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We report laboratory experiments on surface waves
generated in a uniform fluid layer whose bottom
undergoes an upward motion. Simultaneous measure-
ments of the free-surface deformation and the
fluid velocity field are focused on the role of the
bottom kinematics (i.e. its spatiotemporal features)
in wave generation. We observe that the fluid layer
transfers bottom motion to the free surface as a
temporal high-pass filter coupled with a spatial low-
pass filter. Both filter effects are often neglected in
tsunami warning systems, particularly in real-time
forecast. Our results display good agreement with a
prevailing linear theory without any parameter fitting.
Based on our experimental findings, we provide a
simple theoretical approach for modelling the rapid
kinematics limit and that is applicable even for
initially non-flat bottoms: this may be a key step
for more realistic varying bathymetry in tsunami
scenarios.
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1. Introduction
Most tsunamis are triggered by sudden displacements of the seabed during earthquakes. To
predict tsunami hazards in real time, actual warning models require, first and foremost, data
of the free-surface initial waveform in the open seas. Buoy networks dedicated to detect tsunamis
may provide direct measurements of wave heights at fixed positions across the oceans [1], which
can be used to reconstruct the initial tsunami waveform through inversion. However, these
data only become available after the tsunami waves have reached the buoy locations. Since
reconstruction comes from inversion, data is not only required in a single buoy but in a set of
them, which means that waveform estimations become reliable only after tsunamis have travelled
an important distance across the sea. Far-field locations can thus rely on buoy network data,
but not near-field locations, which are usually struck by the tsunami waves before the initial
waveform can be reconstructed.

Tsunami warning systems thus require an alternative way to estimate the tsunami initial
waveform while buoy records are unavailable. The standard is to use a faster indirect method
based on the fault source and the seismic data from nearby stations. The seabed displacement
is computed numerically from the fault slip parameters using Okada’s model [2], and then
transferred to the ocean free surface. The technique provides a fast estimation of the initial
waveform that can be used as an input for tsunami-propagation codes. Tsunami risks at different
locations can then be forecasted using a discretised version of the estimated waveform via ready-
to-use offline calculations (Green’s functions) [3]. However, this procedure often underestimates
the surface wave amplitude (e.g. for the 2004 Indian Ocean tsunami [4]).

Several reasons have been proposed to explain this bias [5–12], including the seabed-
kinematics role during an earthquake (i.e. its spatiotemporal features) [12–15]. Bottom
displacement is considered to be instantaneous if its typical rise time is small compared to
the time scale of the generated waves at the free surface [14]. Most earthquakes meet this
condition, although other remarkable tsunamigenic events barely satisfy it: for instance, in two
of the largest tsunamis ever registered, the bottom displacements may have been noticeably
slow [16]. Numerical codes used in warning systems, however, are more focused on analyzing
wave propagation on the varying bathymetry of oceanic basins, which is achieved via numerical
integration of nonlinear shallow water equations (e.g. the MOST [17] and the TUNAMI [18]).
Warning codes are prone to neglect seabed kinematics and consider that bottom displacements
are instantaneous. Thus they use as initial condition a simple translation of the final deformation
of the source bottom to the ocean surface. On the other hand, numerical simulations that suitably
do consider bed-sea kinematic coupling during displacements are at hand and in a broad range
of approaches: linear three-dimensional (3D) potential flow [19], higher-order nonlinear shallow-
water theory [20], fully-nonlinear potential flow [21,22], and full Navier-Stokes equations [23,24]
(for a comparison between several approaches, see [25]). Computational costs however remain
high in most cases, which makes their application for real-time forecasting hard. Furthermore,
numerical simulations also require bottom kinematics a priori, an input that is hard to determine
during events. During the last years, a powerful non-hydrostatic numerical model, NHWAVE
have come into scene [26]. The model is able to predict 3D effects for a given initial condition (i.e.
initially non-flat bottom) with an outstanding accuracy and lower computational cost by splitting
the ocean in very few vertical layers. Results are very promising [27].

Numerical simulations, theory and experiments show that dynamics play a role. Even if the
deformation happens at the instantaneous limit, the free-surface displacement is not equal to
the bottom one as considered by translational models [28–30]. In realistic scenarios, hindcast
simulations have also shown that bed dynamics do have an effect. For the 2011 Tohoku tsunami,
Grilli et al. showed using both NHWAVE and high-order Boussinesq simulations, that dynamic-
source models yield tsunami waveforms remarkably different than instantaneous source models
[27]. Indeed, dynamic models show an excellent agreement with field measurements.
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On the other hand, laboratory experiments dealing with the influence of bed-uplift kinematics
in tsunami generation are rare and have been based on measurements of the free-surface
deformation [29,31–33], providing limited information about the fluid dynamics. Velocity
measurements in the bulk are even rarer and only concern landslide-triggered tsunamis [34,35].
Furthermore, most of these laboratory experiments have been performed in channels overlooking
the 3D geometry of real scenarios [29,32,34–36]. The lack of tsunami-oriented experiments
contrasts with their unquestionable importance. Controlled laboratory experiments not only
supply a way to validate numerical simulations under well-known inputs (cf. [37]), but also may
elucidate which physical mechanisms dominate a given regime.

In this article, we analyse experimentally and theoretically the hydrodynamic coupling
between the bottom and the free-surface motion in a 3D fluid layer, focusing on the role that the
bottom kinematics play in wave generation. We aim to better understand how spatiotemporal
features of the bottom deformation affect the shape and the amplitude of the generated
waves. For this purpose, we designed an idealised scenario where waves are generated by an
axisymmetric deformation in the centre of a flat-bottom laboratory tank. We performed combined
measurements of the free-surface deformation and the fluid velocity field. Our results are then
compared with a linear theory for underwater moving bottoms [38]. Although some of our
experimental parameters are far by orders of magnitude from real tsunami-generation conditions,
essential features are still well reproduced. Based on our experimental findings, we also provide
a theoretical framework that provides a simple and different insight on the generation of waves
by impulsive bottom motions. The results could be applied to determine initial waveforms in
uneven bottom configurations.

2. Experimental Setup
We performed our experiments in a 110× 110× 30 cm3 Plexiglas basin filled with water to a
depth of h= 2.5 cm. A circular region (radius r2 = 3.25 cm) was carved in the bottom centre and
covered with a stretched elastic sheet. The sheet is deformed by means of a solid flat circular
piston (r1 = 2.5 cm) placed beneath the membrane and attached to an electromechanical shaker
(see Fig. 1). As a result of the setup geometry, the bottom vertical motion can be described as a
separable spatiotemporal function with circular symmetry, ζ (r, t) = ζmα (r)β (t), where ζm is the
maximal bottom deformation; α (r) is the spatial profile along the radial horizontal coordinate r
[see Fig. 1 (inset)] and β (t) is the displacement time function. The latter was arbitrarily chosen
to be an exponential rise, βexp (t) = 1− e−t/τb , or a half-sine one, βsin (t) = sin2 [πt/ (2τb)] if t≤
τb or 1 if t > τb; where τb is defined as the rise time. To achieve this, the shaker input signal
was determined by exploiting the bottom velocity records from a laser Doppler vibrometer. Our
system can be used to study several rise times, and upward bottom amplitudes. Value ranges are
displayed in the table below:

Bed displacement function τb ζm

Exponential βexp (t) 10− 500 ms 1.5− 5.0 mm

Half-sinus βsin (t) 10− 500 ms 1.5− 5.0 mm

Thus, typical bottom velocities vary from 1 to 30 cm · s−1. A total number of 22 different
scenarios (different bed displacement function, τb and ζm), each consisting of 10 runs, were
analyzed. The basin extent was chosen to avoid wave reflections on the lateral walls during the
generation process.

The velocity field in the bulk during bottom and surface deformations is obtained using
Particle Image Velocimetry (PIV). A laser sheet passing through the basin centre illuminated a
vertical slice of water seeded with 50-µm polyamide particles (PSP), as shown in Fig. 1. To avoid
particle settling, the water was mixed with some NaCl (up to a mass concentration of 2.7%) so
the aqueous solution matches the density of particles. A high-speed camera placed in front of
the illuminated region provided an imaging area of 71× 30 mm2 (1600× 692 pixels), which was
recorded at 500 Hz during τm = 1 s (τm is defined as the measurement time). Since the system is
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Figure 1. Main: Experimental setup. A layer of water is contained in a basin where a shaker and a piston vertically deform

an elastic sheet placed at the bottom centre. The piston motion is recorded using a laser vibrometer. Images from a

sectional cut of the fluid are obtained using a laser sheet generator and a high-speed camera. The bottom dimensionless

spatial profile α (r) and the time displacement function β (t) are also displayed.
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Figure 2. A typical image of the region of interest (side view) for the study of waves generated by a moving bottom. The

liquid is seeded with particles (white points) both in the bulk and in the free surface. Those at the free surface form a quasi-

continuous brighter line that is used to identify the position of the free surface η (r, t). The bottom position ζ (r, t) can

also be detected with standard contrast techniques. The snapshot was taken at t= 80ms in a half-sinus bed deformation

scenario (ζm = 5mm, τb = 150ms, h= 2.5 cm).
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axisymmetric, these measurements build a 3D picture of the flow. The surface of the water layer
was blown with more particles, which due to their hydrophobicity, tend to rest in the surface. In
the images, the particles form an identifiable line, which can be used for detection (see Fig. 2).
The free-surface vertical deformation η (r, t) was then obtained by applying a Radon transform
algorithm on the images [39]. This algorithm integrates the intensity along all the possible straight
lines contained in a sub-window and finds the maximal value. A continuous and smooth curve is
then obtained by interpolating the segments (slope and position) along the whole free surface. An
example of the detected free surface by the algorithm is also plotted in Fig. 2. Finally, we applied
a PIV grid-refining scheme [40] (up to 16× 16 pixels windows, no overlapping) using an average
correlation method [41] on ten experimental runs for each set of parameters1. All the data used
throughout this article are available at a public repository at [42].

The two time scales in our experiment are the bottom rise time τb and the typical time of
the generated waves τw . We defined τw as the semi-period of the wave, i.e. the time between
the first maximum and minimum of the water surface deformation at the basin centre (r= 0).
In our experiment, τw ' 130 ms is the same for any displacement time function β and most
of rise times τb (see results below). This value is related to the dominant wavelength of the
generated wave λw ≈ 10 cm (according to acquired images), through the dispersion relation
τw = π/

√
gkw tanh kwh, where g is gravity and kw is the dominant wavenumber of the generated

wave2. Notice that λw > 2r2 = 6.5 cm.During measurements, capillary waves were not observed3

[see discussion in Section 3.(c)]. We focus on one experimental time ratio simply defined as
τ = τb/τw , which varies between 0.08 and 4. The relevance of the time ratio in tsunami generation
was noticed by Hammack [29], who suitably identified three wave-response regimes to bottom
deformations: impulsive (τ � 1), transitional (τ ∼ 1), and creeping ones (τ � 1). The Froude
number in our measurements Fr = ζm/τb

√
gh varies between 0.02 and 0.3.

3. Results and discussion

(a) Velocity field
Within the above classification, we display in Fig. 3 three characteristic snapshots of the
generation velocity fields for half-sine type displacements. The vertical coordinate is denoted as z
such that at rest, the free surface matches z = 0, and the bottom, z =−h. When τ � 1, we observe
an upward global motion during the bottom uplift. Indeed, the velocity field just below the free
surface is vertical [see Fig. 3(a)] as predicted in [43]. Gravity-wave propagation starts remarkably
after the end of the bottom motion as shown in videos 4. When τ ∼ 1, the flow resembles that of
Fig. 3(a) at short times. However, before the bottom motion ends, waves start to propagate radially
from the generation region: an oscillating flow occurs right beneath the free surface [see Fig. 3(b)].
In this case, both bottom deformation and wave propagation occur simultaneously suggesting
that the bottom kinematics affects induced waves. For τ � 1, the free surface remains mostly
stationary and accordingly, the vertical component of the velocity vanishes when approaching
the free surface [see Fig. 3(c)]. In this stage, the outward flow reminds that of a moving bottom in
presence of a fixed boundary at z = 0. We observed that exponential-rise bottom displacements
(not shown) display similar behavior.

To quantify the transition between the slow and rapid regimes, we compute the kinetic energy
from the fluid velocity field. Figure 3 shows that the region r < 7 cm contains most of the kinetic

1Due to the reproductibility of experiments we superimpose pictures of 10 identical runs to increase the number of particles
on the processed images, improving PIV results.
2The generated wave is mainly dispersive as λw = 4h, in contrast with real tsunami scenarios where waves are less
dispersive.
3The electromechanical shaker was intentionally decoupled from the tank (no solid contact) so that, high-frequency vibrations
could not be directly transferred to the tank. The only contact took place between the piston and the soft membrane used for
the bottom deformation. This configuration avoids the emergence of capillary waves due to shocks at small τb bed uprise
motion. Notice that PSP particles at the free surface are likely to inhibit capillary waves.
4See Supplemental Material at [URL] for velocity-field videos of the runs depicted in Fig. 3.
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Figure 3. Experimental velocity fields in the water during half-sine bottom displacements for three typical τ values. The

streamlines (set of grey curves) in (a) and (c) were computed numerically using an asymptotic model for the τ � 1 and

τ � 1 cases (see explanation in Section 3.(d)). In all cases, the free-surface deformation is significantly smoother than

the bottom one.

energy during the bottom deformation. As shown in Fig. 4 (inset), the kinetic energy within
this volume, EK , captures also the main temporal features of the motion (see also [44]). The
bottom uplift induces an intense first maximum of EK . As the bottom stops afterwards, a local
minimum E−K appears and later, a second maximum E+

K emerges induced by wave propagation.

We define the contrast of kinetic energy as
(
E+
K − E

−
K

)
/
(
E+
K + E−K

)
. As shown in Fig. 4 (main),

the contrast is close to unity for τ � 1: the liquid can be considered as motionless at the end

of the bottom deformation
(
E−K ≈ 0

)
, with its velocity being negligible compared to those due

to wave propagation. Inertia seems to be absent since no flow outlasts the bottom motion: the
liquid layer and the bottom behaves like a single block. For larger τ , the wave propagation begins
while the bottom is still moving so the energy contrast decreases to zero. Furthermore, for τ ' 1.4,
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Figure 4. Inset: Experimental (solid line) and theoretical (dashed line) kinetic energy EK versus time. E−K is the local

minimum of kinetic energy near t= τb and E+
K is the local maximum of kinetic energy due to the wave propagation.

Main: Experimental (squares) and theoretical (dashed line) contrast of kinetic energy versus τ .

the contrast is not any more defined because the bottom deformation and the wave propagation
overlap so much that E−K and E+

K do not exist at all. This shows that the energy contrast depicts
well the transition between rapid and slow scenarios. The data scattering observed in Fig. 4
(main) has no physical origin and is inherent to PIV measurements as the technique holds some
uncertainties. For exponential bottom motions (not shown), time at which extrema of EK occur
are different from the half-sine case5 but the contrast of kinetic energy behaves similarly with τ̄ .

(b) Free surface
Since the fluid velocity field is coupled with the free-surface deformation, both quantities share
related spatiotemporal features6. The insets of Fig. 5 depict the bottom and the free-surface
elevations at r= 0, ζ0(t) and η0(t), as a function of time. We observe in all cases that the free
surface and the bottom are synchronised at the beginning of the motion. For τ � 1, this is true
throughout the bottom uplift and regardless of the displacement time function β (t) as time
satisfies t < τb� τw [see Figs. 5(a)-5(b)]. Besides, the subsequent stage is independent of the
displacement-time history of the bottom. Contrariwise, for τ & 1, exponential and half-sine bed
displacements induce free-surface responses that not only differ from rapid ones, but also from
one another [see Figs. 5(c)-5(d)], e.g. the negative part of η0 is more pronounced for the half-sine
case. This evidences that for τ & 1 the generated-wave shape depends on the nature of β (t) as well
as on its typical time τb, which confirms that the bottom kinematics is crucial in non-impulsive
wave generation.

To understand more precisely its role, we plot in Fig. 5 (main) the dimensionless maximal
elevation of the free surface at r= 0, η0,m/ζm, as a function of the time ratio τ . As expected, η0,m
decreases with τ and converges to the same asymptote for τ � 1 independently of the nature
of β (t). For τ � 1, we observe two different behaviours: η0,m decreases as τ−1 for exponential
bottom displacements and as τ−7/4 for half-sine ones. This differs from 1D experiments where a
τ−1 power law fits both cases [29]. To summarise, when motion is transferred from the bottom to
the free surface, the fluid layer behaves as a temporal high-pass filter (cut-off at τ−1 ≈ 1).

5For example, the first intense maximum ofEK occurs at t= 0 for the exponential case
6Coupled in the same sense that velocity is coupled with position in a harmonic oscillator, i.e. with a 90◦ phase difference
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Figure 5. Insets: Bottom and free-surface deformations in mm at r= 0, ζ0 and η0, versus time (ζ0 in dash-dotted lines;

η0 experiments in solid, theory in dashed lines) for exponential (a and c) and half-sine (b and d) bottom displacements.

The vertical dashed lines represent t= τb for each run. The wave time scale τw is found to be 130ms in all the cases.

Main: Dimensionless free-surface maximal elevation at r= 0, against τ for different bottom displacements (see legend).

Symbols are experimental data, dashed lines are theoretical results and dotted lines are asymptotic behaviours (τ � 1).

Notice that η0,m/ζm does not reach unity when τ → 0, as a consequence of the spatial low-pass
filtering effects. The effects are highlighted in Fig. 6 (a), where we plot the spatial profiles of the
bottom and the free surface at the end of an impulsive bed motion (t= τ ; τ̄ � 1). We observe that
the free surface is smoother than the bottom so the water column acts as a spatial low-pass filter.
Notice that this final free-surface profile is independent of τ̄ and of the nature of β(t) (as long
as τ̄ � 1). Low-pass filtering effects also explain why the dominant wavelength in our results,
λw ≈ 10 cm, is larger than the size of the deformed region, 2r2 = 6.5 cm.

(c) Linear theory
The experimental data displayed in Figs. 4-6 are all found to be in good agreement with theoretical
curves without any parameter fitting. The curves were calculated using the axisymmetric version
of Hammack’s tsunami-generation theory which neglects capillary, compressibility and viscous
effects [38]. In our experiments, capillary effects are indeed negligible since the typical wavelength
λw ≈ 10 cm is nearly one order of magnitude larger than the critical wavelength of capillary
waves, λc = 2π

√
γ/ (ρg)≈ 1.4 cm (γ ≈ 50 dyn.cm−1 is the surface tension and ρ≈ 1 g.cm−3 the

fluid density). The observed flow is also incompressible as ({ζm/τb, h/τb, r1/τb}� cs where
cs ≈ 1500 m.s−1 is the sound speed in water [45]). Viscous effects are also absent as time scales
associated with viscous processes, τν ' 10 s, are much larger than the experimental time scales7.

After neglecting capillary, compressibility and viscous effects, the flow can be assumed to be
irrotational and hence the system can be expressed in terms of a velocity potential φ that satisfies

∇2φ= 0 (3.1)

7Three different time scales, each of them associated to a different viscous process, can be calculated : (a) the decay time
of the generated gravity waves due to the viscous boundary layer on the bottom: τbν = τν sinh 2kwh≈ 50 s, where τν =√
λ2
ωτω/2π

3ν (ν ≈ 10−2 cm2.s−1 is the kinematic viscosity), (b) the wave decay time due to the viscous boundary layer on
the free surface is τsν = 2τν tanh kwh≈ 10 s and (c) the viscous-diffusion characteristic time in the bulk τvν = λ2

w/8π
2ν ≈

200 s [46].
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in the bulk. The experimental amplitude parameter ζm/h is small enough to linearise boundary
conditions [38]. Thus, if the bottom is initially flat, the dynamic condition at the free surface as
well as the kinematic boundary conditions can be written as

∂tφ|z=0 + gη = 0. (3.2)

∂zφ|z=−h − ∂tζ = 0, (3.3)

∂zφ|z=0 − ∂tη = 0. (3.4)

To solve this system of equations, we apply the Laplace transform in t to the displacement time
function, β̃ (s)≡L{β(t)} (s), and the Hankel transform of zeroth order in r to the spatial profile,
α̂ (k)≡H0 {α(r)} (k)≡

´+∞
0 ρJ0 (kr)α (r) dr, where J0 is the zeroth order Bessel function of

the first kind. The latter is equivalent to a two-dimensional (2D) Fourier transform under circular
symmetry. Accordingly, the Hankel transform of the free-surface deformation may be written
as [38]

η̂ (k, t) =
ζmα̂ (k)

cosh kh
· L−1

{
s2β̃ (s)

s2 + ω (k) 2

}
(k, t) . (3.5)

where ω(k) =
√
gk tanh kh is the gravity-wave dispersion relation. The direct and inverse

Laplace transforms in Eq. (3.5) can be evaluated in closed form for both βexp (t) and βsin (t).
Besides, the spatial transform α̂ (k) may be computed numerically. The spatiotemporal free-
surface deformation η(r, t) =H−10 {η̂ (k, t)} can be found likewise using a Fourier-Bessel series
representation of H−10 [47]. The velocity field can also be obtained by calculating the velocity
potential φ through the formula,

φ̂ (k, z, t) =
ζmα̂ (k)

cosh kh
· L−1

{
gsβ̃ (s)

s2 + ω (k) 2

(
s2

gk
sinh kz − cosh kz

)}
(k, z, t) . (3.6)

Theoretical dashed lines in Figs. 4-6 are computed using Eqs. (3.5)-(3.6) and display very
good agreement with experimental data. The first factor in Eq. (3.5) is the Hankel transform of
the final bottom deformation but modulated with a low-pass filter, (cosh kh)−1, that smooths
the free surface as shown in Fig. 6. The second factor is spatiotemporal and relates the time
t (corresponding to s in the Laplace domain) with the two characteristic times: the wave
semi-period τw (corresponding to ω) and the bottom rise time τb (contained in β̃ (s)).

(d) Asymptotic analysis (DBVP approach)
In this section we make an asymptotic analysis of (3.5) and (3.6), i.e. the linear model for tsunami-
waves generation, for both the impulsive case (τ � 1) and the creeping case (τ � 1).

For the asymptotic expansion, consider first the impulsive limit τ � 1, so the expansion is
made in terms of τ . We consider t� τw , s2 + ω2 ∼ s2, the second factor of Eq. (3.5) becomes
simply β (t) [and ∂tβ (t) sinh kz/k in Eq. (3.6)], gravity effects vanish yielding interface elevations
instantaneously equal to the bottom low-pass-filtered deformations,

η (r, t) = H−10

{
ζmα̂ (k)

cosh kh

}
(r)β (t) +O

(
τ2
)
, (3.7)

φ (r, z, t) = H−10

{
ζmα̂ (k) sinh kz

k cosh kh

}
(r)∂tβ(t) +O

(
τ2
)
. (3.8)

The asymptotic expansion is valid only for t. τb. This is consistent with the behaviour observed
experimentally at short times: the fluid and the free surface moves synchronously with the bottom
[see Fig. 3(a) and Fig. 5 (insets)]. For later times, t& τb, β(t) can be considered as a Heaviside
function H (t) provided that τ � 1. Hence, β̃ (s) = H̃ (s) = s−1, and the second factor in Eq. (3.5)
becomes a propagation term: η̂ (k, t) = ζmα̂ (k) cosω (k) t/ cosh kh. As stated by Kajiura [28], this
is equivalent to a Cauchy-Poisson wave problem in which only the final bottom deformation is
low-pass filtered and translated to the surface as an initial condition. Likewise, we have shown
that the fluid is motionless when the bottom motion ends. No trace from the temporal features
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Figure 6. Insets: Initial bottom shape ζ(r, t= 0) (hatched areas), and final bottom shape after a half-sine impulsive

deformation, ζ(r, t≥ τ = 20ms) (coloured area/dash dotted lines) for: (a) flat-bottom initial configuration and (b) non-

flat-bottom initial configuration: the piston is raised 9mm above the basin bottom beforehand. Main: corresponding

free surfaces at the end of the deformation, η(r, t= τ). (a) Experimental data (solid line); Hammack’s linear theory

(dashed line). (b) Experiments (solid line); Hammack’s linear theory considering depth above the piston h0 = 21mm

(loosely dashed line); depth far from the piston, h∞ = 30mm, (densely dashed line); DBVP approach (dotted line). See

discussion in Section 3(d).

of the initial motion is left. This explains the memory loss of the bottom-displacement history
observed in our experiments.

Like free-surface deformation, velocity potential for the impulsive limit (τ � 1) has a
striking feature: gravity plays no role during the bottom motion, i.e. t≤ τb� τw (Eqs. (3.5)-
3.6). Accordingly, we analyse the limit g→ 0. At leading order, we can drop the gravity term
in Eq. (3.2), so φ|z=0 = 0 and the free surface η decouples from Eqs. (3.1)-(3.3). This yields a
decoupled boundary value problem (DBVP) for the velocity potential φ, equivalent to solve
Laplace equation with given boundary conditions:

∇2φ= 0, φ|z=0 = 0, ∂zφ|z=−h = ∂tζ. (3.9)

The free-surface deformation η may then be obtained from Eq. 3.4. Notice that for any bed motion
ζ (x, y, t) separable in space and time, i.e. ζ(x, y, t) = ζmα (x, y)β (t), the velocity field generated
by (3.9) scales with the velocity of the bottom, ∂tβ, while the streamlines and vector orientation
are steady. The boundary condition φ|z=0 = 0 is consistent with the experimentally observed
features in Fig. 3(a): a vertical velocity field at the free surface.

Another interesting limit stands for the creeping case where τ � 1. Accordingly, the expansion
now given in terms of τ−1. We consider t� τw , the free-surface deformation from (3.5) and the
velocity field from (3.6) yield at dominant order to

η (r, t) = H−10

{
ζmα̂ (k)

gk sinh kh

}
(r)∂ttβ(t) +O

(
τ−4

)
, (3.10)

φ (r, z, t) = H−10

{
−ζmα̂ (k) cosh kz

k sinh kh

}
(r)∂tβ(t) +O

(
τ−2

)
. (3.11)

Again, the velocity potential is independent of g. Although, the dependence on k is different than
in the impulsive case. Notice that the free-surface-deformation dominant term is notO (1), which

is equal to zero, but the following one, which is O
(
τ−2

)
. The term is proportional to the ratio of



11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

the bottom acceleration and gravity.8 Be aware that there is not any conflict between the form of
the asymptotic expansions and the asymptotic behaviour of ηm,0/ζm in the creeping limit (τ � 1)
depicted in Fig. 5. For our largest values of τ , maximal deformations are attained at t& τw , for
which the asymptotic expansion is not valid.

Another DBVP can be found for this case. Consider g→∞ in Eq. (3.2): hence η= 0. The new
DBVP is again equivalent to solve Laplace equation but with a different boundary condition at
z = 0,

∇2φ= 0, ∂zφ|z=0 = 0, ∂zφ|z=−h = ∂tζ. (3.12)

The properties are similar to those of the impulsive case: proportionality to ∂tβ and steady
streamlines for space-time separable functions. We find again in ∂zφ|z=0 = 0 that the velocity
field is horizontal at the free surface as observed experimentally in Fig. 3(c).

For both limits, τ � 1 and τ � 1, the DBVP can be straightforwardly solved using a finite-
difference scheme for the Laplace equation [48, pp. 1024-1031]. The method differs from the
Green’s function approach developed in [43]. The computed streamlines fit in an excellent way
the measured velocity field [see Figs. 3(a) and 3(c)]. On the other hand, while for τ � 1, η' 0, for
initially flat bottoms undergoing impulsive uplifts (τ � 1), η can be obtained from Eq. (3.4). This
leads to the spatial low-pass filtered results found previously.

The DBVP approach has another great advantage: it can be adapted to initially arbitrary-
shaped-bottom basins by simply writing the bottom condition as ∂zφ|z=−h(x,y) = ∂tζ. To
experimentally validate the DBVP approach under this configuration, we considered a non-
flat-bottom initial condition in our tank, i.e. the piston was raised above the basin-bottom level
beforehand [see Fig. 6b (inset)]. In Fig. 6b (main), we plot the spatial profile of the free surface at
the end of an impulsive bottom deformation (τ � 1). We observe that the DBVP results displays
very good agreement with the experimental profile. Comparison with other initially flat-bottom
models is not straightforward: for instance, the water depth h used in Hammack’s linear theory
is not defined anymore. Two different water depths are involved: h0 above the piston and h∞
elsewhere. The spatial profiles obtained with Hammack’s linear theory, using either h= h0 or
h= h∞, are significantly different from the experimental profile. This demonstrates the usefulness
of the DBVP approach for taking into account varying bathymetry, if present (see discussion
below).

Notice that dependence on time in the DBVP equations is slaved to ζ(t). Thus, to compute free-
surface deformation during an impulsive bottom motion (τ̄ � 1, t≤ τb), Laplace equation need
to be solved just once and then scaled by β(t). For later times (t > τb), classical wave-propagation
routines can be easily plugged. The initial waveform will be provided by the impulsive DBVP at
the end of the bottom motion (static initial condition).

Due to its low cost, one solving-Laplace-equation step, the method may be used as a
computationally affordable routine to incorporate terrain conditions in impulsive tsunami
generation real scenarios.

(e) Application to tsunamis
Tsunami-generation experiments in laboratory tanks deal with a clear compromise between
scalability to realistic scenarios and feasibility, controllability and measurability. The aim of our
experiments was to understand the role of the spatiotemporal features of bottom motion on
induced waves (e.g. measuring simultaneously the velocity field and the free-surface deformation
during the process). Thus we had to make a suitable choice of the dimensions of the experiments.
Accordingly, our experimental parameters (ζ†m/h† = 0.08− 0.5, r†1/h

† = 1, τ†b = 10− 500 ms,)
obviously differ from those of real tsunamis (ζ∗m/h∗ ∼ 10−3, r∗1/h

∗ ∼ 16, τ∗b ∼ 1− 100 s,) by
several orders of magnitude. Notwithstanding, we have shown that at our chosen scales, bottom-
induced wave generation is governed by Hammack’s linear theory, and in its fast and slow
8The asymptotic expansion goes as τ−2n as a consequence of the term s2/

(
s2 + ω2

)
inside the inverse Laplace transform

in Eq. 3.5.
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asymptotics, by the DBVP framework. In this section, we carefully check the validity of the same
theoretical frameworks when scaled up to typical tsunami scales. The checkup requires not only
the analysis of the linear-theory assumptions but also the evaluation of some key dimensionless
numbers.

◦ Concerning viscosity and capillarity effects, we can verify that both effects decrease as
length scales increases. This means that in real scenarios, they should be even smaller
than in our setup.9

◦ Nonlinear effects are measurable through the dimensionless quantity ζm/h, which is
much lower in real-tsunami scenarios than in our experiments ζ∗m/h∗ ∼ 10−3� ζ†m/h† ∼
10−1). This means that for real-tsunami scenarios linear theory should fit even better.10

◦ Geometry issues, which can be quantified by the size ratio r1/h, require a deeper analysis.
In our experiments, we fixed r†1/h

† = 1 to highlight the spatial low-pass filtering. For
accepted tsunami values (r∗1/h

∗ ∼ 16), filtering effects are expected to be weak. However,
recent and more direct evidence shows that tsunami initial waveforms have a complex
spatial distribution with significantly smaller length scales: r∗1/h

∗ . 5, as shown with data
from two recent tsunami sources (including the large 2011 Tohoku tsunami in Japan)
[49,50]. Their spatial distributions may be approximated by spherical-cap deformations,
which yield low-pass filtering η∗0,m/ζ

∗
m-corrections of 10% [28].

◦ Dynamic effects, can be analysed in terms of the time ratio τ̄ = τb/τw . In this case, the
typical tsunami range of time ratios τ∗ ∈ [0.003, 0.3] is located on the left-hand side of
Fig. 5, which makes them suitable for the impulsive DBVP approach. In our experiments,
τ† ∈ [0.08, 4]. First, notice that although fastest tsunamis are beyond our experimental
range, the asymptote for τ � 1 is largely attained within it, so that our work covers
faster tsunamigenic earthquakes. Besides, temporal high-pass filtering effects become
significant for slowest tsunami scenarios. For instance, the 2004 Sumatra-Andaman
tsunamigenic earthquake in Indonesia displayed rise times estimated at τ∗b ≈ 3 minutes

while τ∗w ≈ 10 minutes (i.e. τ∗ ∼ 0.3) [51]. According to our results, this yields η0,m/ζm-
corrections from 10% (half-sine displacement time function) to 40% (exponential rise)
compared to the nearly-instantaneous case. Furthermore, as earthquakes may involve
different timescales between rise and subsidence times, our extended range of τ†-values
is of importance to know from which timescales surface waves generated by a bottom
motion become negligible.11

◦ Effects due to bathymetry (non-flat bottoms initial conditions), are hard to quantify
by a single dimensionless parameter, since corrections will depend on the particular
geometrical features around the source. However, it is known that water depth may
vary abruptly in the fault crosswise direction in subduction zones, the archetype of
tsunamigenic regions. To illustrate with one case, water depth varies by a factor 3 over
60 km at the source of the 2011 Tohoku tsunami [52]. Although the source bathimetry of
this event is far from being axisymmetric, the initial condition is roughly comparable to
Fig. 6 (b). Finally, we have shown that the DBVP approach that we provide in this study
may be applied to uncover bathymetry effects on tsunami waveforms.

Notice that the application of some of our results to real-time tsunami forecasts may be limited by
the fact that seismical data do not provide much details about the seabed kinematics (e.g. rise time,
9Compressibility, on the other hand, may have some effect as h/τb and r1/τb become non-negligible compared to the
speed of sound cs at plausible tsunami scenarios. However, it is far from being dominant. Numerical integrations show
that acoustic-gravity waves just superpose on a main signal which is equal to incompressible gravity wave (see e.g. Fig. 2
in [45]).
10Since, η/ζm and φ/ζm are independent of ζm (see Eq. 3.5-3.6), as a consequence of linearity, our experiments are able to
capture the dynamic features for smaller amplitude waves, as those from real-tsunami scenarios.
11However, linear-theory corrections due to “uprise slowness” yield lower amplitudes, while those of the observed tsunami
were larger. The cause may be a resonance mechanism due to a richer bottom kinematics, e.g. a slowly spreading fault, as
predicted in [15]. To analyse this, we are running experiments on a new setup that supports complex-dynamics scenarios.
Results are far from the scope of this manuscript and will be published separately.
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spatial resolution). For instance, the currently-used spatial resolution for bottom deformations
at tsunami sources is 25× 50 km2 (NOAA SIFT Green’s functions). However, higher spatial
resolutions in tsunami sources may become available soon in standard real-time simulations.
Indeed, Crowell et al. have recently shown that it is possible to obtain seabed deformations at
high resolutions within two minutes after the strike of an earthquake using GPS data [53].

4. Conclusions
In conclusion, we have investigated the generation of free surface waves by an underwater
moving bottom. The experiments, which included simultaneous measurements of fluid velocity
field and free-surface displacement in an initially-flat-bottom configuration, display excellent
agreement without any parameter fitting with a linear theory of gravity waves. Although the
small scale of our wave-generation setup cannot be compared to real-tsunami scenarios, our
experiments are able to capture underlying features of dynamic coupling in tsunami-wave
generation. Essentially, the fluid layer transfers motion from the bottom to the free surface as
a temporal high-pass filter coupled with a spatial low-pass filter. Transfer models that perform a
simple translation, such as those used by tsunami warning systems, overlook both filters effects.
Supported on measured velocity fields, we have developed an alternative theoretical guideline
for taking into account spatial filtering for impulsive bottom uplifts. Furthermore, the impulsive
model was adapted to predict the initial waveforms generated for initially non-flat-bottom
configurations. This is achieved via a one-step-in-time numerical integration of Laplace equation
in a suitable domain and under given boundary conditions. The results have been successfully
validated with experiments. The new guideline may help to include in situ bathymetry data in
tsunami scenarios at low computational cost: this would be a key for improving real-time forecast
tsunami simulations.

Further experimental work will involve studying other spatial/dynamic features of realistic
tsunami scenarios, e.g. non-axisymmetric spatial distribution, complex bottom kinematics (e.g.
spreading faults). Beyond tsunami-oriented experiments, we also intend to probe nonlinear
effects for larger bottom deformations. Further theoretical work, will include a rigorous higher-
order analysis of the asymptotic expansions for the impulsive and creeping limits.
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