

All authors are supported by CONICYT International Collaboration Grant DFG-06. CA and PM are supported by a CONICYT Master’s Fellowship. AR and JAV are supported by FONDECYT Regular Grants 1110213 and 1110135, respectively. CA, AR and PM are supported by the Basal Center for Astrophysics and Associated Technologies.

REFERENCES

Shafranov, V. D. 1966, in Reviews of Plasma Physics, New York: Cons. Bureau, 2, 103