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Abstract.

In this work we study the diffusion of non-interacting overdamped particles,
moving on unbiased disordered correlated potentials, subjected to Gaussian white
noise. We obtain an exact expression for the diffusion coefficient which allows us
to prove that the unbiased diffusion of overdamped particles on a random polymer
does not depend on the correlations of the disordered potentials. This universal
behavior of the unbiased diffusivity is a direct consequence of the validity of the
Einstein relation and the decay of correlations of the random polymer. We test the
independence on correlations of the diffusion coefficient for correlated polymers
produced by two different stochastic processes, a one-step Markov chain and the
expansion-modification system. Within the accuracy of our simulations, we found
that the numerically obtained diffusion coefficient for these systems agree with the
analytically calculated ones, confirming our predictions.
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1. Introduction

The diffusion of particles on one-dimensional (1D) random media has been the subject
of intense research. Since the introduction of the Sinai’s model it was recognized that
disordered systems can exhibit normal and anomalous diffusion as well as normal
and anomalous drift [1]. Several models of diffusion in disordered media have been
introduced since then [2–4] in order to understand the underlying mechanisms leading
to such behaviors. Particularly some simple deterministic models for transport in
disordered potentials have been studied in order to understand the origin of the
transport properties from the very deterministic dynamics [5–9]. A model for transport
in random polymers that takes into account the pair correlations between monomers
(to which we will refer to as the “particle-polymer model”) has been introduced by
the authors in Ref. [9]. In such a work it was shown that the deterministic biased
diffusion is influenced by the presence of the correlations in the polymer. Indeed,
in that paper, the authors gave an exact expression for the particle current and the
diffusion coefficient in terms of the first two moments of the “crossing times” and
its corresponding pair correlation function [9], a result which is a consequence of the
central limit theorem [10–12]. Based on the same arguments, it has been shown that
when the particles along the polymer are placed at a finite temperature and subjected
to a constant driving force, it is still possible to obtain an exact expression for the
drift and diffusion coefficients in terms of the first and the second moments of the first
passage time (FPT) as well as its pair correlation function [13]. In this work we will
show that, for the particle-polymer model, the diffusion coefficient does not depend on
the correlations between monomers along the polymer when the driving force is zero.
The latter is a result that follows straightforwardly from the validity of the Einstein
relation in disordered potentials at zero driving force.

In consequence the paper is organized as follows. In Section 2 we introduce
the model as well as some general results concerning the transport process previously
established. Then in Section 3 we give the exact expression for the diffusion coefficient
in disordered polymers for zero driving force and introduce a simple model for the
potential to illustrate the independence of the diffusivity on the correlations. First we
use a Markov chain to produce exponentially correlated polymers which are used to
induce a correlated potential. Then, we perform Langevin dynamics simulations to
estimate the diffusion coefficient of overdamped particles moving on such polymers.
We also perform analogous numerical experiments in the case in which the polymers
are produced by means of the expansion-modification system, which is known to have
polynomially decaying correlations. Finally in Section 4 we give a brief discussion
and the main conclusions of our work. Two appendices are given containing detailed
calculations of our main results.

2. The model

We will consider an ensemble of Brownian particles with overdamped dynamics moving
on a 1D disordered potential V (x) subjected to an external force F . The equation of
motion of any of these particles is given by the stochastic differential equation,

γdXt = (f(Xt) + F )dt+ ̺0dWt (1)

where Xt stands for the position of the particle and Wt is a standard Wiener
process. The constants F and γ stand for the driving force and the friction coefficient
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respectively. The constant ̺0 represents the square root of the noise intensity (or the
thermal fluctuations), which according to the fluctuation-dissipation theorem satisfy
the relation ̺20 = 2γβ−1. Here β denotes, as usual, the inverse temperature times the
Boltzmann constant, β = 1/kBT . The function f(x) represents minus the gradient
of the potential V (x) that the particle feels due to its interaction with the substrate
where the motion occurs. As in Ref. [13], we model the substrate (or the polymer) as
a chain of “unit cells” of constant length L. The unit cells represent the monomers
comprising the polymer. We denote by A the set of possible monomer types, a set
that is assumed to be finite or countable infinite. The polymer is represented by a
bi-infinite symbolic sequence a := (. . . , a−1, a0, a1, . . .), where aj ∈ A stands for the
monomer type located at the j-th cell, for all j ∈ Z. The set of possible random
polymers will be denoted by AZ according to the conventional notation in symbolic
dynamics [14]. As in Refs. [9, 13], we assume that the disordered potential V (x) is the
result of the interaction of a particle with the random polymer.

Let x ∈ R denote the particle position along the substrate a ∈ AZ. A particle
located at x feels a (random) potential that is not only function the particle position
x, but also of the substrate, i.e. V (x) = ψ(x, a). This is a consequence of the fact
that the particle might interact with the whole polymer and not only with the closest
monomer. If x = 0 we assume that the particle is located at the beginning of the
0-th monomer a0. In Ref. [13] it was shown that the random potential ψ(x, a) has the
following property,

ψ(x+ nL, a) = ψ[x, σn(a)]. (2)

where σ : AZ → AZ is the shift mapping defined as follows: if a,b ∈ AZ are such that
σ(a) = b, then bi = ai+1 for all i ∈ Z. As in Refs. [9, 13] we assume that the substrate
is generated by some stochastic process through a stationary σ-invariant probability
measure ν on AZ. This hypothesis is equivalent to say that the statistical properties
of the polymer are translationally invariant.

In Ref. [13] it has been shown that the particle flux Jeff and the diffusion coefficient
Deff can be written exactly as follows,

Jeff := lim
t→∞

〈〈Xt〉〉

t
=

L

〈〈τ(0 → L)〉〉
, (3)

Deff := lim
t→∞

Var(Xt)

2t
=

L2̺2τ
2〈〈τ(0 → L)〉〉3

. (4)

where τ(0 → L) is a random variable, called the first passage time (FPT), defined
as the time that the particle spends to reach, for the first time, the position Xτ = L
from the initial condition X0 = 0. The quantity ̺2τ is defined in terms of the variance
of the FPT and its autocorrelation function as,

̺2τ :=
〈〈

τ2(0 → L)
〉〉

−
〈〈

τ(0 → L)
〉〉2

+ 2

∞
∑

m=1

Cτ (m).

where

Cτ (m) :=
〈〈

τ(0 → L)τ
(

mL→ (m+ 1)L
)〉〉

−
〈〈

τ(0 → L)
〉〉2

.

It is important to stress that the notation 〈〈·〉〉 denotes a double average, one with
respect to the noise and the other with respect to the disorder. In Ref. [13] it was
pointed out that is important to distinguish between these two different averages.
If we put an ensemble of non-interacting Brownian particles over a (fixed) random
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polymer a we denote the average over the ensemble of particles as 〈·〉n. This average
will be referred to as the average with respect to the noise (w.r.n.). Once a certain
observable has been averaged with respect to the noise, it still depends on the specific
realization of the polymer a. Thus we need to perform a second average which should
be carried out over an ensemble of different realizations of the random polymer. This
average is taken with respect to a stationary measure ν which characterizes the process
producing the random polymers. This average will be referred to as the average with
respect to the polymers (w.r.p.) and will be denoted by 〈·〉p. Then, the double average
〈〈·〉〉 is actually achieved first by taking the average w.r.n. and after that by taking the
average w.r.p., i.e., 〈〈·〉〉 = 〈〈·〉n〉p. Additionally, we will use the following notation:
Varn(O) := 〈O2〉n − 〈O〉2n and Varp(O) := 〈O2〉p − 〈O〉2p denote the variance of the
observable O w.r.n. and w.r.p. respectively. Along this line, Var(O) therefore denote
the variance of the observable O with respect to both, the noise and the polymer
ensemble, i.e., Var(O) := 〈〈O2〉〉 − 〈〈O〉〉2.

Let us denote by T1(a) the mean FPT w.r.n., i.e., T1(a) := 〈τ(0 → L)〉n. Then
the drift and diffusion coefficients can be written as [13],

Jeff =
L

〈T1〉p
, (5)

Deff = Dnoisy +Ddet, (6)

where Dnoisy and Ddet are referred to as the noisy and deterministic parts of Deff

respectively. These quantities are defined as follows

Dnoisy =
L2
〈

Varn(τ(0 → L))
〉

p

2〈T1〉3p
, (7)

Ddet =
L2Varp(T1) + 2L2

∑∞
m=1 Cτ (m)

2〈T1〉3p
. (8)

The autocorrelation of the FPT can also be rewritten in terms of T1, which gives

Cτ (ℓ) =
〈

T1(a)T1
[

σℓ(a)
] 〉

p
−
〈

T1(a)
〉2

p
. (9)

The reason for expressing the transport coefficients, Jeff and Deff , in terms of the
mean and the variance (with respect to the noise) of the FPT is that such quantities
can be written exactly in terms of quadratures. Indeed, in Ref. [13] it was proved that
the mean FPT w.r.n., T1, can be written as,

T1(a) = γβ

∞
∑

m=1

e−mβFLq+(a)q−[σ
−m(a)] + γβI0(a), (10)

and the variance of the FPT, Varn[τ(0 → L)], as

Varn[τ(0 → L)] = 2(γβ)2

{

∞
∑

n=1

∞
∑

m=1

∞
∑

l=1

(

e−(n+m+l)βFLq+(a)q+[σ
−n(a)]

× q−[σ
−m−n(a)]q−[σ

−n−l(a)]

)

+ 2

∞
∑

n=1

∞
∑

m=1

e−(n+m)βFLq+(a)q−[σ
−n−m(a)]I0[σ

−n(a)]

+

∞
∑

n=1

e−nβFLq+(a)I1[σ
−n(a)]
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+
∞
∑

m=1

∞
∑

l=1

e−(m+l)βFLq−[σ
−m(a)]q−[σ

−l(a)]I2(a)

+ 2

∞
∑

m=1

e−mβFLq−[σ
−m(a)]I3(a) + I4(a)

}

(11)

which defines completely the transport coefficients. Here, the functions q+, q− : AZ →
R were defined as

q±(a) :=

∫ L

0

dx exp
(

± β[ψ(x, a) − xF ]
)

, (12)

and the functions B± : R×AZ → R and Q± : R×AZ → R were defined as,

Q±(x, a) :=

∫ x

0

dy exp
(

± β[ψ(y, a) − yF ]
)

, (13)

B±(x, a) := exp
(

± β[ψ(x, a) − xF ]
)

. (14)

We also used the following short-hand notation for the involved integrals,

I0(a) =

∫ L

0

Q−(x, a)B+(x, a)dx,

I1(a) =

∫ L

0

[Q−(x, a)]
2
B+(x, a)dx,

I2(a) =

∫ L

0

Q+(x, a)B+(x, a)dx,

I3(a) =

∫ L

0

B+(x, a)

∫ x

0

Q−(u, a)B+(u, a)dudx,

I4(a) =

∫ L

0

B+(x, a)

∫ x

0

B+(u, a) [Q−(u, a)]
2
dudx. (15)

In Ref. [13] it was shown that, for the case of non-correlated random polymers,
the transport of particles in this system arises an interesting phenomenon which is the
non-monotonic behavior of the diffusivity on the temperature. In this work we will
study the effective diffusion coefficient of overdamped particles moving on correlated
and uncorrelated potentials. Bellow we will show with certain generality that the
unbiased diffusion does not depend on the correlations of the polymer beyond the
number of monomers that the particle interacts with.

3. Unbiased diffusion on random polymers

A remarkable property that can be inferred from our formalism, is that the diffusivity
in unbiased disordered potentials does not depend on the correlations of the substrate.
This means that the particles in disordered potentials are unable to feel the pair
correlations between monomers comprising the polymer. Consequently, the transport
properties of a system of particles diffusing on correlated polymers are equal to those of
a system of particles moving on an “equivalent” ensemble of uncorrelated polymers.
Recently [15] this kind of behavior has been shown to occur in a similar model of
diffusion on random potentials. In Ref. [15] Goychuk and Kharchenko calculated
the diffusion coefficient of overdamped particles diffusing on a correlated random
potential with a Gaussian distribution. Surprisingly their result does not depend on
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the correlations, a conclusion that is reached by using the Einstein relation. Here we
prove that for our model of random potentials the diffusion coefficient is independent
on the correlations if the substrate is ergodic and has decay of correlations. The word
ergodic in this context means that the polymer average can be taken as a time average
if we think of the polymer as a discrete-time stochastic process.

Bouchaud and Georges in Ref. [4] have shown that the Einstein relation, µ =
βDeff(F = 0), remains valid for the class of disordered potentials we are considering.
The constant µ stands for the mobility at zero bias, µ = limF→0 J(F )/F . From the
Einstein relation it is easy to obtain the diffusion coefficient since

Deff(F = 0) =
1

β
lim
F→0

Jeff(F )

F
.

In Appendix A we prove that the first moment of the FPT the divergence occurs as
F−1. This implies that the particle current vanishes, as expected, in the limit F → 0.
Actually the particle current behaves linearly in a small neighborhood of F = 0. This
allows us to obtain the effective diffusion coefficient as follows

Deff(F = 0) =
L2

γβZ+Z−
. (16)

Here the constants Z± are defined as

Z± := 〈q±(a)〉p =

〈

∫ L

0

exp [±βψ(x, a)] dx

〉

p

. (17)

Notice that the effective diffusion coefficient depends only on the quantities Z±

which are local averages, in the sense that the polymers involved in the averages are
not shifted with respect to each other (as it occurs in the correlation function given in
Eq. (9)). Thus, the expression (16) for the effective diffusion coefficient implies that,
on ergodic polymers with decay of correlations, the diffusivity does not depend on the
correlations between monomers at distant sites if the particle only interacts with the
closest monomer to it (i.e., if the potential ψ(x, a) only depends on one “coordinate”
of a). This means that particles on polymers with long range correlations exhibit
the same diffusivity as the particles that moves on polymers without correlations but
with the same one-dimensional marginals. More generally, the diffusivity of a particle
moving on a random polymer will be influenced by the pair correlations between
monomers as distant as the range of the potential induced by the interaction. Here,
the range of a potential stands for the maximal distance between two monomers having
a non vanishing interaction with the particle. This makes the averages with respect
to the polymer ensemble to depend on the range of the interaction. In other words,
if the range of the potential ψ(x, a) is n, then, ψ can be seen as a function of n
coordinates of a, i.e., ψ(x, a) = ψ(y, aj , aj+1, . . . , aj+n−1). Therefore, to perform the
polymer averages Z± it is necessary to have at least the n-dimensional marginals of
the probability measure ν defining the polymer ensemble i.e., we need to know the
joint probability distribution of n monomers, P(aj , aj+1, . . . , aj+n−1). With exception
of the Bernoulli measure, the n-marginals cannot be decomposed, in general, as the
product of the 1-dimensional marginals. In the following we give some examples to
better illustrate these situations.
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3.1. Potential of range n = 1

In order to exemplify the independence on the correlations of the diffusion coefficient
at zero tilt strength we use the potential model introduced in Ref. [13]. The potential
model V (x) used in such a work is of range 1 since the potential only depends on
the monomer at which the particle is located. Explicitly the potential is defined as
follows. If x represents the particle position and we write as x = y + nL, then

V (x) = ψ(x, an) =

{

any if 0 ≤ y < L/2
an(L− y) if L/2 ≤ y < L.

(18)

Here n ∈ Z stands for the index of the unit cell at which the particle is located and y
is the relative position of the particle along such unit cell. The varible an is a random
variable representing the monomer type at the nth unit cell. This potential model is
shown schematically in Fig. 1. We observe that such potential is symmetric on every
unit cell with a maximum located at y = 1/2. The height of the potential assumed to
be random taking values from a finite set. Since the height of the potential is given by
anL/2 we can assume that an represents the random variable, for every n ∈ Z, which
can take values from a set A := {fj : 1 ≤ j ≤ k}.

(b)
a

L_
2

L
2

L

V  x(   )

V1

V2

V3

potential profile

random polymer

a
−2

a
−1

a
0

a
1

a
2

a
3

... ...

(a)

Figure 1. Schematic representation of the potential model. (a) The potential
profile on the 0th unit cell. (b) A realization of the random potential with a
few unit cells. In this case every monomer along the chain can be taken among
three possible monomers (k = 3) with heights V1 = f1L/2, V2 = f2L/2 and
V3 = f3L/2. To perform analytical calculations as well as numerical simulations
we have taken the values f1 = 0.8, f2 = 4.2, and f3 = 9.0 (see text).

We should stress here that the sequence a := (. . . , a−1, a0, a1, . . .) ∈ AZ represents
the polymer (with an the corresponding monomers for n ∈ Z). The values fj represent
the “slopes” that the potential can take and, in some way, stand for the possible
monomer types from which the polymer is built up. It is clear that the proposed
potential depends only on one monomer, i.e., V (x) = ψ(y, an) if x = y+nL. Since we
are considering the Bernoulli measure on AZ, we only need to specify the probability
that a given monomer an equals a monomer type fj for 1 ≤ j ≤ k. In other words,
we need to specify the 1-dimensional marginal, i.e., ν(an = fj) =: p(fj) to perform
the polymer average. With these quantities we can state explicitly how to take the
average with respect to the polymer ensemble. If h : A → R, then we have

〈h(a)〉p =

k
∑

j=1

h(fj)p(fj). (19)
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Notice that this average does not depend on n, which reflects the fact that the chosen
measure is translationally invariant (or shift-invariant). With this potential model we
have that the integrals Z+ and Z− can be done exactly, giving

Z± = 2

〈

exp (±βaL/2)− 1

±βa

〉

p

= 2

k
∑

j=1

exp (±βfjL/2)− 1

±βfj
p(fj). (20)

The presence of correlations does not change the above average. This is because the
function to be averaged only depends on one coordinate of a ∈ AZ. Thus, to perform
the average over the polymer ensemble we only require the 1-dimensional marginals.
Thus if two stochastic processes producing the (random) substrate have identical
1-dimensional marginals then they will exhibit the same diffusion coefficient at all
temperatures. To confirm that it is the case, we simulate the Langevin dynamics of
10 000 overdamped particles diffusing on several random polymers. Then we calculate
the diffusion coefficient from the exact expression given in Eq. (16) and compare it
with the diffusivity obtained from the simulations. To perform the referred numerical
simulations first we built the polymers using a set of k = 3 monomer types. The
slopes defining the corresponding monomer types are chosen as f1 = 0.8, f2 = 4.2 and
f3 = 9. The set of possible monomer types will be represented by A := {1, 2, 3}. Thus,
a realization of the polymer a = (. . . , a−1, a0, a1, . . .) has an associated sequence of
potential profiles with “slopes” (. . . , fa

−1
, fa0

, fa1
, . . .). In our numerical simulations

we only vary the way in which the polymer is built up. For numerical reasons we fix
the parameters L and γ to one throughout the rest of this work.

In Fig. 2 we observe the diffusion coefficient, as a function of the temperature,
for particles moving on random polymers built up by means of a Bernoulli process
and a Markov chain. On one hand, the Bernoulli process is defined uniquely by the
1-dimensional marginals, pj = ν(an = fj) for j = 1, 2, 3. Notice that the latter does
no depend on the lattice site n, which means that the measure is shift invariant. For
our numerical simulations we use the equidistribution for the monomer types, i.e.,
p1 = p2 = p3 = 1/3. This means that the polymer is built up at random as follows:
at each unit cell we chose at random a monomer type from the set A := {1, 2, 3} with
the same probability. Such a choice is independent of the monomers chosen in the
rest of the chain. On the other hand, the Markov process that we use to built up the
polymers is defined through the stochastic matrix P : A×A → [0, 1] given by

P =





0 p q
q 0 p
p q 0



 , (21)

where p and q are parameters such that q = 1 − p. It is easy to see that this matrix
is doubly stochastic and the unique invariant probability vector π = πP is given
by π = (13 ,

1
3 ,

1
3 ). It is known that the correlations for any Markov process decay

exponentially fast [16]. Contrary to the Bernoulli process, the monomer type that is
chosen at random at a given cell depends on the choice already made at an adjacent
unit cell. Notice that although the Bernoulli and the Markov processes are different
in nature as explained above, they have the same 1-dimensional marginals. This
means that the probability that a given monomer type appears along the polymer
is the same regardless the process (Markovian or Bernoulli). This is a consequence
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0
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exact
Markov chain, p=0.50
Markov chain, p=0.70
Markov chain, p=0.90

Figure 2. Effective diffusion coefficient for overdamped particles on “Markov”
and “Bernoulli” polymers. We simulate the dynamics of 10000 overdamped
particles on random polymers built up by means of a Markov chain. The stochastic
matrix corresponding to such a Markov process is given in Eq. (21) having a
parameter p. We calculated the diffusion coefficient from the simulations for three
different cases p = 0.50, p = 0.70 and p = 0.90 of the Markov chain. We also
calculate the diffusion coefficient for the case of the Bernoulli process. We observe
that the diffusion coefficients for the Markov chain do not vary with the parameter
p and coincide with the diffusion coefficient obtained from the Bernoulli process.
Moreover, these diffusion coefficients are consistent with the values predicted by
Eq. (16). This gives an example of the fact that the diffusion coefficient (in absence
of driving force) is independent on the correlations present in the polymers.

of the fact the components of the invariant probability vector π = (1/3, 1/3, 1/3)
of the stochastic matrix P , actually correspond to the 1-dimensional marginals of
the stationary Markov chain. In Fig. 2 we can appreciate that, within the accuracy
of our numerical simulations, the diffusion coefficient for different realizations of the
polymers coincide, regardless if they are built up by means of the stationary Markov
chain or by means of the Bernoulli process. Moreover, these numerical experiments
fits satisfactorily (within the accuracy of our simulations) to the exact curve calculated
from Eq. (16).

3.2. Potentials of range n = 2

In order to test the independence on long-range correlations of the diffusion coefficient
we simulate the dynamics of overdamped particles on random polymers built up by
means of the expansion modification (E-M) process. The E-M system is a stochastic
process that was introduced as a simple model exhibiting spatial 1/f noise [17, 18] and,
in particular, it was used to understand the long-range correlation present in DNA
sequences [19, 20]. Such a system is defined by means of two fundamental processes
as follows. Consider a “seed” (a symbol in the binary alphabet {0, 1}). The seed is
expanded with a probability p and it is modified (it is replaced by the complementary
symbol) with probability 1 − p. In other words, if a ∈ {0, 1} then, under the E-M
process this symbol is subjected to the transformation,

a 7→

{

a with probability 1− p
aa with probability p.



Unbiased diffusion of Brownian particles on disordered correlated potentials 10

and these transformations are extended coordinate-wise to words of arbitrary length
in order to define the infinitely iterated E-M process. Here a stands for the
complementary symbol, i.e., 1 = 0 and 0 = 1. This process allows the seed to grow in
such a way that the resulting string of symbols becomes infinite with probability one.
This stochastic process has been studied within the context of symbolic dynamics in
Ref. [21]. In that work it was rigorously proved that the E-M system has a unique
stationary measure having polynomial decay of correlations for an open set of values of
the parameter p. Specifically, they proved that the pair correlation function C(ℓ) has
a behavior of the form C(ℓ) ≍ ℓθ where θ is an exponent depending on the parameter
p, i.e. θ = θ(p). The authors of Ref. [21] also conjectured that this behavior for the
correlation functions occurs for almost all the values of the expansion probability and
gave an explicit formula for the corresponding exponent θ(p),

θ(p) =
log(1 + p)− log(|2p− 1|)− log(|3p− 1|)

log(1 + p)
. (22)

The treatment of the E-M system by means of symbolic dynamics allows us to obtain
exact formulas for the n-dimensional marginals defining the (σ-invariant) stationary
probability measure [21]. Indeed, the n-dimensional marginals are obtained as the
stationary probability vectors of a hierarchy of stochastic matrices of size 2n × 2n.
Every stochastic matrix in such a hierarchy gives the “transition probability” from
one word of size n to another one under the action of expansions and modifications
on the polymer. Following the treatment of Ref. [21], we prove in Appendix B that
the stochastic matrices for the cases n = 1 and n = 2 are given by,

M1 =
1

1 + p

(

2p 1− p
1− p 2p

)

, (23)

M2 =
1

1 + p









2p2 + pq pq pq q2

p2 + 2pq p2 q2 pq
pq q2 p2 p2 + 2pq
q2 pq pq 2p2 + pq









. (24)

The respective invariant probability vectors v1 : A → [0, 1] and v2 : A2 → [0, 1] are
given by

v1 =

(

1

2
,
1

2

)

, (25)

v2 =

(

3− 2p

10− 8p
,
1− p

5− 4p
,
1− p

5− 4p
,
3− 2p

10− 8p

)

, (26)

which are obtained as the left eigenvectors associated to the largest eigenvalues of M1

and M2 respectively. With these quantities we can evaluate the average w.r.p. of any
function on AZ that depends on one or two coordinates of the polymer. Specifically,
if we have a function depending on one coordinate of the polymer, g : A → R, then
the average w.r.p. is defined by

〈g(a)〉p =

1
∑

a=0

g(a)v1(a). (27)

On the other hand if we have a function depending on two coordinates of the polymer,
h : A2 → R, then the average w.r.p. should be achieved as follows,

〈h(a, b)〉p =
1
∑

a=0

1
∑

b=0

h(a, b)v2(a, b), (28)
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Figure 3. Effective diffusion coefficient of overdamped particles moving on E-
M polymers with expansion probability p = 0.80. In this figure we display the
effective diffusion coefficient estimated from the Langevin dynamic simulations
(filled circles) and the theoretical prediction from Eq. (16) (solid line). This figure
clearly shows that the effective diffusion coefficient obtained from the simulations
is consistent with the theoretical prediction, at least within the accuracy of our
numerical experiments.

a summation that will be represented alternatively as

〈h(a)〉p =
∑

a∈A2

h(a)v2(a). (29)

Now let us define a toy model for the potential induced by the particle-polymer
interaction. We will assume that the particle interacts with two monomers when it
is placed on the polymer. This interaction potential will depend on two coordinates
of the random polymer. We will assume additionally that the induced potential ψ is
piece-wise linear. Given a particle placed at the nth unit cell on the polymer a, we
write the particle position x as x = y + nL with y ∈ [0, 1). Remember that in this
case the polymer is built up from a binary “alphabet” A = {0, 1} (since we have only
two symbols in the expansion-modification process). Then the potential is defined as

ψ(x, an, an+1) =

{

ϕ(an, an+1)y if 0 ≤ y < L/2
ϕ(an, an+1)(L− y) if L/2 ≤ y < L.

(30)

The function ϕ : A2 ×A2 → R appearing in the equation above is such that,

ϕ(a, b) =







f1 if a = 0 and b = 0
f2 if (a = 0 and b = 1) or (a = 1 and b = 0)
f3 if a = 1 and b = 1.

(31)

The values fi for i = 1, 2, 3 are chosen as in the preceding example, f1 = 0.80, f2 = 4.2
and f3 = 9.0. With this model we have that the resulting potential on a given unit cell
depends not only on the monomer type located in such a unit cell but also depends
on the right adjacent monomer type. Note that the potential profile defined by (30)
is the analogous to the potential profile defined by Eq. (18). The difference is that in
the present model the slopes are defined by two coordinates of the polymer, instead of
one as in the potential model of Eq. (18). With these definition we can now evaluate
the quantities Z+ and Z− defined in Eq. (17) which allows us to obtain an expression
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Figure 4. Effective diffusion coefficient of overdamped particles moving on E-
M polymers with expansion probability p = 0.90. In this figure we display the
effective diffusion coefficient estimated from the Langevin dynamic simulations
(filled circles) and the theoretical prediction from Eq. (16) (solid line). We should
notice a clear (non-random) deviation of the simulations with respect to the
theoretical curve. In this figure we also display the effective diffusion coefficient
of particle on the polymers produced by the E-M process but after shuffling the
symbols. The shuffling process “destroy” the correlations and, as we can see, this
diffusion coefficient differs from both, the theoretical result and the diffusivity
originally calculated in the correlated polymer. This result evidence the fact
that the E-M process has not reached its stationary state and the fact that the
diffusion process in long-range correlated polymers undergoes a long transient
resulting possible in a very slow convergence of the diffusion coefficient.

for the diffusion coefficient through Eq. (16). Notice that the integral appearing in
Eq. (17) is the same as in the case of potentials of range n = 1. Thus, it is easy to see
that,

Z± = 2

〈

exp (±βϕ(a)L/2)− 1

±βϕ(a)

〉

p

= 2
∑

a∈A2

[

exp (±βϕ(a)L/2)− 1

±βϕ(a)

]

v2(a). (32)

In Fig. 3 we show the effective diffusion coefficient for particles along an E-M
polymer with expansion probability p = 0.80. In this case the pair correlation function
of the polymer is approximately given by C(ℓ) ≈ ℓθ(0.80), where θ(0.80) ≈ 1.296, which
implies that the correlations decay too slowly. To perform the numerical experiment
(from which we estimate the effective diffusion coefficient) we simulated the Langevin
dynamics of 35 000 particles, every particle moving on different realizations of the
polymer, during a total time of 105 arb. units. We can appreciate in Fig. 3 that even in
this situation, where the polymer has long range correlations, the diffusion coefficient
obtained from the Langevin dynamics (filled circles) fits satisfactorily (within the
accuracy of our simulations) with the diffusion coefficient predicted by Eq. (16) (solid
line). This means, again, that the diffusivity does not depend on the large correlation
present in the disordered substrate.

We now test our formula (16) for the effective diffusivity in a more dramatic
situation. This is the case where the correlations decay much more slowly in
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such a way that the correlation function behaves asymptotically as C(ℓ) ≈ ℓθ(0.90)

where θ(0.90) ≈ 0.521. In this case, a typical realization of the E-M polymer has
large ordered domains which are responsible of the large correlations present in the
(disordered) substrate. It is natural to expect, in the present case, large deviated
results from the theoretical ones. This is, effectively, the case as we observe in
Fig. 4. The effective diffusion coefficient obtained from Langevin dynamic simulations
(filled circles) deviates moderately (but with a clear non random tendency) from the
theoretical curve predicted by Eq. (16) (solid line). This behavior could be the result of
two phenomena naturally present in the system. First we should remind that the E-M
process relaxes slowly to its stationary state, especially for large values of the expansion
probability p [21]. As it was stated in Ref. [21], we should be aware of this phenomenon
since it could lead to distorted observations. On the other hand, another phenomenon
that could also be responsible of the deviations observed in Fig. 4 is the fact that the
diffusion of the particles is by itself a very slow process. Indeed, the effective diffusivity
is a property of the whole polymer, and if the particles are unable to visit the whole
polymer, the diffusion coefficient would have large statistical errors. To verify that
these two phenomena are actually present in the numerical simulations we performed
the following experiment. We toke the polymer produced by the E-M process (with
p = 0.90) and we shuffled its monomers in order to “destroy” the large correlations
on the substrate. This procedure was done by taking two monomers at random and
interchanging its position along the polymer. We performed 106 “interchanges” on
every polymer of 106 symbols long. Then we placed the particles on the shuffled
polymers and performed the corresponding Langevin simulations. In Fig. 4 we display
the diffusion coefficient calculated in this way (open squares). We appreciate that the
resulting diffusion coefficient still deviates from the theoretical one. This means that
the deviation of the diffusivity observed in the long range correlated polymers does
not come from the correlations at all, but from the fact that the polymer itself, has not
reached its stationary state. This phenomenon can be appreciated in Fig. 5. In such a
figure we plot the relative frequency of occurrence of the word 00 for 50 realizations of
the random polymer of 106 symbols long. We can observe that for the case p = 0.80
such relative frequency (filled circles) coincide in the average with the theoretical value
(solid line), the two-dimensional marginal v2(00), predicted by Eq. (26). On the other
hand, for the case p = 0.90, we can appreciate that the relative frequencies obtained
from the simulations (stars) deviate largely from the theoretical prediction (dashed
line) compared to the case p = 0.80. Indeed, the standard deviation of the relative
frequency for the case p = 0.80 is ∆v ≈ 0.001550471 while for the case p = 0.90
we obtain ∆v ≈ 0.02874428 which differs in one order of magnitude. This behavior
clearly affects the effective diffusion coefficient obtained from the simulations even in
the case where the correlations are destroyed by shuffling the symbols.

4. Discussion and conclusions

In this work we have considered a model for unbiased diffusion of particles moving
along disordered correlated polymers. We have proved that if the particle only
interacts with the monomer closest to it, the diffusivity does not depend on the
correlations between monomers along the polymer. In general we have proved that
if the particle interacts with a few monomers on the polymer, it will depend only on
the correlations of monomers as distant as the range of the interaction. This result
was proved under the assumptions (i) that the Einstein relation is valid in this kind of
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Figure 5. Two-dimensional marginal of the polymer corresponding to the word
00. We display the relative frequency of occurrence of the word 00 along every
realization of the polymer. Every realization has 106 symbols and we produced
50 different realizations for the cases p = 0.80 and p = 0.90. We observe that in
the case p = 0.80 the numerically obtained two-dimensional marginal v2(00) is
consistent with the predicted by Eq. (26). We also appreciate that for the case
p = 0.90 we have large statistical deviation from the theoretical value compared
to the case p = 0.90. Actually, the standard deviation for p = 0.90 is an order of
magnitude larger than the standard deviation of the case p = 0.80.

systems and (ii) that the polymer, regarded as a discrete-time stochastic process, is
ergodic with decay of correlations. We illustrated the independence of the diffusivity
on the polymer correlations by means of a simple model in two different cases. In the
first case we produced the polymers by means of a three-states Markov process. Then
these polymers were used to build up the potential felt by the particles. In this case
we observed that the correlations does not alter the diffusivity and the corresponding
effective diffusion coefficient that we obtained from the simulations was consistent with
the exact result we derived. In the second case that we analyzed, the polymers were
produced by means of the E-M process. The E-M process is known to exhibit long
range correlations and the corresponding scaling laws for the correlation functions are
known exactly. This feature of the E-M process allowed us to study the diffusivity in
a system with a very slow decay of correlations. We could verify the independence
on the correlations of the diffusivity; however we found that the effective diffusion
coefficient seems to deviated moderately in the case in which the correlations decay
as C(ℓ) ≈ ℓθ(0.90) with θ(0.90) ≈ 0.521. We argued that this apparent inconsistence
might be due to the fact that the E-M process relaxes slowly to its stationary state.
Moreover, we observed that the numerically obtained two-dimensional marginal v2(00)
(corresponding to the realizations of the polymers used for the numerical simulations)
exhibits large statistical deviations on every realization of the polymer. This fact
clearly affects the diffusivity along every polymer, resulting naturally in a deviation
from the theoretical result. However it is also clear that the diffusion process by itself
could be a very slow process since the particles should explore all the polymer in
order to have an accurate estimation of the diffusivity. However, due to the existence
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of large ordered domains in the polymer we could face a very slow convergence of
the effective diffusion coefficient. It is therefore necessary a more detailed study of
this class of systems particularly focusing in understanding how long is the transient
and how does it behave. Knowing these properties could shed some light about the
diffusion processes occurring in real systems in which the long-range correlations are
naturally present, such as the DNA.
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Appendix A. Diffusion coefficient in the limit of zero tilt strength

In Ref. [13] it has been shown that in the polymer-particle interaction model for
diffusion on random media the particle flux can be written exactly in terms of the
mean FPT,

Jeff =
L

〈T1〉p
, (A.1)

where the mean FPT w.r.n. T1 is given by

T1(a) = γβ

∞
∑

m=1

e−mβFLq+(a)q−[σ
−m(a)] + γβI0(a). (A.2)

Our goal here is to prove that in the limit of F = 0 the mobility µ,

µ = lim
F→0

J(F )

F

is well defined for any stationary measure ν defining the polymer ensemble. The only
condition we impose is the decay of correlations even at a very slow rate. In other
words, we impose a mild condition on the rate of mixing of the dynamical system,
which in turn implies ergodicity [22]. By ergodicity we mean that the time-average
of any regular observable O : AZ → R, can be interchanged by its space average with
respect to the shift-invariant probability measure ν, i.e.,

∫

AZ

O dν = lim
n→∞

1

n

n−1
∑

j=0

O ◦ σj(a) ν-almost everywhere.

Here our observables will be q± and T1 which are non-negative and for any potential
ψ bounded by above, they are also bounded, and furthermore are L1(ν), i.e.

〈T1〉p =

∫

AZ

T1dν =

∫

AZ

|T1| dν <∞.

Next, we will obtain an expression for the asymptotic behavior of Jeff/F as F
approaches to zero. In order to do this, let us first estimate bounds for 〈T1〉p. We
assume that the system (AZ, σ, ν) satisfies that for every f ∈ L∞(ν) and g ∈ L1(ν)
there exists a decreasing-to-zero function r(m) such that

∣

∣

∣

∣

f · g ◦ σmdν −

∫

fdν

∫

gdν

∣

∣

∣

∣

≤ ||f ||∞||g||1 · r(m),
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where || · ||∞ and || · ||1 denote the L∞(ν) and L1(ν) norms respectively. The rate
function r(m) will be precisely given below. Let us write C := ||f ||∞||g||1, this is a
constant since q± are essentially bounded and L1(ν), and thus we are able to give the
following bounds

〈T1〉p ≶ γβ

∞
∑

m=1

e−mβFL

(∫

q+dν

∫

q−dν ± Cr(m)

)

+ γβ

∫

I0dν, (A.3)

≶ γβ

(

〈q+〉p〈q−〉p
1− e−βFL

± C

∞
∑

m=1

e−mβFLr(m) +

∫

I0dν

)

. (A.4)

Which makes that the particle flux (Eq. A.1) be bounded by above and below as
follows,

Jeff ≶
L

γβ
(

〈q+〉p〈q−〉p
1−e−βFL ∓ C

∑∞
m=1 e

−mβFLr(m) +
∫

I0dν
) .

Next, let us consider the approximation as F → 0 of the following quantity,

lim
F→0

F

(

〈q+〉p〈q−〉p
1− e−βFL

± C

∞
∑

m=1

e−mβFLr(m) +

∫

I0dν

)

.

The third part goes to zero since
∫

I0dν is constant. By limit identities, the first part
is given by

lim
F→0

F · 〈q+〉p〈q−〉p
1− e−βFL

=
Z+Z−

βL
.

It remains to estimate the summation involving the rate function, for which we make
use the assumption on the decay of the correlations. Let us assume that the rate
function r(m) = m−α for any α > 0. This implies that the sum

∞
∑

m=1

e−mβFLm−α,

can be written as the polylogarithm function [23], defined as,

Liα(x) :=

∞
∑

k=1

xk

kα
. (A.5)

It is known that the polylogarithm function has the asymptotic behavior [23]

Lis(e
−ξ) ≈ Γ(1− s)ξs−1 (A.6)

for |ξ| ≪ 1 and for non-integer s (in particular for 0 < s < 1), being Γ the well known
gamma function. If we consider a F0 > 0 small enough such that βF0L ≪ 1, for any
fixed β and L, then, one may write for every F ≤ F0,

FC

∞
∑

m=1

e−mβFLm−α ≈ CF · Γ(1− α)(βFL)α−1,

for all α > 0. In this way we have that

lim
F→0

FC

∞
∑

1

e−mβFLm−α = lim
F→0

C · Γ(1− α)(βL)α−1Fα → 0,
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for all α > 0 and β, L > 0. Now, using the Einstein relation we see that the effective
diffusion coefficient is given by

Deff =
1

β
lim
F→0

Jeff
F

=
1

γβ

L2

Z+Z−
,

which is the expression for the diffusivity anticipated in Eq. (16).

On one hand, the above treatment gave us the desired expression for the diffusivity
when one takes firstly the average on the state space and after that the approximation
when F goes to zero. On the other hand, one would expect that the expression (16)
remains valid when one takes first the approximation F → 0 and after that the average
with respect to the polymer ensemble. Here we give a result that enables us to
argue that this could be actually true. Nevertheless, we left for further research the
mathematically rigorous treatment. The importance on this kind of result is that the
Einstein relation should hold even if we do not perform the average over the polymer
ensemble. This means in particular that the mean FPT T1 should behave as F−1 for
F → 0 which in turn implies Eq. (16) as we will see below.

For the sake of convenience, we introduce a quantity of interest. Let N ∈ N and
define the observable gN : AZ → R as,

gN (a) :=
1

N

∞
∑

m=1

e−mz/Nf ◦ σm(a), (A.7)

for some z ∈ R
+. The discussion in the rest of this appendix is to justify the

approximation
∞
∑

m=1

e−mz/Nf ◦ σm(a) ≈
N

z

∫

AZ

f dµ =
N

z
〈f(a)〉p,

for large N .
For the moment, let us go to expression for the mean FPT and see that the

approximation above may be applied to the summations appearing in T1 in Eq. (A.2)
if we identify N with 1/F ,

T1(a) = γβq+(a)
∞
∑

m=1

e−mβFLq−[σ
−m(a)] + γβI0(a),

≈ γβq+(a)
1

βFL
〈q−(a)〉p + γβI0(a). (A.8)

Notice that in the limit F → 0 the mean FPT goes to infinity as F−1. The term
γβI0(a) appearing in the above expression remains finite if F = 0, and therefore it
can be neglected in further calculations. Then we have that the particle flux behaves
asymptotically as

Jeff =
L

〈T1〉p
≈
FL2

γ

1

〈q+(a)〉p〈q−(a)〉p
,

when F is small enough. Now, using the Einstein relation we see that the effective
diffusion coefficient is given by

Deff =
1

β
lim
F→0

Jeff
F

=
L2

γβ

1

Z+Z−
,

where Z± are given by Eq. (17) and which is the expression for the diffusivity
anticipated in Eq. (16).

Next, in order to justify our claim, we give the following proposition.
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Proposition 1 Let (AZ, σ,B, ν) be a measure-preserving dynamical system, where
σ : AZ → AZ is the shift mapping, B is a Borel sigma-algebra on AZ and ν is a
shift-invariant probability measure satisfying decay of correlations at rate O(m−α) for
some α > 0. Let f : AZ → R be a square integrable function on the full shift AZ, i.e.,

∫

AZ

f2dν <∞.

And let gN be the observable defined in (A.7). Then, for every ǫ > 0 there exists a
sufficiently large N such that

ν

({

a ∈ AZ :

∣

∣

∣

∣

gN (a)−
1

z

∫

AZ

f dν

∣

∣

∣

∣

≥ ǫ

})

≤
C · Γ(1− α)zα−2

Nαǫ2
.

This inequality states that the larger we take N the more probable is to find gN
around (1/z)

∫

fdν in a ǫ neighborhood. The proof of this proposition use the decay
of the auto-correlation function, for that reason the square integrable assumption on
the observable f .

Proof: First, notice that
∫

AZ

gN dν =
1

N

∞
∑

m=1

e−mz/N

∫

AZ

f ◦ σmdν,

=
1

N

1

1− e−z/N

∫

AZ

fdν (A.9)

because ν is σ-invariant. For the sake of clarity let us denote by f̄ :=
∫

AZ fdν and let
us define K : N → R as follows,

K(N) :=
1

N

1

1− e−z/N

and note that for every z > 0

lim
N→∞

K(N) =
1

z
.

Observe that for any ǫ > 0 we have

ν

({ ∣

∣

∣

∣

gN (a)−
f̄

z

∣

∣

∣

∣

≥ ǫ

})

= ν

({ ∣

∣

∣

∣

gN(a) −K(N)f̄ +K(N)f̄ −
f̄

z

∣

∣

∣

∣

≥ ǫ

})

,

≤ ν
(

|gN −K(N)f̄ | > ǫ/2
)

+ ν
(

|K(N)f̄ − f̄/z| > ǫ/2
)

.

For the second summand in the right-hand side of the inequality, there is no
probability. So, there exists a N∗(ǫ) such that for all N ≥ N∗, |K(N)f − f/z| ≤ ǫ/2,
and so that part eventually vanishes. While for the first summand, by the Chebyshev
inequality we have that for all N ∈ N,

ν

({

∣

∣gN (a)−K(N)f̄
∣

∣ ≥ ǫ/2

})

≤
4Var(gN )

ǫ2
.

The variance of gN can be rewritten in terms of the auto-correlation function,

Var(gN ) =

∫

g2Ndν −

(∫

gNdν

)2

=

∫

g2Ndν −K2(N)f̄2.

We need to calculate
∫

g2Ndν and we obtain that
∫

g2Ndν =
1

N2

∞
∑

m=1

∞
∑

k=1

e−mz/Ne−kz/N

∫

(f ◦ σm)
(

f ◦ σk
)

dν,
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using the σ-invariance of ν we get,

Var(gN ) =
1

N2

∞
∑

m=1

∞
∑

k=1

e−mz/Ne−kz/N

[

∫

f · f ◦ σm−k dν −

(
∫

f dν

)2
]

=
1

N2

∞
∑

m=1

∞
∑

k=1

e−mz/Ne−kz/NCf (m− k). (A.10)

where Cf stands for the auto-correlation function of the observable f , i.e.,

Cf (ℓ) :=

∫

f · f ◦ σℓ dν −

(∫

f dν

)2

.

The expression for the variance of gN given in Eq. (A.10) can rewritten by changing
the summation order, as follows

Var(gN ) =
2

N2

∞
∑

ℓ=1

∞
∑

n=1

e−2nz/Ne−ℓz/NCf (ℓ) +
1

N2
Cf (0)

∞
∑

n=1

e−2nz/N .

= K(N/2)
1

N

∞
∑

ℓ=1

e−ℓz/NCf (ℓ) +
1

N
Cf (0)

K(N/2)

2
.

Now, the assumption on the decay of correlations becomes cricial. Let us assume that
the auto-correlation function for f behaves as Cf (ℓ) = C0ℓ

−α for any α > 0 and some
C0 > 0. In this case we can write the variance of gN as follows

Var(gN ) = K(N/2)
C0

N

∞
∑

ℓ=1

ℓ−αe−ℓz/N +
1

N
Cf (0)

K(N/2)

2

= K(N/2)
C0

N
Liα(e

−z/N ) +
1

N
Cf (0)

K(N/2)

2
.

In the second equation we have rewritten the expression for the variance of gN using
the polylogarithm function (A.5). From the approximation (A.6) we are able to write
down an asymptotic expression for the variance of gN for a sufficiently large N ,

Var(gN ) ≈ K(N/2)
C0

N
Γ(1− α)

( z

N

)α−1

+
1

N
Cf (0)

K(N/2)

2
.

Finally, since K(N/2) → 1/z as N → ∞, we easily see that Var(gN ) → 0 in the same
limit, and specifically

Var(gN ) ≈ C0Γ(1− α)zα−2N−α.

The latter implies that we can chose an appropriate constant C such that for a
sufficiently large N

ν

({ ∣

∣

∣

∣

gN (a)−
f̄

z

∣

∣

∣

∣

≥ ǫ

})

≤
C · Γ(1− α)zα−2

Nαǫ2
.

Which concludes the proof the proposition.
�
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Appendix B. The n-dimensional marginals for the expansion-modification

system

The 1-dimensional marginals for the E-M system can be understood as the relative
frequency of occurrence of symbols (monomers) of every kind along a typical
realization of the symbolic sequence (the polymer) generated by the E-M process
at the stationary state. For the sake of simplicity here we will call “polymer” to an
infinite symbolic sequence (i.e., a point in the space {0, 1}Z).

The processes generating the infinitely long polymer of the E-M system, give us
the way to obtain the marginals as follows. First, let a0 ∈ {0, 1}Z be an “initial
polymer” (of length 0) and allow it evolve, coordinatewise, according to the E-M
processes defined as

x 7→

{

x with probability 1− p
xx with probability p.

These rules generate a sequence of “polymers” of finite size a0 7→ a1 7→ a2 · · · that
attain a stationary state for t → ∞. The E-M system is actually a discrete-time
Markov process [21]. Let us call f0(t) and f1(t) the fraction of 0’s and 1’s in the
symbolic chain at at time t ∈ N. This means that in any subsequence of at of
n symbols we will find typically nf0(t) zeroes and nf1(t) ones. We will obtain a
recurrence relation for f0 and f1. First notice that the chain at+1 is generated from
at by means of a fraction of p expansions and 1 − p modifications. This means that
a subsequence b of size n in at generate a sequence of size n(1 + p) in at+1. The
total symbols that are expanded in b is pn and the total symbols that are modified
is (1 − p)n. From the total symbols that are “expanded”, a fraction f0 of them are
zeroes and a fraction f1 of them are ones. Analogously from the total symbols that
are “modified”, a fraction f0 of them are zeroes and a fraction f1 of them are ones.
This means that the number of symbols that are zeroes in the new chain has two
contributions: the number of 0’s that were expanded 2npf0(t) plus the number of 1’s
that were modified n(1 − p)f1(t) becoming zeroes in the new chain. An analogous
statement follows immediately for f1(t) . Since the size of the new chain is (1 + p)n
we have that the fractions f0(t) and f1(t) obey the following recurrence relations,

f0(t+ 1) =
2pf0(t) + (1 − p)f1(t)

1 + p
(B.1)

f1(t+ 1) =
(1− p)f0(t) + 2pf1(t)

1 + p
. (B.2)

Notice that this defines a one-step Markov chain with probability matrix M1 :
{0, 1} × {0, 1} → [0, 1],

M1 =
1

1 + p

(

2p 1− p
1− p 2p

)

. (B.3)

In the limit of t→ ∞ the fractions f0 and f1 tend to the unique invariant probability
vector for M1. It can be seen that such a probability vector is given by

v1 =

(

1

2
,
1

2

)

. (B.4)

Next we can generalize the concept of fractions of zeroes and ones, to the relative
frequency ft(w) with which a word w ∈ {0, 1}k of size k occurs along a the polymer
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Table B1. Effective number of words of size two given by the expansion-
modification process. This rules allows calculate the recurrence relations for the
evolution of frequency of appearance of words of size two.

Initial words

Process Probability 00 gives 01 gives 10 gives 11 gives

ee p2 00, 00 00, 01 11, 10 11, 11
em p(1− p) 00, 01 00, 00 11, 11 11, 10
me p(1− p) 10 11 00 01
mm (1− p)2 11 10 01 00

at ∈ {0, 1}Z at time t.

ft(w) := lim
n→∞

n−1
∑

j=0

I[w]

(

σj(at)
)

(B.5)

where I is the indicating function, which takes the value 1 if at belongs to the set [w]
and take the value 0 if at does not belong to the set [w]. The set [w] called cylinder
is defined as the set of all infinite sequences x ∈ {0, 1}Z with prefix w, i.e.,

[w] :=

{

x ∈ {0, 1}Z : x0 = w0, x1 = w1, . . . , xk−1 = wk−1

}

.

In other words, we calculate the frequency that a word of size k appears in a polymer
by counting the number times such a word appears in a “window” of size k which
slides along the polymer. Let us analyze the case k = 2. To obtain the stationary
2-dimensional marginals, or equivalently, the stationary relative frequencies of words
of size 2, we can obtain recurrence relations as in the 1-dimensional case. First notice
that a word of size 2 generate words of sizes 2, 3 and 4 by means of expansions
and modifications. We have four cases that should be considered. For example
take the word a = 00. This word can be transformed under the E-M process into
b = 0000, 100, 001, 11. Each case corresponds to one of the four possibilities of the
process: ee, em, me and mm (e stands for “expansion” and m stands for “modification”).

First notice that in the case of two expansions (00
ee
→ 0000) we obtain, by sliding a

window of size two, three times the word 00. However, this fact does not mean that
pure expansions has the effect of triplicate the frequency of appearance of 00. For
example, the block 00000 transforms under pure expansion into the block 0000000000.
A direct counting shows, by sliding a window of size two, that the word 00 appears four
times before the transformation and nine times after such a process. In general, the
number of times that the word 00 appears in the block resulting from pure expansions
of a block consisting of n zeros, is 2n+1. This means that the frequency of appearance
of 00 is duplicated in the limit of an infinite polymer. In other words, the effective
number of words that produces the word 00 under the process ee is two and are 00,
00. A similar analysis shows that, in order to count correctly the number of times a
word appears under the processes em, me, and mm we should take into account certain
“rules” which are summarized in Table B1. With these rules it is easy to see that the
relative frequencies with which the words 00, 01, 10 and 11 appear after a process of
expansions and modifications of an infinite polymer, are given by,

ft+1(00) =
1

1 + p

(

(2p2 + pq)ft(00) + (p2 + 2pq)ft(01) + pqft(10) + q2ft(11)

)
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ft+1(01) =
1

1 + p

(

pqft(00) + p2ft(01) + q2ft(10) + pqft(11)

)

ft+1(10) =
1

1 + p

(

pqft(00) + q2ft(01) + p2ft(10) + pqft(11)

)

ft+1(11) =
1

1 + p

(

q2ft(00) + pqft(01) + (p2 + 2pq)ft(10) + (2p2 + pq)ft(11)

)

. (B.6)

The above recurrence relations can be recast into a more compact form by defining
the probability vector p2 (the time-dependent two-dimensional marginals) whose
components are the relative frequencies at time t,

p2(t) :=

(

ft+1(00), ft+1(01), ft+1(10), ft+1(11)

)

,

in terms of which we rewrite Eq. (B.6) as a matrix equation,

p2(t+ 1) = p2(t)M2

where the matrix M2 defined as

M2 =
1

1 + p









2p2 + pq pq pq q2

p2 + 2pq p2 q2 pq
pq q2 p2 p2 + 2pq
q2 pq pq 2p2 + pq









. (B.7)

In the limit of t → ∞, it has been proved in Ref [21] that the system reaches a
stationary state. This means that the time-dependent probability vector p2(t) is well
defined in the limit t → ∞. The probability vector at infinity is the left eigenvector
of M2 , which we denote by v2, associated to the (largest) eigenvalue λ = 1,

v2 = lim
t→∞

p2(t),

and v2 satisfies the equation

v2 = v2M2,

through which we calculated the 2-dimensional marginal given in Eq (26).
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