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The Ehrenfest urn model is extended to a complex directed network, over which a conserved quantity is
transported in a random fashion. The evolution of the conserved number of packets in each urn, or node
of the network, is illustrated by means of a stochastic simulation. Using mean-field theory we were able to
compute an approximation to the ensemble-average evolution of the number of packets in each node which,
in the thermodynamic limit, agrees quite well with the results of the stochastic simulation. Using this analytic
approximation we are able to find the asymptotic dynamical state of the system and the time scale to approach
the equilibrium state, for different networks. The study is extended to large scale-free and small-world networks,
in which the relevance of the connectivity distribution and the topology of the network for the distribution of time
scales of the system is apparent. This analysis may contribute to the understanding of the transport properties in
real networks subject to a perturbation, e.g., the asymptotic state and the time scale required to approach it.
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I. INTRODUCTION

The “Ehrenfest urn” has been a wonderful tool in the
discussion and understanding of the basis of statistical me-
chanics for over a hundred years. Put forward by Ehrenfest
and Ehrenfest [1] in 1907, it was solved exactly by Kac
[2] 40 years later. Kac moreover referred to the Ehrenfest
urn as “probably one of the most instructive models in the
whole of physics” [3]. This is not only due to the fact that
it could be solved exactly, but also because it allowed the
clarification of such basic issues as the relation between the
reversibility of the equations of motion of classical mechanics
and the irreversibility of thermodynamics, notions put forward,
although not fully understood, by Boltzmann in 1872, with
the formulation of the H theorem.

The original model put forward by the Ehrenfests consists
in a stochastic process where P marbles are initially placed
in one urn and N − P in another, with the marbles labeled
from 1 to N . In each step of the dynamic process an integer
1 � n � N is chosen at random, with probability 1/N , and the
corresponding marble moved from one urn to the other. This
model is popularly referred to as “fleas and dogs.” Kac [2] was
able to obtain the relaxation “time” for the system to reach
equilibrium, the fluctuations, and the length of the Poincaré
cycle. Already in 1968 Iglehart [4] successfully generalized
these studies to Ehrenfest multiurn systems, and suggested
interesting applications. In 2006 Flajolet et al. [5] proved that
all balanced urn processes with two color balls (i.e., where the
total number of balls added at any instant is a deterministic
quantity) are analytically solvable in finite terms.

On the other hand, complex networks have attracted much
attention in recent years, because they provide a useful
representation for many technological, biological, and social
systems of great applied and basic relevance [6–9]. For exam-
ple, the internet and the World Wide Web (www) are complex
networks connected by either physical or virtual links. The
cell may be envisioned as a network of molecules connected
by their interactions and reactions. Knowledge itself might
be construed as an enormously complex network of humans,
connected by gesture, voice, and writing. Consequently, the
topology and dynamics of complex networks have motivated

the scientific community to the quest for an understanding of
their structure and mechanisms.

Many of these networks have common features, such as
the connectivity distribution P (k), where k is the average
number of links per node, which often behaves [10–19] as
a power law P (k) ∼ k−α for large k values, in the so-called
scale-free networks. Several authors have developed network
models that seek to replicate these distributions. One of the
most emblematic cases was proposed by Barabási and Albert
[6,20,21], in which a weighted random growth model is used to
generate a power-law distribution with α = 3.0. In this model,
in each step a new vertex appears, which is connected randomly
with a vertex of the network with a probability proportional
to its connectivity degree. Empirical networks have a similar
characteristic exponent; examples are citation networks [10]
and electronics circuits [11]. However, there are other impor-
tant systems which exhibit a network structure with a different
exponent, for example, telephone calls [12,13], the World
Wide Web [14], metabolism [15], movie actors [16], protein
interactions [17], the internet [18], and word co-occurrence
[19], among others. In these cases, the characteristic exponent
ranges from 2.0 to 2.7. There are also models of preferential
attachment, which produce different link distributions and
network structures on changing a parameter [22].

There has been a growing interest in studying the evolution
of these networks [8,9,23], and more recently, researchers have
become interested in studying the network as a dynamical
system in which a given object can be transported across
the network, such as the propagation of rumors, infections
[24,25], information packets [26,27], cars [28–31], buses
[32,33], water [34], trains [35], citations [10], sand [36,37],
earthquakes [38], etc. In this context, it has become of interest
to study the distribution of the distances between nodes (as
the shortest path along the network). Noteworthy examples
are large networks with a small average distance, the so-called
small-world networks of Watts and Strogatz [23]. It is expected
that the average distance and the topology should control the
transport time scale distribution in these networks.

In this work we present a generalization of the Ehrenfest
model in which a number of urns are interconnected as a
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complex network, and the marbles or packets can jump only
to urns with which the first one has a directed connection. A
complex network of Ehrenfest urns thus describes the transport
of a conserved quantity through the network, which shares
similarities with networks such as traffic in cities, electric
networks, etc. A few attempts in this direction have been
reported in the literature. For example, it is worth mentioning
the treatment of M urns on a circular ring, with periodic
boundary conditions [39–42]. In our case, we apply a mean-
field approach to obtain the relaxation “time” of the system,
and the extension to the time evolution of each node, for an
arbitrary number of urns and an arbitrary topology of their
links. The analytical expressions are successfully compared
with the stochastic simulation results. The analysis is applied
to networks of different sizes.

This paper is divided as follows: In Sec. II, we present the
details of the problem. In Sec. III we describe the mean-field
solution and compare this solution for small simple networks
with stochastic simulations of the system. In Sec. IV we
consider networks of different sizes. In Sec. V we summarize
and draw conclusions.

II. MODEL

The Ehrenfest urn describes the transport of a conserved
quantity (marbles or packets) between two nodes (or urns)
that are directly connected and at time t have m1(t) = n and
m2(t) = N − n packets, respectively. Here mi(t) is the number
of packets at the ith node. At this time t , one of these N packets,
chosen at random, is transported from the original node (i) to
another node (j ). Hence, the number of packets at node �

changes to

m�(t + 1) = m�(t) + �
(i,j )
� . (1)

For example, if a packet is chosen from the first node, we have
�

(1,2)
1 = −1 and �

(1,2)
2 = 1. Similarly, if a packet is chosen

from the second node, we have �
(2,1)
1 = 1 and �

(2,1)
2 = −1.

The procedure is then repeated in time. As mentioned above,
the analytic solution of this stochastic model was accomplished
by Kac [2].

In order to generalize this model to a complex network, we
consider a set of M nodes, each with mi(t) packets, such that
at all times we have a total of

N =
M∑
i=1

mi(t) (2)

packets. A particular node i is connected to ki nodes (out
degree), and the packets in the ith node can move only to the ki

nodes to which it is connected (its outgoing set). An example
of a three-node network, in which the arrows determine the
directed connectivity of the network, is shown in Fig. 1(a).
We can define the adjacency matrix A of this network, with
elements Ai,j = 1 if there is a directed connection from node
i to node j and 0 otherwise, namely,

A =
⎡
⎣0 1 1

1 0 0
0 1 0

⎤
⎦. (3)
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FIG. 1. (Color online) (a) Three-node network, in which the
arrows determine the directed connectivity of the network. (b)
Evaluation of the number of packets at each node as a function of
time, mi(t) for i = 1, 2, and 3, corresponding to the red circles, blue
triangles, and black diamond symbols, respectively. For comparison
we also show the evolution obtained from a stochastic simulation
(symbols) and the results of the analytical solution (solid lines). The
initial conditions are m1(0) = N = 1000, m2(0) = m3(0) = 0.

With this notation, we can calculate the connectivity of the ith
node (the number of nodes to which it is connected) as

ki =
∑

j

Ai,j . (4)

The time evolution is similar to that given by Eq. (1), namely,
at time t we choose one of the N packets, let us say it happens
to be from node i, and then we choose one of the ki nodes in
its outgoing set, let us say node j . The evolution of the number
of packets on each node becomes

�
(i,j )
� =

⎧⎨
⎩

−1, � = i,

+1, � = j,

0, � �= i, � �= j.

(5)

For simplicity we run a stochastic simulation of this three-
node network with the initial conditions m1(0) = N = 1000,
m2(0) = m3(0) = 0. We see from Fig. 1(b) that, within
the expected stochastic fluctuations, the system reaches an
asymptotic solution for large times, which fluctuates around
〈m1〉 ≈ 〈m2〉 ≈ 2N/5 and 〈m3〉 ≈ N/5. We will show below
how to obtain this asymptotic state analytically from our
mean-field approach.

For the sake of completeness we consider the symmetric
network of Fig. 2(a), which has the adjacency matrix

A =
⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦. (6)
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FIG. 2. (Color online) (a) Three-node network, in which the
arrows determine the directed connectivity of the network. (b)
Evaluation of mi(t) for i = 1 (red circles), 2 (blue triangles), and
3 (black diamonds). The continuous lines correspond to the analytic
mean-field solution and the symbols to the stochastic solution. The
initial conditions are m1(0) = N = 1000, m2(0) = m3(0) = 0.

The evolution in this case, from the same initial condition
m1(0) = N = 1000, m2(0) = m3(0) = 0, converges asymp-
totically to 〈m1〉 ≈ 〈m2〉 ≈ 〈m3〉 ≈ N/3, as expected for
a symmetric situation. It is interesting to notice that the
connectivity, as described by the adjacency matrix, determines
the time scales of the system and its asymptotic behavior.
We will show below that, within a mean-field approach, the
above-mentioned asymptotic results are indeed exact in the
t → ∞ limit.

III. MEAN-FIELD APPROACH

In a mean-field approach, one assumes that evaluating an
ensemble-average evolution 〈mi(t)〉 of mi(t), in the thermody-
namic limit, is equivalent to assuming that all the N packets
move to a new node in a time N , so that the evolution equation
for the ensemble average is

〈mi(t + 1)〉 − 〈mi(t)〉≈ 1

N

⎛
⎝−〈mi(t)〉+

N∑
j �=i

Aji

kj

〈mj (t)〉
⎞
⎠.

(7)

Intuitively we know that after N steps, on average, the packets
in node j move in the same proportion to all nodes of its
outgoing set of size kj , so that each one receives on average
〈mj/kj 〉 packets. In this process, the ith node will receive these
〈mj/kj 〉 packets only if the j th node is connected to the ith
node, namely, if Aj,i = 1. At the same time all of the packets
in the ith node will move to the ki nodes in the outgoing set of
the ith node.

We approximate the left-hand side of the above equation as
a time derivative, namely, as

〈mi(t + 1)〉 − 〈mi(t)〉 ≈ d

dt
〈mi(t)〉, (8)

so that the evolution equation can be approximated as

d

dt
〈mi(t)〉 = 1

N

⎛
⎝−〈mi(t)〉 +

n∑
j �=i

Aji

kj

〈mj (t)〉
⎞
⎠. (9)

All of these approximations improve as we approach the
thermodynamic limit (N → ∞), as the deviations become
relatively small, and the time derivative becomes a more
accurate approximation due to the N−1 factor in Eq. (9). The
mean-field approach gives us a simple closed-form expression
for the evolution of the ensemble average 〈mi(t)〉. However,
we relinquish the possibility of evaluating the amplitude of
the fluctuations, which in general require one to obtain the
evolution of a master equation, which we will give in a future
presentation.

The above system of equations can be written in vector
form as

d

dt
〈 	m(t)〉 = 1

N
B 〈 	m(t)〉, (10)

where 〈 	m(t)〉 → {〈m1(t)〉,〈m2(t)〉, . . . ,〈mM (t)〉}, and B is the
dynamical matrix whose elements are

Bi,j = −δi,j + Aj,i

kj

, (11)

where δi,j is the Kronecker delta. The formal solution to Eq.
(10) is

〈 	m(t)〉 = eBt/N 〈 	m(0)〉, (12)

which can be obtained by diagonalizing the dynamical matrix
B, such that

B = V−1�V, (13)

and writing

〈 	m(t)〉 = V−1 e�t/N V 〈 	m(0)〉, (14)

where � is the diagonal matrix of the eigenvalues
{λ1,λ2, . . . ,λM} of B, and V is the matrix of column eigenvec-
tors.

The matrix represented by Aj,i/kj in Eq. (9) is called a
stochastic or Markov matrix, since it has non-negative terms
and its columns add up to 1. Furthermore, it can be checked that
its maximum eigenvalue λmax = 1. Hence, the matrix B has a
maximum eigenvalue λmax = 0, so that the system is stable and
eventually converges asymptotically to a steady state. This is
expected since the above system conserves the total number
of packets, namely,

M∑
i=1

〈mi(t)〉 = N. (15)

It is interesting to notice that if we apply this procedure
to the original Ehrenfest urn, we can write the adjacency and
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FIG. 3. (Color online) (a) The two-node network corresponding
to the original Ehrenfest urn. (b) Evaluation of mi(t) for i = 1 (red
circles) and 2 (blue squares). The continuous lines correspond to
the analytic mean-field solution and the symbols to a stochastic
simulation. The initial conditions are m1(0) = N = 1000, m2(0) = 0.

dynamical matrices as

A =
[

0 1
1 0

]
(16)

and

B =
[−1 1

1 −1

]
, (17)

respectively. The eigenvalues of B are λ1 = −2 and λ0 = 0,
with the corresponding eigenvectors 	v1 = {−1,1}/2 and 	v0 =
{1,1}/2, respectively. The solution of the matrix exponentia-
tion is

〈m1(t)〉 = Ne−t/N cosh(t/N),
(18)〈m2(t)〉 = Ne−t/N sinh(t/N),

assuming the initial condition 〈m1(0)〉 = N and 〈m2(0)〉 = 0.
The asymptotic state can be read directly from the solution,
or from the eigenvector corresponding to the λ0 = 0 eigen-
value, namely, {〈m1〉,〈m2〉} = N 	v0 = {N/2,N/2}. The time
evolution is given in Fig. 3. The relaxation time τ required to
converge to the asymptotic state corresponds to the real part of
the smallest nonzero eigenvalue (the negative of its real part),
namely,

τ = −NRe
[
λ−1

1

] = N/2, (19)

which can also be obtained directly from the solution. These
results agree with the original Kac solution to the Ehrenfest
model [2], in the thermodynamic limit.

For the three-node asymmetric network presented in the
previous section, we have

B =

⎡
⎢⎣

−1 1 0
1
2 −1 1
1
2 0 −1

⎤
⎥⎦. (20)

The eigenvalues are λ± = (−3 ± i)/2, and λ0 = 0. The eigen-
vector corresponding to λ0 = 0 is 	v0 = {2,2,1}/5, so that the
asymptotic state is 〈m1〉 = 〈m2〉 = 2N/5 and 〈m3〉 = N/5,
as discussed in the previous section. The analytical solution
is presented in Fig. 1(b), showing that it agrees well with
the solution obtained from the stochastic simulations. The
relaxation time τ required to converge to the asymptotic state
is given by Eq. (19) as τ = 2N/3, which also can be obtained
directly from the solution.

Similarly, for the three-node symmetric network presented
in the previous section, we have

B =

⎡
⎢⎣

−1 1
2

1
2

1
2 −1 1

2
1
2

1
2 −1

⎤
⎥⎦. (21)

The eigenvalues are λ1,2 = 3/2 and λ0 = 0. The eigenvector
corresponding to λ0 = 0 is 	v0 = [1,1,1]/3, so that the asymp-
totic state is 〈m1〉 = 〈m2〉 = 〈m3〉 = N/3, as was discussed
in the previous section. The analytical solution is presented
in Fig. 2(b) and agrees quite well with the solution obtained
from the stochastic simulations. The relaxation time τ required
to converge to the asymptotic state corresponds to τ =
−NRe[λ−1

1,2] = 2N/3, which is identical to the asymmetric
three-node network.

Hence we notice that in the thermodynamic limit, namely,
for large N , the analytic mean-field solution does represent
quite well the mean behavior of the “Ehrenfest” network.
Furthermore, since the asymptotic dynamical state is repre-
sented by the λ0 = 0 eigenstate of the B matrix, it becomes
clear that the asymptotic state is a global characteristic of the
network as a whole. Thus, understanding such an asymptotic
state provides information about the structure of the network.
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FIG. 4. (Color online) (a) Five-node network, in which the ar-
rows determine the directed connectivity of the network. (b) Eval-
uation of mi(t) for i = 1 (red circles), 2 (blue triangles), 3 (dark-
green diamonds), 4 (magenta squares), and 5 (light-green inverted
triangles). We show both the mean-field theory analytic solution
(solid lines) and results of the stochastic simulation (symbols). The
initial conditions are m1(0) = N = 1000, m2(0) = m3(0) = m4(0) =
m5(0) = 0.
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To demonstrate the strength of the analytical mean-field
solution we analyze the five-node network shown in Fig. 4(a),
which yields a nontrivial behavior for one of the nodes. In this
case the eigenvalues are λ± = (−7 ± √

13)/6, λ3 = −10/6,
λ4 = −1, λ0 = 0. The eigenvector corresponding to λ0 = 0 is
	v0 = {1,3,2,3,1}/10, so that the asymptotic state is 〈m1〉 =
〈m5〉 = N/10, 〈m2〉 = 〈m4〉 = 3N/10, and 〈m3〉 = 2N/10.
The relaxation time τ required to converge to the asymptotic
state is τ = −NRe[λ−1

4 ] = 1.767 59.

IV. LARGER NETWORKS

We now turn our attention to the dynamics of larger M-
node networks, by considering the time-scale distribution of
small-world and scale-free networks.
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FIG. 5. (Color online) (a) M = 25-node ring network, in which
the arrows determine the directed connectivity of the network. (b)
25-node small-world network with connection probability f = 0.3.
(c) The average normalized distance 〈D〉/M as a function of f , for
M = 25 (solid black), M = 100 (dashed red), and M = 500 (dotted
blue) nodes. The average is taken over an ensemble of 50 realizations.

To construct the small-world networks of Watts and
Strogatz [23] we start with a ring network of M nodes, as
shown in Fig. 5(a), and then connect M × f distinct pairs
of nodes, as shown in Fig. 5(b) for f = 0.3. These networks
are called small-world networks because the average distance
〈D〉/M between nodes decreases with f , as shown in Fig. 5(c).
The distance between nodes i and j is defined as the minimum

�a � f �0.00
1
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1
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FIG. 6. (Color online) The distribution of time scales for the
small-world networks: (a) ring network (f = 0), (b) f = 0.05
network, and (c) f = 0.1 network. We show the distribution for M =
50 (solid red) and M = 500 (dashed blue) nodes. The distribution is
constructed from 500 and 50 realizations, respectively, for each size.
As a reference we also show the T −2 scaling (solid black line) and
the T −1.5 scaling (dotted black line), for f = 0.05 and 0.1.
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FIG. 7. M = 25-node scale-free network, in which the arrows
determine the directed connectivity of the network, for (a) α = 0 and
(b) α = 1.0.

number of steps required to reach node j from node i along the
network, and considering the directed nature of the network.
The normalization in the figure is adopted because for f = 0
we have 〈D〉 = M/2.

In Fig. 6 we compute the distribution of time scales, defined
as the inverse of the real part of the eigenvalues of the B
matrix for the network. Of course, we do not consider the λ0 =
0 eigenvalue. In Fig. 6(a), we show the distribution of time
scales for the ring network, corresponding to f = 0. We notice
that, as M increases, the maximum time scale also increases
(vertical lines). In fact, for f = 0 the largest time scale grows
as T ∼ M2N , which in some way represents metastable states
which are different from the asymptotic solution represented
by the λ0 = 0 state, which has an infinite time scale. Their
characterization will be provided elsewhere. The distribution
of the shorter time scales seems to follow a ∼T −1.5 power
law. In Figs. 6(b) and 6(c) we notice that these metastable
states disappear, so that they are the singular solutions for
the f = 0 ring network. The distribution for the shorter time
scales continues to follow a ∼T −1.5 power law, as in the f = 0
case.

Now we compare the previous results with the distribution
of time scales for scale-free networks, which have a power-law

a 0.

0.6
0.8
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1.2

1.4
T N
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100
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M

0.0

0.15

0.3

P T N

b 1.
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1.4
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0.0

0.05

0.1

P T N

FIG. 8. (Color online) The distribution of time scales for the
scale-free networks with (a) α = 0 and (b) α = 1.0. We show
the distributions for M = 50 (red), M = 100 (blue), and M = 500
(black). The distributions are constructed from 500, 250, and 50
realizations for each size, respectively.

distribution of links, or in our case of outgoing degrees. We
notice from Eq. (11) that it is fairly easy to construct the
matrix B with a given distribution of the outgoing degree k,
from the adjacency matrix A. Indeed, for each element ki of the
set {ki : i = 1, . . . ,N − 1} of outgoing degrees, we choose a
random set of ki different integers 1 � x

(i)
j � N to which node

i is connected with the restriction that x
(i)
j �= i. With these x

(i)
j

we fill with 1’s the corresponding elements of the ith row of
the matrix A.

We use a power-law distribution of links, given by P (k) ∼
k−α , and where α = 0 means a uniform distribution, which
produces a network of the type shown in Fig. 7(a). We notice
that the average number of links is determined by the value of
α as

〈k〉 =
∑N−1

n=1 n1−α∑N−1
n=1 n−α

. (22)

In general, the number of links decreases as we increase α, as
can be seen by comparing Fig. 7(a) and Fig. 7(b), for α = 0
and α = 1, respectively.

We can compute the distribution of time scales for these
networks, as shown in Fig. 8. Results for the uniform
distribution (α = 0) of directed links are shown in Fig. 8(a)
for M = 50, 100, and 500 nodes. We observe that the three
distributions are somewhat different. The time scales for larger
M become concentrated close to T/N ∼ 1 with a narrower
distribution. In a network with a uniform link distribution,
the average connectivity with the other nodes is M/2, so that
the connectivity is fairly large compared to larger α values
(and small small-world networks with small f � 1 values).
The α = 1.0 case is shown in Fig. 8(b). As we increase α the
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average number of directed links is reduced, so that 〈k〉 ≈ 11,
19, and 73 for M = 50, 100, and 500, respectively, for α = 1.
The time-scale distribution widens as we increase α, as it
takes more time for the system to converge to a steady state.
Therefore, the connectivity distribution and the topology in
general change the distribution of time scales. Its detailed
characterization will be presented elsewhere.

V. SUMMARY

We have generalized the Ehrenfest urn model to a complex
network of urns, in which the packets or marbles move
from node to node following the network connections. We
have obtained an analytical solution for the ensemble-average
evolution of the number of packets in each node, implementing
a mean-field approach in the thermodynamic limit (namely,
N � 1). With this solution we not only find the ensemble-
average evolution of mi(t), but we also evaluate analytically
the asymptotic steady-state solution and the relaxation time τ

to reach such solution.
This analysis allows for the possibility to investigate larger

networks and to study the distribution of time scales produced
by the network and the characteristic time scale (relaxation
time) required by the system to reach the asymptotic dynamical

state. Both small scale-free and small-world networks have
been studied. We observe that the connectivity distribution,
and the topology in general, change the distribution of time
scales.

When the perturbations become time dependent, it may be
of interest to study the resonant behavior of the system, as
the external driver may resonate with some of its natural time
scales. We will analyze these issues in a future presentation.

Since the analysis considers the random transport of a
conserved quantity through the network, it is expected that
our results could be useful to understand how packets can
be transported randomly through an arbitrary network, and
how a steady-state situation is reached after a perturbation
is imposed. Of course, for the time being the results apply
only to networks where the conserved quantity is transported
randomly, but without losses, through the system.
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