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Sequence representations supporting the queries access, select, and rank are at the core of many data
structures. There is a considerable gap between the various upper bounds and the few lower bounds known
for such representations, and how they relate to the space used. In this article, we prove a strong lower
bound for rank, which holds for rather permissive assumptions on the space used, and give matching upper
bounds that require only a compressed representation of the sequence. Within this compressed space, the
operations access and select can be solved in constant or almost-constant time, which is optimal for large
alphabets. Our new upper bounds dominate all of the previous work in the time/space map.
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1. INTRODUCTION

A large number of data structures build on sequence representations. In particular,
supporting the following three queries on a sequence S[1, n] over alphabet [1, σ ] has
proved extremely useful:

—access(S, i) gives S[i];
—selecta(S, j) gives the position of the jth occurrence of a ∈ [1, σ ] in S; and
—ranka(S, i) gives the number of occurrences of a ∈ [1, σ ] in S[1, i].

The most basic case is that of bitmaps, when σ = 2. Obvious applications are set
representations supporting membership and predecessor search, although many other
uses, such as representing tree topologies, multisets, and partial sums [Jacobson 1989;
Raman et al. 2007], have been reported. The focus of this article is general alpha-
bets, where further applications have been described. For example, the FM-index
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31:2 D. Belazzougui and G. Navarro

[Ferragina and Manzini 2005], a compressed indexed representation for text collec-
tions that supports pattern searches, is most successfully implemented over a sequence
representation supporting access and rank [Ferragina et al. 2007], and more recently
select [Belazzougui and Navarro 2011]. Grossi et al. [2003] had used earlier similar
techniques for text indexing. Golynski et al. [2006] used these operations for rep-
resenting labeled trees and permutations. Further applications of these operations
to multilabeled trees and binary relations were uncovered by Barbay et al. [2011].
Ferragina et al. [2009], Gupta et al. [2006], and Arroyuelo et al. [2010a] devised new
applications to XML indexing. Other applications were described as well to represent-
ing permutations and inverted indexes [Barbay and Navarro 2009; Barbay et al. 2012]
and graphs [Claude and Navarro 2010; Hernández and Navarro 2012]. Välimäki and
Mäkinen [2007] and Gagie et al. [2010] applied them to document retrieval on general
texts. Finally, applications to various types of inverted indexes on natural language
text collections have been explored [Brisaboa et al. 2012; Arroyuelo et al. 2010b, 2012].

When representing sequences supporting the three operations, it seems reasonable
to aim for O(n lg σ ) bits of space. However, in many applications, the size of the data
is huge and space usage is crucial: only sublinear space on top of the raw data can be
accepted. This is our focus.

Various time- and space-efficient sequence representations supporting the three op-
erations have been proposed, and various lower bounds have been proved. All repre-
sentations proposed assume the RAM model with word size w = �(lg n). In the case of
bitmaps, Munro [1996] and Clark [1996] achieved constant-time rank and select using
o(n) extra bits on top of a plain representation of S. Golynski [2007] proved a lower
bound of �(n lg lg n/ lg n) extra bits for supporting either operation in constant time if
S is to be represented in plain form and gave matching upper bounds. This assumption
is particularly inconvenient in the frequent case where the bitmap is sparse—that is, it
has only m � n1s and hence can be compressed. When S can be represented arbitrarily,
Pătraşcu [2008] achieved lg

(n
m

)+ O(n/ lgc n) bits of space, where c is any constant. This
space was shown later to be optimal [Pătraşcu and Viola 2010]. However, the space can
be reduced further, up to lg

(n
m

) + O(m) bits, if superconstant time for the operations
is permitted [Gupta et al. 2007; Okanohara and Sadakane 2007] or if the operations
are weakened. When rank1(S, i) can only be applied if S[i] = 1 and only select1(S, j)
is supported, Raman et al. [2007] achieved constant time and lg

(n
m

) + o(m) + O(lg lg n)
bits of space. When only rank1(S, i) is supported for the positions i such that S[i] = 1,
and in addition we cannot even determine S[i], the structure is called a monotone min-
imum perfect hash function (mmphf) and can be implemented in O(mlg lg n

m) bits and
answering in constant time [Belazzougui et al. 2009].

For general sequences, a useful measure of compressibility is the zeroth-order entropy
of S, H0(S) = ∑

a∈[1,σ ]
na
n lg n

na
, where na is the number of occurrences of a in S. This can

be extended to the kth order entropy, Hk(S) = 1
n

∑
A∈[1,σ ]k |TA|H0(TA), where TA is the

string of symbols following k-tuple A in S. It holds 0 ≤ Hk(S) ≤ Hk−1(S) ≤ H0(S) ≤ lg σ
for any k, but the entropy measure is only meaningful for k < lgσ n. Manzini [2001] and
Gagie [2006] provide a deeper discussion.

We say that a representation of S is succinct if it takes n lg σ + o(n lg σ ) bits, zeroth-
order compressed if it takes nH0(S) + o(n lg σ ) bits, and high-order compressed if it
takes nHk(S) + o(n lg σ ) bits. We may also compress the redundancy, o(n lg σ ), to use
nH0(S) + o(nH0(S)) bits.

Upper and lower bounds for sequence representations supporting the three opera-
tions are far less understood over arbitrary alphabets. Grossi et al. [2003] introduced
the wavelet tree, a zeroth-order compressed representation using nH0(S)+o(n lg σ ) bits
that solves the three queries in time O(lg σ ). The time was reduced to O(1 + lg σ

lg lg n)
with multiary wavelet trees [Ferragina et al. 2007], and later the space was reduced
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to nH0(S) + o(n) bits [Golynski et al. 2008]. Note that the query times are constant for
lg σ = O(lg lg n)—that is, σ = O(polylog n). Golynski et al. [2006] proposed a succinct
representation that is more interesting for large alphabets. It solves access and select
in O(1) and O(lg lg σ ) time, or vice versa, and rank in O(lg lg σ ) time or slightly more.
This representation was made slightly faster (i.e., rank time is always O(lg lg σ )) and
compressed to nH0(S) + o(nH0(S)) + o(n) by Barbay et al. [2012]. Alternatively, Barbay
et al. [2011] achieved high-order compression, nHk(S)+o(n lg σ ) bits for any k = o(lgσ n),
and slightly higher times, which were again reduced by Grossi et al. [2010].

There are several curious aspects in the map of the current solutions for general
sequences. On the one hand, in various solutions for large alphabets [Golynski et al.
2006; Barbay et al. 2012; Grossi et al. 2010], the times for access and select seem to
be complementary (i.e., one is constant and the other is not), whereas that for rank
is always superconstant. On the other hand, there is no smooth transition between
the complexity of the wavelet tree–based solutions, O(1 + lg σ

lg lg n), and those for larger
alphabets, O(lg lg σ ).

The complementary nature of access and select is not a surprise. Golynski [2009]
proved lower bounds that relate the time performance that can be achieved for these
operations with the redundancy of any encoding of S on top of its information content.
The lower bound acts on the product of both times—that is, if t and t′ are the time
complexities for access and select, and ρ is the bit-redundancy per symbol, then ρ · t ·
t′ = �((lg σ )2/w) holds for a wide range of values of σ . Many upper bounds for large
alphabets [Golynski et al. 2006; Barbay et al. 2012; Grossi et al. 2010] match this lower
bound when lg σ = �(w).

Despite that operation rank seems to be harder than the others (at least no constant-
time solution exists except for polylog-sized alphabets), no general lower bounds on
this operation have been proved. Only a result [Grossi et al. 2010] for the case in which
S must be encoded in plain form states that if one solves rank within a = O(1 + lg σ

lg lg σ
)

accesses to the sequence, then the redundancy per symbol is ρ = �((lg σ )/a). In the
RAM model, one can access up to w/ lg σ symbols in one access, which implies a lower
bound of ρ · t = �((lg σ )2/w), similar to the one by Golynski [2009] for the product of
access and select times and also matched by current solutions [Golynski et al. 2006;
Barbay et al. 2012; Grossi et al. 2010] when lg σ = �(w).

In this article, we make several contributions that help close the gap between lower
and upper bounds on sequence representation:

(1) We prove the first general lower bound on rank, which shows that this operation is,
in a sense, noticeably harder than the others. Any structure using O(n · wO(1)) bits
needs time �(lg lg σ

lg w
) to answer rank queries (the bound is only �(lg lg n

lg w
) if σ > n; we

mostly focus on the interesting case σ ≤ n). Note that the space includes the rather
permissive O(n ·polylog n). The existing lower bound [Grossi et al. 2010] is not only
restricted to plain encodings of S, it only forbids achieving this time complexity
within n lg σ + O(n lg2

σ/(w lg lg σ

lg w
)) = n lg σ +o(n lg σ ) bits of space. Our lower bound

uses a reduction from predecessor queries [Pătraşcu and Thorup 2008].
(2) We give a matching upper bound for rank, using O(n lg σ ) bits of space and answer-

ing queries in time O(lg lg σ

lg w
). This is lower than any time complexity achieved so far

for this operation within O(n·wO(1)) bits, and it elegantly unifies both known upper
bounds under a single and lower time complexity. This is achieved via a reduction
to a predecessor query structure that is tuned to use slightly less space than usual.

(3) We derive succinct and compressed representations of sequences that achieve time
O(1 + lg σ

lg w
) for access, select, and rank, improving upon previous results [Ferragina
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Table I. The Best Previous Upper Bounds, and Our New Best Ones, for Data Structures Supporting
Access, Select and Rank

source space (bits) access select rank

Golynski et al. [2008, Thm. 4] nH0(S) + o(n) O
(
1 + lg σ

lg lg n

)
O

(
1 + lg σ

lg lg n

)
O

(
1 + lg σ

lg lg n

)

Barbay et al. [2012, Thm. 2] nH0(S) + o(nH0(S)) + o(n) O(lg lg σ ) O(1) O(lg lg σ )
Barbay et al. [2012, Thm. 2] nH0(S) + o(nH0(S)) + o(n) O(1) O(lg lg σ ) O(lg lg σ )
Grossi et al. [2010, Cor. 2] nHk(S) + o(n lg σ ) O(1) O(lg lg σ ) O(lg lg σ )

Theorem 5.1 nH0(S) + o(n) O
(
1 + lg σ

lg w

)
O

(
1 + lg σ

lg w

)
O

(
1 + lg σ

lg w

)

Theorem 5.2 nH0(S) + o(nH0(S)) + o(n) any ω(1) O(1) O
(
lg lg σ

lg w

)

Theorem 5.2 nH0(S) + o(nH0(S)) + o(n) O(1) any ω(1) O
(
lg lg σ

lg w

)

Theorem 5.5 (lg σ = ω(lg w)) nHk(S) + o(n lg σ ) O(1) any ω(1) O
(
lg lg σ

lg w

)

Theorem 5.6 (lg σ = O(lg w)) nHk(S) + o(n lg σ ) O(1) any ω(1) any ω(1)
Note: The space bound Hk(S) holds for any k = o(lgσ n).

et al. 2007; Golynski et al. 2008]. This yields constant-time operations for σ = wO(1).
Succinctness is achieved by replacing universal tables used in previous solutions
[Ferragina et al. 2007; Golynski et al. 2008] with bit manipulations in the RAM
model. Compression is achieved by combining the succinct representation with
known compression boosters [Barbay et al. 2012].

(4) We derive succinct and compressed representations of sequences over larger alpha-
bets, which achieve the optimal time O(lg lg σ

lg w
) for rank, and almost-constant time

for access and select (i.e., one is constant time and the other any superconstant
time, as low as desired). The result improves upon all succinct and compressed rep-
resentations proposed so far [Golynski et al. 2006; Barbay et al. 2011, 2012; Grossi
et al. 2010]. This is achieved by plugging our O(n lg σ )-bit solutions into some of
those succinct and compressed data structures.

(5) As an immediate application, we obtain the fastest text self-index [Grossi et al.
2003; Ferragina and Manzini 2005; Ferragina et al. 2007] able to provide pattern
matching on a text compressed to its kth order entropy within o(n)(Hk(S) + 1) bits
of redundancy, improving upon the best current one [Barbay et al. 2012], and being
only slightly slower than the fastest one [Belazzougui and Navarro 2011], which
poses O(n) further bits of space redundancy.

Table I compares our new upper bounds with the best current ones. Combining our
results, it can be seen that we dominate all of the best current work [Golynski et al.
2008; Barbay et al. 2012; Grossi et al. 2010], as well as earlier ones [Golynski et al.
2006; Ferragina et al. 2007; Barbay et al. 2011] (but our solutions build on some of
those).

Besides w = �(lg n), for simplicity, we make the reasonable assumption that lg w =
O(lg n)—that is, w = nO(1); this avoids irrelevant technical issues (otherwise, all the
text fits in a single machine word!). We also avoid mentioning the need to store a
constant number of systemwide pointers (O(w) bits), which is needed in any reasonable
implementation. Finally, our results assume that in the RAM model, bit shifts, bitwise
logical operations, and arithmetic operations (including multiplication) are permitted.
Otherwise, we can simulate them with universal tables using o(2w) extra bits of space.
This space is o(n) if lg n ≥ w + O(1); otherwise, we can reduce the universal tables to
use o(n) bits, but any lg w in the upper bounds becomes lg lg n.

Section 2 proves our lower bound for rank. Section 3 gives a matching upper bound
within O(n lg σ ) bits of space. Within this space, achieving constant time for access
and select is trivial. Section 4 shows how to retain the same upper bound for rank
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within succinct space while reaching constant or almost-constant time for access and
select. Section 5 retains those times while reducing the size of the representation to
zeroth-order or high-order compressed space. Finally, Section 6 gives our conclusions
and future challenges.

2. LOWER BOUND FOR RANK

Our technique is to reduce from a predecessor problem and apply the density-aware
lower bounds of Pătraşcu and Thorup [2006]. Assume that we have n keys from a
universe of size u = nσ , then the keys are of length � = lg u = lg n + lg σ . According
to branch 2 of Pătraşcu and Thorup’s result, the time for predecessor queries in this
setting is lower bounded by �(lg( �−lg n

a )), where a = lg(s/n) + lg w and s is the space
in words of our representation (the lower bound is in the cell probe model for word
length w, so the space is always expressed in number of cells). The lower bound holds
even for a more restricted version of the predecessor problem in which one of two colors
is associated with each element and the query only needs to return the color of the
predecessor.

The reduction is as follows. We divide the universe [1, n · σ ] into σ intervals, each of
size n. This division can be viewed as a binary matrix of n columns c ∈ [1, n] and σ rows
r ∈ [1, σ ], where we set a 1 at row r and column c if and only if element (r − 1) · n + c
belongs to the set. We will use four data structures:

(1) A plain bitvector L[1, n] that stores the color associated with each element. The
array is indexed by the original ranks of the elements.

(2) A partial sums structure R that stores the number of elements in each row. This is
a bitmap concatenating the σ unary representations, 1nr 0, of the number nr of 1s
in each row r ∈ [1, σ ]. Thus, R is of length n + σ and can give in constant time the
number of 1s up to (and including) any row r, count(r) = rank1(R, select0(R, r)) =
select0(R, r) − r, in constant time and O(n + σ ) bits of space [Munro 1996; Clark
1996].

(3) A column mapping data structure C that maps the original columns into a set of
columns where (i) columns are eliminated and (ii) new columns are created when
two or more 1s fall in the same column. C is a bitmap concatenating the n unary
representations, 1nc 0, of the number nc of 1s in each column c ∈ [1, n]. So C is of
length 2n. Note that the new matrix of mapped columns also has n columns (one
per element in the set) and exactly one 1 per column. The original column c is then
mapped to col(c) = rank1(C, select0(C, c)) = select0(C, c)−c, using constant time and
O(n) bits. Note that col(c) is the last of the columns to which the original column c
might have been expanded.

(4) A string S[1, n] over alphabet [1, σ ] so that S[c] = r if and only if the only 1 at
column c (after column remapping) is at row r. Over this string, we build a data
structure able to answer queries rankr(S, c).

Colored predecessor queries are solved in the following way. Given an element x ∈
[1, u], we first decompose it into a pair (r, c) where x = (r − 1) · n + c and 1 ≤ c ≤ n.
In a first step, we compute count(r − 1) in constant time. This gives us the count
of elements up to point (r − 1) · n. Next we must compute the count of elements in
the range [(r − 1) · n + 1, (r − 1) · n + c]. To do that, we first remap the column to
c′ = col(c) in constant time and then compute rankr(S, c′), which gives the number of
1s in row r up to column c′. Note that if column c is expanded to several 1s, we are
counting the 1s up to the last of the expanded columns so that all of the original 1s at
column c are counted at their respective rows. Then the rank of the predecessor of x is
p = count(r − 1) + rankr(S, col(c)). Finally, the color associated with x is given by L[p].
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31:6 D. Belazzougui and G. Navarro

Fig. 1. Illustration of the lower bound technique, moving from a predecessor to a rank query, and the upper
bound technique, moving from the rank query to a predecessor query.

Example. Figure 1 illustrates the technique on a universe of size u = n× σ = 5 × 3 =
15, the set {5, 6, 7, 10, 12} of n = 5 points black or white, and the query pred(9), which
must return the color of the third point. The bitmap L indicates the colors of the points.
The top matrix is obtained by taking the first, second, and third (σ = 3) segments of
length n = 5 from the universe and identifying points with 1-bits (the omitted cells are
0-bits). Bitmaps R and C count the number of 1s in rows and columns, respectively.
Bitmap C is used to map the matrix into a new one below it, with exactly one point per
column. Then the predecessor query is mapped to the matrix and spans several whole
rows (only 1 in this example) and one partial row. The 1s in whole rows (1 in total)
are counted using R, whereas those in the partially covered row are counted with a
rankb(S, 3) = 2 query on the string S = bbcab represented by the mapped matrix. Then
we obtain the desired 3 (third point), and L[3] = 0 is the color. For now, ignore the last
line in the figure.

THEOREM 2.1. Given a data structure that supports rank queries on strings of length
n over alphabet [1, σ ], in time t(n, σ ) and using s(n, σ ) bits of space, we can solve the
colored predecessor problem for n integers from universe [1, nσ ] in time t(n, σ ) + O(1)
using a data structure that occupies s(n, σ ) + O(n + σ ) bits.

By the preceding reduction, we get that any lower bound for predecessor search for n
keys over a universe of size nσ must also apply to rank queries on sequences of length
n over alphabet of size σ . In our case, if we aim at using n · wO(1) bits of space for the
rank data structure and allow any σ ≤ n · wO(1), this lower bound (branch 2 [Pătraşcu
and Thorup 2006]) is �(lg �−lg n

lg(s/n)+lg w
) = �(lg lg σ

lg w
).

THEOREM 2.2. Any data structure that uses n · wO(1) space to represent a sequence of
length n over alphabet [1, σ ], for any σ ≤ n · wO(1), must use time �(lg lg σ

lg w
) to answer

rank queries.

For larger σ , the space of our representation is dominated by the O(σ ) bits of structure
R, so the lower bound becomes �(lg lg σ

lg(σ/n) ), which worsens (decreases) as σ grows from
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n · wω(1), and becomes completely useless for σ = n1+�(1). However, since the time for
rank is monotonic in σ , we still have the lower bound �(lg lg n

lg w
) when σ > n; thus, a

general lower bound is �(lg lg min(σ,n)
lg w

) time. For simplicity, we have focused on the most
interesting case.

Assume to simplify that w = �(lg n). The lower bound of Theorem 2.2 is trivial
for small lg σ = O(lg lg n) (i.e., σ = O(polylog n)), where constant-time solutions for
rank exist that require only nH0(S) + o(n) bits [Ferragina et al. 2007]. On the other
hand, if σ is sufficiently large, lg σ = (lg lg n)1+�(1), the lower bound simply becomes
�(lg lg σ ), where it is matched by known compressed solutions requiring as little as
nH0(S) + o(nH0(S)) + o(n) [Barbay et al. 2012] or nHk(S) + o(n lg σ ) [Grossi et al. 2010]
bits.

The range where this lower bound has not yet been matched is ω(lg lg n) = lg σ =
(lg lg n)1+o(1). It is also unmatched when lg n = o(w). The next section presents a new
matching upper bound.

3. OPTIMAL UPPER BOUND FOR RANK

We now show a matching upper bound with optimal time and space O(n lg σ ) bits. In
the next sections, we make the space succinct and even compressed.

We reduce the problem to predecessor search and then use a convenient solution for
that problem. The idea is simply to represent the string S[1, n] over alphabet [1, σ ]
as a matrix of σ rows and n columns, and regard each S[c] as a point (S[c], c). Then
we represent the matrix as the set of n points {(S[c] − 1) · n + c, c ∈ [1, n]} over the
one-dimensional universe [1, nσ ], which is roughly the inverse of the transform used in
the previous section. We also store in an array X[1, n] the pairs 〈r, rankr(S, c)〉, where
r = S[c], for the point corresponding to each column c in the set. Those pairs are stored
in row-major order in X—that is, by increasing point value (r − 1) · n + c.

To query rankr(S, c), we compute the predecessor of (r − 1) · n + c, which gives us its
position p in X. If X[p] is of the form 〈r, v〉, for some v, this means that there are points
in row r and columns [1, c] of the matrix, and thus there are occurrences of r in S[1, c].
Moreover, v = rankr(S, c) is the value we must return. Otherwise, there are no points
in row r and columns [1, c] (i.e., our predecessor query returned a point from a previous
row), and thus there are no occurrences of r in S[1, c]. Therefore, we return zero.

Example. Figure 1 also illustrates the upper bound technique on string S = bbcab,
of length n = 5 over an alphabet of size σ = 3. It corresponds to the lower matrix in
the figure, which is read row-wise, and the 1s are written as n = 5 points in a universe
of size nσ = 15. To each point, we associate the row from which it comes and its rank
in the row, in array X. Now the query rankb(S, 3) is converted into query pred(8) = 3
(8 = 5 × 1 + 3). This yields X[3] = 〈2, 2〉, the first 2 indicating that there are bs up
to position 3 in S (b is the second alphabet symbol), and the second 2 indicating that
there are 2 bs in the range, so the answer is 2. Instead, a query like rankc(S, 2) would
be translated into pred(12) = 4 (12 = 5 × 2 + 2). This yields X[4] = 〈2, 3〉. Since the
first component is not 3, there are no cs up to position 2 in S and the answer is zero.

This solution requires n lg σ + n lg n bits for the pairs of X, on top of the space of the
predecessor structure. If σ ≤ n, we can reduce this extra space to 2n lg σ by storing
the pairs 〈r, rankr(S, c)〉 in a different way. We virtually cut the string into chunks of
length σ and store the pair as 〈r, rankr(S, c) − rankr(S, c − (c mod σ ))〉—that is, we only
store the number of occurrences of c from the beginning of the current chunk. Such a
pair requires 2 lg σ bits. The rest of the rankr information (i.e., up to the beginning of
the chunk) is obtained in constant time and O(n) bits using the reduction to chunks
of Golynski et al. [2006]. They store a bitmap A[1, 2n] where the matrix is traversed
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row-wise, and we append to A a 1 for each 1 found in the matrix and a 0 each time we
move to the next chunk (so we append n/σ 0s per row). Then the remaining information
for rankr(S, c) is rankr(S, c − (c mod σ )) = select0(A, p1) − select0(A, p0) − 	c/σ
, where
p0 = (r − 1) · n/σ is the number of chunks in previous rows and p1 = p0 + 	c/σ
 is
the number of chunks preceding the current one (we have simplified the formulas by
assuming that σ divides n). The select0(A, ·) operations map chunk numbers to positions
in A, and the final formula counts the number of 1s in between.

THEOREM 3.1. Given a solution for predecessor search on a set of n keys chosen from a
universe of size u, which occupies space s(n, u) and answers in time t(n, u), there exists a
solution for rank queries on a sequence of length n over an alphabet [1, σ ] that runs in
time t(n, nσ ) + O(1) and occupies s(n, nσ ) + O(n lg σ ) bits.

In the extended version of their article, Pătraşcu and Thorup [2008] give an upper
bound matching the lower bound of branch 2 and using O(n lg u) bits for n elements
over a universe [1, u]. In Appendix A, we show that the same time can be achieved
with space O(n lg(u/n)), which is not surprising (they have given hints, actually), but
we opt for completeness. By using this predecessor data structure, the following result
is immediate.

THEOREM 3.2. A string S[1, n] over alphabet [1, σ ] can be represented using O(n lg σ )
bits so that operation rank is solved in time O(lg lg σ

lg w
).

Note that within O(n lg σ ) bits, operations access and select can also be solved in
constant time: we can add a plain representation of A to have constant-time access,
plus a succinct representation [Golynski et al. 2006] that supports constant-time select,
adding 2n lg σ + o(n lg σ ) bits in total.

When σ > n, we can add a perfect hash function mapping [1, σ ] to the (at most) n
symbols actually occurring in S, in constant time, and then S[1, n] can be built over
the mapped alphabet of size at most n. The hash function can be implemented as an
array of n lg σ bits listing the symbols that do appear in S plus O(n lg lg(σ/n)) bits for
an mmphf to map from [1, σ ] to the array [Belazzougui et al. 2009]. Therefore, in this
case, we obtain the improved time O(lg lg n

lg w
).

4. USING SUCCINCT SPACE

We design a sequence representation using n lg σ + o(n lg σ ) bits (i.e., succinct) that
answers access and select queries in almost-constant time and rank in time O(lg lg σ

lg w
).

This is done in two phases: a constant-time solution for σ = wO(1) and then a solution
for general alphabets.

4.1. Succinct Representation for Small Alphabets

Using multiary wavelet trees [Ferragina et al. 2007; Golynski et al. 2008], we can
obtain succinct space and O(1 + lg σ

lg lg n) time for access, select, and rank. This is constant
for lg σ = O(lg lg n). We start by extending this result to the case lg σ = O(lg w) and
as a base case for handling larger alphabets thereafter. More precisely, we prove the
following result.

THEOREM 4.1. A string S[1, n] over alphabet [1, σ ], σ ≤ n, can be represented using
n lg σ+o(n) bits so that operations access, select, and rankcan be solved in time O(1+ lg σ

lg w
).

A multiary wavelet tree for S[1, n] divides, at the root node v, the alphabet [1, σ ]
into r contiguous regions of the same size. A sequence Rv[1, n] recording the region
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to which each symbol belongs is stored at the root node v (note Rv is a sequence over
alphabet [1, r]). This node has r children, each handling the subsequence of S formed
by the symbols belonging to a given region. The children are decomposed recursively,
and thus the wavelet tree has height h = �lgr σ�. Queries access, select, and rank on
sequence S[1, n] are carried out via O(lgr σ ) similar queries on the sequences Rv stored
at wavelet tree nodes [Grossi et al. 2003]. By choosing r such that lg r = �(lg lg n), it
turns out that the operations on the sequences Rv can be carried out in constant time,
and thus the cost of the operations on the original sequence S is O(1+ lg σ

lg lg n) [Ferragina
et al. 2007]. Golynski et al. [2008] show how to retain these time complexities within
only n lg σ + o(n) bits of space.

To achieve time O(1 + lg σ

lg w
), in constant time we need to handle the operations over

alphabets of size r = wβ , for some 0 < β < 1, so that lg r = �(lg w). This time we cannot
resort to universal tables of size o(n) but rather must use bit manipulation on the RAM
model. The description of bit-parallel operations is rather technical; readers interested
only in the result (which is needed afterward) can skip to Section 4.2.

The sequence Rv[1, n] is stored as the concatenation of n fields of length � = �lg r� into
consecutive machine words. Thus, achieving constant-time access is trivial: to access
Rv[i], we simply extract the corresponding bits, from the (1+ (i−1) ·�)-th to the (i ·�)-th,
from one or two consecutive machine words, using bit shifts and masking.

Operations rank and select are more complex. We will proceed by cutting the sequence
Rv into blocks of length b = �(wα/�) symbols, for some β < α < 1. First, we show how,
given a block number i and a symbol a, we extract from R[1, b] = Rv[(i − 1) · b + 1, i · b]
a bitmap that marks the values R[ j] = a. Then, we use this result to achieve constant-
time rank queries. Next, we show how to solve predecessor queries in constant time for
several fields of length lg w bits fitting in a machine word. Finally, we use this result to
obtain constant-time select queries. In the following, we will sometimes write bitvector
constants; in those, bits are written from right to left—that is, the right-most bit is
that at bitmap position 1.

Projecting a block. Given sequence R[1, b] = Rv[1+(i−1)·b, i ·b], which is of bit length
b · � = �(wα) = o(w), and given a ∈ [1, r], we extract B[1, b · �] such that B[ j · �] = 1
if and only if R[ j] = a. To do so, we first compute X = a · (0�−11)b. This creates b
copies of a within �-bit long fields. Second, we compute Y = R XOR X, which will have
zeroed fields at the positions j where R[ j] = a. To identify those fields, we compute
Z = (10�−1)b −Y , which will have a 1 at the highest bit of the zeroed fields in Y . Finally,
B = Z AND (10�−1)b isolates those leading bits.

Constant-time rank queries. We now describe how we can do rank queries in constant
time for Rv[1, n]. Our solution follows that of Munro [1996]. We choose a superblock size
s = w2 and a block size b = (

√
w − 1)/�. For each a ∈ [1, r], we store the accumulated

values per superblock, ranka(Rv, i · s), for all 1 ≤ i ≤ n/s. We also store the within-
superblock accumulated values per block, ranka(Rv, i · b) − ranka(Rv, 	(i · b)/s
 · s), for
1 ≤ i ≤ n/b. Both arrays of counters require, over all symbols, r((n/s) · w + (n/b) · lg s) =
O(nwβ(lg w)2/

√
w) bits. Added over the O( lg σ

lg w
) wavelet tree levels, the space required

is O(n lg σ lg w/w1/2−β) bits. This is o(n lg σ ) for any β < 1/2.
To solve a query ranka(Rv, i), we need to add up three values: (i) the superblock

accumulator at position 	i/s
, (ii) the block accumulator at position 	i/b
, and (iii), the
bits set at B[1, (i mod b) · �], where B corresponds to the values equal to a in Rv[	i/b
 ·
b + 1, 	i/b
 · b + b]. We have just shown how to extract B[1, b · �] from Rv, so we count
the number of bits set in C = BAND 1(i mod b)·�.
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This counting is known as a popcount operation. Given a bit block C of length
b� = √

w − 1, with bits possibly set at positions multiple of �, we popcount it using the
following steps:

(1) We first duplicate the block b times into b fields. In other words, we compute
X = C · (0b�−11)b.

(2) We now isolate a different bit in each different field. This is done with Y =
X AND (0b�10�−1)b. This will isolate the ith aligned bit in field i.

(3) We now sum up all of those isolated bits using the multiplication Z = Y ·(0b�+�−11)b.
The result of the popcount operation lies at bits Z[b2�, b2� + lg b − 1].

(4) We finally extract the result as c = (Z � (b2� − 1)) AND (1lg b).

Constant-time select queries. We now describe how we can do select queries in constant
time for Rv[1, n]. Our solution follows that of Clark [1996]. For each a ∈ [1, r], consider
the virtual bitmap Ba[1, n] so that Ba[ j] = 1 if and only if Rv[ j] = a. We choose a
superblock size s = w2 and a block size b = w1/3/(2 lg r). Superblocks contain s 1-bits
and are of variable length. They are called dense if their length is at most w4 and sparse
otherwise. We store all positions of the 1s in sparse superblocks, which requires O(n/w)
bits of space, as there are at most n/w4 sparse superblocks. For dense superblocks, we
only store their starting position in Rv and a pointer to a memory area. Both pointers
require O(n/w) bits, as there are at most n/w2 superblocks.

We divide the dense superblocks into blocks of b 1s. Blocks are called dense if
their length is at most w2/3 and sparse otherwise. We store all positions of the 1s
in sparse blocks. Since each position requires only lg(w4) as it is within a dense su-
perblock, and there are at most n/w2/3 sparse blocks, the total space for sparse blocks
is O((n/w2/3)b lg w) = O(n/w1/3) bits. For dense blocks, we store only their starting
position within their dense superblock, which requires O((n/b) lg w) = O(n(lg w)2/w1/3)
bits.

The space, added over the r symbols, is O(rn(lg w)2/w1/3) = O(n(lg w)2/w1/3−β). Sum-
ming for O( lg σ

lg w
) wavelet tree levels, the total space is O(n lg σ lg w/w1/3−β) bits. This is

o(n lg σ ) for any β < 1/3.
To compute a selecta(Rv, j) query, we use the data structures for virtual bitmap

Ba[1, n]. If 	 j/s
 is a sparse superblock, then the answer is readily stored. If it is a
dense superblock, we only know its starting position and the offset o = j − ( j mod s) of
the query within its superblock. Now, if 	o/b
 is a sparse block in its superblock, then
the answer (which must be added to the starting position of the superblock) is readily
stored. If it is a dense block, we only know its starting position in Rv (and in Ba), but
now we only have to complete the search within an area of length b = O(w1/3/ lg w) in
Ba. We have showed how to extract a chunk B[1, b · �] from Rv so that B[i · �] = Ba[i].
Now we detail how we complete a select query within a chunk of length b · � = O(w1/3)
for the remaining j ′ = j − ( j mod b) bits. This is based on doing about w1/3 parallel
popcount operations on about w1/3 bit blocks. We proceed as follows:

(1) Duplicate B into b superfields with X = B· (0k−11)b, where k = 2b2� is the superfield
size.

(2) Compute Y = X AND (0k−b�1b�) . . . (0k−2�12�)(0k−�1�). This operation will keep only
the first i aligned bits in superfield i.

(3) Do popcount in parallel on all superfields using the algorithm described in
Section 4.1. Note that each superfield will have capacity k = 2b2�, but only the
first b� bits in it are set, and the alignment is �. Thus, the popcount operation will
have enough available space in each superblock to operate.

(4) Let Z contain all partial counts for all prefixes of B. We need the position in Z
of the first count equal to j ′. We use the same projecting method described in
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Section 4.1 to spot the superfields equal to j ′ (the only difference is that superfields
are much wider than lg w, namely of width � = k, but still all fits in a machine
word). This method returns a word W[1, 2b3�] such that W[k · i] = 1 if and only if
the ith superfield of Z is equal to j ′.

(5) Isolate the least significant bit of W with V = W AND (W XOR (W − 1)).
(6) The final answer to select1(B, j ′) is the position of the only 1 in V divided by k.

This is easily computed by using mmphfs over the set {2ki, 1 ≤ i ≤ b}. Existing
data structures [Belazzougui et al. 2009] take constant time and O(b lg w) = O(w)
bits. Such a data structure is universal and requires the same space as systemwide
pointers.

Space analysis. We choose r = wβ to be a power of 2, r = 2�. This is always possible
because it is equivalent to finding an integer � = β lg w, where we can choose any
constant 0 < β < 1/3 and any � = �(lg w) (e.g., one solution is β = 	 lg w

4 
/ lg w,
� = 	lg w/4
, and r = 2	lg w/4
 ≈ w1/4). In this case, the wavelet tree simply stores, at
level l, the bits (l − 1) · � + 1 to l · � of the binary descriptions of the symbols of S. The
wavelet tree has height h = �lgr σ� = �(lg σ )/��, so it will store sequences of symbols of
� = lg r bits in each of the h levels except in the first, where it will store a sequence of
symbols of �lg σ� − (h − 1)� ≤ � bits. The total adds up to n�lg σ� bits.

This is not fully satisfactory when σ is not a power of 2. In this case, we proceed
as follows. We choose an integer y = lg σ − �(lg lg n) as the number of bits of the
representation that will be stored integrally, just as explained. The other x = lg σ − y
bits (where x is not an integer) will be represented as symbols over alphabet [1, σ0] =
[1, �2x�] = [1, �σ/2y�]. By construction, σ0 = lg�(1) n, and thus we can represent the
sequence of x highest bits (i.e., the numbers �S[i]/2y�) using the space-efficient wavelet
tree of Golynski et al. [2008]. This will take n lg σ0 +o(n) bits and support access, select,
and rank in constant time, and will act as the root level of our whole wavelet tree.
For each value c ∈ [1, σ0], we will store, as a child of that root, a separate wavelet
tree handling the subsequence of positions i such that �S[i]/2y� = c. These wavelet
trees will handle the y lower bits of the sequence with the technique of the previous
paragraph, which will take ny bits and solve the three queries in O(1+ y

lg w
) time. Adding

up the spaces, we get n lg σ0 +ny+o(n) < n(lg(1+σ/2y)+ y+o(1)) = n(lg(σ +2y)+o(1)) =
n(lg(σ (1 + 1/ lg�(1) n)) + o(1)) ≤ n(lg σ + 1/ lg�(1) n + o(1)) = n lg σ + o(n).

To this space, we must add the o(n lg σ ) bits of the extra structures to support rank
and select on the wavelet tree levels. The special level using less than � bits can use
the same α value of the next levels without trouble (actually, the redundancy may be
lower since more symbols can be packed in the blocks).

To further reduce the redundancy to o(n) bits, we use the scheme that we have
described only for w > lgd n, for some constant d to be defined soon. For smaller w,
we directly use the scheme of Golynski et al. [2008], which uses n lg σ + o(n) bits and
solves all operations in time O(1 + lg σ

lg lg n) = O(1 + lg σ

lg w
). For the larger w case, and

choosing our example β ≤ 1/4, our redundancy is of the form O(n lg σ · (lg w/w1/3−β)) =
O(n lg n · (d lg lg n/(lg n)d/12)), which is made o(n) by choosing any d > 12 (a smaller d
can be chosen if a smaller β is used).

Finally, we have the space redundancy of the wavelet tree pointers. On binary wavelet
trees, this is easily solved by concatenating all bitmaps [Mäkinen and Navarro 2007].
This technique can be extended to r-ary wavelet trees, but in this case a simpler
solution is as follows. As the wavelet tree has a perfect r-ary structure, we deploy its
nodes levelwise in memory. For each level, we concatenate all sequences of the nodes,
read left to right, into a large sequence of at most n symbols. Then, the node position
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that we want at each level can be algebraically computed from that of the previous
or next level, whereas its starting positions in the concatenation of sequences can be
marked in a bitmap of length n, which will have at most r j 1s for the level j of the
wavelet tree. Using the representation of Raman et al. [2007] for this bitmap, the space
is O(r j lg(n/r j)) + o(n) bits. Thus, the space is dominated by the last level, which has
r j = σ/wβ ≤ n/wβ 1s, giving overall space O(n lg w/wβ) + o(n) = o(n) bits. Then, any
pointer can be retrieved with a constant-time select operation on the bitmap of its level.

4.2. Succinct Representation for Larger Alphabets

We now assume lg σ = ω(lg w) and develop fast, succinct solutions for these larger
alphabets. We build on the solution of Golynski et al. [2006]. They first cut S into
chunks of length σ . With the bitvector A[1, 2n] described in Section 3, they reduce
all queries, in constant time, to within a chunk. For each chunk, they store a bitmap
X[1, 2σ ] where the number of occurrences of each symbol a ∈ [1, σ ] in the chunk, na, is
concatenated in unary, X = 1n101n20 . . . 1nσ 0. Now they introduce two complementary
solutions.

Constant-time select. The first one stores, for each consecutive symbol a ∈ [1, σ ],
the chunk positions where it appears, in increasing order. Let π be the resulting
permutation, which is stored with the representation of Munro et al. [2003]. This
requires σ lg σ (1 + 1/ f (n, σ )) bits and computes any π (i) in constant time and any
π−1( j) in time O( f (n, σ )), for any f (n, σ ) ≥ 1. With this representation, they solve,
within the chunk, selecta(i) = π (select0(X, a − 1) − (a − 1) + i) in constant time and
access(i) = 1 + rank0(select1(X, π−1(i))) in time O( f (n, σ )).

For ranka(i), they basically carry out a predecessor search within the interval of π
that corresponds to a: [select0(X, a − 1) − (a − 1) + 1, select0(X, a) − a]. They have a
sampled predecessor structure with one value out of lg σ , which takes just O(σ ) bits.
With this structure, they reduce the interval to size lg σ , and a binary search completes
the process within overall time O(lg lg σ ).

To achieve optimal time, we sample one value out of lg σ

lg w
. We build the predeces-

sor data structures of Pătraşcu and Thorup [2008] mentioned in Section 3. Over all
symbols of the chunk, these structures take O((n/

lg σ

lg w
) lg σ ) = O(n lg w) = o(n lg σ ) bits

(as we assumed lg σ = ω(lg w)). The predecessor structures take time O(lg lg σ

lg w
) (see

Theorem A.1 in Appendix A). The final binary search time also takes time O(lg lg σ

lg w
).

Constant-time access. This time we use the structure of Munro et al. [2003] on π−1,
so we compute any π−1( j) in constant time and any π (i) in time O( f (n, σ )). Thus, we
get access in constant time and select in time O( f (n, σ )).

Now the binary search of rank needs to compute values of π , which is not anymore
constant time. This is why Golynski et al. [2006] obtained time slightly over lg lg σ

time for rank in this case. We instead set the sampling step to ( lg σ

lg w
)

1
f (n,σ ) . The prede-

cessor structures on the sampled values still answer in time O(lg lg σ

lg w
), but they take

O((n/( lg σ

lg w
)

1
f (n,σ ) ) lg σ ) bits of space. This is o(n lg σ ) provided f (n, σ ) = o(lg lg σ

lg w
). On the

other hand, the time for the binary search is O( f (n,σ )
f (n,σ ) lg lg σ

lg w
), as desired.

The following theorem, which improves upon the result of Golynski et al. [2006] (not
only as a consequence of a higher low-order space term), summarizes our result. Note
that we do not mention the limit f (n, σ ) = o(lg lg σ

lg w
), as if a larger f (n, σ ) is desired, we

can always use a smaller one (and be faster). We also omit the condition lg σ = ω(lg w)
because otherwise the result also holds by Theorem 4.1.
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THEOREM 4.2. A string S[1, n] over alphabet [1, σ ], σ ≤ n, can be represented using
n lg σ + o(n lg σ ) bits so that given any function f (n, σ ) = ω(1), (i) operations access and
select can be solved in time O(1) and O( f (n, σ )), or vice versa, and (ii) rank can be solved
in time O(lg lg σ

lg w
).

Note that we can partition into chunks only of σ ≤ n. If σ = o(n lg n), we can still
apply the same scheme using a single chunk, and the space overhead for having σ > n
will be O(σ ) = o(n lg σ ). For larger σ , however, we must use a mechanism like the one
used at the end of Section 3, mapping [1, σ ] to [1, n]. However, this adds at least n lg σ
bits to the space, and thus the space is not succinct anymore, unless σ is much larger,
lg σ = ω(lg n), so that the space of the mapping array dominates. For simplicity, we will
consider only the case of σ ≤ n in the rest of the article.

5. COMPRESSING THE SPACE

Now, we compress the space of the succinct solutions of the previous sections. First, we
achieve zeroth-order compression (of the data and the redundancy) by using an existing
compression booster [Barbay et al. 2012]. Second, we reach high-order compression by
designing an index that operates over a compressed representation [Ferragina and
Venturini 2007] and simulates the working of a succinct data structure of the previous
section.

5.1. Zero-Order Compression

Barbay et al. [2012, Thm. 2] showed how, given a sequence representation R using
n lg σ (1+r(n, lg σ ))+o(n) bits, where r(n, lg σ ) = O(1) is nonincreasing with σ , its times
for access, select, and rank can be maintained while reducing its space to nH0(S)(1 +
r(n,�(lg lg n)) + o(n) bits.1 This can be done even if R works only for σ ≥ lgc n for some
constant c.

The technique separates the symbols according to their frequencies into lg2 n classes.
The sequence of classes is represented using a multiary wavelet tree [Ferragina et al.
2007], and the subsequences of the symbols of each class are represented with an
instance of R if the local alphabet size is σ ′ ≥ lgc n, or with a multiary wavelet tree
otherwise. Hence, the global per-bit redundancy can be upper bounded by r(n, c lg lg n),
and it is shown that the total number of bits represented is nH0(S) + O(n/ lg n).

We can use this technique to compress the space of our succinct representations. By
using Theorem 4.1 as our structure R, where we can use r(n, lg σ ) = 0, we improve
upon Ferragina et al. [2007] and Golynski et al. [2008].

THEOREM 5.1. A string S[1, n] over alphabet [1, σ ], σ ≤ n, can be represented using
nH0(S) + o(n) bits so that operations access, select, and rank can be solved in time
O(1 + lg σ

lg w
).

To obtain better times when lg σ = ω(lg w), we use Theorem 4.2 as our structure
R. A technical problem is that Barbay et al. [2012] apply R over smaller alphabets
[1, σ ′], and thus in Theorem 4.2 we would sample one position out of lg σ ′

lg w
, obtaining

O(lg lg σ ′
lg w

) time and O(n lg σ ′ lg w

lg σ ′ ) bits of space, which is o(n lg σ ′) only if lg σ ′ = ω(lg w)
(this is why we have used Theorem 4.2 only in that case). To handle this problem, we
will use a sampling of size lg σ

lg w
(or ( lg σ

lg w
)

1
f (n,σ ) in the case of constant-time access), even

if the alphabet of the local sequence is of size σ ′. As a consequence, the redundancy
will be O(n lg σ ′ lg w

lg σ
) = o(n lg σ ′), and the time for rank will stay O(lg lg σ

lg w
) (instead of

1They used the case r(n, lg σ ) = 1/ lg lg σ , but their derivation is general.
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O(lg lg σ ′
lg w

)). Similarly, we always use sampling rate f (n, σ ) instead of f (n, σ ′). Therefore,

our redundancy is r(n, lg σ ) = O( lg w

lg σ
+ 1

f (n,σ ) ), which is o(1) if lg σ = ω(lg w).
Still, in the first levels where σ ′ = O(1), the redundancy of Theorem 4.2 contains

space terms of the form O(n) that would not be o(n lg σ ′). To avoid this, we will use
Theorem 4.1 up to lg σ ′

lg w
≤ 1, where all times are constant, and the variant just described

for larger σ ′. The result is an improvement over Barbay et al. [2012] (again, we do not
mention the condition lg σ = ω(lg w) because otherwise the result holds anyway by
Theorem 5.1).

THEOREM 5.2. A string S[1, n] over alphabet [1, σ ], σ ≤ n, can be represented using
nH0(S) + o(nH0(S)) + o(n) bits so that given any function f (n, σ ) = ω(1), (i) operations
access and select can be solved in time O(1) and O( f (n, σ )), or vice versa, and (ii) rank
can be solved in time O(lg lg σ

lg w
).

5.2. Self-Indexing

Likewise, we can improve upon the result of Barbay et al. [2012] that plugs a zeroth-
order compressed sequence representation to obtain a kth order compressed full-
text self-index [Barbay et al. 2012, Thm. 5]. This result is not subsumed by that of
Belazzougui and Navarro [2011], because their index, although obtaining better times,
uses O(n) extra bits of space. Ours is the best result using only o(n)(Hk(S) + 1) bits of
redundancy. We start with a version for small alphabets.

THEOREM 5.3. Let S[1, n] be a string over alphabet [1, σ ], lg σ = O(lg w). Then we can
represent S using nHk(S)+o(n) bits, for any k ≤ (δ lgσ n)−1 and constant 0 < δ < 1, while
supporting the following queries, for any function f (n) = ω(1): (i) count the number of
occurrences of a pattern P[1, m] in S, in time O(m); (ii) locate any such occurrence in
time O( f (n) lg n); and (iii) extract S[l, r] in time O(r − l + f (n) lg n).

To obtain this result, we follow the proof of Theorem 5 of Barbay et al. [2012]. Our
zeroth-order compressed structure will be that of our Theorem 5.1, with constant time
for all operations and space overhead O(n/ lgγ n) = o(n) bits, for some 0 < γ < 1. For
operations (ii) and (iii), we sample one text position out of O( f (n) lg n) in the suffix
array to obtain the claimed times.

On general alphabets, we obtain the following result, where once again we only need
to prove the case lg σ = ω(lg w).

THEOREM 5.4. Let S[1, n] be a string over alphabet [1, σ ], σ ≤ n. Then we can represent
S using nHk(S) + o(n)(Hk(S) + 1) bits, for any k ≤ (δ lgσ n) − 1 and constant 0 < δ < 1,
while supporting the following queries, for any f (n, σ ) = ω(1): (i) count the number of
occurrences of a pattern P[1, m] in S, in time O(mlg lg σ

lg w
); (ii) locate any such occurrence

in time O( f (n, σ ) lg n); and (iii) extract S[l, r] in time O(r − l + f (n, σ ) lg n).

Again, we follow the proof of Theorem 5 of Barbay et al. [2012]. First, if f (n, σ ) =
ω(lg lg σ

lg w
), we set it to f (n, σ ) = lg lg σ

lg w
to ensure that no operation will be slower

than rank. Our string structure will be that of Theorem 5.2 with constant-time select,
O( f (n, σ )) time access, and O(nH0(S)(lg w/ lg σ + 1/ f (n, lg σ )) + o(n) bits of overhead.
Barbay et al. [2012] partition the text into strings Si, which are represented to their
zeroth-order entropy. The main issue is to upper bound the sum of the redundancies
over all the strings Si in terms of the total length n. More precisely, we need to bound
the factor multiplying |Si|H0(Si), O(lg w/ lg σ + 1/ f (|Si|, lg σ )), in terms of n and not
|Si|. However, we can simply use the sampling value f (n, σ ) for all strings Si that are

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 31, Publication date: April 2015.



Optimal Lower and Upper Bounds for Representing Sequences 31:15

represented using Theorem 5.2, regardless of the length |Si|. Then, their Theorem 5
can be applied immediately.

For operations (ii) and (iii), we again sample one out of O( f (n, σ ) lg n) text positions
in the suffix array, but instead of moving backward in the text using rank and access,
we move forward using select, as in Belazzougui and Navarro [2011, Sec. 4], which is
constant time.

5.3. High-Order Compression

Ferragina and Venturini [2007] showed how a string S[1, n] over alphabet [1, σ ] can be
stored within nHk(S) + o(n lg σ ) bits, for any k = o(lgσ n), so that it offers constant-time
access to any O(lgσ n) consecutive symbols.

We provide select and rank functionality on top of this representation by adding
extra data structures that take o(n lg σ ) bits, whenever lg σ = ω(lg w). The technique is
similar to those used by Barbay et al. [2011] and Grossi et al. [2010], and we use the
terminology of Section 4.2. We divide the text logically into chunks, as with Golynski
et al. [2006], and for each chunk we store an mmphf fa for each a ∈ [1, σ ]. Each fa
stores the positions where symbol a occurs in the chunk so that given the position i
of an occurrence of a, fa(i) gives ranka(i) within the chunk. All mmphfs can be stored
within O(n lg lg σ ) = o(n lg σ ) bits and can be queried in constant time [Belazzougui
et al. 2009]. With array X, we can know, given a, how many symbols smaller than a are
there in the chunk.

Now we have sufficient ingredients to compute π−1 in constant time: let a be the
ith symbol in the chunk (obtained in constant time using Ferragina and Venturini’s
structure), then π−1(i) = fa(i) + select0(X, a − 1) − (a − 1). Now we can compute select
and rank just as done in the “constant-time access” branch of Section 4.2. The resulting
theorem improves upon the results of Barbay et al. [2011] (they did not use mmphfs).

THEOREM 5.5. A string S[1, n] over alphabet [1, σ ], for σ ≤ n and lg σ = ω(lg w), can be
represented using nHk(S) + o(n lg σ ) bits for any k = o(lgσ n) so that given any function
f (n, σ ) = ω(1), (i) operation access can be solved in constant time, (ii) operation select
can be solved in time O( f (n, σ )), and (iii) operation rank can be solved in time O(lg lg σ

lg w
).

To compare with the corresponding result by Grossi et al. [2010], who use mmphfs to
achieve nHk(S)+ O(n lg σ/ lg lg σ ) bits, O(1) time for access and O(lg lg σ ) time for select
and rank, we can fix f (n, σ ) = lg lg σ to obtain the same redundancy. Then we obtain the
same time for operations access and select, and improved time for rank. Their results,
however, hold for any alphabet size, which we do not cover for the case lg σ = O(lg w).
We can, however, improve that branch as well by using any superconstant sampling
g(n, σ )

1
f (n,σ ) , for lg g(n, σ ) = ω( f (n, σ )). Then the time for rank becomes O( f (n,σ )

f (n,σ ) lg g(n, σ )).
By using, say, lg g(n, σ ) = f (n, σ )2, we get the following result.

THEOREM 5.6. A string S[1, n] over alphabet [1, σ ], for lg σ = O(lg w), can be rep-
resented using nHk(S) + o(n lg σ ) bits for any k = o(lgσ n) so that given any function
f (n, σ ) = ω(1), (i) operation access can be solved in constant time, (ii) operation select can
be solved in time O( f (n, σ )), and (iii) operation rank can be solved in time O( f 2(n, σ )).

This result, while improving that of Grossi et al. [2010], is not necessarily optimal,
as no lower bound prevents us from reaching constant time for all operations. We can
achieve time optimality and kth order compression for small alphabet sizes as follows.
We build on the representation of Ferragina and Venturini [2007]. For k = o(lgσ n), they
partition the sequence S[1, n] into chunks of s = 1

2 lgσ n = ω(k) symbols and encode the
sequence of chunks S′[1, n/s] over alphabet [1, σ s] = [1,

√
n] into zeroth-order entropy.
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This gives kth order compression of S and supports constant-time access to any chunk.
Now we add, for each c ∈ [1, σ ], a bitmap Bc[1, n/s] so that Bc[i] = 1 if and only if
chunk S′[i] contains an occurrence of symbol c. In addition, we store a bitmap Cc with
the number of occurrences, in unary, of c in all chunks i where Bc[i] = 1. In other
words, for each Bc[i] = 1, we append 0m−11 to Cc, where m is the number of times c
occurs in the chunk S′[i]. Then we can easily know the number of occurrences of any
c in S′[1, i] using select1(Cc, rank1(Bc, i)). With a universal table on the chunks, of size
σ s+1 lg s = O(

√
npolylog(n)) = o(n), we can complete the computation of any rankc(S, i)

in constant time. Similarly, we can determine in which chunk is the jth occurrence of
any c in S′, by computing select1(Bc, 1 + rank(Cc, j)), and then we can easily complete
the calculation of any selectc(S, j) with a similar universal table, all in constant time.

Let us consider space now. The Bc bitmaps add up to σn/s bits, of which at most
n are set. By using the representation of Raman et al. [2007], we get total space
n lg σ

s + O(n+ (σn/s) lg lg(σn/s)
lg(σn/s) ) bits, which is o(n lg σ ) for any σ = O(lg1+o(1) n) and σ = ω(1).

On the other hand, the Cc bitmaps add up to length n and require o(n lg σ ) bits of space
for any σ = ω(1).

For constant σ , instead, we can represent the Bc bitmaps in plain form, using
O(σn/s) = o(n) bits, and the Cc bitmaps using Raman et al. [2007], as they have
only σn/s = O(n/s) 1s, and thus their total space is O( n lg s

s ) + o(n) = o(n) bits. The same
time complexities are maintained.

THEOREM 5.7. A string S[1, n] over alphabet [1, σ ], for σ = O(lg1+o(1) n), can be repre-
sented using nHk(S) + o(n lg σ ) bits for any k = o(lgσ n) so that operations access, select,
and rank can be solved in constant time.

6. CONCLUSIONS

This work considerably reduces the gap between upper and lower bounds for sequence
representations providing access, select, and rank queries. Most notably, we give match-
ing lower and upper bounds �(lg lg σ

lg w
) for operation rank, which was the least developed

one in terms of lower bounds. The issue of the space related to this complexity is
basically solved as well: we have shown that it can be achieved even within com-
pressed space, and it cannot be surpassed within space O(n · wO(1)). On the other hand,
operations access and select can be solved, within the same compressed space, in almost
constant time (i.e., one taking O(1) and the other as close to O(1) as desired but not
both reaching it, unless we double the space). Our new compressed representations
improve upon most of the previous work.

However, some intriguing issues remain unclear that prevent us from considering
this problem completely closed:

(1) The lower bounds of Golynski [2009] leave the door open to achieving constant time
for access and select simultaneously, with O(n lg σ

lg σ

w
) bits of redundancy. In other

words, both could be constant time with o(n lg σ ) redundancy in the interesting case
of lg σ = o(w). We have achieved this when lg σ = O(lg w), but it is open whether
this is possible in the area of ω(lg w) = lg σ = o(w). In our solution, this would imply
computing π and π−1 in constant time on a permutation using n lg n+ o(n lg n) bits.
A lower bound on the redundancy of permutations in the same paper [Golynski
2009], �(n lg n lg n

w
) bits, forbids this for lg n = �(w) but not for lg n = o(w). It is

an interesting open challenge to achieve this or prove that a stronger lower bound
holds.

(2) Although we can achieve constant-time select and almost-constant time for access
(or vice versa), only the second combination is possible within high-order entropy
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space. Lower bounds on the indexing model [Grossi et al. 2010] show that this must
be the case (at least in the general case where lg σ = �(w)) as long as our solution
builds on a compressed representation of S supporting constant-time access, as it
has been the norm [Barbay et al. 2011, 2012; Grossi et al. 2010]. Yet it is not clear
that this is the only way to reach high-order compression.

(3) We have achieved high-order compression with almost-constant access and select
times, as well as optimal rank time, but on alphabets of size superpolynomial in w.
For smaller alphabets, although constant time seems to be possible, we achieved it
only for σ = O(lg1+o(1) n). This leaves open the interesting band of alphabet sizes
lg1+�(1) n = σ = wO(1), where we have achieved only (any) superconstant time.
It is also unclear whether we can obtain o(n) redundancy, instead of o(n lg σ ), for
alphabets polynomial in w with high-order compression.

APPENDIX

A. UPPER BOUND FOR PREDECESSOR SEARCH

We describe a data structure that stores a set S of nelements from universe U = [1, u] in
O(n lg(u/n)) bits of space while supporting predecessor queries in time O(lg lg u−lg n

lg w
). We

start with a solution that uses O(n lg u) bits of space. We use a variant of the traditional
recursive van Emde Boas solution [Pătraşcu and Thorup 2008]. Let � ≥ lg u be the
length of the keys. We choose � as the smallest value of the form � = (lg w −1) ·2i ≥ lg u
for some integer i ≥ 0 (note � ≤ 2 lg u). We denote the predecessor data structure that
stores a set S of keys of length � by D�(S). Given an element x, the predecessor data
structure should return a pair (y, r), where y is the predecessor of x in S (i.e., the
maximum value ≤ x in S) and r is the rank of y in S (i.e., the number of elements of S
smaller than or equal to y). If the key x has no predecessor in S (i.e., it is smaller than
any key in S), the query should return (0, 0).

We now describe the solution. We partition the set S according to the most significant
�/2 bits. We call h(x) the �/2 most significant bits of x and l(x) the �/2 least significant
bits of x, x = 2�/2h(x) + l(x).

Let Sp = {x ∈ S, h(x) = p} denote the set of all elements x such that h(x) = p, let S′
p

denote the set Sp deprived of its minimal and maximal elements, and let Ŝp = {l(x), x ∈
S′

p} denote the set of lower parts of elements in S′
p. Furthermore, let P = {h(x), x ∈ S}

denote the set of all distinct values of h(x) in S. The data structure consists of the
following components:

(1) A predecessor data structure D�/2(P).
(2) A predecessor data structure D�/2(Ŝp) for each p ∈ P, where Ŝp is nonempty.
(3) A dictionary I(P) (a perfect hash function with constant time and linear space)

that stores the set P. To each element p ∈ P, the dictionary associates the tuple
(m, rm, M, rM, q) with m (respectively M) being the smallest (respectively largest)
element in Sp, rm (respectively rM) being the rank of m (respectively M) in S, and q
a pointer to D�/2(Ŝp).

We have described the recursive data structure. The base case is a predecessor
data structure Dlg w−1(S) for a set S of size t. Note that the set S is a subset of U =
[1, 2lg w−1] = [1, w/2]. This structure is technical and is described in Section A.1. It
encodes S using O(t lg |U |) = O(t lg w) bits and answers predecessor queries in constant
time.

We now get back to the main data structure and describe how queries are done on it.
Given a key x, we first query I(P) for the key p = h(x). Now, depending on the result,
we have two cases:
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(1) The dictionary does not find p. Then we query D�/2(P) for the key p−1. This returns
a pair (y, r). If (y, r) = (0, 0), we return (0, 0). Otherwise, we search I(P) for y, which
returns a tuple (m, rm, M, rM, q), and the final answer is (M, rM).

(2) The dictionary finds p and returns a tuple (m, rm, M, rM, q). We have the following
subcases:

(a) We have x < m. Then we proceed exactly as in case 1.
(b) We have x = m, then the answer is (m, rm).
(c) We have x ≥ M, then the answer is (M, rM).
(d) We have m < x < M. Then we query D�/2(Ŝp) (pointed by q) for the key l(x).

This returns a tuple (y, r). The final answer answer is (2�/2 p + y, rm + r) if
(y, r) �= (0, 0) and (m, rm) otherwise.

Time analysis. We query the data structures D�/2i
(.) for i = 0, . . . until �/2i = lg w − 1

(we may stop the recursion before reaching this point). For each recursive step, we
spend constant time querying the dictionary. Thus, the global query time is upper
bounded by O(lg �

lg w
).

Space analysis. The space can be proved to be O(n lg u) bits by induction. Let us
first focus on the storage of the components (m, rm, M, rM) of the dictionaries, which
need � bits each. For the base case � = lg w − 1, we have that t keys are encoded
using O(t lg w) bits. Now, for any recursive data structure D�(S), we notice that the
substructures D�/2(Ŝp) are disjoint. Let us call np = |Ŝp| and n = |S|, then

∑
p np ≤ n.

We store the dictionary I(P), which uses O(n�) bits, and the substructures D�/2(Ŝp). We
denote by s(�, |S′|) the space usage of any D�(|S|). Then the space usage of our D�(S)
follows the recurrence s(�, n) = ∑

p s(�/2, np) + O(n�). The solution to this recurrence is
O(n�) = O(n lg u).

In addition, the dictionaries store pointers q, whose size does not halve from one level
to the next. Yet since each of the n elements is stored in only one structure D(·), there
are at most n such structures and pointers to them. As the rest of the data occupies
O(n�) bits, we need n pointers of size O(lg n + lg �) = O(lg u) bits.2 Thus, the space is
O(n lg u) bits.

A.1. Predecessor Queries on Short Keys

We now describe the base case of the recursion for O(lg w)-bit keys. Suppose that we
have a set S of t keys, each of length � = (lg w)/2 − 1. Clearly, t ≤ √

w/2. What we
want is to do a predecessor search for any x over the set S. For that, we first sort the
keys (in ascending order) obtaining an array A[1, t]. Then, we pack them in a block B
of t(�+1) consecutive bits (this uses t(lg w)/2 ≤ √

w(lg w)/4 ≤ w bits, which is less than
one word) where each key is separated from the other by a zero bit. In other words, we
store the element A[i] in the bits B[(i − 1)(� + 1) + 1, i(� + 1) − 1] and store a zero at bit
B[i(� + 1)].

We now show how to do a predecessor query for a key x on S in constant time. This
is done in the following steps:

(1) We first duplicate the key x, t times and set the separator bits. In other words, we
compute X = (x · (0�1)t) OR (10�)t.

2In the tuples, we must avoid using lg u bits for null pointers. Rather, we use just a bitmap (with one bit per
tuple) to tell whether the pointer is null or not and store the nonnull pointers in a separate memory area
indexed by rank over this bitmap.
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(2) We subtract B from X, obtaining Y = X−B. In parallel, this does the computation of
x− A[i] for all 1 ≤ i ≤ t, and the result of each subtraction (negative or nonnegative)
is stored in the separator bit Y [i(� + 1)].

(3) We mask all but separator bits. In other words, we compute Z = Y AND (10�)t.
(4) We finally determine the rank of x. If Z = 0, then we answer (0, 0). Otherwise,

to find the first 1 in Z, we create a small universal mmphf storing the values
{2�i, 1 ≤ i ≤ t}, which takes constant time and O(t lg w) = O(

√
w lg w) = o(w) bits.

With the position of the bit, we easily compute the rank r and extract the answer
y from the corresponding field in B, so as to answer (y, r).

A.2. Reducing Space Usage

We now describe how the space usage can be improved to O(n lg(u/n)). For this, we use
a standard idea. We partition the set S into n′ = 2	lg n
 partitions using the lg n′ most
significant bits. For all keys in a partition Sp, we have that the lg n′ most significant
bits are equal to p. Let Ŝp denote the set that contains the elements of Sp truncated to
their lg u − lg n′ least significant bits. We now build an independent predecessor data
structure Dlg u−lg n′

(Ŝp). Each such data structure occupies at most c(|Sp|(lg u − lg n′))
bits, for some constant c. We compact all of those data structures in a memory area A
of cn cells of lg u − lg n′ bits.

A bitvector B[1, n + n′] stores the size of the predecessor data structures. In other
words, for each p ∈ [1, n′], we append to B as many 1s as the number of elements
inside Sp, followed by a 0. Then, to compute the predecessor of a key x in S, we first
compute p = h(x) (here, h(x) extracts the lg n′ most significant bits and l(x) the lg u−lg n′
least significant bits). Then we compute r0 = select0(B, p) − p, which is the number of
elements in Sq for all q < p. Then we query Dlg u−lg n′

(Ŝp) (whose data structure starts
at A[c ·r0(lg u− lg n′)]) for the key l(x), which returns an answer (y, r). We now have two
cases:

(1) If the returned answer is (y, r) �= (0, 0), then the final answer is just (pn′ + y, r0 +r).
(2) Otherwise, the rank of the answer is precisely r0, but we must find the set Sp′ that

contains it to find its value. There are two subcases:

(a) If r0 = 0, then there is no previous element and we return (0, 0).
(b) Otherwise, we compute the desired index, p′ = select1(r0) − r0, and query

Dlg u−lg n′
(Ŝp′) for the maximum possible key, 1lg u−lg n′

. This must return a pair
(y, r), and the final answer is (p′n′ + y, r0).

Since B has O(n) bits, it is easy to see that the data structure occupies O(n(lg u− lg n))
bits and answers queries in time O(lg lg u−lg n

lg w
). We thus have proved the following

theorem.

THEOREM A.1. Given a set S of n keys over universe [1, u], there is a data structure that
occupies O(n(lg(u/n))) bits of space and answers predecessor queries in time O(lg lg(u/n)

lg w
).
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M. Pătraşcu and M. Thorup. 2006. Time-space trade-offs for predecessor search. In Proceedings of the 38th
Annual ACM Symposium on Theory of Computing (STOC). 232–240.
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M. Pătraşcu and E. Viola. 2010. Cell-probe lower bounds for succinct partial sums. In Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 117–122.

R. Raman, V. Raman, and S. Srinivasa Rao. 2007. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms 3, 4, Article No. 43.
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